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The Resource-Constrained Project Scheduling Problem (RCPSP), one of the most 

challenging combinatorial optimization scheduling problems, has been the focus of a 

great deal of research, resulting in numerous publications in the last decade. Previous 

publications focused on the RCPSP, including several extensions with different 

objectives to be minimized and constraints to be checked. The present work 

investigates the integration of the routing, i.e., the transport of the resources between 

activities into the RCPSP, and provides a new resolution scheme. The two sub-

problems are solved using an integrated approach that draws on both a disjunctive 

graph model and an explicit modeling of the routing. The resolution scheme takes 

advantage of an indirect representation of the solution to define both the schedule of 

activities and the routing of vehicles. The routing solution is modeled by a set of trips 

that define the loaded transport operations of vehicles that are induced by the flow in 

the graph. The numerical experiments prove that the models and the methods 

introduced in this paper are promising for solving the RCPSP with routing. 

1 Introduction 

1.1. Resource-Constrained Project Scheduling Problem  

The Resource-Constrained Project Scheduling Problem (RCPSP) represents a challenging research problem that 

has been widely studied over the past decades. This problem is composed a set of activities, 𝑉 = {0, . . . , 𝑛 + 1 }, 
with durations, 𝑝 = (𝑝0, . . . , 𝑝𝑛+1), where 𝑛 is the number of non-dummy activities. All this activities define the 

project. There are two dummy activities, 0 and 𝑛 +  1, such that 𝑝0 = 𝑝𝑛+1 = 0. These activities 0 and 𝑛 + 1 

correspond to the “project start”, which is the predecessor of all activities, and to the “project end”, which is the 

successor of all activities, respectively. The set of non-dummy activities is identified by 𝐴 = {1, … , 𝑛}. The 

activities are linked by two kinds of constraints, the precedence constraints (one activity 𝑗 cannot start before all 

its predecessors have been achieved) and the resource constraints induced by the resource exchanges (an activity 

requires resources to be achieved). A schedule of the RCPSP can be represented as a vector of activity start 

times, 𝑆 = (𝑆0, . . . , 𝑆𝑛+1), where 𝑆𝑖  ∈  ℕ, with the associated vector of activity completion times, 𝐶 =
(𝐶0, . . . , 𝐶𝑛+1). The precedence graph is denoted 𝐺 = (𝑉, 𝐸), where nodes in 𝑉 are activities and edges in 𝐸 are 

precedence relations. For each activity 𝑖 ∈  𝑉, all outgoing arcs (𝑖, 𝑗) ∈ 𝐸 are weighted by its duration 𝑝𝑖 . If there 

are arcs (𝑖, 𝑗) ∈ 𝐸, then 𝐶𝑖 = 𝑆𝑖 + 𝑝𝑖 ≤ 𝑆𝑗 since activity 𝑗 has to be scheduled after activity 𝑖. Each activity requires 

some amount of renewable resources. The number of project resources is denoted as 𝑞 and the set of resource 

is 𝑅 = {𝑅1, . . . , 𝑅𝑞}. The activity resource requirement 𝑏𝑖𝑘 ∈ ℕ means that activity 𝑖 requires 𝑏𝑖𝑘 ≤ 𝐵𝑘 resource 

units of resource 𝑘 during its execution such that 𝐵𝑘 denotes the availability of resource 𝑘. The longest path from 

0 to 𝑛 + 1 in graph 𝐺(𝑉, 𝐸) corresponds to the critical path. 

Because the RCPSP is an extension of the job-shop, it is an NP-hard problem (see Blazewicz et al. (1983) and 

Brucker et al. (1999) for details on complexity). Several surveys are available including, but not limited to, the 

survey of Herroelen et al. (1998), of Brucker et al. (2000), of Kolisch and Padman (2001), of Weglarz (1999) in 

the book on Project Scheduling, of Demeulemeester and Herroelen (2002) and of Hartmann and Briskorn (2010). 

Note that Brucker (1999) provided a classification scheme for the relationships between RCPSP and machine 

scheduling. More recently, Kolisch and Padman (2001) introduced a survey of heuristic methods for the different 

classes of project scheduling problems. 
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Numerous models and several formulations have been introduced including a formulation based on forbidden sets 

introduced by Alvarez-Valdés and Tamarit (1993), the aggregated time indexed formulation (Pritsker et al. 1969), 

the time-indexed formulations with step variables of Pritsker and Watters (1968), the compact event-based 

formulation that has been used to address scheduling problems with machines (for example, Dauzère-Pérès and 

Lasserre (1995)), and the recent flow formulation of Artigues et al. (2003). 

A RCPSP solution can be linked to the network flow theory (Ahuja et al., 1993) since it involves circulation of 

resources that can be goods, people or energy, for example. RCPSP resolution based on flow approaches received 

attention in Artigues and Roubellat (2000) and Artigues et al. (2003). As stressed by Artigues et al. (2003), a 

solution of the RCPSP can be modeled by an activity-on-node (AON)-flow network where the earliest starting 

time (S) of activities is computed using a longest path algorithm and where disjunctions are resolved by a flow 

definition. An AON-flow network representation permits to model the circulation of resources in a graph where 

nodes correspond to activities and arcs correspond to resources transferred (Artigues et al., 2003). 

1.2. Problem of interest: RCPSPR 

The RCPSP with routing (RCPSPR) is an extension of the RCPSP where the resource transport between activities 

must now be achieved by a limited fleet of vehicles. The problem consists of finding a feasible schedule of minimal 

duration 𝐶𝑚𝑎𝑥 by assigning a starting time to each activity (classical RCPSP) as well as assigning a vehicle to each 

transport of resources with a starting time such that the precedence relations, the resource availabilities and the 

vehicle capacities are respected. Such problems occur in practice when a resource is physically moved from one 

location to another (e.g., when a crane has to be transported between construction sites or for scaffolding moved 

between sites to complete a project). In contrast to the classical RCPSP, no article appears to have dealt with this 

extension so far. This paper focuses on the case of one resource 𝑞 = |𝑅| = 1 and, therefore, 𝑏𝑖𝑘 = 𝑏𝑖.  
 

The routing problem consists of scheduling trips for a set of vehicles 𝑇 = {1, . . . , 𝑣 } sorted in descending order of 

capacity 𝑐𝑢 , 𝑢 ∈ {1, … , 𝑣} with a loaded transportation time 𝑡𝑖𝑗
𝑢𝑥 from activity 𝑖 to 𝑗 with a vehicle 𝑢 loaded with 𝑥 

units of resources and an unloaded transportation time 𝑒𝑖𝑗
𝑢  from activity 𝑖 to 𝑗. Since the transportation times are 

vehicle-independent and vehicle load-independent, 𝑡𝑖𝑗
𝑢𝑥 = 𝑡𝑖𝑗

  and 𝑒𝑖𝑗
𝑢 = 𝑒𝑖𝑗

 . The vehicle is responsible for the 

transport (transfer) of the resource. An activity 𝑗 is defined by a starting time 𝑆𝑗 with a completion time 𝐶𝑗 = 𝑆𝑗 +

𝑝𝑗 and resource supplies that meet the requirement 𝑏𝑗. An activity can only start when a total amount 𝑏𝑗  of resources 

has been transferred from activities to activity 𝑗. Each transport operation 𝑇(𝑖,𝑗,𝑢,𝑥) = (𝑃(𝑖,𝑗,𝑢,𝑥) , 𝐷(𝑖,𝑗,𝑢,𝑥) ) from 

activity 𝑖 to 𝑗 is fully defined by a pickup operation 𝑃(𝑖,𝑗,𝑢,𝑥)  and a delivery operation 𝐷(𝑖,𝑗,𝑢,𝑥) . A pickup operation 

and a delivery operation are defined by: 

 A departure time and an arrival time of the vehicle, 𝐵(𝑖,𝑗,𝑢,𝑥) and 𝐴(𝑖,𝑗,𝑢,𝑥) , respectively; 

 A quantity of resource (pickup or delivery) 𝑥; 

 A vehicle 𝑢 assigned to the transport. 

In this paper, a transport operation, 𝑇(𝑖,𝑗,𝑢,𝑥)  is a couple of pickup/delivery operations and 𝐵(𝑖,𝑗,𝑢,𝑥)  is the departure 

time of the vehicle (starting time of the transport operation) (Fig. 1). A similar remark holds for the arrival time 

𝐴(𝑖,𝑗,𝑢,𝑥)   of the vehicle 𝑢 on activity 𝑗. The earliest starting time of one activity 𝑆𝑗  depends on the arrival time of 

all vehicles, i.e., of all delivery operations. 
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Fig. 1. Coordination between transport operations and activities 

The difference between 𝑆𝑗 and 𝐴(𝑖,𝑗,𝑢,𝑥)   defines the total waiting time of the 𝑥 units of resource in a buffer (Fig. 

1). The same remark applies for the resources after the completion of one activity. The time windows defined 
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between the completion time 𝐶𝑖 and the departure time 𝐵(𝑖,𝑗,𝑢,𝑥) models a waiting time of resources in an output 

buffer. 

The total amount of resources available upstream of activity 𝑖 is an increasing function (which depends on the 

delivery operations) before the starting time of activity 𝑖, and a decreasing function that models the remaining 

resources after completion of 𝑖 and before the pickup operations (Fig. 2). 

 
Fig. 2. Resource transfers for an activity 

The vehicles are also submitted to waiting times between two successive transport operations. Because no buffer 

constraints are addressed, the waiting time of a vehicle depends only on the activity finishing times and is defined 

by the difference between the arrival time of the vehicle on one activity (to deliver some resources) and the vehicle 

departure time (which is equal to the activity finishing time), as can be seen in Fig. 2. The vehicle can immediately 

leave after a delivery operation on an activity, the resources are stored or used by the activity. To reduce the waiting 

times, an integrated approach should be developed to solve the problem, with the scheduling, the routing and the 

assignment of vehicles for each transport operation. Nevertheless, the waiting times are not taken into account 

explicitly in the objective function in this paper, and the objective function addresses the makespan minimization. 

In this paper, the resources are not allowed to make trips and only direct resource transfers are permitted to address 

routing problems with perishability or security (service quality) constraints where mistakes concerning vehicle 

unloading operations must be fully eliminated. 

1.3. Classification 

Numerous classifications of resource types have been introduced for years by Brucker et al. (1999) and 

Demeulemeester and Herroelen (2002) and make a strong distinction between renewable, non-renewable, and 

partially renewable resources. Taking advantages of the classification recently defined by Krüger and Scholl 

(2009), the problem concerns a problem with: 

 A 1st tier resource that must be transferred at a certain time and that models a personnel, a tool, a material or 

any heavy machinery required to achieve an activity. 

 A 2nd tier resource that supports the transfer of the 1st tier resource. 

The type of 2nd tier resource transfer is assumed to be a physical transfer that is characterized by moving the 1st 

tier resource from one location to another. The physical transfer is assumed to be achieved by a material handling 

resource denoted below the vehicle (without loss of generality) so as to be consistent with the widespread current 

usage in routing and a transfer defined as a transportation problem. Consequently, a RCPSP satisfying the previous 

definition can also be denoted RCPSPR (with Routing) since only physical transfers are addressed for 1st tier 

resources by 2nd tier resources. 

 

2 Scheduling/Routing context 

In recent years, a tremendous amount of research has been devoted to production and transportation sub-problems 

and, as highlighted by Chen (2010), integrated production and transport models at a detailed scheduling level are 

fairly recent and the majority of models attempts to jointly optimize operation-by-operation production and 

transport. The RCPSP with routing (RCPSPR) falls into the category of production and transportation scheduling 
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problems (PTSP), which are key operational functions in a supply chain since it is critical to jointly integrate these 

two planning and scheduling functions in a coordinated manner. 

2.1. Modeling transport in the scheduling problem 

Several scheduling problems encompass some extensions with transportation constraints involved by critical 

handling resources, including, for example, the flexible job-shop scheduling problem with transport (see Zhang et 

al (2012)), the job-shop with transport (see Knust (1999), Lacomme et al. (2007), Afsar et al. (2016)), the Flexible 

Manufacturing Systems (FMS) (Caumond et al., 2009), the HSP (Hoist Scheduling Problem) (Honglin et al., 2016; 

Adnen and Mohsen, 2016; Chtourou et al., 2013) or the RCPSP with transport (see Quilliot and Toussaint (2012)). 

Two recent papers (Weiss and Schwindt, 2016; Poppenborg and Knust, 2016) addressed an integrated scheduling 

and routing problem with time transfer constraints in RCPSP-like problems. However, in these studies, the routing 

is not explicitly modeled with a fleet of vehicles.It is commonly accepted that most of the scheduling approaches 

take advantage of a modeling based on a graph that is derived from the disjunctive graph of Roy and Sussmann 

(1964). This model has been extended to scheduling problems with transport (for the job-shop by Lacomme et al. 

(2007) and Zhang et al. (2012)), where transport operations are modeled by a vertex with disjunctive arcs between 

each operation that requires the same resource (vehicle).  

The integration of transport constraints into scheduling problems can be modeled in two possible ways considering 

two situations. The first one consists of physically moving resources from one location to another (modeling 

heavy-machine transport or specialists flying around the world, for example). The second one consists of models 

based on time-lags between machines where time-lags are a variant of transfer time. Time-lags are associated with 

activities, whereas setup times are associated with resources. It should be noted that setup times can depend on 

both the schedule and on the resource management. 

Minimal time-lags between activities are commonly used to model a minimal delay and can depend on the 

consecutive activities. If explicit vehicle management is not required, this approach provides an efficient modeling 

of transport and can also be relevant in problems where the vehicle fleet is large enough to assume that a transport 

can be achieved with no delay after the end of one activity. The problem studied by Poppenborg and Knust (2016), 

referred to as RCPSP with transfer times belongs to this approach. The integrated problem studied in this paper 

extends this recent paper by taking vehicle management into account. 

Maximal time-lags between activities can lead to a maximal delay for the transport and are commonly used in 

pickup and delivery problems where a maximal riding time is defined. It is important to note that two widely used 

approaches for trip evaluation introduced first in Cordeau and Laporte (2003) and, second, in Firat and Woeginger 

(2011) take advantage of such modeling approaches, as reported in Chassaing et al. (2015).  

Explicit transport modeling depends on the vehicle capacity and, in the specific situation of unary vehicle capacity 

(which means that the vehicle cannot achieve more than one transport operation at a time), a trip is a sequence of 

operations defined by a Pickup operation (𝑃), a Delivery operation (𝐷), a Vehicle (𝑉) and a quantity transported 

(𝑞), i.e., by a quadruplet (𝑃, 𝐷, 𝑉, 𝑞). Hence, a solution of the routing problem consists in defining the disjunctions 

between the transport operations (square node in Fig. 3).  

 
 

Fig. 3. Explicit representations of transport 

operations with a single capacity vehicle 

Depending on the problem, the transportation time can be 

job-dependent and vehicle load-dependent and can be 

denoted 𝑡𝑖𝑗
𝑥 . A similar notation holds for the unloaded 

vehicle transport denoted 𝑡𝑖𝑗
0  (commonly denoted 𝑒𝑖𝑗 = 𝑡𝑖𝑗

0 ).  

As stressed by Lacomme et al. (2013), the disjunctive arc 

between two transport operations is modeled by an arc with 

value 𝑡𝑖𝑗
1 + 𝑡𝑗𝑘

0 , which corresponds to a loaded transport 

from 𝑖 to 𝑗 and an unloaded transport from 𝑗 to 𝑘 Fig. 3. 

 

Such approaches have been used in the flexible flow-shop resolution by Zhang et al. (2012) and in the job-shop 

by Lacomme et al. (2010). For the RCPSP-like problem, as pointed out by Krüger and Scholl (2009), resource 

transfers between activities are known to be highly relevant in practice but most research papers neglect them.  

2.2. Routing in scheduling problems 

Previous related studies only focused on transport with scheduling (including the job-shop, for example) since the 

transport was only used to check some extra constraints in scheduling. However, no previous study exists where 

the transport is modeled using classical approaches taken from the routing community. It is unfortunate that 
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classical routing approaches are not widely used in integrated problems with scheduling, in view of the huge 

number of efficient routing approaches that tackle routing with some extra constraints. Numerous approaches to 

routing problems take advantage of indirect solution representations and are consistent with the same trend of 

widespread approaches in scheduling. Many publications use a routing solution model based on giant tours as well 

as a split-based approach to transform a giant tour into one routing solution. The split approach was first introduced 

by Beasley (1983) as the second phase of a route-first, cluster-second heuristic to solve the Capacitated Vehicle 

Routing Problem (CVRP). The first phase computes a giant tour of all customers (solving a Traveling Salesman 

Problem (TSP)) by relaxing vehicle capacity and maximum tour length. The second phase constructs a cost 

network in which an arc represents a feasible trip of the CVRP visiting a subsequence of the TSP tour, and then 

applies a shortest path algorithm to find least cost feasible trips. The principle was then further used as of 2001 

when it was implemented within a more general framework for routing problems for the Capacitated Arc Routing 

Problem (CARP) (Lacomme et al., 2001; Lacomme et al., 2004), and the method has been the best published 

method from 2001 to 2008 for the CARP. After this, indirect approaches for routing were more commonly used. 

Prins (2004) introduced a very efficient method for the VRP that also took advantage of the split algorithm. In this 

context, the number of split applications in routing problems strongly increased, as pointed out by Duhamel et al. 

(2011) and Prins et al. (2014), and now covers CARP, VRP, location routing and numerous extensions that 

represent a set of more than 70 publications. 

3 Definition of a RCPSPR solution 

3.1. Example 

The Gantt chart in Fig. 4 defines a schedule by defining the starting times of activities and by defining the trips of 

vehicles that are composed of an ordered set of pickup and delivery operations. Activity 4 is scheduled from time 

10 to 40 (Fig. 4), and the earliest finishing time (with a value of 40) of activity 4 defines the time when the resources 

used by activity 4 are free to be transported from their current position (in the unloaded buffer upstream of activity 

4) to a new activity. Vehicle 1 is assigned to transport resources from the depot to activity 4 with two units of 

resources and from activity 3 to 1 with two units of resources. Between these two successive loaded transports 

with two pickup/delivery operations, the vehicle achieves an unloaded transport from the position of activity 4 to 

the position of activity 3.  
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Fig. 4. Gantt solution with both scheduling and transport operations 
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Consequently, a full description of a vehicle trip is an ordered sequence of loaded transport operations 

(pickup/delivery operations) and of unloaded transport operations. The first transport operation is a loaded 

transport operation from depot 0 to activity 4 with a vehicle departure time 𝐵(𝑖,𝑗,𝑢,𝑥) = 0 and a vehicle arrival 

time 𝐴(𝑖,𝑗,𝑢,𝑥) = 10 with a load of two units of resources. Between operations 7 and 8 in trip 1, a waiting time of 

the vehicle in activity 5 can be observed. 

A full description of this example is available at:  http://fc.isima.fr/~vinot/Research/RCPSP&Routing.html. 

 

3.2. Modeling a solution 

In the previous section, a routing solution was defined as a set of trips and each trip was defined by an ordered 

sequence of transport operations. Instead of considering both loaded and unloaded transport operations, it is 

possible to consider only the loaded transport operations to fully define a trip. Indeed, an unloaded transport occurs 

between two loaded transports, and because there is no cost for the waiting time of resources in buffers, the 

unloaded transport operation can be scheduled at the earliest starting time. For the sake of convenience, a loaded 

transport operation is referred to as “transport operation” in the following sections and is defined using a quadruplet 

(pickup operation, delivery operation, vehicle assigned, quantity of resources transferred). 

 

With the hypothesis of the direct transport of resources between activities with respect to the quantity of resources 

required (no more, no less), it is possible to use a flow model (Artigues et al., 2003) to determine the transport 

operation defined by one pickup operation achieved at activity 𝑖 and by a delivery operation achieved at activity 𝑗 
with a flow 𝜑𝑖𝑗 . A transport operation (𝑖, 𝑗, 𝑢, 𝜑𝑖𝑗) is fully defined by the departure time 𝐵(𝑖,𝑗,𝑢,𝜑𝑖𝑗) of the vehicle 𝑢 

and by the arrival time 𝐴(𝑖,𝑗,𝑢,𝜑𝑖𝑗) of the vehicle 𝑢 with 𝜑𝑖𝑗  units of resources. For the sake of convenience, (𝑖, 𝑗,∗

, 𝜑𝑖𝑗) refers to a transport operation for which the assignment of a vehicle is not yet defined. Transportation creates 

new constraints on the starting time of the activity since 𝑆𝑗 , the starting time of activity 𝑗, must be greater than all 

vehicle arrival times that transport resources to activity 𝑗. 

Since the objective function, commonly defined in job-shop, flow-shop or in FMS, consists in makespan 

minimization (i.e. in the minimization of the earliest finishing time of all operations) the RCPSPR is addressed in 

the same trend. Because there is no distinction between the riding time cost of one vehicle and the total routing 

time cost, only the total transport duration is addressed and only semi-active solutions are required, which means 

that only left-shifted routing solutions can be investigated. A semi-active routing solution computation implies 

that no waiting time of vehicles is possible on the pickup node (node where a pickup operation is achieved) of one 

transport since all transports are scheduled at the earliest possible time. Therefore, the waiting time of vehicles is 

assumed to be located at the delivery node (node where a delivery operation is achieved) only.  

To conclude, a fully oriented disjunctive graph that models a solution can be obtained by assigning vehicles to 

transport operations and by a definition of the disjunctions between operations. This graph does not encompass 

any activity disjunction except disjunctions of activities defined in the problem.  

 
Fig. 5. Example of a solution with a representation of the transport disjunctions limited to vehicle 1 
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both transport operations and activities (nodes in the graph), which can be obtained by any longest path algorithm. 

Figure 5 provides an oriented disjunctive graph composed of two trips assigned to the vehicles. 

To obtain a readable graph, only disjunctions of vehicle 1 are included in the graph, defining a sequence of 

transport operations:  

 First: from activity 0 to 4 with a departure time with a value of 0; 

 Second: from activity 3 to 1 with a departure time with a value of 23. This transport operation is in disjunction 

with the first one, with a disjunctive arc with a cost of 23 units of time; 

 Third: from 2 to 5 with a departure time of 30; 

 And so on. 

The sequence of disjunctive arcs defines the trip of the vehicle and ensures the coordination between activities and 

transport operations by left-shifting both to the earliest starting times. For example, activity 4 immediately starts 

at time 10 (𝑆4 = 10) since the earliest vehicle arrival time at node 4 is exactly equal to 10. The earliest departure 

time of the vehicle at node 3 (pickup operation of the second transport operation) is equal to 10 + 13 = 23 where 

13 is the unloaded transport operation duration from activity 4 (delivery of transport operation 1) to 3 (pickup 

operation of transport operation 2). 

The approach advocated in Section 4 takes advantages of the disjunctive graph, making it possible to take the 

following factors into consideration:  

 Definition of disjunctions between activities due to precedence constraints; 

 Definition of at least one transport to each flow; 

 One assignment of a vehicle to a transport operation; 

 Definition of disjunctions between transport operations; 

 Evaluation to obtain the earliest starting times of transport operations and activities. 

This modeling is integrated into a hybrid metaheuristic based on a GRASP×ELS with an indirect representation 

of the solution.  

4 A resolution scheme based on an AON-flow network extension 

The key point for the resolution of the RCPSPR is to alternate between solutions encoded as a sequence of activities 

and a solution of both routing and scheduling.  This strategy represents a straightforward continuation of the 

policies used in numerous routing problems, including but not limited to the CARP, the VRP and the LRP, as 

reported in the recent survey of Prins et al. (2014). 

4.1. Proposition for a GRASP×ELS framework 

The proposition is based on a GRASP×ELS (Prins, 2009), which is a hybridization of a GRASP (Greedy 

Randomized Adaptive Search Procedure) (Feo and Resende, 1995) with an ELS (Evolutionary Local Search) 

(Wolf and Merz, 2007), taking advantage of both methods. The framework uses three key points: 

 An algorithm to generate an activity sequence 𝑤 presented in Section 4.2; 

 A procedure to evaluate an activity sequence 𝑤 considering a parameter δ in order to obtain a solution of the 

RCPSPR, in Sections 4.3 to 4.8; 

 A local search to improve an RCPSPR solution, in Section 4.9.  

The parameter δ makes it possible to tune the resource capacity 𝑅1/𝑅1 −  r with r ∈ [0, δ] and δ = 𝑅1 −max
𝑖
𝑏𝑖, 

to consider different levels of resources consistent with the resource capacity. The number of GRASP iterations 

takes this parameter into account and is equal to 𝑛𝑝 × (δ + 1). 

4.2. Generation of a sequence: indirect representation of solutions 

Activity sequence 𝑤 can be defined as a topological order of activities that makes it possible to compute a solution 

for both routing and scheduling problems, consequently defining a one-to-one indirect representation of solutions 

(Chen et al., 1996) (Fig. 6). An activity sequence 𝑤 can be obtained considering a classification of activities based 

on the longest path that concerns the number of arcs.  
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Fig. 6. Indirect representation of solutions 

 

Activities with the same maximal distance 

from the dummy start activity 0 are gathered 

at levels where level 𝑙𝑚 encompasses all 

activities with a maximal distance 𝑚 from 

the dummy start activity. Therefore, activity 

0 is at level 𝑙0 and activity 𝑛 + 1 is at 

level 𝑙𝑚𝑎𝑥, where subscript 𝑚𝑎𝑥 

corresponds to the last level number. A final 

feasible sequence can be created from levels 

such that 𝑊 = (𝑙0… 𝑙𝑚𝑎𝑥) and additional 

feasible sequences can be created by 

shuffling the activities on the same level.  

No violation of precedence constraints can be reported considering 𝑤 𝜖 𝑊 and it is possible to define permutations 

in 𝑤 that lead to a feasible sequence. Move 𝑠𝑤𝑎𝑝(𝑢, 𝑣) defines a feasible move if there is no edge modeling a 

precedence constraint at indices 𝑢 + 1 to 𝑣.  

4.3. Evaluation of a solution from 𝑤 𝜖 𝑊 

Roughly speaking, the evaluation procedure assign a solution (of both scheduling and routing) to one 𝑤 𝜖 𝑊 in 

five steps: 

 Solving the flow problem to obtain an acyclic graph encompassing both arcs for precedence constraints and 

arcs for the flow, in order to define the transport operations with the quantity of resource; 

 Defining a set of batch transport operations according to the flow and the vehicle capacity to reduce the 

search spaces in the next steps (a batch transport operation is a set of transport operations between the same 

activities. A more formal definition is introduced in section 4.5); 

 Creating one giant tour that models an ordered sequence of transport operations defined in the previous step, 

from one pickup operation to a delivery operation; 

 Splitting the giant tour into trips that provide the routing and the scheduling simultaneously. 

 Evaluating the disjunctive graph to obtain a RCPSPR solution. 

Contrary to classical approaches in scheduling or in routing (where a giant tour is transformed into trips thanks to 

only one function), the assignment of one solution to one activity sequence 𝑤 is a five-step procedure (Fig. 7) 

requiring successive resolutions of one flow problem, pre-calculation of the batch transport operation, generation 

of a giant tour and the splitting of the giant tour into trips with an evaluation to simultaneously address scheduling 

and routing constraints. After the evaluation procedure, a local search procedure can be applied to transform a 

solution of RCPSPR into a local minima. 

 
Fig. 7. The evaluation procedure applied to obtain a RCPSPR solution 

4.4. Flow definition (first step of the evaluation) 

Because the problem cannot be efficiently divided into sub-problems considering the flow problem first and the 

routing second, there is no possibility of providing a quality flow solution since the criteria to optimize cannot be 

taken into account during the flow resolution. Nevertheless, it is possible to use time efficient approaches to 

provide flow solutions. In the next sections, numerical experiments prove that this assertion is relevant since the 

optimal flow solution (flow providing the minimal scheduling finishing time for the RCPSP) does not lead to the 

optimal RCPSPR one. 
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Because the solutions are encoded as a sequence of activities, the scheduling decision consists in defining the flow 

𝜑𝑤(𝑖)𝑤(𝑗) (flow from node 𝑤(𝑖) to node 𝑤(𝑗); Fig 8) satisfying the activity resource requirement with the flow 

transfer. The flow conservation at every node is required, except for dummy nodes 0 and n+1. The output graph 

𝐺𝜑(𝑤) is the graph, with a flow 𝜑 satisfying the precedence constraints induced by the feasible sequence 𝑤. To 

obtain an efficient computation time algorithm (avoiding a costly repair procedure), it is only possible to create an 

acyclic graph by the introduction of a constraint in the flow linked to the order of the sequence of activities (∀𝑗 <
𝑖,  𝜑𝑤(𝑖)𝑤(𝑗) = 0). Taking advantage of the special structure of the graph, it is possible to provide heuristic 

resolution schemes offering a flow on a preferential basis to the closest activities.  

 
Fig. 8. Constraints on flow 

 

The first loop from step 11 to 21 (in Algorithm 1) iterates on the activities considering the remaining amount of 

resources available after the process of activity 𝑤(𝑖)  i.e. 𝑏𝑤(𝑖). The second loop scans all successive activities 

considering the maximal quantity of resources that can be transferred from 𝑤(𝑖) to 𝑤(𝑗). At each iteration, the 

remaining resources quantities 𝑟 and 𝑙 respectively for activities 𝑤(𝑖) and 𝑤(𝑗) are updated considering 𝑣 =
 𝑚𝑖𝑛 (𝑟, 𝑙). 
 

   Procedure name: Flow Definition 

1.  procedure Flow_Definition 

2.  input parameters 

3.    𝑤: activity sequence 
5.  output parameters 

6.    𝜑: a flow 
7.  global parameter 

8.    n: number of activities 

9.  begin 

10.    i:=0 

11.    while (i < n) 

12.     if (i = 0) r = B else r = 𝑏𝑤(𝑖)  
13.     stop = 0; j = i+1; 

14.     l := 𝑏𝑗 
15.     while ((stop=0)and (j ≤ n)) 

16.       v := min(r, l) 
17.       r := r-v ;  l := l-v  

18.       if (r = 0) stop = 1 else j := j + 1 

19.     endwhile  

20.     i := i + 1 

21.   endwhile 

22. end 

Algorithm 1. Flow Definition procedure 

 

This greedy approach, applied to the sequence of activities 𝑤 = [0, 3, 2, 4 ,1, 5, 7 ,6 ,8 ,9] for a total amount of six 

units of resources available on node 0 (𝐵0 = 6) provides the solution in Fig. 9.  

 
Fig. 9. Example of flow solution 

4.5. Batch transport operation definition (second step of the evaluation) 

With the flow created in the previous steps, all the quantities that must be transferred between activities are defined. 

The flow 𝜑𝑖𝑗  created between activity 𝑖 and activity 𝑗 defines a batch flow transport operation with only one 

transport operation (𝑖, 𝑗,∗, 𝜑𝑖𝑗) where 𝜑𝑖𝑗  could exceed the vehicle capacity and may require several transport 

operations due to the vehicle capacity constraints (𝑐𝑣). For one batch flow transport operation, it is possible to 

define different batch transport operations 𝜙𝑖𝑗 = ⋃ (𝑖, 𝑗,∗, 𝑘)𝑥𝑥  / ∑ 𝑘𝑥 =𝑥 𝜑𝑖𝑗  with different properties. In other 
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words, a batch transport operation 𝜙𝑖𝑗  is an ordered set of transport operations from activity 𝑖 to 𝑗, and each 

transport operation (𝑖, 𝑗,∗, 𝑘) is fully defined by the quantity of resource to transport. 

For example, a unitary batch transport operation 𝜙𝑖𝑗 = ⋃ (𝑖, 𝑗,∗ ,1)𝑥𝑥  defines a set of transport operations that can 

be assigned to any vehicle. For a non-unitary batch transport operation 𝜙𝑖𝑗 = ⋃ (𝑖, 𝑗,∗, 𝑘)𝑥𝑥 , a transport operation 

(𝑖, 𝑗,∗, 𝑘) can be assigned only to one vehicle 𝑢 of capacity 𝑐𝑢 ≥ 𝑘. 

The definition of a batch transport operation (set of transport operations (𝑖, 𝑗,∗, 𝑘)) makes it possible to define a 

giant tour and to then create the trips with the split procedure. The quantity of resources in each transport operation 

(𝑖, 𝑗,∗, 𝑘) ∈ 𝜙𝑖𝑗  has an impact on the split execution since the split procedure is devoted to the aggregation of 

transport operations (see Prins (2004)). Unprofitable batch transport operations can lead to a giant tour that does 

not permit investigation of all aggregations due to the vehicle capacity. 

The key point is that several transport operations between 𝑖 and 𝑗 should be aggregated (in the split procedure) if 

they are consecutive in the giant tour. This aggregation creates a single transport operation from several transport 

operations (with the quantity of resources equal to the sum of the transport operations), avoiding both loaded and 

unloaded transport operations.  

For example, a unitary batch transport operation 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)} can be aggregated in order to 

obtain one batch transport operation 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗ ,3)} composed of only one transport operation with three units 

of resources. The aggregation is possible only if there is a vehicle that can transport such a quantity of resources. 

An issue can arise in some cases, for example, if a batch transport operation 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)} is created 

from a batch flow transport operation (𝑖, 𝑗,∗, 𝜑𝑖𝑗) with 𝜑𝑖𝑗 = 4. In this example, the split will not be able to 

aggregate the transport operation in order to obtain (𝑖, 𝑗,∗ ,3)(𝑖, 𝑗,∗ ,1), for example, which could be the best 

aggregation/assignment. 

Unitary batch transport operation  

The unitary batch transport operation makes it possible to create a number of transport operations (equal to the 

flow value) and to assign all transport operations of the batch to all vehicles.  

For any pickup operation on activity 𝑖 and any delivery operation on activity 𝑗 with a flow 𝜑𝑖𝑗 , the problem 

consists in creating 𝜑𝑖𝑗  transport operations (𝑖, 𝑗,∗ ,1) to model all combinations of transport for all vehicles. This 

batch of transport operations can be written with a set of unitary transport operations 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗ ,1), … , (𝑖, 𝑗,∗

,1)} with 𝐶𝑎𝑟𝑑(𝜙𝑖𝑗) = 𝜑𝑖𝑗 . With one unitary batch transport, the split procedure in the next step, can investigate 

all possible aggregations without any additional constraints. In spite of this advantage, such a situation is also 

unprofitable, first, for the split procedure that investigates all aggregations of transport operations (and assignment 

to vehicles) and, second, for the giant tour length.  

 

Key features for an efficient batch transport operation 

To favor the split procedure used next in the framework, it is of particular interest to provide a batch of transport 

operations with minimal length (minimal number of transport operations), leading to the same aggregations of 

transport operations as the unitary batch transport operations. Let us note 𝜙𝑖𝑗
∗ = {(𝑖, 𝑗,∗, 𝜑1) … (𝑖, 𝑗,∗, 𝜑𝑚)} as the 

set of transport operation between 𝑖 and 𝑗 with the minimal number of transport operations. 

Figure 10 illustrates an example composed of a heterogeneous fleet of three vehicles, with 𝑐1 = 5, 𝑐2 = 3, 𝑐3 = 2 

and a total amount of resources of 𝜑𝑖𝑗 = 12 to transport from 𝑖 to 𝑗. 

 
Case 1 

Case 1: 

Let us consider a batch of transport operations where 

all transport operations are defined with two units of 

resources: 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗

,2)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)}. 
Regardless of the vehicle (vehicle 2 or 3) used for 𝜙𝑖𝑗, 

the number of transport operations is exactly equal to 

6 since no aggregation can be achieved (Fig. 10 - case 

1). 
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Case 2 

 
Case 3 

Fig. 10. Batch transport operation constraints on split 

with vehicles of capacity 2 and 3 (case 1 to 3) 

Case 2: 

If 𝜙𝑖𝑗 is composed of transport operations with two or 

one units of resources, some transport operations can 

be aggregated. For example, with 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗

,2)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗
,2)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)}, vehicle 3 requires six transport 

operations but vehicle 2 of capacity 3 can achieve only 

five transport operations, as illustrated in Fig. 10 (case 

2). 

 

 

Case 3: 

A more promising set ϕij is defined by 𝜙𝑖𝑗 =

{(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,1), (𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗
,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,2)}, where vehicle 2 can achieve 

only four transport operations (Fig. 10 - case 3). 

 

Figure 10 proves that for the same pickup/delivery operation (pickup operation on activity 𝑖 and delivery operation 

on activity 𝑗 and a flow 𝜑𝑖𝑗 = 12), it is possible to define different batch transport operations 𝜙𝑖𝑗  (by defining the 

quantity of resources of each transport operation), leading to a different number of transport operations due to 

different possible aggregations. For example, 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗, )(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗

,1)(𝑖, 𝑗,∗ ,2)} (case 3 of Figure 10), composed of eight transport operations, can be aggregated for vehicle 3 to 

define only four transport operations.  

In all the cases introduced in Fig. 10, the choice of 𝜙𝑖𝑗 does not impact the aggregation for vehicle 3, but case 3 

for vehicle 2 is the most interesting case since it provides the minimal number of transport operations. Moreover, 

in case 3, 𝜙𝑖𝑗 is composed of eight transport operations, which is less than 12 transport operations for the unitary 

batch transport operation. Another point can be highlighted by also taking vehicle 1 into account using case 3 

(Fig. 11).  

 
Fig. 11. Batch transport operation constraints on split with vehicles of capacity 2, 3 and 5 

The problem of a batch transport definition must be addressed to create batch transport operations, with adapted 

solutions for all vehicles in the aggregation/assignment carried out in the split procedure. 

Proposition for a batch transport definition 

To create batch transport operations favoring the split procedure, the algorithm consists in investigating all cutoff 

points of all vehicles addressed separately with 𝐿𝑢, the ordered set of cutoff points of vehicle 𝑢. The set of cutoff 

points of one vehicle is defined by the sum of flow of each transport operation. Let us denote 𝐿 = ⋃ 𝐿𝑢𝑢  as the 

ordered set of all cutoff points of all vehicles (without duplication).  

 

For the first vehicle, the smallest batch transport operation is equal to 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗ ,5)(𝑖, 𝑗,∗ ,5)(𝑖, 𝑗,∗ ,2)}, defining 

a set of cutoff points equal to 𝐿1= (0, 5, 10,12). A similar remark holds for vehicle 2 considering 𝜙𝑖𝑗 =
{(𝑖, 𝑗,∗ ,3)(𝑖, 𝑗,∗ ,3)(𝑖, 𝑗,∗ ,3)(𝑖, 𝑗,∗ ,3)} which leads to the following set of cutoff points: 𝐿2 = (0, 3, 6, 9, 12). For 

the third vehicle with 𝜙𝑖𝑗 = {(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,2)}, the set of cutoff points is: 

𝐿3= (0, 2, 4, 6, 8, 10, 12. ). For this example, 𝐿 = (0,2,3,4,5,6,8,9,10,12). 
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Next, the transport operations of the unitary batch transport operation are iteratively scanned and gathered into a 

new transport operation (𝑖, 𝑗,∗, 𝜑𝑖𝑗). These transport operations are defined between two successive cutoff points 

of 𝐿 and define 𝜙𝑖𝑗. 

 
Fig. 12. Representation of the cutoff point on the unitary batch transport operation for the example with three 

vehicles, 𝑐1 = 5, 𝑐2 = 3, 𝑐3 = 2 and a total amount of resources of 𝜑𝑖𝑗 = 12 

 

The best batch transport operation is built according to all the cutoff points. In this example, the best batch transport 

operation according to this definition is equal to: 

𝜙𝑖𝑗
∗ = {(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,2)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)(𝑖, 𝑗,∗ ,1)}. 

 

4.6. Giant tour construction (third step of the evaluation) 

The giant tour construction consists in scanning the set of batch flow transport operations with only one 

transport operation (𝑤(𝑖) , 𝑤(𝑗) ,∗, 𝜑𝑤(𝑖)𝑤(𝑗)) in the increasing order of 𝑤(𝑖) and 𝑤(𝑗) and to schedule the batch 

transport operation 𝜙𝑤(𝑖)𝑤(𝑗)  at the best possible location. The HGT procedure (Heuristic for Giant Tour) defines 

a depth-first-search strategy by a greedy insertion of each batch transport operation 𝜙𝑖𝑗  at the best possible position. 

Let us note that the heuristic does not schedule transport operations one-by-one but, instead, the batch transport 

operations with all the transport operations that compose it. The construction is based on a 

best_insertion (𝜆, 𝑐𝑜𝑠𝑡) procedure that finds the best insertion position of the last scheduled batch transport 

operation with respect to the precedence and the resource constraints, calculating the minimal insertion cost equal 

to the empty transport between the last scheduled batch transport operation and the transport operation on the right 

of the insertion position. 

Example: 

Let us consider 𝑤 = [0, 3, 2, 4 ,1, 5, 7 ,6 ,8 ,9] and the flow solution of Fig. 9. To build a giant tour, each batch 

transport operation associated with one flow is inserted at the best position. Some of the steps are detailed in 

Table 1. 

Table 1 

Steps to build a giant tour  

 Batch to 

insert 

Possible Giant Tours  

𝜆 
Cost Best  

Step 1: 𝜙 ={(0,3,*,2)} (0,3,*,2) -  

Step 2: 𝜙 ={(0,2,*,2)} (0,3,*,2)(0,2,*,2) 3  

  (0,2,*,2)(0,3,*,2) 4  

Step 3: 𝜙 ={(0,4,*,2)} (0,3,*,2)(0,2,*,2)(0,4,*,2) 4  

  (0,3,*,2)(0,4,*,2)(0,2,*,2) 10  

  (0,4,*,2)(0,3,*,2)(0,2,*,2) 10  

Step 4: 𝜙 ={(3,1,*,2)} (0,3,*,2)(0,2,*,2)(0,4,*,2)(3,1,*,2) 13  

  (0,3,*,2)(0,2,*,2)(3,1,*,2)(0,4,*,2) 3  

  (0,3,*,2)(3,1,*,2)(0,2,*,2)(0,4,*,2) 3  

…     

Step 14: 𝜙 ={(8,9,*,2),(8,9,*,1)}   

  (0,3,*,*,2)(0,2,*,*,2)(3,1,*,*,2)(0,4,*,2)(4,5,*,2) 

(5,6,*,2)(4,5,*,2)(5,8,*,1)(1,7,*,2)(7,8,*,2)(6,9,*,2) 

(7,9,*,1)(8,9,*,2)(8,9,*,1) 

3  

  (0,3,*,2)(0,2,*,2)(3,1,*,2)(0,4,*,2)(4,5,*,2)(5,6,*,2) 

(4,5,*,2)(5,8,*,1)(1,7,*,2)(7,8,*,2)(6,9,*,2)(8,9,*,2) 

(8,9,*,1)(7,9,*,1) 

4  

  (0,3,*,2)(0,2,*,2)(3,1,*,2)(0,4,*,2)(4,5,*,2)(5,6,*,2) 

(4,5,*,2)(5,8,*,1)(1,7,*,2)(7,8,*,2)(8,9,*,2) 

(8,9,*,1)(6,9,*,2)(7,9,*,1) 

6  
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In Step 4, the batch transport operation 𝜙 = {(3,1,∗ ,2)} can be located on three positions but cannot be inserted 

at the first place of the sequence. The first transport operation (0,3,∗ ,2) defines a pickup of two units of flow at 

activity 0 and a delivery of two units at activity 3. Consequently, the transport (3,1,∗ ,2) cannot be scheduled 

before (0, 3,∗ ,2) since (3,1,∗ ,2) defines a pickup at activity 3, which obviously required a previous delivery at 

activity 3. 

In Step 14, the batch transport operation is composed of two transport operations that can be inserted on three 

positions, and the best insertion is located at the end of the giant tour.  

4.7. Split algorithm (fourth step of the evaluation) 

The split procedure, taken from routing, tackles only constraints taken from routing, including a limited number 

of vehicles, a limitation on hub capacity (see Duhamel et al. (2012) for a generic definition of split procedures).  

The main difference in the new split consists of the management of both the availability of vehicles and of 

activities. As highlighted in Duhamel et al. (2012), a label saved on a node models a state of the dynamic algorithm 

and must be defined by a cost and a full description of the system state. A split-based approach must tackle the 

following features:  

 A label definition to model the system state; 

 A propagation rule to create new labels; 

 A dominance rule to save only non-dominated labels on the node.  

A special feature of the split, dedicated to the RCPSPR, is the fact that the system state encompasses both the 

vehicle fleet state and the activity state: 

 The vehicle fleet state is composed of three pieces of information for each vehicle: the position of the vehicle, 

the departure time and the arrival time. These data are required even if the fleet is homogeneous.  

 The activity state is given by the earliest starting time of all the activities. 

At each step of the split algorithm, the current system state is composed of the activity that has been scheduled but 

not achieved (see, for example, activity 5 in Fig. 13), activities previously scheduled, and vehicles at some specific 

location corresponding to their last loaded transport. Before achieving one transport operation (𝑖, 𝑗, 𝑢, 𝜑), the 

vehicle 𝑢 has to be available and located on activity 𝑖, which may involve an unloaded transport. The cost of this 

unloaded transport depends of the current localization of the vehicle. 

 

The split procedure consists of building an auxiliary acyclic graph 𝐻 with 𝑛𝑡 + 1 nodes numbered from 0 to 𝑛𝑡 
(𝑛𝑡 is the number of transport operations in the giant tour 𝜆) where an arc from node 𝑖 to 𝑗 represents a subsequent 

𝜇𝑖𝑗 of transport operations from the giant tour with 𝜇𝑖𝑗 = (𝜆(𝑖 + 1),…, 𝜆(𝑗)), where 𝜆(𝑖) is a transport operation. 

For the sake of convenience,  𝜆+(𝑖) denotes the pickup operation of 𝜆(𝑖), 𝜆−(𝑖) the delivery operation of 𝜆(𝑖), and 

𝜆𝜑(𝑖) the flow associated with the transport operation 𝜆(𝑖). 

Fig. 13. System state during the Split at step 𝑖 

The optimal splitting of 𝜆 (or quasi-optimal splitting in the event of extra constraints concerning the use of 

resources) corresponds to a min-cost path from node 0 to 𝑛𝑡 node in 𝐻. It can be computed using a Bellman-like 

algorithm taking the vehicle fleet into account, i.e., several labels have to be tackled per node. The principle is 
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endorsed by defining labels that model the current state of the global system, a propagation rule and a dominance 

between labels. 

Label definition 

To extract the vehicle trips from the giant tour, a set of non-dominated labels is stored on each node  of the 

graph 𝐻. A label represents a partial solution evaluation that tackles tasks 𝜆(0) to 𝜆(𝑗). Let us denote 𝐿𝑖
𝑗
 the 𝑖𝑡ℎ 

label on node 𝑗, which is composed of a 3𝑣-tuple 𝑉𝑖
𝑗

 

 
, a 𝑛 + 1-tuple 𝑆𝑖

𝑗
 and of a couple (𝑓𝑢, 𝑓𝑣): 

 A 3𝑣-tuple  𝑉𝑖
𝑗
 defining both vehicle times and position, 𝑉𝑖

𝑗
= (𝐵𝑖𝑗

1 , … , 𝐵𝑖𝑗
𝑣 , 𝐴𝑖𝑗

1 , … , 𝐴𝑖𝑗
𝑣 , 𝑃𝑖𝑗

1 , … , 𝑃𝑖𝑗
𝑣) where 

 𝑃𝑖𝑗
1 , … ,  𝑃𝑖𝑗 

𝑣  are the current position of each vehicle (𝑃𝑖𝑗
𝑢 = 𝑝 means that the position of the vehicle 𝑢 is on 

activity 𝑝),  𝐵𝑖𝑗
1 , … ,  𝐵𝑖𝑗

𝑣  give the earliest departure time of the vehicles, and  𝐴𝑖𝑗
1 , … ,  𝐴𝑖𝑗

𝑣  are the arrival time of 

the vehicles. 

 An 𝑛 + 1-tuple  𝑆𝑖
𝑗
 defining the earliest starting time of each activity 𝑆𝑖

𝑗 
= ( 𝑆𝑖𝑗 

0 , … ,  𝑆𝑖𝑗
𝑛+1); 

 A couple (𝑓𝑢, 𝑓𝑣) of positions referring to the father label of 𝐿𝑖
𝑗
  𝑖. 𝑒. 𝐿𝑖

𝑗
 that has been generated using the label 

number 𝑓𝑢 on node number 𝑓𝑣. 

 

Label propagation 

A propagation function defined by 𝑓: L  T → R permits the generation of a new label 𝐿𝑞
𝑗

 from one label 𝐿𝑝
𝑖  and a 

trip evaluation 𝛾 depending of the subsequence 𝜇𝑖𝑗 with a cost equal to transportation time from 𝜆+(𝑗) to 𝜆−(𝑗), i.e., 

𝑡𝜆+(𝑗),𝜆−(𝑗). For a subsequent 𝜇𝑖𝑗 = (𝜆(𝑖 + 1), … , 𝜆(𝑗)), the new label 𝐿𝑞
𝑗

 for node 𝑗 is defined from the label 

𝐿𝑝
𝑖  considering the next update, using vehicle 𝑢: 

𝐵𝑞𝑗
𝑢 = max

 
(𝑆𝑝𝑖

𝜆+(𝑗)
+ 𝑝𝜆+(𝑗);  𝐵𝑝𝑖

𝑢 + 𝑒𝑃𝑝𝑖
𝑢 ,𝜆+(𝑗)) 

𝐵𝑞𝑗
𝑣 = max

 
(𝐵𝑝𝑖

𝑣 ;  𝐴𝑝𝑖
𝑣 ) / 𝑣 ≠ 𝑢 

𝐴𝑞𝑗
𝑢 = 𝐵𝑞𝑗

𝑢 + 𝑡𝜆+(𝑗),𝜆−(𝑗) 

𝑃𝑞𝑗
𝑢 = 𝜆−(𝑗) 

𝑆𝑞𝑗
𝜆−(𝑗)

= max
 
(𝑆𝑝𝑖

𝜆−(𝑗)
;  𝐴𝑞𝑗

𝑢 )  

For the label 𝐿𝑝
𝑖 , all assignments to vehicles are investigated, leading to 𝑣 labels. These final labels are included or 

not depending on the set of non-dominated labels previously stored on the node 𝑗. 

Dominance rule 

To keep only non-dominated labels on nodes, a dominance rule must be defined. Considering two labels  𝐿𝑝
𝑖  and 𝑃, 

 𝐿𝑝
𝑖  is defined as dominant as regards  𝐿𝑞

𝑖  ( 𝐿𝑞
𝑖 ≪  𝐿𝑝

𝑖 ) if the following two conditions hold: 

Condition 1. All vehicles have the same location: ∀𝑢 ∈ 𝑇, 𝑃𝑖𝑝
𝑢 = 𝑃𝑖𝑞

𝑢  

Condition 2. ∀𝑢 ∈ 𝑇, 𝐴𝑖𝑝
𝑢 ≤ 𝐴𝑖𝑞

𝑢  and ∃𝑢 ∈ 𝑇, 𝐴𝑖𝑝
𝑢 < 𝐴𝑖𝑞

𝑢  

Let us note that the earliest starting time of activities is not relevant for the dominance rule since if all vehicle time 

availabilities of label  𝐿𝑝
𝑖  are less than or equal to vehicle availabilities on the label, then  𝐿𝑞

𝑖 , ∄𝑘/ 𝑆𝑖𝑞
𝑘 <  𝑆𝑖𝑝

𝑘 . 

Labels stored on nodes 

If 𝐿𝑝
𝑖  is not dominant with regard to  𝐿𝑞

𝑖  ( 𝐿𝑞
𝑖 ≪̅  𝐿𝑝

𝑖 ), this does not imply that  𝐿𝑞
𝑖  is dominant with regard to  𝐿𝑝

𝑖 . If 

 𝐿𝑞
𝑖 ≪̅  𝐿𝑝

𝑖  and  𝐿𝑝
𝑖 ≪̅  𝐿𝑞

𝑖 , then  𝐿𝑝
𝑖  cannot be compared to  𝐿𝑞

𝑖 . Thus, if ∃𝑘 on node 𝑖/  𝐿𝑝
𝑖 ≪  𝐿𝑘

𝑖 , then  𝐿𝑝
𝑖  is not 

added to node 𝑖.  

On the other hand, each label 𝐿𝑘
𝑖 / 𝐿𝑘

𝑖 ≪  𝐿𝑝
𝑖  can be removed from node  𝑖. The dominance rule limits the number 

of labels stored at each node to a minor subset while maintaining split optimality. An additional time-saving 

approach consists in limiting the maximal number 𝑁𝐿 of labels generated during the split process or per node. Such 

restrictions, in addition to the dominance rule, can strongly reduce the CPU time, but can yield a sub-optimal 

splitting solution with no real drawback on the global solution found at the end of the split, as reported by Boudia 

et al. (2007).  

Figure 14 gives some steps of the split procedure applied on the giant tour of the example detailed in Table 1. The 

initial label on node 0 is ((0,0,0,0,0,0)(0,0,0,0,0,0,0,0,0,0)) and it is propagated on the auxiliary graph with the 

arc between node 0 and 1 corresponding to the transport operation (0,3,∗ ,2) using the two possible vehicles. For 

j
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example, the transport operation can be carried out by vehicle 1 available at activity 0 on time 0. The duration of 

this transport operation is equal to 3, the propagation rule updates the arrival time of the vehicle to 3, the position 

is also equal to 3, and the earliest starting time of activity 3 has a value of 3. This process is iterated to obtain a set 

of eight labels on node 3 where each label represents a specific partial solution (see Fig. 14). With the dominance 

rule, only six of these eight labels are saved and the two underlined labels are deleted. 

 

Fig. 14. Example of labels generated by the split in the auxiliary graph (data available at: 

http://fc.isima.fr/~vinot/Research/RCPSP&Routing.html) 

   Procedure name: Split 

1.  procedure Split 

2.  input parameters 

3.    𝜆: giant tour  
4.    k: number of transport operation in the giant tour 

5.  output parameters 

6.    S: Solution graph 

7.  global parameter 

8.    n: number of activities 

9.    v: number of vehicles 

10.   NL: maximum number of labels on each node 

11.  begin 

12.    call InitGraph(S, 𝜆, k, n, v, NL) 
13.    i:=0 

14.    while (i < k) 

15.     j := i+1;  flow := 0 

16.     while (CompareTransportOperation(𝜆, i+1, j)=1) 

17.       flow := flow + 𝜆𝜑(𝑗) 
18.       for k := 1 to NBi do  //for each label on node i 

19.         n_vehicle := 1 

20.       while ((n_vehicle ≤ v) and (flow ≤ cn_vehicle)) then 

21.             P := call PropagateLabel(𝜆 (𝑗), flow, n_vehicle,  𝐿𝑘
𝑖 ) 

22.             if (NBj = 0) then call InsertLabel(P, j, S, NL) 

23.             else    insert:=0 

24.                     insert := call TestInsertLabel(P, j, S) 

25.                     if (insert=1) then call InsertLabel(P, j, S, NL) endif 

26.             endif 

27.     n_vehicle := n_vehicle + 1  

28.         endwhile 

29.        endfor  

30.        j := j + 1 

31.     endwhile  

32.     i := i + 1 

33.   endwhile 

34.   S := call Extract_trips ()  //save the best solution 

35. end 

Algorithm 2. Split procedure 

The split is detailed in Algorithm 2 and uses low-level procedures to handle the labels: 

 InitGraph(S,𝜆,k,n,v,NL) initializes all the local variables of the solution; 

 CompareTransportOperation(λ,i,j): the function returns 1 if the transport operation 𝜆(𝑖 + 1) and 𝜆(𝑗) 
have the same pickup and delivery operations, i.e., 𝜆−(𝑖 + 1) = 𝜆−(𝑗) and 𝜆+(𝑖 + 1) = 𝜆+(𝑗); 

 PropagateLabel(𝑇(𝑖,𝑗,𝑢,𝑥) ,flow,v,L)uses the propagation rule to generate the label P from 𝐿, knowing the 

transport operation 𝑇(𝑖,𝑗,𝑢,𝑥) , the flow and the vehicle 𝑣 used; 

0 1Transport operation
2

Transport operation

((0,0,0,0,0,0),(0,0,0,0,0,0,0,0,0,0))

(0,3,*,2) (0,2,*,2)

V1

V2
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3

V2

Transport operation
(3,1,*,2)

V1
V2

((0,0,3,0,3,0),(0,0,0,3,0,..,0))
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V1
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((23,0,27,0,1,0),(0,27,10,3,0,..,0))
((10,23,10,27,2,1),(0,27,10,3,0,..,0))

((23, 4,27,4,1,2),(0,27,4,3,0,..,0))
((3,23,3,27,3,1),(0,27,4,3,0,..,0))

((3,0,3,4,3,2),(0,0,4,3,0,..,0))

((0,3,4,3,2,3),(0,0,4,3,0,..,0))

((0,6,0,10,0,2),(0,0,10,3,0,..,0))

((4,23,4,27,2,1),(0,27,4,3,0,..,0))
((23,3,27,3,1,3),(0,27,4,3,0,..,0))

((0,23,0,27,0,1),(0,27,10,3,0,..,0))
((23,10,27,10,1,2),(0,27,10,3,0,..,0))

http://fc.isima.fr/~vinot/Research/RCPSP&Routing.html
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 TestInsertLabel(P,j,S) compares the label 𝑃 to the labels on node 𝑗. If the label 𝑃 dominates at least 

one label, the procedure returns 1 and the label dominated is deleted; otherwise, the procedure returns 0; 

 InsertLabel(P,j,S,NL) inserts the label 𝑃 on node 𝑗 in ascending order of the maximal value of the vehicle 

time availability. The number of labels on node 𝑗 cannot exceed 𝑁𝐿; 

 Extract_trips() validates the best final label and returns the solution with the set of trips. 

The split algorithm (Algorithm 2) is composed of two parts: the initialization part where local variables are 

initialized (line 12) and a loop from lines 14 to 33 that iterates for the ordered set of customers defined by the giant 

tour 𝜆. The second loop from lines 16 to 31 iterates and makes it possible to evaluate the partial 

sequence (λ(i + 1), … , λ(j)) on each label on node 𝑖 with the loop from lines 18 to 29. 

The third loop (from lines 20 to 28) iterates and makes it possible to calculate the partial sequence (λ(i +
1), … , λ(j)) using each vehicle with a sufficient capacity, leading to a label 𝑃 (line 21), which is then inserted into 

the list of labels on node 𝑗, using the InsertLabel procedure. The best solution is saved at the end of the 

algorithm (line 34). 

4.8. Scheduling and routing evaluation (fifth step of the evaluation) 

The fully oriented disjunctive graph that models a solution is obtained, including both activity disjunctions and 

transport disjunctions and is then evaluated with a longest path algorithm to provide a semi-active solution. 

4.9. Local search 

Random initial solutions are obtained by random definition of activity sequence  𝑤 limited to the space of non-

level decreasing activity lists. In order to remove such restriction, neighborhoods can be obtained by the 

𝑆𝑤𝑎𝑝(𝑢, 𝑣) operator, leading to a feasible move if there is no edge modeling a precedence constraint at indices 

𝑢 + 1 to 𝑣. The whole space of the feasible activity sequence can be investigated. 

 

To improve a RCPSPR solution, an efficient local search algorithm can be defined considering the critical path 

(Fig. 15 provides a graphical solution of the shortest path linked to the example of Fig. 10) with the introduction 

of blocks whose classification extends the scheduling blocks commonly used (Laarhoven et al., 1992; Matsuo et 

al., 1988; Dell'amico and Trubian, 1993; Nowicki and Smutnicki, 1996): 

   Block type 1: a transport operation and an activity; 

   Block type 2: two transport operations; 

   Block type 3: an activity and a transport operation; 

   Block type 4: two activities. 

 

The local search investigates moves from the end of the critical path to the starting node and, depending on the 

block type encountered among the critical path, the actions are investigated on the activity sequence 𝑤 only, thanks 

to the indirect representation of solutions. If one action leads to a lower cost solution, the critical path exploration 

is restarted at the end of the graph. 

Block type 1 models a situation where the activity starting time depends on the transport operation (𝑖, 𝑗, 𝑢, 𝜑), 
which transports 𝜑 units of resource required by activity 𝑗. To obtain a neighborhood solution where this situation 

does not occur, the transport operation between the two activities must not be required. It can be obtained by a left 

shifting of the activity 𝑗 into the activity sequence 𝑤 to the left of activity 𝑖. 

 
Fig. 15. Example of a critical path 
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Block type 2 concerns two consecutive transport operations (𝑖, 𝑗, 𝑢, 𝜑) and (𝑘, 𝑝, 𝑣, 𝜑′), including an unloaded 

transport operation. In this situation, the second transport operation (𝑘, 𝑝, 𝑣, 𝜑′) has to wait to start for the end of 

the loaded transport operation (𝑖, 𝑗, 𝑢, 𝜑) and the end of the unloaded transport operations from 𝑗 to 𝑘. It can be 

achieved by a left shifting of activity 𝑘 to activity 𝑖. 

Block type 3 models a situation that is quite identical to the situation of block type 1 and a similar approach holds. 

Block type 4 between two activities occurs when an activity waits until the end of another activity to start, which 

is necessary due to a precedence constraint between them. To try to delete this arc from the critical path, the first 

activity has to be scheduled earlier. It can be achieved by a shifting of the activity in the activity sequence 𝑤 with 

respect to the precedence constraint. 

 

5 Numerical experiments  

To the best of our knowledge, no instances dealing with this problem are available. Therefore, numerical 

experiments are based on the two sets of instances introduced below:  

 The first one consists of the definition of a new set of small-scale instances with less than eight activities for 

which optimal resolution using CPLEX remains possible; 

 The second one consists of the definition of medium-scale instances for about 30 activities not tractable by 

exact algorithms. 

To favor fair future comparative studies, theses sets of instances are available at the following web page: 

 http://fc.isima.fr/~vinot/Research/RCPSP&Routing.html  

The numerical experiments are carried out to meet the following requirements:  

 To prove (using the small-scale instances) that the sequential resolution of the two sub-problems (the flow 

problem and then the routing/scheduling) leads to suboptimal solutions;  

 To evaluate the performance of the approach by a careful comparison of the optimal solutions provided by 

CPLEX with a MILP and the solutions provided by the GRASP×ELS; 

 To evaluate the GRASP×ELS convergence on medium-scale instances for future researchers. 

The linear formulation used by CPLEX is provided in the appendix and additional numerical experiments have 

been achieved using a Constraint Programming model with IBM ILOG CPLEX Optimization Studio (the model 

is also provided in the appendix) 

For each instance, five replications of the GRASP×ELS have been carried out. For the sake of convenience, all 

experiments are carried out with the same set of parameters introduced in Table 2 and the following notations are 

used for all of the results: 

 Avg  denotes an average value 

 LB lower bound values (equal to the optimal solution of a RCPSP with transfer times) 

 𝐿𝐵(𝑛𝑡𝑜𝑡)  the minimal number of operations to be scheduled  

 UB upper bound values 

 BFS best solution found 

 TT total CPU time in seconds to execute the algorithm (end of the iterations for the GRASP×ELS  

  and time to close the gap for CPLEX) 

 T* CPU time in seconds to obtain the BFS 

 Nb. Opt Number of instances where the solution has the same value as the lower bound 

 

Table 2 

Parameters setting 
Parameter Definition Value 

np Number of GRASP iterations 100 

ne Number of ELS iterations 25 

nd Number of neighborhood iterations 10 

l Number of local research iterations 10 

NBmax Maximum number of labels per node 20 

 
All experiments are carried out on a single thread C program, using Visual Studio and Windows 7 as the 

operating system on a Dell Optiflex9020 with an Intel Core i7-4770 CPU 3.4 GHz and 16 Gb of RAM, which 

can be established at 2671 Mflops (see Dongarra et al. (2014)). The same set of parameters is used for all 

instances whatever the number of vehicles. 

http://fc.isima.fr/~vinot/Research/RCPSP&Routing.html
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5.1. New set of instances 

A new set of small-scale instances composed of 18 instances with six activities plus the start/end activity is 

introduced and encompasses two configurations for the location of activities: the first one with one uniform 

distribution of the activities and the second one with two clusters.  

The resource requirement, the resource availability, the capacity of the vehicles and the ratio are given in Table 3. 

The minimal number of operations to be scheduled 𝐿𝐵(𝑛𝑡𝑜𝑡) is given in column 2 in Table 3. These values represent 

the 𝑛 activities to be scheduled, plus the minimal number of transport operations equal to 𝑛 + 1 (with a sequential 

scheduling). All the details of the instances are available at the web page. 

 

Table 3 

Small scale instance characteristics 

Instances 𝐿𝐵(𝑛𝑡𝑜𝑡) Location 
Resources 

requirement 

Resource  

availability 

Vehicles  

capacity 
Ratio 

LMQV_U1 13 uniform {4;10;3;3;8;4} 12 {12;12} 1.6 

LMQV_U2 13 uniform {4;10;3;3;8;4} 12 {12;12} 1.1 

LMQV_U3 13 uniform {4;10;3;3;8;4} 12 {12;12} 1.3 

LMQV_U4 13 uniform {2;8;7;8;8;5} 14 {6;5} 0.5 

LMQV_U5 13 uniform {2;8;7;8;8;5} 14 {6;5} 0.4 

LMQV_U6 13 uniform {2;8;7;8;8;5} 14 {6;5} 0.4 

LMQV_U7 13 uniform {5;3;8;2;3;1} 10 {4;2} 0.3 

LMQV_U8 13 uniform {5;3;8;2;3;1} 10 {4;2} 0.3 

LMQV_U9 13 uniform  {5;3;8;2;3;1} 10 {4;2} 0.3 

LMQV_C1 13 clusters {7;7;5;7;5;4} 7 {7;7} 3.0 

LMQV_C2 13 clusters {7;7;5;7;5;4} 7 {7;7} 2.1 

LMQV_C3 13 clusters {7;7;5;7;5;4} 7 {7;7} 3.0 

LMQV_C4 13 clusters {7;1;2;6;2;6} 11 {6;5} 1.1 

LMQV_C5 13 clusters {7;1;2;6;2;6} 11 {6;5} 1.0 

LMQV_C6 13 clusters {7;1;2;6;2;6} 11 {6;5} 1.0 

LMQV_C7 13 clusters {4;10;4;6;3;4} 12 {4;2} 0.8 

LMQV_C8 13 clusters {4;10;4;6;3;4} 12 {4;2} 0.8 

LMQV_C9 13 clusters {4;10;4;6;3;4} 12 {4;2} 0.8 

The medium-scale instance characteristics are introduced in Table 4 and encompass the quantification ratio, which 

is representative of the relative importance of the scheduling vs. the routing. The ratio is defined as the ratio 

between the average duration of an activity and the average duration of a transport operation per vehicle. To 

conclude, a ratio greater than 1 means that the scheduling processing time represents a greater amount of time than 

the routing, and a ratio lower than 1 implies the reverse. 

 

 

Table 4 

Medium-scale instance characteristics 

Instances 𝐿𝐵(𝑛𝑡𝑜𝑡) Location 
Resource 

requirement 

Resource 

availability 

Vehicle 

capacity 
Ratio 

LMQV_J30_U1 61 uniform [1;10] 13 {13;13} 0.7 

LMQV_J30_U2 61 uniform [1;10] 14 {8;6} 0.3 

LMQV_J30_U3 61 uniform [1;10] 13 {13;9} 1.0 

LMQV_J30_C1 61 clusters [1;10] 15 {15;15} 0.8 

LMQV_J30_C2 61 clusters [1;10] 11 {7;5} 0.3 

LMQV_J30_C3 61 clusters [1;10] 12 {12;9} 0.9 

LMQV_J30_CC1 61 clusters [1;10] 13 {13;13} 0.6 

LMQV_J30_CC2 61 clusters [1;10] 14 {8;6} 0.3 

LMQV_J30_CC3 61 clusters [1;10] 13 {13;8} 1.1 

5.2. Sequential resolution of the RCPSPR vs. the integrated approach 

First, by using a linear flow formulation with CPLEX, an optimal solution of the RCPSP is provided. A second 

linear formulation then allows us to obtain the optimal routing/scheduling solution that is compliant with the 

optimal RCPSP flow solution. The sequential approach based on the successive execution of these two linear 

problems leads to one solution of the RCPSPR introduced in column 5 of Table 5. 
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Although the second linear model addresses only the routing/scheduling for a specific solution flow (RCPSP 

solution), the average computational time is about 18.1 seconds, proving that the joint resolution of 

scheduling/routings is a challenging problem. The solution of the sequential approach must be analyzed regarding 

the best solutions found for the GRASP×ELS in column 8.  

The following remarks hold: 

 All GRASP×ELS solutions are lower than the sequential solutions with a significant gap between the two 

approaches. For example, the GRASP×ELS provides a solution of 74 for the instance LMQV_U1, and the 

sequential resolution provides a solution of 95, which represents a gap of 28.4%. On average, the gap is about 

23.6%. 

 The sequential resolution defines a more time efficient approach since the total CPU time is about 18.1 seconds 

on average, six times lower than the average CPU time required by the integrated resolution with the 

GRASP×ELS. 

Table 5 

Sequential resolution vs. integrated resolution 

  
CPLEX MILP 

(sequential resolution) 

GRASP×ELS 
(integrated resolution) 

 

Instances 𝐿𝐵(𝑛𝑡𝑜𝑡) 
RCPSP 

BFS 

T 

(sec.) 

RCPSPR 

BFS 

T’ 

(sec.) 

TT=T+T’ 

(sec.) 
BFS 

TT 

(sec.) 
Gap (%) 

LMQV_U1 13 19* 0.03 95 21.0 21.0 74 117.0 -28.4 

LMQV_U2 13 27* 0.02 172 10.1 10.1 149 124.0 -15.4 

LMQV_U3 13 38* 0.03 227 15.0 15.1 188 106.5 -20.7 

LMQV_U4 13 21* 0.02 115 39.0 39.0 100 208.7 -15.0 

LMQV_U5 13 38* 0.02 229 43.8 43.8 204 186.4 -12.3 

LMQV_U6 13 42* 0.02 319 69.4 69.4 231 237.9 -38.1 

LMQV_U7 13 8* 0.00 111 11.7 11.7 101 92.0 -9.9 

LMQV_U8 13 15* 0.02 225 8.7 8.7 206 97.6 -9.2 

LMQV_U9 13 16* 0.00 258 13.3 13.3 233 111.5 -10.7 

LMQV_C1 13 45* 0.05 89 9.0 9.0 70 0.5 -27.1 

LMQV_C2 13 65* 0.03 156 7.4 7.4 118 1.0 -32.2 

LMQV_C3 13 90* 0.03 181 9.0 9.0 143 0.7 -26.6 

LMQV_C4 13 12* 0.02 44 15.5 15.5 35 106.2 -25.7 

LMQV_C5 13 32* 0.02 93 20.8 20.8 71 119.0 -31.0 

LMQV_C6 13 24* 0.02 82 11.3 11.4 72 106.8 -13.9 

LMQV_C7 13 18* 0.03 60 6.3 6.3 46 203.4 -30.4 

LMQV_C8 13 35* 0.05 135 7.3 7.3 96 140.1 -40.6 

LMQV_C9 13 36* 0.02 138 7.7 7.7 100 145.9 -38.0 

Avg.   0.02  18.1 18.1  117.0 -23.6 

 

To conclude, the results comply with the theoretical considerations, proving that sequential approaches lead to 

poor quality solutions. It should be noted that these results confirm the assertion of Section 4, proving that a RCPSP 

quality solution is not a guarantee of success for the RCPSPR. 

5.3. Integrated approaches: GRASP×ELS solution vs. CPLEX optimal RCPSPR resolution 

The linear formulation of the RCPSPR (Lacomme et al., 2017), encompasses a formulation with a large number 

of constraints and variables: for the instance LMQV_U1, for example, the linear formulation is composed of 

54,186 variables and 140,974 constraints, including binary variables to model the disjunction of activities. Only 

14 instances are solved to optimality in less than one day of computation time (Table 6). In the optimal solution 

of instance LMQV_C9, the linear program has to deal with six activities and 26 transport operations, representing 

32 operations to be scheduled. The notation t.l. is used in tables for computational time exceeding 48 hours. 
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Table 6 

RCPSPR optimal resolution  

Instances 𝐿𝐵(𝑛𝑡𝑜𝑡) r 

CPLEX MILP (integrated approach) 

nc nr 
Optimal 

Solution 
TT (sec.) 

LMQV_U1 13 1.6 54186 140974 74 18 792 

LMQV_U2 13 1.1 54186 140974 144 17 892 

LMQV_U3 13 1.3 54186 140974 188 23 976 

LMQV_U4 13 0.5 53999 140584 74 t.l. 

LMQV_U5 13 0.4 53999 140584 192 71 172 

LMQV_U6 13 0.4 53999 140584 228 t.l. 

LMQV_U7 13 0.3 13421 34831 97 14 580 

LMQV_U8 13 0.3 13421 34831 197 18 864 

LMQV_U9 13 0.3 13421 34831 218 56 988 

LMQV_C1 13 3.0 84523 220446 70 4 104 

LMQV_C2 13 2.1 84523 220446 118 5 364 

LMQV_C3 13 3.0 84523 220446 143 5 724 

LMQV_C4 13 1.1 21072 54979 33 1 512 

LMQV_C5 13 1.0 21072 54979 68 1 224 

LMQV_C6 13 1.0 21072 54979 72 1 296 

LMQV_C7 13 0.8 27848 72442 44 54 576 

LMQV_C8 13 0.8 27848 72442 90 t.l. 

LMQV_C9 13 0.8 27848 72442 94 t.l. 

  1.1 42508 110709  >86 400 

t.l. : time greater than 48 hours 
 

Table 7 provides a comparative study between the best found solutions with CPLEX MILP and the GRASP×ELS 

resolution where both methods solve the RCPSPR using an integrated approach. Best solutions proved to be 

optimal are tagged with *. 

Table 7 

GRASP×ELS resolution  

  
 CPLEX MILP 

(integrated approach) 

GRASP×ELS 
(integrated approach) 

 

Instances 𝐿𝐵(𝑛𝑡𝑜𝑡) LB BFS TT(sec.) BFS T* (sec.) 
TT 

(sec.) 
Gap (%) 

LMQV_U1 13 57 74* 18 792 74* 58.6 117.0 0.0 

LMQV_U2 13 112 144* 17 892 149 65.9 124.0 3.5 

LMQV_U3 13 148 188* 23 976 188* 64.8 106.5 0.0 

LMQV_U4 13 79 95* t.l. 100 131.2 208.7 5.3 

LMQV_U5 13 157 192* 71 172 204 140.4 186.4 6.3 

LMQV_U6 13 178 228* t.l. 231 0.0 237.9 1.3 

LMQV_U7 13 48 97* 14 580 101 15.1 92.0 4.1 

LMQV_U8 13 96 197* 18 864 206 18.1 97.6 4.6 

LMQV_U9 13 114 218* 56 988 233 0.1 111.5 6.9 

LMQV_C1 13 70 70* 4 104 70* 0.0 0.5 0.0 

LMQV_C2 13 118 118* 5 364 118* 0.3 1.0 0.0 

LMQV_C3 13 143 143* 5 724 143* 0.0 0.7 0.0 

LMQV_C4 13 25 33* 1 512 35 2.7 106.2 6.1 

LMQV_C5 13 50 68* 1 224 71 2.7 119.0 4.4 

LMQV_C6 13 51 72* 1 296 72* 62.8 106.8 0.0 

LMQV_C7 13 33 44* 54 576 46 0.2 203.4 4.5 

LMQV_C8 13 66 90* t.l. 96 91.9 140.1 6.7 

LMQV_C9 13 68 94* t.l. 100 0.2 145.9 6.4 

Avg.    >86 400  36.4 117.0 3.3 

*: optimal solution 

The average computational time of the GRASP×ELS is about 36.4 seconds and the average deviation between the 

GRASP×ELS solution and the CPLEX solution is about 3.3%, proving that in some instances (for example, on 

LMQV_U3), the GRASP×ELS has the capacity to find the optimal solution (solution cost of 188) in 64.8 s, 

whereas CPLEX requires more than 23 976 seconds (six hours) of computational time. 

Figure 16 provides the fully oriented disjunctive graph that models the optimal LMQV_C4 solution. This graph 

encompasses the disjunctions between activities, the vehicle assignment to transport operations and the 

disjunctions between the transport operations. Integer values in front of nodes are the earliest starting time of 

operations. 
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Fig. 16. Example of solution for LMQV_C4 (CPLEX solution) 

The set of instances is extended to tackle up to five vehicles (all vehicles capacity are defined on the web 

companion page) to evaluate the impact of routing with regard to the scheduling solutions (Table 8). It can be 

observed that by increasing the number of vehicles from three to four, the number of solutions proved to optimality 

increases from 6 to 15 over the 18 instances.  

 

Table 8 

GRASP×ELS resolution from three to five vehicles on small scale instances 

   
GRASP×ELS 

(3 vehicles) 

GRASP×ELS 
(4 vehicles) 

GRASP×ELS 
(5 vehicles) 

Instances 𝐿𝐵(𝑛𝑡𝑜𝑡) LB BFS 
T* 

(s.) 

TT 

(s.) 
BFS 

T* 

(s.) 

TT 

(s.) 
BFS 

T* 

(s.) 

TT 

(s.) 

LMQV_U1 13 57 62 0.1 67.0 57 1.3 78.1 57 1.3 75.3 

LMQV_U2 13 112 118 0.6 51.5 113 1.1 75.2 112 1.5 95.8 

LMQV_U3 13 148 159 1.0 62.2 148 10.7 61.7 148 1.6 38.3 

LMQV_U4 13 79 79 3.7 53.7 79 0.3 79.9 79 0.6 82.6 

LMQV_U5 13 157 157 10.7 76.0 157 0.5 74.6 157 0.6 85.9 

LMQV_U6 13 178 178 48.1 125.1 178 0.5 95.2 178 0.5 95.7 

LMQV_U7 13 48 58 0.4 52.6 48 14.0 70.0 48 0.4 65.9 

LMQV_U8 13 96 118 4.6 47.1 97 13.1 61.4 97 0.2 58.4 

LMQV_U9 13 114 147 15.1 63.1 114 2.2 47.5 114 9.5 51.2 

LMQV_C1 13 70 70 0.4 2.7 70 2.0 4.7 70 2.6 5.5 

LMQV_C2 13 118 118 0.0 3.5 118 0.0 4.3 118 3.2 7.7 

LMQV_C3 13 143 143 0.9 4.5 143 0.0 2.5 143 0.0 5.7 

LMQV_C4 13 25 29 0.4 39.3 25 0.7 40.5 25 0.0 50.6 

LMQV_C5 13 50 59 0.9 49.0 50 1.1 40.8 50 1.5 58.2 

LMQV_C6 13 51 61 0.1 67.0 52 0.9 40.8 51 0.5 59.5 

LMQV_C7 13 33 38 0.6 51.5 33 10.2 70.4 33 14.3 111.5 

LMQV_C8 13 66 73 1.0 62.2 66 64.7 146.7 66 7.5 80.6 

LMQV_C9 13 68 72 3.7 53.7 68 1.1 81.6 68 115.3 232.9 

Avg.    6.2 49.8  7.9 55.8  11.1 69.2 

Nb. Opt   6/18   15/18   17/18   

 
After intensive numerical experiments, it has been proved that a fleet of five vehicles is sufficient to reach the 

lower bound of all instances except instance LMQV_U8 where the best solution found values 97 and the lower 

boud is about 96. The set of parameters should be tuned to the number of vehicles since the number of solutions 

strongly depends on the vehicles. 

One can noticed that a sequential resolution of the RCPSPR, starting from a flow solution provided by the optimal 

solution of the RCPSP with tranfer times, does not ensure a good quality solution for any number of vehicles. For 

example, in the instance LMQV_U4, the optimal resolution of the RCPSPR, starting from the flow leading to the 

optimal solution of the RCPSP with tranfer times, does not make it possible to reach the lower bound value equal 

to 79. With such a sequential approach, the best solutions are respectivelly equals to 125, 88 and 79, for two, three 

and four vehicles. Similar remarks hold for a waste majority of instances and push us into considering that a 

sequential resolution based on the  RCPSP with tranfer times is not a efficient approach. 

5.4. GRASP×ELS solution vs. optimal RCPSPR resolution: medium-scale instances 

A new set of medium-scale instances composed of nine instances with 32 activities including the dummy ones is 

used to evaluate the GRASP×ELS performances. The results of Table 9 are not compared to the MILP model 

since CPLEX fails to find a solution after five days. 
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Table 9 

GRASP×ELS resolution for medium-scale instances 

Instances 𝐿𝐵(𝑛𝑡𝑜𝑡) r 
GRASP×ELS 

BFS T* (sec.) TT (sec.) 

LMQV_J30_U1 61 0.7 175 37.5 213.2 

LMQV_J30_U2 61 0.3 197 338.9 576.1 

LMQV_J30_U3 61 1.0 107 27.7 244.6 

LMQV_J30_C1 61 0.8 175 182.8 524.9 

LMQV_J30_C2 61 0.3 177 51.2 172.4 

LMQV_J30_C3 61 0.9 115 100.2 241.8 

LMQV_J30_CC1 61 0.6 188 62.8 465.5 

LMQV_J30_CC2 61 0.3 195 29.6 397.1 

LMQV_J30_CC3 61 1.1 124 27.2 251.9 

Avg.    95.3 343.0 

The average computational time of the GRASP×ELS is about 343.0 seconds. All the details of the instances are 

available at the web page. 

6 Concluding remarks  

The integration of scheduling and routing is the key feature of supply chains for the proper coordination of 

these two functions in order to obtain quality results. This paper addresses the resolution of the RCPSPR, extending 

the RCPSP with the addition of routing using a GRASP×ELS metaheuristic. The framework we promote takes 

advantage of an indirect representation of the solutions using a split-based approach, and of different key features 

to favor the search space alternation with the flow, the giant tour and RCPSPR solutions. The framework efficiency 

takes advantage of a disjunctive graph with the integration of scheduling and routing constraints. The framework 

efficiency is proved by an intensive numerical experiments with CPLEX optimal solutions on a set of small- and 

medium-scale instances.  The approach promoted takes advantages of Artigues et al.’s flow formulation and this 

model is relevant when resources are not allowed to make trips and only direct resource transfers are permitted. 

New research could be directed into RCPSP flow formulation that could be used to create trip with indirect 

resource transfer. 

Our research is now directed toward a resolution with several resources and multi-objective functions where 

several criteria could be introduced for a quality of service that could be defined as the waiting time for both 

resources (the resources transported and the vehicles). This second criterion should be relevant for the quality of 

service when the resources provided for activities are linked to perishability constraints, for example, or when 

inventory costs have to be taken into account. Future perspectives focus on strengthen both MILP and CP 

formulations using, but not limited to, the definition of efficient lower bounds and upper bounds and additional 

constraints.  
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Appendix  

A.1. MILP formulation for the RCPSPR 

Data of the problem 

 𝑝𝑖   processing time of activity 𝑖  
 𝑏𝑖  number of resource required for activity 𝑖  
 𝑡𝑖𝑗  transfer time from activity 𝑖 to activity 𝑖  

 𝑉  set of activities to schedule 

 𝐸  set of couple of activities linked by a precedence constraints 

 𝑇  set of vehicle 

 𝑇𝑖   vehicle 𝑖 
 𝐶𝑖  capacity of vehicle 𝑖 

 

 

Variables 

 φijk  number of resource 𝑘 transferred from 𝑖 to 𝑗 

 zij  binary variable that value 1 if activity 𝑖 is scheduled before activity 𝑗 

 Si  starting time of activity 𝑖  
 𝑦𝑖𝑗𝑢𝑡   amount of resource transported from activity 𝑖 to 𝑗 by vehicle 𝑢  

during the 𝑡𝑡ℎ transport operation  

 𝑥𝑖𝑗𝑢𝑡  binary variable such 𝑥𝑖𝑗𝑢𝑡 = 1 if vehicle 𝑢 make the transport of  

  resource from activity 𝑖 to 𝑗 during the 𝑡𝑡ℎ transport operation. 

 𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢   binary variable with 𝑎𝑖𝑗𝑡𝑝𝑞𝑣

𝑢 = 1 if transport operation number 𝑡 of vehicle 𝑢  

  from activity 𝑖 to 𝑗 is schedule before the transport operation number 𝑣 of vehicle 𝑢 

  from activity 𝑝 to q 

The constraints numbered 1 to 9 in 𝑃1 are the classical RCPSP constraints (scheduling constraint) and constraints 

numbered 10 to 25 in 𝑃2 are the constraints tackling the transport. 

 

 

 

 

 

 

 

 

 

 

𝑃1:

{
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑛+1 (1) 

∀ (𝑖 , 𝑗) ∈ 𝐸 𝑧𝑖𝑗 = 1 (2) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 +𝑀(𝑧𝑖𝑗 − 1) (3) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝜑𝑖𝑗 ≤ 𝑚𝑖𝑛 (𝑏𝑖 , 𝑏𝑗)𝑧𝑖𝑗  (4) 

∀ 𝑗 ∈ 𝑉 ∑𝜑𝑖𝑗 = 𝑏𝑗
𝑖∈𝑉

 
(5) 

∀ 𝑖 ∈ 𝑉 ∑𝜑𝑖𝑗 = 𝑏𝑖
𝑗∈𝑉

 
(6) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝑧𝑖𝑗 ∈ {0,1}, 𝑧𝑖𝑖 = 0 (7) 

∀ 𝑖 ∈ 𝑉 𝑆𝑖 ∈ ℕ (8) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝜑𝑖𝑗 ∈ ℕ, 𝜑𝑖𝑖 = 0 
(9) 
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𝑃2:

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 

∀ (𝑖 , 𝑗) ∈ 𝑉2 
∑ ∑ 𝑦𝑖𝑗𝑢𝑡

𝑡∈𝑋𝑖𝑗

= 𝜑𝑖𝑗
𝑢∈𝑇

 (10) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑦𝑖𝑗𝑢𝑡 ≤ 𝑚𝑖𝑛 (𝑏𝑖 , 𝑏𝑗, 𝐶𝑢)𝑥𝑖𝑗𝑢𝑡 (11) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑥𝑖𝑗𝑢𝑡 ≤ 𝑦𝑖𝑗𝑢𝑡 (12) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝐴𝑖𝑗𝑢𝑡 ≥ 𝐵𝑖𝑗𝑢𝑡 + 𝑡𝑖𝑗 + (𝑥𝑖𝑗𝑢𝑡 − 1). 𝐻 (13) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑆𝑗 ≥ 𝐴𝑖𝑗𝑢𝑡 + (𝑥𝑖𝑗𝑢𝑡 − 1). 𝐻 (14) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝐵𝑖𝑗𝑢𝑡 ≥ 𝑆𝑖 + 𝑝𝑖 + (𝑥𝑖𝑗𝑢𝑡 − 1). 𝐻 (15) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, ∀ 𝑢 ∈ 𝑇,  

∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 + 𝑎𝑝𝑞𝑣𝑖𝑗𝑡

𝑢 ≤ 𝑥𝑖𝑗𝑢𝑡  (16) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, 

∀ 𝑢 ∈ 𝑇, ∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 + 𝑎𝑝𝑞𝑣𝑖𝑗𝑡

𝑢 ≤ 𝑥𝑝𝑞𝑢𝑣 (17) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, 

∀ 𝑢 ∈ 𝑇, ∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 + 𝑎𝑝𝑞𝑣𝑖𝑗𝑡

𝑢 ≥ 1 − (2 − 𝑥𝑖𝑗𝑢𝑡 − 𝑥𝑝𝑞𝑢𝑣). 𝐻 (18) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, 

∀ 𝑢 ∈ 𝑇, ∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝐵𝑝𝑞𝑢𝑣 ≥ 𝐴𝑖𝑗𝑢𝑡 + 𝑡𝑗𝑝 + (𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 − 1). 𝐻 (19) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈  𝑇,  

∀ 𝑡 ∈ ⟦1,𝑚𝑖 𝑛(𝑏𝑖 , 𝑏𝑗) − 1⟧ 
𝑦𝑖𝑗𝑢𝑡+1 ≤ 𝑦𝑖𝑗𝑢𝑡  (20) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑦𝑖𝑗𝑢𝑡 ∈ ℕ (21) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑥𝑖𝑗𝑢𝑡 ∈ {0,1} (22) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝐴𝑖𝑗𝑢𝑡 ∈ ℕ (23) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝐵𝑖𝑗𝑢𝑡 ∈ ℕ (24) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, 

∀ 𝑢 ∈ 𝑇, ∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 ∈ {0,1} (25) 

 

A.2. CP formulation for the RCPSPR 

The CP model was formulated from the MILP and both CP data and CP decision variables have been introduced 

considering the same trend as the MILP, in order to favor readability first, and to facilitate second a better 

knowledge and understanding for researchers coming from the scheduling community and who are more 

experienced in MILP than CP. A CP model resembles an integer programming model in terms of syntax. It contains 

decision variables with their domains, a set of constraints, and possibly, an objective function. However, the CP 

modeling paradigm is much more expressive. In fact, the language is a superset of the integer linear programming 

modeling language. In addition to equality and inequality constraints between linear mathematical expressions, a 

CP model can contain non-linear expressions, logical expressions, use decision variables as indices to other vectors 

of decision variables, and include global constraints that capture a relationship between large sets of decision 

variables. 

Disjunctive formulation of the CP 

 

𝑃1:

{
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑛+1 (1) 

∀ (𝑖 , 𝑗) ∈ 𝐸 𝑧𝑖𝑗 = 1 (2) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝑧𝑖𝑗 = 1 ⟹  𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 (3) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝜑𝑖𝑗 ≤ 𝑚𝑖𝑛 (𝑏𝑖 , 𝑏𝑗)𝑧𝑖𝑗  (4) 

∀ 𝑗 ∈ 𝑉 ∑𝜑𝑖𝑗 = 𝑏𝑗
𝑖∈𝑉

 
(5) 

∀ 𝑖 ∈ 𝑉 ∑𝜑𝑖𝑗 = 𝑏𝑖
𝑗∈𝑉

 
(6) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝑧𝑖𝑗 ∈ {0,1}, 𝑧𝑖𝑖 = 0 (7) 

∀ 𝑖 ∈ 𝑉 𝑆𝑖 ∈ ℕ (8) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝜑𝑖𝑗 ∈ ℕ, 𝜑𝑖𝑖 = 0 
(9) 
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𝑃2:

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 

∀ (𝑖 , 𝑗) ∈ 𝑉2 
∑ ∑ 𝑦𝑖𝑗𝑢𝑡

𝑡∈𝑋𝑖𝑗

= 𝜑𝑖𝑗
𝑢∈𝑇

 (10) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑦𝑖𝑗𝑢𝑡 ≤ 𝑚𝑖𝑛 (𝑏𝑖 , 𝑏𝑗, 𝐶𝑢)𝑥𝑖𝑗𝑢𝑡 (11) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑦𝑖𝑗𝑢𝑡 = 0 ⟹ 𝑥𝑖𝑗𝑢𝑡 = 0 ∧ 𝐴𝑖𝑗𝑢𝑡 = 0 ∧  𝐵𝑖𝑗𝑢𝑡 = 0  (12) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑥𝑖𝑗𝑢𝑡 = 1 ⟹ 𝐴𝑖𝑗𝑢𝑡 ≥ 𝐵𝑖𝑗𝑢𝑡 + 𝑡𝑖𝑗 (13) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑥𝑖𝑗𝑢𝑡 = 1 ⟹ 𝑆𝑗 ≥ 𝐴𝑖𝑗𝑢𝑡 (14) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑥𝑖𝑗𝑢𝑡 = 1 ⟹ 𝐵𝑖𝑗𝑢𝑡 ≥ 𝑆𝑖 + 𝑝𝑖  (15) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, ∀ 𝑢 ∈ 𝑇,  

∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 + 𝑎𝑝𝑞𝑣𝑖𝑗𝑡

𝑢 ≤ 𝑥𝑖𝑗𝑢𝑡  (16) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, 

∀ 𝑢 ∈ 𝑇, ∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 + 𝑎𝑝𝑞𝑣𝑖𝑗𝑡

𝑢 ≤ 𝑥𝑝𝑞𝑢𝑣 (17) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, 

∀ 𝑢 ∈ 𝑇, ∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

(𝑥𝑖𝑗𝑢𝑡 = 1 ∧ 𝑥𝑝𝑞𝑢𝑣 = 1)  ⟹ 𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 + 𝑎𝑝𝑞𝑣𝑖𝑗𝑡

𝑢 ≥ 1 (18) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, 

∀ 𝑢 ∈ 𝑇, ∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 = 1 ⟹ 𝐵𝑝𝑞𝑢𝑣 ≥ 𝐴𝑖𝑗𝑢𝑡 + 𝑡𝑗𝑝 (19) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈  𝑇,  

∀ 𝑡 ∈ ⟦1,𝑚𝑖 𝑛(𝑏𝑖 , 𝑏𝑗) − 1⟧ 
𝑦𝑖𝑗𝑢𝑡+1 ≤ 𝑦𝑖𝑗𝑢𝑡  (20) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑦𝑖𝑗𝑢𝑡 ∈ {0, 𝐵} (21) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝑥𝑖𝑗𝑢𝑡 ∈ {0,1} (22) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝐴𝑖𝑗𝑢𝑡 ∈ ℕ (23) 

∀ (𝑖 , 𝑗) ∈ 𝑉2,  ∀ 𝑢 ∈ 𝑇, ∀ 𝑡 ∈ 𝑋𝑖𝑗 𝐵𝑖𝑗𝑢𝑡 ∈ ℕ (24) 

∀ (𝑖 , 𝑗, 𝑝 , 𝑞) ∈  𝑉4, 

∀ 𝑢 ∈ 𝑇, ∀ (𝑡, 𝑣) ∈ 𝑋𝑖𝑗
2  

𝑎𝑖𝑗𝑡𝑝𝑞𝑣
𝑢 ∈ {0,1} (25) 

 

Cumulative formulation of the CP for the scheduling part 

 

In the cumulative formulation, the activities are represented by interval variables. An interval variable represents 

an interval of time during which an activity is performed: 

interval act[i in 0..n+1] size pi 
The cumulative constraint to define 𝑓 enforces that at each point in time, the cumulated resource demands of the 

set of activities that require the resource at this time, does not exceed a given limit.  

cumulFunction f = sum(i in 1..n) pulse(act[i],bi) 
 

 

The constraints to tackle the routing remain the same as the CP disjunctive formulation with the model 𝑃2.  

 

 

𝑃1′:

{
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 endOf(𝑎𝑐𝑡[𝑛 + 1]); (1)  
𝑓 ≤  𝐵; (2) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝑧𝑖𝑗 = 1 ⟹ endBeforeStart(𝑎𝑐𝑡[𝑗], 𝑎𝑐𝑡[𝑖]);  (3) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝜑𝑖𝑗 ≤ 𝑚𝑖𝑛 (𝑏𝑖 , 𝑏𝑗)𝑧𝑖𝑗  (4) 

∀ 𝑗 ∈ 𝑉 ∑𝜑𝑖𝑗 = 𝑏𝑗
𝑖∈𝑉

 
(5) 

∀ 𝑖 ∈ 𝑉 ∑𝜑𝑖𝑗 = 𝑏𝑖
𝑗∈𝑉

 
(6) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝑧𝑖𝑗 ∈ {0,1}, 𝑧𝑖𝑖 = 0 (7) 

∀ 𝑖 ∈ 𝑉 𝑆𝑖 ∈ ℕ (8) 

∀ (𝑖 , 𝑗) ∈ 𝑉2 𝜑𝑖𝑗 ∈ ℕ, 𝜑𝑖𝑖 = 0 
(9) 
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A.3. Additional numerical experiments 

 

Extra modeled should be investigated to get around MILP drawbacks, that come from the large number of variables 

used and from the big-M constraints required for disjunctions of both scheduling and routing.  

Cumulative constraint based models have been proved to be efficient in RCPSP resolution (Kreter et al. 2017), 

and in several RCPSP variants providing results that compete with MILP formulation. Because, the transport 

operations are fully defined by exchange of resources between activities, the RCPSPR that requires the proper 

coordination of both activities and routing constraints, presents characteristics that do not favor cumulative model 

and by consequence resolution (Table A0).  

 

Table A0 

CP resolution, disjunctive model vs. cumulative model 

 
 CPLEX CP  

(disjunctive model P1 and P2) 

CPLEX CP  

 (cumulative model P1’ and P2) 

Instances 
Optimal  

solution 
BFS 

T*  

(sec.) 

TT  

(sec.) 
BFS 

T*  

(sec.) 

TT  

(sec.) 

LMQV_U1 74* 74* 122.85 32 885.52 / t.l. t.l. 

*: optimal solution  

t.l.: time greater than 48 hours 

To obtain a fair comparative study, the two models (disjunctive MILP formulation and CP disjunctive formulation) 

do not encompass any extra constraint that could strengthen the model and the two models have been solved using 

the CPLEX 12.7 package running on the same computer. The default parameters are used in the resolution of both 

MILP and CP: the results are introduced in Table A1 where * is used for optimal solution and 𝑡. 𝑙. for computational 

time exceeding 48 hours. 

 

Table A1 

GRASP×ELS resolution vs. MILP and CP 

 
CPLEX MILP 

(integrated approach) 

CPLEX CP 

(integrated approach) 

GRASP×ELS 
(integrated approach) 

Instances BFS 
T*  

(sec.) 

TT  

(sec.) 
BFS 

T*  

(sec.) 

TT  

(sec.) 
BFS 

T*  

(sec.) 

TT  

(sec.) 

LMQV_U1 74* 12 348 18 792 74* 122.85 32 885.52 74* 58.6 117.0 

LMQV_U2 144* 16 250 17 892 144* 120.18 52 013.33 149  65.9 124.0 

LMQV_U3 188* 19 156 23 976 188* 168.85 t.l. 188* 64.8 106.5 

LMQV_U4 95* t.l. t.l. 95 t.l. t.l. 100  131.2 208.7 

LMQV_U5 192* 66 751 71 172 199 t.l. t.l. 204  140.4 186.4 

LMQV_U6 228* t.l. t.l. 228 t.l. t.l. 231  0.0 237.9 

LMQV_U7 97* 11 857 14 580 97* 1 227.69 t.l. 101  15.1 92.0 

LMQV_U8 197* 13 019 18 864 197* 56 300.91 t.l. 206  18.1 97.6 

LMQV_U9 218* 52 587 56 988 218 4 553.09 t.l. 233  0.1 111.5 

LMQV_C1 70* 2 914 4 104 70* 46.00 21 322.73 70* 0.0 0.5 

LMQV_C2 118* 2 463 5 364 118* 62.65 16 714.47 118* 0.3 1.0 

LMQV_C3 143* 3 796 5 724 143* 37.61 35 038.23 143* 0.0 0.7 

LMQV_C4 33* 1 402 1 512 33* 981.33 16 586.54 35  2.7 106.2 

LMQV_C5 68* 1 108 1 224 68* 1 405.08 52 238.52 71  2.7 119.0 

LMQV_C6 72* 1 021 1 296 72* 219.15 56 232.15 72* 62.8 106.8 

LMQV_C7 44* 36 597 54 576 44  t.l. t.l. 46  0.2 203.4 

LMQV_C8 90* t.l. t.l. 90  1 787.49 t.l. 96  91.9 140.1 

LMQV_C9 94* t.l. t.l. 100  t.l. t.l. 100  0.2 145.9 

Avg.  >51 200 >86 400  >52 279 >112 835  36.4 117.0 

*: optimal solution  

t.l.: time greater than 48 hours 
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The results prove the efficiency of constraint programming formulations first (that permit to obtain numerous 

optimal solutions) and that the CP optimizer of CPLEX competes with the MILP solver.  The coordination between 

scheduling and routing operations should receive attention to strengthen both models. For example, the difference 

between starting time of 𝑖 and starting time of 𝑗, for two scheduling operations with a non-null flow (𝜑𝑖𝑗 ≥ 0), 

could be used to create new transportation constraints by a careful evaluation of the number of loaded and unloaded 

transport operations required, and by consequence, of the delay between  𝑆𝑗 and 𝑆𝑖. The linear constraint 𝑆𝑗 ≥ 𝑆𝑖 +

𝑝𝑖 +𝑀(𝑧𝑖𝑗 − 1), could be updated with 𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 + 𝛿 +  𝑀(𝑧𝑖𝑗 − 1) where 𝛿 is the extra delay. 
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Fig. A1. Illustration of one additional constraint strengthening the model  

 

Table A2 reports the best solutions obtained by CPLEX MILP and CPLEX CP within the time that the 

GRASP×ELS found its best upper bound. CPLEX MILP failed to provide a solution (except for instance 

LMQV_U5 and LMQV_C6) whereas CPLEX CP provides 7 solutions, with poor quality regarding the solutions 

of the GRASP×ELS. For LMQV_U1, CPLEX CP provides a solution of 91 that is strongly larger than 74 which 

is the best solution found by GRASP×ELS in 58 s. The CPLEX CP provides a first solution in shorten 

computational time than CPLEX MILP. Such results push us into considering that constraint programming is a 

promising method that could be used in investigating the RCPSPR. 

 
 Table A2 

GRASP×ELS resolution vs. MILP and CP within the same time 

  
GRASP×ELS 

(integrated approach) 

MILP  

(integrated approach) 

CP  

(integrated approach) 

Instances BKS BFS 
T*  

(sec.) 
(LB) BFS BFS 

LMQV_U1 74* 74* 58.6 (15)   /    91 

LMQV_U2 144* 149  65.9 (30)   /  163 

LMQV_U3 188* 188* 64.8 (43)   /  215 

LMQV_U4 95* 100  131.2 (16)   /  130 

LMQV_U5 192* 204  140.4 (49)  433 230 

LMQV_U6 228* 231  0.0 (29)   /  /  

LMQV_U7 97* 101  15.1 (15)   /  /  

LMQV_U8 197* 206  18.1 (29)   /  /  

LMQV_U9 218* 233  0.1 (17)   /  /  

LMQV_C1 70* 70* 0.0 (19)   /  /  

LMQV_C2 118* 118* 0.3 (27)   /  /  

LMQV_C3 143* 143* 0.0 (37)   /  /  

LMQV_C4 33* 35  2.7 (12)   /  140 

LMQV_C5 68* 71  2.7 (21)   /  /  

LMQV_C6 72* 72* 62.8 (32)  110 84 

LMQV_C7 44* 46  0.2 (18)   /  /  

LMQV_C8 90* 96  91.9 (35)   /  /  

LMQV_C9 94* 100  0.2 (35)   /  /  

Avg.   36.4   

*: optimal solution  

/ : no solution found 
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