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Discrete Mumford-Shah on graph
for mixing matrix estimation

Yacouba Kaloga, Marion Foare, Member, IEEE, Nelly Pustelnik, Member, IEEE, Pablo Jensen

Abstract—The discrete Mumford-Shah formalism has been
introduced for the image denoising problem, allowing to capture
both smooth behavior inside an object and sharp transitions on
the boundary. In the present work, we propose first to extend
this formalism to graphs and to the problem of mixing matrix
estimation. New algorithmic schemes with convergence guaran-
tees relying on proximal alternating minimization strategies are
derived and their efficiency (good estimation and robustness to
initialization) are evaluated on simulated data, in the context of
vote transfer matrix estimation.

Index Terms—Mumford-Shah, graph, mixing matrice estima-
tion, nonconvex optimisation

I. INTRODUCTION

Mixing matrix estimation is mainly encountered in the con-
text of blind source separation where the problem can be de-
scribed as, for every sample n, zn = Msn, where zn =
(zn,1, . . . , zn,P ) ∈ RP are the observed signals and sn =
(sn,1, . . . , sn,Q) ∈ RQ are the unknown original source signals.
M denotes the unknown mixture matrix with full row rank.
The main objective of blind source separation is to estimate
the mixing matrix M and the sources (sn)n. A vast literature
is dedicated to this subject going from ICA methods used in
the context of overdetermined case (i.e. Q ≤ P ) [1] to sparse
component analysis for the underdetermined context [2]. In this
work, we consider a slightly different problem, for which we
assume the sources to be known, but that the mixing matrices
differ for each n. To formulate our problem in a general setting,
we propose to write it on a graph G = (V, E), where E
denotes the edges and V the vertices. Our goal is to estimate,
for each node n ∈ V , a mixing matrix Mn ∈ RP×Q from the
observations z = (zn)n∈V and the sources s = (sn)n∈V such
that

(∀n ∈ V) zn = Mnsn.

A specific application of this problem, when G models a regular
grid, is encountered in hyperspectral unmixing imagery [3], for
which recent contributions in the convex setting, involving total
variation, have been proposed (see [4] and references therein).
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This framework also fits the challenging question of vote trans-
fer matrix estimation at each polling location for which no state-
of-the-art method is able to provide such a local estimate, this
problem being especially ill-posed [5], [6]).

The contributions of this paper are: (i) to encompass the
mixing matrix estimation problem into the Mumford-Shah for-
malism to be able to estimate Mn with limited assumptions:
two matrices Mn and Mn′ should be similar if n and n′ are
neighbor nodes in the graph, except at some locations where
sharp behaviors can be captured (Section II); (ii) a new proximal
alternating minimization scheme with convergence guarantees
as well as a block version of it, to handle large datasets (Sec-
tion III); (iii) experimental validation of the proposed numerical
schemes and robustness to the initialization (Section IV).

II. DISCRETE MUMFORD-SHAH ON GRAPH

A. Generalities on Mumford-Shah

Proposed in the late 80’s, the Mumford-Shah (MS) model [7]
is one of the most studied models in image processing, since
it allows both to recover a piecewise smooth approximation of
an input image corrupted with white Gaussian noise, and to
extract the contours at the same time. Formally, let Ω ⊂ R2 be
a bounded, open set and z : Ω→ [0, 1] a corrupted input image,
the Mumford-Shah model reads [8]:

minimize
u,Γ

1

2

∫
Ω

(u−z)2dx+β

∫
Ω\Γ
|∇u|2dx+λH1(Γ∩Ω) (1)

The first term is the data-term, ensuring similarities between the
noisy image and the estimate û, the second term favors solutions
having a smooth behavior everywhere except on contours Γ and
the third term controls the length of Γ by means of the 1D
Hausdorff measure. The parameters β > 0 and λ > 0 allows
us to adjust the contribution of each term in the estimation.

The nonconvexity of the MS functional leads to numeri-
cal difficulties, and most of the state-of-the-art methods work
with piecewise constant approximations: e.g. the famous ROF
model [9], which involves the Total Variation (TV) of the image
or the Chan-Vese formulation [10]. However, none of these
methods perform simultaneously the contour detection and the
estimation of the denoised û. More recently, we can refer to [8],
[11], [12] for alternatives relying on the estimation of both û
and Γ̂. Cai and Steidl [11] update iteratively the threshold from
the ROF solution, Strekalovskiy et al. [12] provide an heuristic
algorithm to solve a nonconvex formulation while in [8], a new
discrete MS formulation allows us to fit proximal alternating
minimization having convergence guarantees to a critical point.
For this reason, we focus on this last strategy that estimate both
û and Γ̂ simultaneously and that has theoretical guarantees.
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B. Extension to graphs and mixing matrix estimation

In this work, we extend the discrete MS model proposed in [8]
for image denoising to mixing matrix estimation on graph. We
propose to formulate the data term as(

∀M ∈ RP×Q×|V|
)
L(M) =

∑
n∈V
‖zn −Mnsn‖22.

The second term aims to promote small variations between two
adjacent matrices Mn and Mn′ :

S(M , e) = β
∑
n∈V

∑
n′∈N (n)

(1− en,n′)2‖Mn −Mn′‖22

where N (n) models the neighborhood of n and where en,n′ ∈
R denotes the value of the edge between the nodes n and n′.
This penalization tends to favor en,n′ ≡ 1. In order to control
the length of the contour, another penalization term favoring
sparsity is required, e.g. a `1-norm or a quadratic-`1 penalization
[13]. This penalization over e, controlled with a parameter
λ > 0, will be denoted by R, and ensures en,n′ ∈ [0, 1].
Another difference between image denoising and mixing matrix
estimation on graph is the necessity to integrate additional hard
constraints over M , e.g. a simplex constraint on the columns.
The resulting D-MS model (1) reads

minimize
M∈RP×Q×|V|,e∈R|E|

Ψ(M , e) := L(M)+S(M , e)+R(e)+ιC(M)

(2)
where C ⊂ RP×Q×|V| and ιC denotes an indicator func-
tion 1 separable in n, i.e. ιC(M) =

∑|V|
n=1 ιCn(Mn), where,

∀n ∈ V, Cn ⊂ RP×Q, such that C = C1 × · · · × Cn. This
minimization problem is nonconvex with respect to (M , e). In
the next section we propose an algorithmic scheme relying on
proximal alternating minimization strategy allowing to build a
sequence that converges to a critical point of (2).

III. PROPOSED ALGORITHM

A. Semi-Linearized Proximal Alternating Method (SL-PAM)

The most encountered strategy to find an estimate (M̂ , ê)
of (2) relies on the Gauss-Seidel scheme (i.e., coordinate descent
method), whose convergence guarantees require the minimum
to be uniquely attained at each update of the algorithm, e.g.
by assuming the strict convexity with respect to one argument
when the other one is fixed. Such a condition being difficult to
satisfy in practice, it has been proposed to perform proximal
regularization of the Gauss-Seidel scheme. This yields to

M [k+1] ∈ arg min
M

Ψ(M , e[k]) +
µk
2
‖M −M [k]‖22,

e[k+1] ∈ arg min
e

Ψ(M [k+1], e) +
ηk
2
‖e− e[k]‖22,

where µk and ηk are positive real numbers [14]. The proof
of convergence to a critical point of such a scheme is due to
a recent work by Attouch et al. [15]. The proof is provided
in the nonsmooth and nonconvex setting. The main practical
issue is to have a closed form expression of both proximity
operators2. This has been relaxed by Bolte et al. [16], who

1Let H be a finite dimensional Hilbert space. The indicator function of a
nonempty closed subset C ⊂ H is denoted ιC and is such that, for every
u ∈ H, ιC(u) = 0 if u ∈ C or +∞ otherwise.

2Let ϕ : H →]−∞,+∞] be a proper and lower semicontinuous function.
Given u ∈ H and γ > 0, the proximal map associated to ϕ is defined by
proxγϕ(u) = arg minv∈H ϕ(v) + γ

2
‖u− v‖2.

derived a proximal alternating linearized scheme (PALM). A
hybrid version, named SL-PAM for semi-linearized proximal
alternating direction method, has been proposed in [8], espe-
cially adapted to the resolution of the Discrete Mumford-Shah
problem. The iterations of SL-PAM to solve (2) would read

M [k+1] ∈ prox L
µk

+ιC

(
M [k] − 1

µk
∇1S

(
M [k], e[k]

))
,

e[k+1] ∈ prox 1
ηk

(
R+S(M [k+1],·)

) (e[k]
)
,

where ∇1 denotes the gradient with respect to the first variable.
In [8], a closed form expression has been derived for the update
of e while, for the basic image denoising MS, the first step
does not involve the proximity operator of a sum of functions
but only the proximity operator of L, which is much easier to
handle with. The proximity operator of a sum of functions is
known to have closed form expression for a very limited number
of functions (see e.g. [17]–[19] and references therein). Thus,
in order to design an algorithmic scheme with convergence
guarantees to solve (2), we need to propose a new proximal
alternating scheme.

B. New algorithmic scheme – SL2-PAM

In the context of mixing matrix estimation on graph con-
sidered in this study, the data-term is differentiable with a
Lipschitz gradient, we can thus derive the iterations summarized
in Algorithm 1, where PC denotes the projection onto the set C,
whose convergence guarantees are provided in Proposition III.2
and the proof is given in Appendix VI-A.

Algorithm 1 (SL2-PAM) for solving D-MS for mixing matrix
estimation (2)

Set M [0] ∈ C and e[0] ∈ R|E|.
For k = 0, 1, . . .

Parameter setting:
Let ν(e[k]) be the Lipschitz constant of ∇1S

(
·, e[k]

)
+∇L.

Set γ > 1 , µk = γν(e[k]) and ηk > 0.
Variable updates:

M [k+1] ∈ PC
(
M [k] − 1

µk
∇1S

(
M [k], e[k]

)
− 1

µk
∇L(M [k])

)
e[k+1] ∈ prox 1

ηk

(
R+S(M [k+1],·)

) (e[k]
)

Assumption III.1 i) Ψ is a Kurdyka-Łojasiewcz function
[16, Def. 2.3],

ii) Ψ andR are bounded below;
iii) the updating steps of M [k] and e[k] have closed form

expressions;
iv) (ηk)k∈N is a positive sequence such that the stepsizes ηk

belong to (η−, η+) for some positive η− ≤ η+;
v) the sequence (M [k], e[k])k∈N generated by Algorithm 1 is

bounded.

Proposition III.2 Under Assumption III.1 and assuming that,
∀n ∈ V , ∀k ∈ N, ∇L +∇1S(·, e[k]) is globally Lipschitz con-
tinuous with moduli ν(e[k]), and there exists ν−, ν+ > 0 such
that ν− ≤ ν(e[k]) ≤ ν+. Then the sequence (M [k], e[k])k∈N
generated by Algorithm 1 converges to a critical point of Prob-
lem (2).
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C. Block updates

However, ν(·) may be very large, essentially due to the large
value of the Lipschitz constant of the data-termL, which implies
a very small descent stepsize in the first step of Algorithm 1.
In order to accelerate the convergence, we suggest to derive
a block-coordinate SL2-PAM relying on the separability of
Ψ(M, e) on each node n ∈ V . Problem (2) can be equivalently
written

Ψ(M , e) :=

|V|∑
n=1

{
Ln(Mn)+Sn(Mn, e)+ιCn(Mn)

}
+R(e)

with Sn(Mn, e) = β
∑

n′∈N (n)

(1 − en,n′)2‖Mn −Mn′‖22 and

Ln(Mn) = ‖zn −Mnsn‖22. The iterations are provided in
Algorithm 2, the convergence results is given in Proposition III.3
and the proof is given in Appendix VI-A.

Algorithm 2 (Block-SL2-PAM) for solving D-MS for mixing
matrix estimation (2)

For every n ∈ V , set M [0]
n ∈ Cn and e[0] ∈ R|E|.

For k = 0, 1, . . .

– Parameter setting –
Let νn(e[k]) the Lipschitz constant of ∇1Sn

(
·, e[k]

)
+∇Ln.

Set γ > 1 , µk,n = γνn(e[k]) and ηk > 0.
–Variable updates –
For n = 1, . . . , |V|
bM [k+1]

n ∈PCn
(
M [k]

n − 1
µk,n

(
∇1S

(
M [k]

n , e
[k]
)

+∇L(M [k]
n )
))

e[k+1] ∈ prox 1
ηk

(
R+S(M [k+1],·)

) (e[k]
)

Proposition III.3 Under Assumption III.1 and assuming that,
∀n ∈ V , ∀k ∈ N,∇Ln+∇1Sn(·, e[k]) is globally Lipschitz con-
tinuous with moduli νn(e[k]), and there exists ν−n , ν

+
n > 0 such

that ν−n ≤ νn(e[k]) ≤ ν+
n . Then the sequence (M [k], e[k])k∈N

generated by Algorithm 2 converges to a critical point of Prob-
lem (2).

IV. NUMERICAL EXPERIMENTS

A. Context: estimation of the voting transfer matrices

We propose to illustrate the performance of the proposed
Mumford-Shah model on graph to the estimation of the vote
transfer matrices between two elections [20]. While in most of
the state-of-the-art studies this estimation is performed globally,
the challenge here is to provide an estimate of the voting transfer
matrices at each location n. In this case, the set of vertices
V of the graph G models the polling locations, and E is the
set of edges between to nodes associated with the 8 nearest
neighbors. The resulting graph is a directed acyclic graph with
|E| = 8|V|. The involved matrices Mn are of size P (2) × P (1)

where P (1) denotes the number of candidates (including null
votes and abstention) competing in the first election E(1), and
P (2) the number in the second one, denoted by E(2). Hence,
sn (resp. zn) denotes a vector containing the number of votes
cast for each candidate at the n-th polling location in election
E(1) (resp. E(2)). The coefficients in the matrices Mn denote
transfer percentage. Thus, for every n ∈ V , the constraint Cn is
selected to be a simplex constraint over the columns to impose

value between 0 and 1 with a sum equals to 1.The projection
PCn is computed by means of the efficient implementation
provided in [21]. Moreover, in our experiments, R is set as a
`1-norm, i.e. R = λ‖ · ‖1 and the closed form expression of
prox 1

ηk

(
R+S(M

[k]
n ,e[k])

) is given in [8].

B. Synthetic data
The graph is built on the polling locations of Lyon (France)

leading to n = 283. To simplify the interpretation and accurately
measure the performance of the proposed method, we consider
synthetic data, with P (1) = 4 and P (2) = 3, and two piecewise
smooth regions V(1) and V(2) such that V = V(1) ∪V(2), with a
frontier in between (see Figure 1). We set the sources (sn)n∈V
at their real value, and generate (zn)n∈V signals as follows. For
region i ∈ {1, 2}, we define two matrices M

(i)

top, M
(i)

bottom,
and we set the ground truth mixing matrix of each polling place
n ∈ V(i) as M

(i)

n = PC
(
ωnM

(i)

bottom + (1− ωn)M
(i)

top + εn
)
.

εn denotes a white Gaussian noise with standard deviation σ, to
model uncertainties as in real data, and, ∀n ∈ V, ωn ∈ [0, 1]
depends on the latitude ln of the n-th polling place. That is,
we divide the interval of all the latitudes into 20 uniformly
distributed subsets (Lk)k=1,...,20, and we set ωn = k

20 if
ln ∈ Lk. Notice that, in this case, the gradient models the spatial
correlation of voting behavior.

V(1)

M
(1)

top =




0.09 0.05 0.30 0.34
0.27 0.43 0 0.28
0.64 0.52 0 0.38




M
(1)

bottom =




0.09 0.05 0.30 0.34
0.27 0.43 0.95 0.28
0.64 0.52 0 0.38




V(2)

M
(2)

top =




0.93 0.25 0.84 0.20
0.06 0.12 0 0.67
0.01 0.63 0.12 0.14




M
(2)

bottom =




0.93 0.25 0.84 0.20
0.06 0.12 0.95 0.67
0.01 0.63 0.12 0.14




Fig. 1. The black nodes represent the polling places in region V(1), and
the white ones represent those in region V(2). The top and bottom matrices
differ only on coefficient (2,3). However, the additive noise and the projection
onto Cn will change all the coefficients in the generated M

(i)
n . Hence, the

gradient from north to south is both non trivial and irregular.

C. Results
Good estimation – In Figure 2, we display the results obtained
with the Algorithm 2. We performed a grid search on (λ, β)
for the Jaccard index3 and the MSE4. We notice that for a
good choice of regularization parameters (λ, β) the proposed
approach is able to provide a good estimate of both the edges
(white lines) and the matrix coefficients, here (Mn,2,3)n.
Block versus global – Figures 3(a,b) compare the algorithmic
behavior of Algorithms 1 and 2 in terms of iterations (we
observe similar behavior when the plots are displayed w.r.t time)
for the optimal (β, λ). As expected, the block strategy needs
twice less iterations than the original SL2-PAM to achieve the
same accuracy, that is, |Ψ(M [k+1],e[k+1])−Ψ(M [k],e[k])|

|Ψ(M [k],e[k])| < 10−10

(cf. Figure 3(b)). The more n increases, the more important the
gain is.

3If A and B are nonempty sets, Jacc(A,B) =
|A∩B|
|A∪B|

4MSE = 1
|V|P (1)P (2)

∑
n

∑
i,j ‖Mn(i, j)−Mn(i, j)‖22
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(a) (b) (c) (d)

Fig. 2. Numerical results on synthetic data with σ = 0.1. (a) Ground truth (Mn,2,3)n and e, (b) Result obtained with the proposed method: estimated
(M̂n,2,3)n values displayed by means of the red-blue color on the graph while estimated ê is displayed by a white line between two nodes when the
estimated value is 1. The colorbar represents the value of coefficient (2,3) in the local matrices. (c) Jaccard index map. (d) MSE map. The red box denotes
the optimal choice for (β, λ) associated to the result displayed in (b).
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M
[0]
n,i,j ∈ N (0, 1) and e

[0]
n ∈ B(0, 1)

M
[0]
n,i,j ≡

1
3 and e

[0]
n ∈ B(0, 1)

M
[0]
n,i,j ∈ N (0, 1) and e

[0]
n ≡ 0

M
[0]
n,i,j ≡

1
3 and e

[0]
n ≡ 0

M
[0]
n,i,j ∈ N (0, 1) and e

[0]
n ≡ 1

M
[0]
n,i,j ≡

1
3 and e

[0]
n ≡ 1

(a) (b) (c)

Fig. 3. (a) Comparison of Ψ(M [k], e[k]) w.r.t the iterations for SL2-PAM and Block-SL2-PAM. (b) Comparison of |Ψ(M [k+1],e[k+1])−Ψ(M [k],e[k])|
|Ψ(M [k],e[k])|

w.r.t

the iterations. (c) Comparison of the evolution of Ψ(M [k], e[k]) in a log-log scale w.r.t the iterations for different initializations.

Robustness – We display in Figure 3(c) the evolution of the
objective function for Algorithm 2 with different initialization
choices for the optimal (β, λ). Note that the one used to generate
Figure 3(a,b) corresponds to the solid red plot. Although the
proposed method is nonconvex, we observe that, whatever the
initialization, it converges to the same value of the objective
function.

V. CONCLUSION AND PERSPECTIVES

In this work, we propose 1) an extension of the famous MS
model to graph signal processing, with an application to mix-
ing matrix estimation, 2) two new block-coordinate proximal
algorithms with convergence guarantees, 3) the comparison of
these two schemes and their robustness in estimating the vote
transfer matrices at each polling location, for which we clearly
see the efficiency to estimate properly both the matrices M and
the transitions e. The Algorithm 2 outperforms the Algorithm 1
in terms of computational cost, and allows us to deal with real
data, involving larger datasets.

VI. APPENDIX

A. Common proof for Propositions III.2 and III.3
To prove Proposition III.2 (resp. Proposition III.3), we set I =
{{1, . . . , |V|}} (resp. I = {{1}, . . . , {|V|}}). The proof relies
on the proof of [8, Prop.2] (see also [16] for more details). Let
x[k] = (M [k], e[k]), the proof relies on:

1) A sufficient decrease property: find ρ1 > 0 such that (∀k ∈
N), ρ12 ‖x[k+1] − x[k]‖2 ≤ Ψ(x[k])−Ψ(x[k+1]);

2) A subgradient lower bound for the iterates gap: assume that
(x[k])k∈N is bounded and find ρ2 > 0 such that ‖w[k]‖ ≤
ρ2‖x[k] − x[k−1]‖, where w[k] ∈ ∂Ψ(x[k]);

3) Kurdyka-Łojasiewicz (KL) property: assume that Ψ is a KL
function and prove that (x[k])k∈N is a Cauchy sequence.

The proof of steps 1 and 3 follows similar ideas than in [8,
Prop.2], with ρ1 = min

{∑
n∈I(γ−1)ν−n , η

−}. Regarding step
2, we prove the following result:

Lemma VI.1 Assume that the sequence {x[k]}k∈N generated
by Algorithm 2 is bounded. Let
AkM :=

(
µk−1,n(M [k−1]

n −M [k]
n )
)
n∈I +∇L(M [k])

+∇1S(M [k], e[k])−∇L(M [k−1])−∇2S(M [k−1], e[k−1])

and
Ake := ηk−1(e[k−1] − e[k]).

Then (AkM , A
k
e)∈∂Ψ(M [k], e[k]) and there exists χ>0 such that

‖(AkM , Ake)‖ ≤ ‖AkM‖+ ‖Ake‖ ≤ 2(C + ρ2)‖x[k−1] − x[k]‖,
where ρ2 = maxn∈I γν

+
n + η+.

Proof. The optimality condition for the updating step on Mn

in Algoritm 2 is given by
(∀n ∈ I), ∇Ln(M [k−1]

n ) +∇1Sn(M [k−1]
n , e[k−1])

+ µk−1,n(M [k]
n −M [k−1]

n ) + u[k]
n = 0, (3)

where u[k]
n ∈ ∂ιCn(M [k]

n ). Concatenating (3) on n ∈ V yields:

∇L(M [k−1]) +∇1S(M [k−1], e[k−1])

+
(
µk−1,n(M [k]

n −M [k−1]
n )

)
n∈I + u[k] = 0, (4)

where u[k] ∈ ∂ιC(M [k]). Hence, using the subdifferen-
tial property [16, Prop. 2.1] we obtain that ∇L(M [k]) +
∇1S(M [k], e[k]) + u[k] ∈ ∂1Ψ(M [k], e[k]). Similarly, we
prove that ∇eS(M [k], e[k]) + ξ[k] ∈ ∂eΨ(M [k], e[k]), where
ξ[k] ∈ ∂R(e[k]). Finally, (AkM , A

k
e) ∈ ∂Ψ(M [k], e[k]).

The end of the proof is the same as for [8, Lemma 2].
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