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The synthesis and original thermoresponsive behavior of hybrid diblock copolypeptides composed of synthetic and recombinant polypeptides are herein reported. A thermoresponsive recombinant elastin-like polypeptide was used as macroinitiator to synthesize a range of poly(L-glutamic acid)-block-elastin-like polypeptide (PGlu-b-ELP) diblock copolypeptides with variable PGlu block lengths. Their temperature-triggered self-assembly in water and in phosphate-buffered saline (PBS) was investigated at the macroscopic scale using complementary techniques such as turbidimetry, dynamic and static light scattering, small-angle neutron scattering, and at the molecular scale by 1 H NMR and circular dichroism (CD). In deionized water, PGlu-b-ELP copolypeptides showed one transition from free soluble chains below the transition temperature (T t ) of the ELP block to macroscopic aggregates above the T t . In contrast, in PBS, four successive regimes were observed upon increasing temperature: below the T t , copolypeptides were soluble, above the T t , large aggregates appeared and fell apart into discrete and defined spherical nanoparticles at a temperature named critical micellization temperature (CMT), before finally reaching an equilibrium. During the last regime, neutron scattering experiments revealed that the micelle-like structures underwent a densification step and expelled water from their core. In addition, 1 H NMR and CD experiments revealed, in deionized water, the formation of type II β-turns into the ELP block upon temperature increase.

These β-turns are known to participate in the intrinsic thermoresponsive behavior of the ELPs. In contrast, in PBS, circular dichroism measurements showed an attenuation of folded structure during the self-assembly phase, leading to less cohesive aggregates able to reorganize into nanoparticles at the CMT.

Introduction

Interest in thermoresponsive polymers has steadily grown over the past decades, and numerous studies have been dedicated to the design of smart temperature-sensitive macromolecules for a large variety of applications. [1][START_REF] Ward | Thermoresponsive polymers for biomedical applications[END_REF][START_REF] Weber | Temperature responsive bio-compatible polymers based on poly (ethylene oxide) and poly (2-oxazoline) s[END_REF][START_REF] Seuring | Polymers with upper critical solution temperature in aqueous solution[END_REF] Within this family, are the polymers that exhibit inverse temperature or lower critical solution temperature (LCST) phase behavior in aqueous solutions.

These undergo a first-order phase transition from a soluble state into polymer-rich and water-rich phases upon heating above the cloud point (i.e., transition temperature, T t ). That is, a polymer solution below the LCST is a clear and homogeneous solution, while cloudy due to polymer chains aggregation above the LCST. The understanding and the use of stimuli-responsive, in particular temperature-sensitive, polymer materials have opened new potential applications, especially in the biomedical field, for therapeutic or diagnostic purposes via the elaboration of nanocarriers, [START_REF] Agut | Thermoresponsive micelles from jeffamine-b-poly (L-glutamic acid) double hydrophilic block copolymers[END_REF][START_REF] Akimoto | Temperature-induced intracellular uptake of thermoresponsive polymeric micelles[END_REF][START_REF] Akimoto | Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors[END_REF] or for the design of hydrogels for tissue engineering. [START_REF] Lee | Thermo-sensitive, injectable, and tissue adhesive sol-gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction[END_REF][START_REF] Jeong | Thermosensitive sol-gel reversible hydrogels[END_REF] Indeed, these can respond to subtle temperature differences, for example between cancerous and healthy cells, [START_REF] Vaupel | Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review[END_REF][START_REF] Abulateefeh | Thermoresponsive polymer colloids for drug delivery and cancer therapy[END_REF] and can also be used for hyperthermia-induced drug delivery purposes. [START_REF] Aqil | Magnetic nanoparticles coated by temperature responsive copolymers for hyperthermia[END_REF][START_REF] Louguet | Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release[END_REF][START_REF] Hemery | Thermosensitive polymer-grafted iron oxide nanoparticles studied by in situ dynamic light backscattering under magnetic hyperthermia[END_REF][START_REF] Hervault | Doxorubicin loaded dual pH-and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications[END_REF] Poly(N-isopropylacrylamide) (PNIPAm) [START_REF] Halperin | Poly (N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research[END_REF][START_REF] Schild | Poly (N-isopropylacrylamide): experiment, theory and application[END_REF] and poly(N-vinylcaprolactam) (PNVCL) [START_REF] Cortez-Lemus | Poly (N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular[END_REF][START_REF] Liu | Poly (N-vinylcaprolactam): A Thermoresponsive Macromolecule with Promising Future in Biomedical Field[END_REF] have been well studied and are probably the most popular thermoresponsive polymers, [START_REF] Ramos | Temperature-sensitive nanogels: poly (Nvinylcaprolactam) versus poly (N-isopropylacrylamide)[END_REF] partly because they both exhibit a LCST close to body temperature. However, a wide range of other thermoresponsive polymers have recently shown interesting properties. Among them, poly(2oxazoline)s constitute an other synthetic class of polyamides for which small hydrophobic sidechains can lead to LCST behavior. [START_REF] Hoogenboom | Thermoresponsive poly (2-oxazoline) s, polypeptoids, and polypeptides[END_REF][START_REF] Fer | Copolymers based on azidopentyl-2-oxazoline: synthesis, characterization and LCST behavior[END_REF] For example, poly(2-isopropyl-2-oxazoline)-blockpoly(2-methyl-2-oxazoline) (PiPrOx-b-PMeOx) copolymers are able to form temporary or permanent micelles above the cloud point of the PiPrOx block based on its crystallization properties. [START_REF] Legros | Crystallisation-driven self-assembly of poly (2-isopropyl-2-oxazoline)-block-poly (2-methyl-2oxazoline) above the LCST[END_REF] Amino-terminated random copolymer poly(ethylene glycol)-co-poly(propylene oxide) commercially known as Jeffamine and triblock poly(ethylene glycol)-b-poly(propylene oxide)-b-poly(ethylene glycol) (PEG-b-PPO-b-PEG) copolymers, named Poloxamer and commercially known as Pluronic were thoroughly investigated over the past several decades because of their thermoresponsive self-assembly properties in aqueous media. [START_REF] Agut | Thermoresponsive micelles from jeffamine-b-poly (L-glutamic acid) double hydrophilic block copolymers[END_REF][START_REF] Fer | An Efficient Thiol-Ene Chemistry for the Preparation of Amphiphilic PHA-Based Graft Copolymers[END_REF][START_REF] Niu | Thiol/acrylate-modified PEO-PPO-PEO triblocks used as reactive and thermosensitive copolymers[END_REF] Moreover, poly(acrylate) and poly(methacrylate) bearing PEG chains also display a LCST depending on structural parameters (i.e., nature of the polymerizable moiety, length of the PEG side chain or end-group of the PEG chain). [START_REF] Lutz | Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate[END_REF][START_REF] Yamamoto | ATRP synthesis of thermally responsive molecular brushes from oligo (ethylene oxide) methacrylates[END_REF][START_REF] Lutz | Polymerization of oligo (ethylene glycol)(meth) acrylates: Toward new generations of smart biocompatible materials[END_REF][START_REF] Roth | Influence of End Groups on the Stimulus-Responsive Behavior of Poly [oligo (ethylene glycol) methacrylate] in Water[END_REF][START_REF] Miasnikova | Influencing the phase transition temperature of poly (methoxy diethylene glycol acrylate) by molar mass, end groups, and polymer architecture[END_REF] Furthermore, grafting of hydrophilic side chains, usually tertiary amine, [START_REF] Chopko | Dual responsiveness of a tunable thermosensitive polypeptide[END_REF] oligo(ethylene glycol), [START_REF] Wu | Thermoresponsive poly (γ-propyl-lglutamate)-graft-(oligo ethylene glycol) s: Synthesis, characterization, and properties[END_REF][START_REF] Gharakhanian | Role of side-chain molecular features in tuning lower critical solution temperatures (LCSTs) of oligoethylene glycol modified polypeptides[END_REF][START_REF] Yan | Thermoresponsive Dendronized Polypeptides Showing Switchable Recognition to Catechols[END_REF] or poly[oligo(ethylene glycol) methacrylate], [START_REF] Fu | Thermoresponsive Oligo (ethylene glycol) Functionalized Poly-l-cysteine[END_REF] on a synthetic hydrophobic polypeptide backbone, such as poly(γ-substituted L-glutamate), poly(L-cysteine), or poly(L-lysine) allowed the design of biomimetic thermoresponsive materials.

A major limitation in the elaboration of this class of polymers is the need for extremely reproducible synthesis to preserve the precise temperature-triggered properties. To circumvent this drawback, another class of thermoresponsive polymers based on protein engineering has been developed, which demonstrates great promises for the preparation of adaptive and smart biomaterials. [START_REF] Ruff | Advances in Understanding Stimulus Responsive Phase Behavior of Intrinsically Disordered Protein Polymers[END_REF][START_REF] Macewan | Applications of elastin-like polypeptides in drug delivery[END_REF][START_REF] Glassman | Toughening of thermoresponsive arrested networks of elastin-like polypeptides to engineer cytocompatible tissue scaffolds[END_REF] Indeed, in the past decade, recombinant protein-engineering techniques have allowed the development of precise recombinant polymers with exquisite control over their primary structure and their molecular weight. [START_REF] Meyer | Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides[END_REF][START_REF] Meyer | Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system[END_REF] Among them, elastin-like polypeptides (ELPs) are the most studied family of polypeptides that exhibit LCST in aqueous solution. ELPs share structural characteristics with intrinsically disordered proteins naturally found in the body, such as (tropo)elastin, at the origin of their name. [START_REF] Urry | Phase-structure transitions of the elastin polypentapeptide-water system within the framework of composition-temperature studies[END_REF][START_REF] Urry | Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers[END_REF] They are composed of repeating sequences of [-Val-Pro-Gly-Xaa-Gly-] pentapeptides, the guest residue Xaa being any amino acid except proline. The nature of the guest residue as well as the chain length encode for a precise transition temperature (T t ) at a given concentration. [START_REF] Macewan | Phase behavior and self-assembly of perfectly sequence-defined and monodisperse multiblock copolypeptides[END_REF][START_REF] Simon | Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity[END_REF][START_REF] Li | Sequence directionality dramatically affects LCST behavior of elastin-like polypeptides[END_REF] Recent contributions by our team have also demonstrated the possibility to easily tune the thermoresponsive properties of ELPs by chemoselective modifications at the guest residue position. In particular chemoselective alkylation [START_REF] Kramer | Quantitative Side-Chain Modifications of Methionine-Containing Elastin-Like Polypeptides as a Versatile Tool to Tune Their Properties[END_REF][START_REF] Petitdemange | Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains[END_REF] or oxidation [START_REF] Petitdemange | Selective tuning of elastin-like polypeptide properties via methionine oxidation[END_REF] of methionine residues at the Xaa position have been used as an easy mean to modify the hydrophilicity and therefore LCST of specific ELP sequences.

Regarding their distinctive properties, biocompatibility and biodegradability, these recombinant polypeptides have various applications, including the delivery of anticancer therapeutics to solid tumors [START_REF] Mcdaniel | Drug delivery to solid tumors by elastinlike polypeptides[END_REF] using self-assembled ELP-drug conjugates. [START_REF] Dreher | Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy[END_REF][START_REF] Mackay | Selfassembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumors after a single injection[END_REF] In this context, a thorough understanding of the temperature-triggered self-assembly of ELPs is essential to take advantage of their unique properties. The thermoresponsiveness of ELPs has been explained as the addition of two phenomena. The first one is a phase transition into polypeptide-rich and water-rich phases, as water becomes a poor solvent for the polypeptide chains upon heating above the T t . [START_REF] Tao | Controlled polymerization of N-substituted glycine N-thiocarboxyanhydrides initiated by rare earth borohydrides toward hydrophilic and hydrophobic polypeptoids[END_REF] Indeed, the transition is characterized by the loss of hydration of the polypeptide chains resulting in their aggregation. [START_REF] Urry | Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics[END_REF] The second one, also called folding process, is the formation of secondary structures, such as β-turns, due to the presence of regular prolyl-glycyl dipeptide sequence. [START_REF] Tao | Controlled polymerization of N-substituted glycine N-thiocarboxyanhydrides initiated by rare earth borohydrides toward hydrophilic and hydrophobic polypeptoids[END_REF][START_REF] Schmaljohann | Thermo-and pH-responsive polymers in drug delivery[END_REF] The study of this thermoresponsive behavior in buffered or saline solutions mimicking physiological media is of major importance since such systems are intended to be used for biomedical purposes. It is well reported that salts cause generally significant, concentrationdependent, modification in T t . [START_REF] Luan | Differential scanning calorimetry studies of NaCl effect on the inverse temperature transition of some elastin-based polytetra-, polypenta-, and polynonapeptides[END_REF][START_REF] Urry | Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers[END_REF] Amino acid side chains within ELP sequences being essentially uncharged and mainly apolar, this phenomenon cannot be attributed to direct ion binding to specific groups on the peptide chains nor a nonspecific electrostatic interaction.

Rodríguez-Cabello and co-workers [START_REF] Reguera | Effect of NaCl on the exothermic and endothermic components of the inverse temperature transition of a model elastin-like polymer[END_REF] assumed NaCl causes an increase in the solvent polarity, and that greater difference in polarity with respect to the hydrophobic moieties of the ELP causes more and more ordered structures of water surrounding the polymer chains leading to the folding process.

It was also demonstrated that, by increasing temperature above the critical micellar temperature (CMT), diblock ELPs of specific sizes gain enough amphiphilicity to organize into monodisperse micellar strctures. [START_REF] Sallach | Micelle density regulated by a reversible switch of protein secondary structure[END_REF][START_REF] Dreher | Temperature triggered self-assembly of polypeptides into multivalent spherical micelles[END_REF][START_REF] Kim | Selfassembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles[END_REF][START_REF] Garanger | Structural evolution of a stimulus-responsive diblock polypeptide micelle by temperature tunable compaction of its core[END_REF] Due to the complex nature of ELPs, composed of both polar and nonpolar amino acids, these micelles have low surface tension at the core-corona interface and are considerate as weak. [START_REF] Hassouneh | Elastin-like polypeptide diblock copolymers self-assemble into weak micelles[END_REF] To investigate the self-assembly phase of diblock ELPs, Garanger et al. [START_REF] Garanger | Structural evolution of a stimulus-responsive diblock polypeptide micelle by temperature tunable compaction of its core[END_REF] studied a series of recombinant diblock ELPs with different hydrophobic block sizes

((VPGVG) 40-200 -(VPG A G � G) 60
) and determined the structural characteristics of the nanoparticles obtained. In this study, micelles were found to be initially strongly hydrated and to continue to evolve upon heating above the CMT by compacting their core and gradually expelling water.

In the present work, we focus on the design and the temperature-triggered self-assembly of hybrid diblock copolypeptides. Only a few examples of self-assemblies based on polymer-ELP conjugates containing a thermoresponsive ELP block and a synthetic block have been reported in the literature. For example, van Hest and co-workers recently designed micellar nano-carriers of poly(ethylene glycol)-b-ELP conjugates. [START_REF] Van Eldijk | Synthesis and self-assembly of well-defined elastin-like polypeptide-poly (ethylene glycol) conjugates[END_REF] Herein, we performed the synthesis of hybrid bioconjugates poly(L-glutamic acid)-block-elastin-like polypeptide (PGlu-b-ELP) by ringopening polymerization of γ-benzyl-L-glutamate N-carboxyanhydride (γ-BLG NCA) and subsequent deprotection of the PBLG block. We investigated the self-assembly behavior of these thermoresponsive diblock copolypeptides in water and in phosphate-buffered saline (PBS) at the macroscopic and at the molecular scales by a large range of techniques, such as turbidimetry, dynamic and static light scattering, small-angle neutron scattering, 1 H NMR and circular dichroism.

Experimental section

Materials

All chemicals were purchased from Sigma-Aldrich and were used as received. 

Design of encoding gene, bioproduction, purification and isolation of recombinant ELP-M-40

The ELP-M-40 was recombinantly produced in Escherichia Coli bacteria as reported previously. [START_REF] Petitdemange | Selective tuning of elastin-like polypeptide properties via methionine oxidation[END_REF] Its primary sequence is: MW[VPGVGVPGMG(VPGVG) 2 ] 10 and exact molar mass 17,035 g.mol -1 . The 1 H NMR spectrum of ELP was recorded in CDCl 3 (+ 15 % TFA) and carefully assigned (Figure S1). 

Characterization techniques 1 H NMR

Size exclusion chromatography (SEC)

The apparent molar masses and the dispersities of poly(γ-benzyl-L-glutamate)-block-ELP and ELP were determined by size exclusion chromatography (SEC) on a PL GPC50 integrated system from Agilent equipped with two KD-804 Shodex gel columns (300 × 8 mm) (exclusion limits from 4000 Da to 200 000 Da). The detector used in this determination is a refractive index detector (Jasco 1530-RI). Dimethylformamide (DMF) was used as eluent (0.8 mL.min -1 ) at 50 °C in the presence of LiBr (1 g.L -1 ) and the calibration used polystyrene (PS) as standard. Cary 100 UV-Visible spectrophotometer equipped with a multi-cell thermoelectric temperature controller from Agilent Technologies (Les Ulis, FR) and the solutions placed in 1 cm quartz cells. The T t is defined as the temperature corresponding to the maximum of the derivative curve of the absorbance versus temperature, often also named inflection point.

UV-Visible spectrometry

Light scattering measurements

Mono-angle Dynamic Light Scattering (DLS) measurements were performed on a Malvern Instruments Zetasizer Nano ZS operating with a He-Ne laser source at the wavelength of 633 nm and a scattering angle of 90° at a constant position in the cuvette (constant scattering volume).

The autocorrelation functions (g 1 (t)) were analyzed in terms of relaxation time distribution (τ) (Equation 1) and using the cumulants method.

g 1 (t) = ∫ 𝐴𝐴 (𝜏𝜏) exp ( -𝑡𝑡 𝜏𝜏 )𝑑𝑑𝑑𝑑 Equation 1
Hydrodynamic radius (R h ) was determined from the Stokes-Einstein relation (Equation 2).

R h = 𝑘𝑘 𝐵𝐵 𝑇𝑇 6𝜋𝜋𝜂𝜂 𝑠𝑠 𝐷𝐷 0 Equation 2
where D 0 is the diffusion coefficient, η s is the viscosity of the solvent, T is the absolute temperature and k B the Boltzmann constant.

Solutions were prepared in deionized H 2 O and in PBS (pH = 7.2) at 1 g.L -1 . Three independent measurements of fifteen 10 sec-runs were recorded and averaged. Temperature was raised from 20 to 80 °C and measurements were performed at each degree after a 2 min temperature equilibration time. The derived count rate (DCR) was defined as the mean scattered intensity normalized by the attenuation factor and used as arbitrary unit on the graph. This scattered intensity was plotted against temperature and the T t is defined as the temperature corresponding to the point where the DCR starts to increase on this plot. The critical micellization temperature (CMT) is defined as the temperature corresponding to the point where the DCR starts to decrease.

Multi-angle Light Scattering measurements were performed using an ALV/CG6-8F goniometer, with a 35 mW red helium-neon linearly polarized laser (λ = 632.8 nm), an ALV/LSE-5004 multiple tau digital correlator and using a thermostated bath controller. The data were acquired with the ALV correlator software, the counting time was typically 15 sec for each scattering angle. Angles are ranging from 30° to 150° corresponding to scattering vectors q from 6.85 × 10 - 3 nm -1 to 2.55 × 10 -2 nm -1 . The autocorrelation functions (g1(t)) were analyzed in terms of relaxation time distribution (τ) (Equation 1) and the hydrodynamic radius (R h ) was determined from the Stokes-Einstein relation (Equation 2). Light-scattering data were reduced using standard procedures. The solvent intensity was subtracted from that of the sample. Absolute calibration was performed against toluene.

The static light scattering allowed to calculate the radius of gyration (R g ) determined from a Zimm plot according to Equation 3:

1 I = 1 I 0 × (1 + 𝑞𝑞 2 𝑅𝑅 𝑔𝑔 2 3
) Equation 3

Small-angle neutron scattering (SANS)

SANS experiments were performed at the Laboratoire Léon Brillouin (« ORPHÉE » reactor, CEA-CNRS Saclay, France) on the « PACE » spectrometer. The experimental scattering vector q (q = (4 π/ λ) sin(θ/2)) range was 0.0025 < q (Å -1 ) < 0. was measured for about 2 hrs at various temperatures. The averaged spectra were corrected for empty cell, background noise, as well as for incoherent scattering. I(q) is in absolute scale (cm -1 ).

Modelling of SANS data

Analysis of the scattering intensity aims at obtaining the characteristic sizes, the shape and the interactions, represented by the form factor P(q) and the structure factor S(q). Classical expression of the scattering intensity per unit volume of particles is (Equation 4):

I(q) = nΔρ 2 V part 2 P(q)S(q) Equation 4
where n is the number density of particles, Δρ is the difference in the scattering length density between the scattering species and the solvent, and V part. is the volume of scattering particles. The form factor describes the structure of particles and fulfills P(q → 0) = 1 while the structure factor describes the interaction between particles. In dilute solution and consequently in the absence of interactions, S(q) = 1. Introducing the volume fraction Φ = nV part , Equation 4 becomes the Equation 5:

I(q) = ΦΔρ 2 V part P(q) Equation 5
The data were fitted using the models available in the SaSview software (http://www.sasview.org).

Circular dichroism (CD)

Solutions of ELP and copolypeptide PGlu 

Synthesis of poly(γ-benzyl-L-glutamate)-block-ELP diblock copolypeptides

Diblock copolypeptides poly(γ-benzyl-L-glutamate)-block-ELP were synthesized by ring opening polymerization (ROP) of γ-BLG NCA using ELP as macroinitiator. Various

[monomers]/[macroinitiator] molar ratios were used to obtain copolypeptides with different PBLG block lengths. For instance, PBLG 23 -b-ELP was prepared as follows: γ-BLG NCA (94.2 mg, 3.58×10 -1 mmol) was weighed in a glovebox under pure argon, introduced in a flame-dried schlenk, and dissolved in 2 mL of anhydrous DMF. The solution was stirred for 10 min, and the ELP-M-40 (244.0 g, 1.43×10 -2 mmol) was added with a nitrogen purged syringe from a solution in anhydrous DMF (10 mg.mL -1 , injected volume: 24.4 mL). The solution was stirred for one week at 5 °C and precipitated in diethyl ether. Then the copolypeptide was isolated by successive centrifugations and dried under vacuum to afford a white powder. Yield: 285.0 mg (88 %). A copolypeptide with a total molecular weight of 22.0×10 3 g.mol -1 corresponding to a degree of polymerization of 23 for the PBLG block was obtained.

Synthesis of poly(L-glutamic acid)-block-ELP diblock copolypeptides by acid deprotection of poly(γ-benzyl-L-glutamate)-block-ELP

The benzyl groups of the PBLG block were removed under mild acidic conditions as previously reported by Bonduelle and co-workers. [START_REF] Bonduelle | Smart metallopoly (L-glutamic acid) polymers: reversible helix-to-coil transition at neutral pH[END_REF] For instance, PBLG 23 -b-ELP (160 mg, 1.65 mmol of BLG units) was dissolved in TFA (1.6 mL) and the reaction mixture was stirred at 0 °C (by using an ice bath). Then, anisole (0.32 mL) and methane sulfonic acid (MSA) (1.6 mL) were added to the solution and the reaction mixture was stirred for 20 min at 0 °C, and then 50 min at room temperature. The copolypeptide was finally precipitated twice in diethyl ether and collected by centrifugation. The precipitate was dissolved in DMSO and the resulting mixture was dialyzed against milliQwater (MWCO 15 kDa) for 4 days and freeze-dried to afford a white powder.

Yield: 130 mg (90 %).

Results and discussion

Synthesis and characterization of hybrid PGlu-b-ELP diblock copolypeptides

The most convenient polymerization process to prepare synthetic poly(amino acid)s with high degrees of polymerization and excellent control over the dispersity is the ring-opening polymerization (ROP) of heterocycle α-amino acid N-carboxyanhydrides (NCAs) initiated by primary amine groups. [START_REF] Hadjichristidis | Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid Ncarboxyanhydrides[END_REF][START_REF] Cheng | Synthesis of polypeptides by ring-opening polymerization of αamino acid N-carboxyanhydrides[END_REF][START_REF] Huang | Stimuli responsive synthetic polypeptides derived from Ncarboxyanhydride (NCA) polymerisation[END_REF] As described in a previous work, [START_REF] Fer | Design and self-assembly of PBLG-b-ELP hybrid diblock copolymers based on synthetic and elastin-like polypeptides[END_REF] the primary amine group at the N-terminal end of the ELP was advantageously used to initiate the polymerization of the γ-BLG NCA monomers. The ELP block contains a total of forty pentapeptide repeats according to the protein sequence MW[VPGVGVPGMG(VPGVG) 2 ] 10 corresponding to a molecular weight of 17,035 Da. [START_REF] Petitdemange | Tuning Thermoresponsive Properties of Cationic Elastin-like Polypeptides by Varying Counterions and Side-Chains[END_REF] The 1 H NMR spectrum in CDCl 3 with 15 % trifluoroacetic acid (TFA, to compare with the spectra after polymerization) of the ELP was recorded and fully assigned (Figure S1 In a first step, a series of hybrid copolypeptides with different PBLG block lengths was synthesized as previously reported. [START_REF] Fer | Design and self-assembly of PBLG-b-ELP hybrid diblock copolymers based on synthetic and elastin-like polypeptides[END_REF] Three PBLG-b-ELP diblock copolypeptides with degrees of polymerization (DPs) 23, 45 and 61 were obtained after complete conversions, according to the excellent agreement between the targeted and experimental DPs assessed by 1 H NMR (Figure S2, panel A). Analysis by size exclusion chromotography (SEC) in DMF (1 g.L -1 LiBr at 50 °C with PS calibration and RI detector) (Figure S3) revealed apparent molar masses between 26,500 and 32,500 g.mol -1 , in agreement with those expected for the DPs obtained (between 22,000 and 30,400 g.mol -1 ) and narrow dispersities (Ð = 1.02 -1.06) that consequently confirmed the well-controlled behavior of the polymerization process.

The deprotection of the different PBLG-b-ELP diblock copolypeptides, in the second step, was achieved under acidic conditions, in TFA and in presence of methane sulfonic acid (MSA) and anisole. It has been established that this procedure did not alter the structure of the block copolymers. [START_REF] Bonduelle | Smart metallopoly (L-glutamic acid) polymers: reversible helix-to-coil transition at neutral pH[END_REF] The success of the reaction was confirmed by 1 to 7,900 g.mol -1 corresponding to total molar masses between 20,000 and 24,900 g.mol -1 , as summarized in Table 1. The weight ratios of poly(L-glutamic acid) in the copolypeptides are 15, 25 and 32 % respectively, these values allowing to scan a range of ratios driving the selfassembly.

Table 1. Molecular characteristics of the copolypeptides poly(L-glutamic acid)-block-ELP * SEC in DMF (0.8 mL.min -1 ) at 50 °C in the presence of LiBr (1 g.L -1 ) with RI detector, performed before the deprotection (i.e. for PBLG-b-ELP) ** f = mass fraction of poly(L-glutamic acid) in the copolypeptides.

Study of temperature responsiveness of PGlu-b-ELP diblock copolypeptides in pure water

The cumulative effects of chain length of the poly(L-glutamic acid) block and of the total molar mass increase on the thermoresponsive properties of the ELP block were evaluated by carrying out turbidimetry measurements at 350 nm in pure water at different concentrations of diblock copolypeptide (Figure 1, panel A for PGlu 23 -b-ELP as example). The pH of the solutions was measured to be at 6.8, well above the pKa of glutamic acid units, that is about 5.5. For all the samples, a typical transition was observed. The reversible character of this phenomenon was verified by two cycles, with a hysteresis of -5 °C between the heating and cooling ramps under S4). Usually, a sharp increase in turbidity is reported to be an indicator of a phase transition from a soluble state to micron-sized aggregates.

Depending on sample concentration (25 µM to 1,250 µM corresponding to 0.43 g.L -1 to 21.3 g.L - 1 ), the cloud point also called transition temperature (T t , the temperature corresponding to the maximum of the derivative curve of the absorbance versus temperature) of the native ELP ranged from 26 to 32 °C, in agreement with previous reports. [START_REF] Petitdemange | Selective tuning of elastin-like polypeptide properties via methionine oxidation[END_REF] For PGlu-b-ELP diblock copolypeptides, T ts were shifted to higher values as compared with the native ELP (Figure 1, panel B). Moreover, the longer the poly(L-glutamic acid) block, the higher the T t . For instance, at 1 g.L -1 , T t obtained are 31 °C for the ELP, and 50 °C, 58 °C and 64 °C for DPs of PGlu corresponding to 23, 45 and 61, respectively. The increase of the T t with the PGlu block length was directly attributed to the increase of the overall hydrophilicity of the diblock copolypeptides in agreement with literature. Indeed, such an influence of overall hydrophilicity in thermoresponsive copolymers was previously demonstrated for ELP-based systems [START_REF] Ribeiro | Influence of the amino-acid sequence on the inverse temperature transition of elastin-like polymers[END_REF] as well as for synthetic copolymers such as PNIPAm [START_REF] Zhang | Synthesis and aggregation of double hydrophilic diblock glycopolymers via aqueous SET-LRP[END_REF] or poly [2-(dimethylamino)ethyl methacrylate]. [START_REF] Agut | pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly [2-(dimethylamino) ethyl methacrylate]-b-poly (glutamic acid) double hydrophilic block copolymers[END_REF] Moreover, a recent investigation on the thermoresponsiveness of series of resilin-like polypeptide-block-elastin-like polypeptide (RLP-b-ELP) showed the hydrophobic RLP block plays a role in modulating the T t of the ELP block, longer RLP blocks lowering the T t , thus demonstrating a clear mutual influence between the different blocks. 72 ELP versus log 10 (concentration). Data fitted using Equation 7.

Figure 1, panel C shows that the presence of the poly(L-glutamic acid) block results in a significant increase of the concentration dependence as compared to the native ELP. The ELP sequence, chain length and concentration are primary parameters that modulate the T t of ELPs.

The effects of molecular weight and concentration are represented in the phase diagram described by Urry et al. [START_REF] Urry | Phase-structure transitions of the elastin polypentapeptide-water system within the framework of composition-temperature studies[END_REF] However, in this diagram, the molecular weight effect was studied for a single concentration and for a precise pentapeptide sequence, resulting in an incomplete description of all the parameters influencing the thermoresponsive behavior. Because the ELP sequence is a key parameter that can be modified to modulate the T t by introducing a particular guest residue, [START_REF] Urry | Hydrophobicity scale for proteins based on inverse temperature transitions[END_REF] Chilkoti and co-workers 39 elaborated an empirical model capable to predict the T t of any new ELP construct designed for a specific application. They indeed established that the T t is correlated to the molar concentration C with a logarithmic function (equation 6):

T t = a ln(C) + b Equation 6
Their study revealed that the slope a is not only a function of ELP chain length, but also of peptide sequence. They deduced the following equality: a = -k / L and established an empirical equation of three parameters that quantitatively predicts the T t as a function of length and concentration for an ELP of a fixed composition. (Equation 7)

T t = T t,c + 𝑘𝑘 𝐿𝐿 ln( C C C ) Equation 7
T t,c is the baseline T t that is approached for a given sequence upon saturation of the concentration and chain length effects. The C c represents a concentration at which the concentration effect is eliminated, and C is the concentration of ELP in solution. T t,c and C c actually represent the critical values in the phase diagram, corresponding to the LCST. L is the number of pentapeptide units and can be correlated to the chain length. Mathematically, the constant k is defined as an interaction term acting as a modulator of the combined effects of chain length, concentration and sequence.

In this work, we used the model from Chilkoti for our hybrid constructs PGlu-b-ELP to investigate the influence of the PGlu block length on the a parameter linking T t and C.

We determined the a value (with a = -k/L with L = 40, as 40 is the number of pentapeptide units both for the native ELP and the diblock copolypeptides PGlu-b-ELP) and consequently the constant k to study the different behaviors of the three diblock PGlu-b-ELP as compared to the native ELP.

The T t values of the ELP and the three PGlu-b-ELP diblock copolypeptides were plotted versus log 10 (concentration) (Figure 1, panel C) and data were fitted using Equation 7. The values (slope, a and k) estimated from the linear fits are reported in Table 2. Obviously, in each sample, the result of the molar concentration calculation was the same considering only the ELP block or the diblock copolypeptides. The thermoresponsive behavior of the PGlu 23 -b-ELP diblock copolypeptide at 1 g.L -1 in pure water was also studied by dynamic light scattering (DLS). The scattered light intensity in arbitrary units (a.u.) was plotted versus temperature, where an increase of scattered light identified the onset of aggregation (Figure S5). The plot revealed a typical one-step transition and the appearance of the aggregation phenomenon at 47 °C, similarly to our turbidity measurements. The continuous increase of the scattered light intensity with the temperature from the T t value indicates that this phenomenon did not reach a steady state. The continuous increase of the scattered light intensity can be interpreted as a continuous dehydration of the ELP segment with temperature that increases the refractive index of the micro-aggregates and its scattering intensity, in agreement with previously reported data on Jeffamine-b-PGA systems. [START_REF] Agut | Thermoresponsive micelles from jeffamine-b-poly (L-glutamic acid) double hydrophilic block copolymers[END_REF] Small-angle neutron scattering (SANS) measurements was finally used for a fine characterization of the samples at the nanometric scale at various temperatures. Indeed, the configurations used allowed to probe a size range from 18 Å to 630 Å, while mono-angle DLS measurement at 90˚ provided a more global overview of the sample up to the micrometric scale and is very sensitive to the dispersity due to the presence of several size populations in the sample.

The native ELP and the three diblock copolypeptides, PGlu S6). This shift is easily explained by the lower bridge-bonding affinity of D 2 O compared to H 2 O. [START_REF] Cho | Hydrogen bonding of β-turn structure is stabilized in D2O[END_REF] Figure S7 shows SANS measurements on the PGlu 23 -b-ELP in D 2 O at 25 °C and at 65 °C. At 25 °C, below the T t , the signal revealed a low scattered intensity with a slight upturn in the intermediate q range characteristic of chains in solution with few attractive interactions between individual diblock polypeptide chains. At 65 °C, well above the T t , the scattered intensity was as low and did not show significant differences, excluding the presence of nanometric-sized self-assemblies, despite the macroscopic aggregation.

To conclude on this part, the three PGlu-b-ELP diblock copolypeptides underwent a sharp solubility transition in water from soluble chains to macroscopic aggregates. Despite the presence of the hydrophilic PGlu block and irrespective of its length (in the molar mass range investigated, corresponding to mass fractions of PGlu between 15 and 32 %), our observations confirmed the absence of stable nanoparticles. Nevertheless, it would be interesting to study the influence of a longer PGlu block on the organization of chains over the T t . The fine-tuning of the thermoresponsive behavior of the ELP was however achieved by a convenient polymerization step, to introduce a controlled number of glutamic acid units at the ELP chain end.

Study of temperature responsiveness of PGlu n -b-ELP diblock copolypeptides in phosphatebuffered saline (PBS)

Having In PBS, the native ELP showed the classical one-step transition with an almost twice-higher concentration dependence than in pure water. Indeed, in PBS, the slope and k values were -3.803 and 66.14 °C respectively; while they were -1.996 and 34.71 °C in pure water (Table 2 and 2.

Altogether, one can conclude from these measurements that the length of the PGlu block has limited influence on the T t values in PBS in contrast to what is observed in pure water. This can be due to the screening of the negative charges of Glu units due to the increased salt concentration, which decreases its repulsion and hydrophilicity. For the three PGlu-b-ELP diblock copolypeptides in PBS, when the temperature kept rising, the absorbance, after reaching a maximum around 52 ˚C ± 1 ˚C, decreased drastically (Figure 2, panels A and B) and reached a plateau. It has been optically verified that this phenomenon was not due to sedimentation in the bottom of the cell.

To investigate more thoroughly the effect of salts (NaCl, KCl), the turbidity assay was carried out for solutions of the PGlu 23 -b-ELP diblock copolypeptide at 1 g.L -1 in phosphate buffer (Na 2 HPO 4 8 mM, KH 2 PO 4 2 mM, pH = 7.2) (pink curve in Figure S8). In such buffered solution, the profile as well as the T t value were similar to those in water (~ 51 °C). The presence of additional NaCl led to a decrease of T t , from 50 °C at 1.37 mM to 45 °C at 137 mM (corresponding to NaCl concentration in PBS). The plot of the absorbance with increasing temperature showed that the four-phase behavior did not occur in phosphate buffer (without NaCl and KCl). The pH 7.2 was therefore not solely responsible for this phenomenon. In contrast, additional experiments showed that the decrease of absorbance became steeper with increasing NaCl concentration (Figure S8). We hypothesized a reorganization of the coacervates into a less absorbing suspension in the presence of salts due to screening effect between negatively charged Glu units.

The colloidal behavior of each PGlu-b-ELP diblock copolypeptide was further studied by dynamic light scattering (DLS) for solutions at 1 g.L -1 in PBS over a temperature range from 20

°C to 80 °C. The scattered light intensity in arbitrary unit (a.u.), the average hydrodynamic diameter (nm) and the polydispersity index (PDI) were plotted versus temperature, as shown in Higashi and co-workers [START_REF] Higashi | Temperature induced self-assembly of amino acidderived vinyl block copolymers via dual phase transitions[END_REF] observed similar apparent transitions from free chains to aggregates to nanoparticles amino acid-based from block copolymers composed of N-acryloyl-Ala-methylester (NAAMe) and N-acryloyl-β-Ala-methylester (Na-β-AMe) in water. In their study, turbidimetry and 1 H NMR spectroscopy revealed formation of relatively loose-molecular packing at 17 °C, due to partial dehydration of polymer chains, and the formation of stable micellar structures between 30 and 39 °C. This phenomenon remained however unclear since no characterization technique invalidated or confirmed that the formation of micelles followed the disappearance of aggregates. Hoogenboom et al. [START_REF] Trinh | Thermoresponsive poly (2-oxazoline) block copolymers exhibiting two cloud points: complex multistep assembly behavior[END_REF] also reported comparable observations with diblock copolymers based on a poly(2-ethyl-2-oxazoline) and a thermoresponsive block consisting of a random copolymer of 2-ethyl-2-oxazoline and 2-n-propyl-2-oxazoline (PEtOx-block-P(EtOx-stat-PropOx)) in pure water. Even at temperatures significantly below the lower critical solution temperature (LCST) of the P(EtOx-stat-PropOx) block, copolymer unimers were found to coexist with a few aggregates. Upon heating, the systems exhibited a drastic increase of absorbance corresponding to the formation of large aggregates. When the temperature was further increased, solutions became visually clear again because of restructuration into smaller micelle-like structures. The authors assumed the first self-assembly behavior into large aggregates was due to the presence of a few swollen aggregates with unimers. In our case, due to the full reversibility of the phenomenon (free chains, aggregates, nanoparticles upon heating and nanoparticles, aggregates, free chains transitions upon cooling) (Figure S10), this hypothesis does not seem appropriate. Indeed, each regime appeared independently from the previous one, which evidence the intrinsic behavior of the system at a given temperature. In the same study, Hoogenboom and co-workers [START_REF] Trinh | Thermoresponsive poly (2-oxazoline) block copolymers exhibiting two cloud points: complex multistep assembly behavior[END_REF] supposed the formation of smaller micellar-like structures from aggregates by contraction due to dehydration, and possibly also fragmentation which are hypotheses to consider in our case. Below the T t (T t = 36 °C in D 2 O-PBS as shown in Figure S6), namely at 25 °C and at 35 °C, the low signal intensity evidenced the absence of nanometric aggregates. This absence of signal at were not composed of nano-assemblies, but can be considered as large and undefined coacervates. Moreover, the absence of signal at this temperature, despite a 2 hour-acquisition time, showed that the system did not evolve with time and depended solely on the temperature.

On the contrary, at 45 °C, well above the T t , the drastic increase of the scattered intensity, by more than 1 order of magnitude and the appearance of a small oscillation at 0.03-0.05 Å -1 , is the hallmark of spherical nanoparticles. At 65 °C, the more pronounced oscillation clearly evidences that the nanoparticles are progressively better structured when temperature increases above the

T t .
Based on the chemical structures of diblock copolypeptides, one can suggest that the nanoparticles are formed by an ELP core (more or less hydrated) surrounded by a corona of negatively charged PGlu chains. However, the contrast between the heavy water and the PGlu chains swollen in heavy water was too low to allow the monitoring of PGlu chains, the scattered signal being thus mainly due to the ELP core. Scattered intensity curves obtained at 45 °C and 65 °C (as well as at 55 °C and 70°C, data not shown) were fitted by a polydisperse sphere model using the SasView program. This Guinier model [START_REF] Guiner | Small angle scattering of X-rays[END_REF] describes a sphere of scattering length density (SLD) ρ sphere and radius r sphere (with a gaussian distribution on the radius) in a solvent of SLD ρ solvent . In this case, there is only one contrast comparatively to the solvent, so, the mathematic expression is composed of 2 terms (Equation 8).

I(q) = 𝚽𝚽 𝑉𝑉 [[𝑉𝑉�ρ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 -ρ 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑒𝑒𝑠𝑠 �] 2 𝑃𝑃 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑒𝑒𝑠𝑠 (𝑞𝑞) Equation 8
where V is the sphere volume and ρ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡 the SLD of D 2 O fixed at 6.4×10 -6 Å -2 . This model provides the form factor, 𝑃𝑃 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑒𝑒𝑠𝑠 (𝑞𝑞), for a monodisperse spherical particle with uniform SLD (Equation 9).

𝑃𝑃 𝑠𝑠𝑠𝑠ℎ𝑠𝑠𝑒𝑒𝑠𝑠 (𝑞𝑞) = �3

[sin�𝑞𝑞𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �-𝑞𝑞𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 cos�𝑞𝑞𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 �]

(𝑞𝑞𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ) 3 � 2 Equation 9
The best fits using the polydisperse sphere model provided information about the structure of nanoparticles, such as the radius of their core (and the gaussian distribution of this radius σ sphere ), as well as their SLD (ρ sphere ) which is correlated to the degree of hydration. The values obtained for the three polypeptides at various temperatures above the T t are summarized in Table 3. The fits are characterized by the ratio khi2/NPts, the values obtained were low and comprised in a 0.74 -2.02 range; indicating a good adequacy between the experimental curves and the fits. For the copolypeptide with the longer PGlu block, PGlu 61 -b-ELP, the curve obtained at 45 °C was not fitted using a polydisperse sphere model due to the presence of free chains with the nanoparticles but using a sum of polydisperse sphere and the Debye form factors. Indeed, the Debye model is used to describe polymer chains in solution (as explained in Supporting Informations, Figure S11). The sphere fraction Φ was fitted and the values obtained are consistent with the fraction of ELP in the solution considering the presence of micrometric aggregates (as shown by DLS measurements). The scattered length density ρ sphere was also fitted and evidenced the presence of D 2 O molecules entrapped in the core, reducing the contrast with the solvent. Indeed, the theoretical neutron scattered length density of the ELP block is 2.0×10 -6 Å -2 and the values determined here are in a 3.64×10 -6 -4.53×10 -6 Å -2 range. The fitting method therefore allowed us to calculate the volume fraction of D 2 O molecules (𝜑𝜑 𝐷𝐷 2 𝑂𝑂 ) in the core of spherical nanoaggregates by the following equation:

φ D 2 O = (ρ sphere -ρ ELP theo )/(ρ D 2 O -ρ ELP theo ) Equation 10
The aggregation number N agg , defined as the number of chains per sphere, was then estimated using Equation 11:

N agg = N A d 𝑀𝑀 𝑛𝑛 ����� (1 -φ D 2 O )� 4𝜋𝜋𝑒𝑒 𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 3 3 � Equation 11
where d = 1.35 g.cm -3 is the mass density as reported for proteins in the crystalline state, [START_REF] Andersson | The average atomic volume and density of proteins[END_REF] 𝑀𝑀 𝑠𝑠 ���� the molar mass of the diblock copolypeptides determined by 1 r sphere and aggregation numbers N agg values for the three copolypeptides deduced from the fits were compared depending on the DP of PGlu chains at each temperature studied (Table 3). The revealed that once the CMT was reached, no additional copolypeptides chains were incorporated (N agg constant over the temperature range studied), but nanoparticles continued to evolve, in a "densification" phase by expelling water until they reach an equilibrium (at 65 °C). These observations are in agreement with previous findings about the temperature-triggered selfassembly behavior of diblock ELPs with different hydrophobic block sizes. [START_REF] Garanger | Structural evolution of a stimulus-responsive diblock polypeptide micelle by temperature tunable compaction of its core[END_REF] However, for the diblock copolypeptides with the highest PGlu block lengths, the radius and N agg continued to increase with temperature from r sphere = 8.0 nm and N agg = 33 at 45 °C to r sphere = 8.9 nm and N agg = 56 at 65 °C for PGlu 45 -b-ELP and from r sphere = 6.6 nm and N agg = 17 at 45 °C to r sphere = 8.3 nm and N agg = 44 at 65 °C for PGlu 61 -b-ELP. In the same time, the temperature increase led to a dehydration of the core (Table 3) highlighted by the decrease of the hydration level and the decrease of D 2 O molecules number. This observation demonstrated that the "self-assembly" phase and the "densification" phase have occurred simultaneously when the PGlu block was longer. Finally, Figure S12 shows the scattered intensity of the PGlu 23 -b-ELP as a function of q in D 2 O and in D 2 O with 1 eq of NaOD / Glu unit (allowing to reach a pD = 9) at 65 °C (> T t ). In each case, the signal revealed low scattered intensity. This confirmed that an increase of pH is not solely responsible for the formation of nano-objects.

Proposed self-assembly scenario for PGlu-b-ELP diblock copolypeptides

To summarize, DLS, SLS, and SANS measurements revealed the particular self-assembly behavior of PGlu-b-ELP diblock copolypeptides in PBS. Below the T t , diblock copolypeptides were soluble and formed, above the T t , monodisperse sub-microscopic aggregates, which spontaneously evolved into nano-objects at the CMT. CMT seemed dependent on the ELP thermoresponsive block driving the self-assembly, as previously demonstrated by MacKay and co-workers for diblock ELPs. [START_REF] Janib | A quantitative recipe for engineering protein polymer nanoparticles[END_REF] When increasing the temperature above the CMT, small-angle neutron scattering measurements evidenced a slight increase of the aggregation number of polypeptide chains (except for PGlu 23 -b-ELP) and a clear dehydration of the core. These phenomena compensated each other, allowing the core radii to remain constant. These experiments confirmed that even well above the CMT, ELP-based diblocks need to gain sufficient amphiphilicity to undergo stable self-assembly into spherical micelles. [START_REF] Dreher | Temperature triggered self-assembly of polypeptides into multivalent spherical micelles[END_REF][START_REF] Lee | Thermo-reversible self-assembly of nanoparticles derived from elastin-mimetic polypeptides[END_REF] A comparison of the R h obtained by DLS measurements with the core radii r sphere deduced from the SANS curves highlighted a gap corresponding to the PGlu hydrophilic corona of thickness δ corona . For each diblock copolypeptides, we deduced δ corona >> r sphere, corresponding to the formation a star-like micellar structure. [START_REF] Borisov | Effect of salt on self-assembly in charged block copolymer micelles[END_REF] Our investigations revealed the formation of stable micelles for low hydrophilic weight fractions of 15 % while the screening experiments performed by Chilkoti and co-workers on 10 non-charged diblock ELPs revealed that only hydrophilic weight ratios between 33 % and 66 % allowed the micelle formation. [START_REF] Dreher | Temperature triggered self-assembly of polypeptides into multivalent spherical micelles[END_REF] This observation showed that the non-charged and charged systems behave very differently and do not follow the same general rules. Indeed, the association equilibrium and the structure of "polyelectrolyte micelles" formed by block copolymers with charged soluble block are governed by the competition between hydrophobic attraction of insoluble blocks to form the core and the Coulomb repulsion between charged repetitive units in the corona. The latter interaction is strongly mediated by counterions, which are always present but in larger amount in saline solutions. Borisov and Zhulina applied a scaling model to describe a micellization of chargedneutral diblock copolymers in salt-free medium. The Generally, the N agg appears to be a strongly decreasing function of the degree of polymerization of charged block. As a result, polyelectrolyte star-like micelles are expected to be marginally stable in salt-free solutions that corresponds to the classical two-phase behavior observed in pure water for our system. Dan and Tirrell [START_REF] Dan | Self-assembly of block copolymers with a strongly charged and a hydrophobic block in a selective, polar solvent. Micelles and adsorbed layers[END_REF] investigated the micellization of charged-neutral diblock copolymers in dilute salt solution.

Micellar phase properties were predicted to be quasi-similar to those of neutral amphiphilic copolymers as salts ensure screening effect between charged moieties, thus the behavior of the corona is dominated by steric repulsions between the chains.

To complete these observations, the mobility of the native ELP chains (data not shown) and of To characterize more quantitatively the changes occurring during the heating process, the p values, defined as the fraction of phase-separated units in globular structures were calculated from the integrated intensity of the resonance peaks A, B, C, D and E in 1 H NMR spectra (Figure 7, panel A) using Equation 1386, 87 : p = 1 -I(T)/I(T 0 ) Equation 13where I(T) is the integrated intensity of a given signal in the spectrum at the temperature T and I(T 0 ) is the integrated intensity of the same signal below the T t (at 17 °C). In the Figure S13, [START_REF] Roberts | Elastin-like polypeptides as models of intrinsically disordered proteins[END_REF][START_REF] Reiersen | Short elastin-like peptides exhibit the same temperature-induced structural transitions as elastin polymers: implications for protein engineering1[END_REF][START_REF] Nuhn | Secondary structure formation and LCST behavior of short elastin-like peptides[END_REF] The negative ellipticity peak around 225 nm often observed for ELP, corresponds to other regular secondary structures, since ELPs CD spectrum is described as a combination of unordered, β-turns but also β-strand and helix conformations, which is largely consistent with the reported secondary structure of tropoelastin (3% helix, 41% β-strand, 21% β-turn, and 33% unordered). [START_REF] Vrhovski | Coacervation characteristics of recombinant human tropoelastin[END_REF] This suggests that this ELP, adopted already a local ordered conformation even at low temperature. CD spectra of ELP The secondary structure of ELPs has been a point of debate and several research groups have investigated the secondary structures of ELPs below and above their T t . Most of them agree on the formation of type II β-turns resulting from the presence of prolyl-glycyl dipeptides and stabilized by intramolecular hydrogen bonds between the first and fourth residues of the pentapeptide (respectively valine and the guest residue valine or methionine in our case). [START_REF] Urry | Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers[END_REF][START_REF] Li | The molecular basis of the temperature-and pH-induced conformational transitions in elastin-based peptides[END_REF][START_REF] Wu | Multiple Site-Selective Insertions of Noncanonical Amino Acids into Sequence-Repetitive Polypeptides[END_REF] A description of the secondary structure in the folded state has been determined by the work of Urry for the [-Val-Pro-Gly-Val-Gly-] repeating sequence. Their model indicated that the polypeptide chains change conformation from a random coil below T t to type II β-turns that arrange into helical β-spirals above T t , while simultaneously releasing hydrating water molecules. [START_REF] Urry | Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers[END_REF][START_REF] Urry | Protein elasticity based on conformations of sequential polypeptides: the biological elastic fiber[END_REF] This structure is stabilized by intra-spiral, inter-spiral and inter-turn hydrophobic contacts. [START_REF] Rodríguez-Cabello | Differential scanning calorimetry study of the hydrophobic hydration of the elastin-based polypentapeptide, poly (VPGVG), from deficiency to excess of water[END_REF] Nevertheless, a solid-state NMR study as well as computer simulations have also been employed to explore the thermoresponsive mechanism of poly(VPGVG) in aqueous solution suggested that Urry's model missed the significant formation of distorted β-strand structures. [START_REF] Liu | Poly (N-vinylcaprolactam): A Thermoresponsive Macromolecule with Promising Future in Biomedical Field[END_REF][START_REF] Yao | Structure distribution in an elastin-mimetic peptide (VPGVG) 3 investigated by solid-state NMR[END_REF] Moreover, a study of (GVGVP) 6 by Gross et al. [START_REF] Groß | An alternative structure model for the polypentapeptide in elastin[END_REF] These observations are compatible to the hypothesis of Yingling and co-workers [START_REF] Li | Molecular description of the LCST behavior of an elastin-like polypeptide[END_REF] arguing that increasing the temperature may first decrease the stability of intramolecular hydrogen bond, destabilizing the secondary structures, while higher temperatures can lead the recovery of secondary structures, likely due to the dehydration leading to a decrease of H-bonding with water and consequently an increase of intramolecular hydrogen bonding. This hypothesis is entirely plausible regarding the self-assembly of PGlu-b-ELP diblock copolypeptides since SANS measurements revealed a dehydration phenomenon within the micelles. In ultrapure water, the diblock copolypeptides present a sharp two-phase solubility transition behavior from free chains to macroscopic aggregates. The transition temperatures (T t ) increased with the PGlu block length as a consequence of increased hydrophilicity of the diblock copolypeptide. This also led to a significant increase of the concentration dependence as over the T t compare to native ELP. The design of PGlu-b-ELP diblock copolypeptides therefore allowed an easy tuning of the thermoresponsive behavior of the ELP using a convenient polymerization procedure.

Conclusion

Interestingly, the same diblock copolypeptides in phosphate-buffered saline (PBS) showed a completely different four-regime thermoresponsive behavior. Below the T t , diblock copolypeptides were soluble and formed macroscopic aggregates above the T t , which spontaneously evolved into well-defined nanoparticles at the CMT and finally reached an equilibrium. Small-angle neutron scattering measurements was used for a better understanding of the nanoparticles formation and evidenced a densification and dehydration phase, increasing the temperature above the CMT. The phenomena compensate each other, allowing the radii of the core to remain constant upon further temperature increase. 2:

I(q) = ΦΔρ 2 V part P(q) Equation 1

I(q) = ν 2 Δρ 2 ! ! ! ! N A M w P(q) = Δρ 2 ! ! ! ! ! M w P(q) Equation 2
The weight-average molar mass M w and the radius of gyration R g can be deduced from the fit to this equation using the Debye function 1 as form factor P(q, R g ) (Equation 3): 

  35 and was covered by three configurations: (1) sample to detector distance D = 4.7 m and neutron wavelength λ = 17 Å, (2) D = 3 m and λ = 6 Å, and (3) D = 1 m λ = 6 Å. The samples were loaded into Hellma quartz cells with a 2 mm optical path length at a concentration of 1 g.L -1 in D 2 O or D 2 O-PBS or in D 2 O + NaOD (pD = 9). The cells were placed in a sample changer, and the scattering for each sample

  of the Supporting Informations) for subsequent comparison with PBLG-b-ELP and PGlu-b-ELP 1 H NMR spectra. The peak at 0.94 ppm attributed to the resonance of the methyl groups of the side chain of the 70 valine residues (420 1 H total) was used for calibration. The two-step method to synthesize poly(L-glutamic acid)-b-ELP (PGlu-b-ELP) diblock copolypeptides from poly(γ-benzyl-L-glutamate)-block-ELP (PBLG-b-ELP) used the initiation of the ROP of γ-BLG NCA by the N-terminal primary amine end group from the ELP, as represented in Scheme 1.

  H NMR analysis with the disappearance of the signal corresponding to the methylene group of the BLG units in α of the removed benzyl ring (Figure S2, panel B). Three well-defined diblock copolypeptides poly(L-glutamic acid)-b-ELP (PGlu-b-ELP) with various lengths of PGlu block were therefore synthesized: PGlu 23 -b-ELP, PGlu 45 -b-ELP and PGlu 61 -b-ELP. The molar masses of the PGlu blocks determined by 1 H NMR ranged from 3,000
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 1 Figure 1. Turbidity assay in pure water. (A) Evolution of normalized absorbance (%) with

  characterized the aggregation behavior of this series of PGlu-b-ELP diblock copolypeptides in pure water, we next investigated the thermoresponsive properties in a medium more compatible with biological studies. The thermoresponsive properties of the ELP and the different PGlu-b-ELP bioconjugates were therefore studied in phosphate-buffered saline (PBS) (NaCl 137 mM, KCl 2.7 mM, Na 2 HPO 4 8 mM, KH 2 PO 4 2 mM, pH = 7.2), as previously, by turbidity measurements at 350 nm (Figure2).
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 2 Figure 2. Turbidity assay in PBS. (A) Evolution of absolute absorbance with temperature of solution of native ELP, PGlu 23 -b-ELP, PGlu 45 -b-ELP, and PGlu 61 -b-ELP at 1.g.L -1 . (B)
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 3 Figure 3; panel A). Contrarily to our expectations, the presence of salts did not result in lower T ts
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 3 Figure 3. (A) T t values of ELP versus log 10 (concentration) in pure water and in PBS. (B) T t
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 4 Figure 4 for PGlu 23 -b-ELP and in Figure S9 for PGlu 45 -b-ELP and PGlu 61 -b-ELP. For PGlu 23 -b-
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 4 Figure 4. (A) Scattered light intensity, (B) average hydrodynamic radius and (C) polydispersity index versus temperature of a solution of PGlu 23 -b-ELP diblock copolypeptide at 1 g.L -1 in PBS
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 5 Figure 5. Light scattering results at various temperatures for PGlu 23 -b-ELP in PBS at 1 g.L -1 . (A)

  SANS measurements were therefore performed to gain better insight on the micellization phenomenon and to probe more precisely and quantitatively the structure of the nano-objects through appropriate models. The native ELP and the three diblock copolypeptides (PGlu 23 -b-ELP, PGlu 45 -b-ELP and PGlu 61 -b-ELP) were studied in D 2 O-PBS and also in D 2 O + NaOD (to observe the effect of the pH/pD without salt) at a concentration of 1 g.L -1 at increasing temperatures. The T t in D 2 O was beforehand determined by turbidimetry measurement in D 2 O-PBS for each diblock copolypeptide (data shown for PGlu 23 -b-ELP only, Figure S6). For the three diblock copolypeptides, a decrease by almost 9 °C was observed between the T t value in PBS and the T t value in D 2 O-PBS. Figure 6, panel A shows the scattered intensity as a function of q for PGlu 23 -b-ELP at 1 g.L -1 in D 2 O-PBS at various temperatures.

Figure 6 .

 6 Figure 6. Small-angle neutron scattering of solutions of PGlu-b-ELP diblock copolypeptides prepared at 1 mg.mL -1 in D 2 O-PBS. (A) Scattering intensity as a function of q for PGlu 23 -b-ELP

  H NMR, r sphere the radius of the core of the nanoparticles from the fits and N A the Avogadro number. The 𝜑𝜑 𝐷𝐷 2 𝑂𝑂 and N agg values are summarized in Table 3. To determine the degree of hydration of the polypeptide chains within the nanoparticles, we estimated the number of D 2 O molecules per chain from this volume fraction φ D 2 O , the aggregation number N agg and the molecular volume, ν = 30 Å 3 corresponding to one D 2 O molecule:

  values obtained for PGlu 23 -b-ELP, the copolypeptide with the shortest PGlu block length, suggested that the radius and N agg were almost constant from the formation of micelles and when the temperature further increased. Equation 12 allowed to deduce the confinement of about 760 D 2 O molecules per chain at 45 °C. At 65 °C and 70 °C, the degree of hydration decreased to 𝑁𝑁 /𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑠𝑠 𝐷𝐷 2 𝑂𝑂 ~ 600 D 2 O molecules, indicating a denser state of aggregation. Altogether, these results

  PGlu 23 -b-ELP diblock copolypeptide chains at the molecular scale was studied by1 H NMR at various temperatures in D 2 O and in D 2 O-PBS at 1 g.L -1 (FigureS13, panel A and Figure7, panel A respectively). The modification in the chemical shift signal corresponding to the proton from non-completely deutered water (named HDO) with the increase of temperature is well known and described in the literature.[START_REF] Gottlieb | NMR chemical shifts of common laboratory solvents as trace impurities[END_REF] Regarding the native ELP,1 H NMR spectra showed the quasitotal disappearance of the signals from 30 °C in D 2 O and in D 2 O-PBS, highlighting a significant loss of mobility of the chains, due to their confinement into compact aggregates. On the contrary, PGlu 23 -b-ELP diblock copolypeptide showed a slightly different behavior. In D 2 O and in D 2 O-PBS, below the T t value, the entire copolypeptide chains were found fully hydrated and flexible, evidenced by well-resolved and sharp 1 H resonance peaks of the copolypeptides. Above the T t , in D 2 O and in D 2 O-PBS, the intensity of resonance peaks decreased gradually, became weak and poorly resolved as a consequence of a decrease of the mobility of the chains indicating their confinement within the aggregates but demonstrated an incomplete dehydration even at the highest temperature studied (61 °C).

Figure 7 .

 7 Figure 7. (A) 1 H NMR spectra of PGlu 23 -b-ELP in D 2 O-PBS (1 g.L -1 ) at various temperatures. (B) Phase separation fraction p from 1 H NMR signals A, B, C, D and E plotted as a function of

  panel B and Figure 7, panel B for PGlu 23 -b-ELP in D 2 O and D 2 O-PBS respectively, the pfractions were plotted as a function of temperature. In D 2 O (Figure S13, panel B), the temperature dependences of the p-fraction of protons A (Hα of Val as guest residue) and B (Hα Gly and Hδ Pro) showed an important increase starting at 29 °C to reach values around 0.70. In the same way, the p-fractions for the signals D (Hβ and Hε Met, Hβ Val, Hγ Pro and Hβ and Hγ Glu) and E (Hγ Val) increased to 0.40 and 0.30 respectively. Moreover, the p-value attributed to the signal C, the only one corresponding to proline units solely (Hβ Pro) increased radically from 29 °C to reach 0.80 at 40 °C. In D 2 O-PBS (Figure 7, panel B), the temperature dependences of the p-fraction of protons A and B showed an increase starting at higher temperature (at 41 °C and 31 °C respectively) as compared in D 2 O alone, to reach p-values of 0.55 and 0.70 respectively. Moreover, the traces for the signals D and E increased only to 0.20. Interestingly and contrary to the observations in D 2 O, the signal C did not increase at all despite the increase in temperature. Surprisingly, in D 2 O, p-value increase was observed at lower temperature than in D 2 O-PBS while the opposite seemed to be observed at the macroscopic scale, indicating that the two phenomena are different, and both participate in the global thermoresponsiveness. The various p values showed, in D 2 O as well as in D 2 O-PBS, a similar confinement of Val as guest residue and of Gly, and a slightly better mobility of the Met and the Val units in D 2 O-PBS. Moreover, a sharp and important increase of p-value corresponding to the dehydration of proline units was observed in D 2 O, confirming the important role of this amino acid residue in the folding process.On the contrary, in PBS, the p-value corresponding to the proline residues remained almost at zero, indicator of a lack of ordered structures involving particularly this residue, in the aggregation phase. Recently, Yingling and co-workers[START_REF] Li | Molecular description of the LCST behavior of an elastin-like polypeptide[END_REF] showed the role of proline units by investigating the effect of temperature on the structure, dynamics and association of (VPGVG) 18 in aqueous solution using atomistic molecular dynamics simulations. Their results concluded that the thermoresponsive behavior of this ELP is a collective phenomenon between the abrupt modifications of hydration properties around the polypeptide chain (competition between peptide-peptide and peptide-water interactions) and the gradual changes in single polypeptide structure. More precisely, increasing the temperature leads to a change in the hydrophobicity of the ELP by exposing the hydrophobic valine-side chains to the solvent and by hiding the proline residues, which may explain such a difference between the p-values obtained for the proline units. Our observations coupled with the results obtained by Yingling showed that PGlu 23 -b-ELP has a tendency to undergo a folding process more in salt-free medium than in PBS.For a better understanding of the self-assembly process at the molecular level, solutions of native ELP and PGlu 23 -b-ELP in deionized water and PBS were characterized by UV circular dichroism (CD) at different temperatures (Figure8). CD is a characterization technique involving circularly polarized light, that is, the differential absorption of left-and right-handed light, allowing the investigation of secondary structures of proteins. pH of solutions in water (pH = 6.8) and in PBS (pH = 7.2) were not compatible with the formation of α-helix structures from the PGlu block (usually observed for PGlu at acidic pH below the pKa about 5.5) due to the deprotonation of the acid moieties, as evidenced by the absence of minima at 208 and 222 nm.[START_REF] Chécot | Structure of polypeptide-based diblock copolymers in solution: Stimuliresponsive vesicles and micelles[END_REF] 

Figure 8 .

 8 Figure 8. Circular dichroism spectra of ELP (A) and PGlu 23 -b-ELP (B) in pure water and

  in water acquired at various temperatures showed the gradual disappearance of unordered phase to the benefit of the formation of type II β-turns, as confirmed by[θ] values at 205 nm and 215 nm plotted as a function of the temperature (FigureS14, panel A). Indeed, as already shown by MacKay and co-workers,[START_REF] Janib | A quantitative recipe for engineering protein polymer nanoparticles[END_REF] ELPs have the propensity to form secondary structures as they undergo their phase transition. However, the signal at 225 nm stayed almost constant upon the temperature raised. A quasi-similar behavior was observed for PGlu23 -b-ELP diblock copolypeptide in water (Figure 8, panel B and Figure S14, panel B), nevertheless, despite a reduction of the signal at 195-205 nm, it remained significant, even at 70 °C, indicating the coexistence of an unordered phase with type II β-turns. This result showed that the presence of the PGlu had a tendency to decrease the capacity of ELP block to form ordered structures in pure water. These observations can be correlated with the presence of persistent signals from PGlu 23b-ELP observed by 1 H NMR in D 2 O during the formation of more ordered structures, contrarily to native ELP for which the signals disappeared. On the contrary, the CD spectrum obtained for ELP in PBS (Figure 8, panel C) and the plots of [θ] values with the temperature (Figure S14, panel C) showed an abrupt and important reduction of the signal at 205 nm between 30 °C and 40 °C (T t = 35 °C at 9 µM) as well as a sharp increase of the signals at 215 nm corresponding to type II β-turns and the disappearance of the negative signal at 225 nm. These result confirmed the assumptions of Rodriguez-Cabello and co-workers 57 who supposed that NaCl, has a strong salting-out effect, and causes more ordered structures. Indeed, NaCl acts a structure-maker for water molecules and consequently strengthens the intramolecular interactions. Finally, the CD spectrum of the PGlu 23 -b-ELP in PBS (Figure 8, panel D) and the plots of the signals intensity as a function of the temperature (Figure S14, panel D) revealed the sharp decrease of the proportion of unordered phase and the formation of type II β-turns. Moreover, a progressive increase of the signal at 225 from 20 to 50 °C and a slight decrease at 60 °C followed by an increase at 70 °C were observed. At this concentration (9 µM), this decrease of the signal between 50 °C and 60 °C was correlated with the T t , thus these curves showed sudden variations into the secondary structure during the self-assembly process.

  suggested that the polypeptide could adopt a β-sheet structure instead of a β-spiral in the folded state. Some other teams postulated about the formation of polyproline II (PPII) structure, a relatively open left-handed helical structure caused by the presence of proline units at regular intervals. PPII has no internal hydrogen bonding, as opposed to the more common helical secondary structure, α-helix. It was often confused with unordered, disordered, irregular, unstructured conformations because it is neither α-helical nor β-sheet.100 Clearly, there is considerable disagreement about the nature and degree of the structural changes and ordering upon heating of ELPs.For a better understanding of the relationship between the various modifications occurring into the secondary structure and the self-assembly process depending on the temperature, we plotted the scattered light intensity values (obtained by DLS at 90°) and more accurately the [θ] values from CD signals at 205 nm and 225 nm as a function of temperature, obtained for a solution of PGlu 23 -b-ELP diblock copolypeptides at 14 µM in PBS (Figure9).

Figure 9 .

 9 Figure 9. (A) Scattered light intensity (obtained by DLS at 90°) and (B) CD signals at 205 nm,

  In this work, a thermoresponsive elastin-like polypeptide (ELP) was used as macroinitiator for the controlled ROP of γ-benzyl-L-glutamate N-carboxyanhydride (γ-BLG NCA) to access, after acid deprotection of BLG units, to well defined poly(L-glutamic acid)-b-ELP (PGlu-b-ELP) Author manuscript of Biomacromolecules 2019 20, 254-272 DOI: 10.1021/acs.biomac.8b01390 50 hybrid diblock copolypeptides with different PGlu block lengths. PGlu 23 -b-ELP, PGlu 45 -b-ELPand PGlu 61 -b-ELP were therefore efficiently synthesized to investigate their thermoresponsiveness using a combination of turbidimetry, mono-and multi-angle variabletemperature DLS and SLS, SANS, 1 H NMR and CD. Altogether these methods revealed the unexpected salt-dependent behavior of this series of diblock copolypeptides regarding their temperature-triggered self-assembly.

Figure 10

 10 Figure 10 summarizes the proposed self-assembly mechanisms occurring in water and in PBS.

Figure 10 .

 10 Figure 10. Schematic representation of the proposed self-assembly mechanisms of PGlu-b-ELP

Figure

  Figure S9. (A, D) Scattered light intensity, (B, E) average hydrodynamic radius and (C, F)

Figure S10 .

 S10 Figure S10. Evolution of absorbance with temperature of solutions of PGlu 23 -b-ELP, PGlu 45b-ELP and PGlu 61 -b-ELP diblock copolypeptides at 1 g.L -1 in PBS during heating (filled

  The SANS curve for the copolypeptide PGlu 61 -b-ELP obtained at 45 °C (FigureS8, panel B) was not fitted using a polydisperse Sphere Model due to the presence of free chains with the nanoaggregates but using a mixed model of the polydisperse Sphere and the Debye models.Indeed, the Debye model is used to describe polymer chains in solution. For individual chains, the volume V part is defined by M w the weight-average molar mass of one mole of chains, M 0 the molar mass and ν the volume of one repeating unit as V chain = M w •ν/M 0 . Thus, for a dilute solution of polymer of weight concentration C, occupying a volume fractionΦ = N A •ν•C/M 0 ,where N A is the Avogadro number, and with d = M 0 /(N A •ν) Equation 1 becomes the Equation

3 Figure S11 .

 3S11 Figure S11. Small-angle neutron scattering of solutions of PGlu-b-ELP diblock copolypeptides prepared at 1 mg.mL -1 in D 2 O-PBS. (A) Scattering intensity as a function of q

Figure S12 .

 S12 Figure S12. Small-angle neutron scattering intensity as a function of q for PGlu 23 -b-ELP solution at 1 mg.mL -1 in D 2 O and in D 2 O with 1 eq of NaOD / carboxylic acid group (pD = 9)

Figure S13. (A) 1 H

 1 Figure S13. (A) 1 H NMR spectra of PGlu 23 -b-ELP in D 2 O (1 g.L -1 ) at various temperatures. (B) Phase separation p-fraction from 1 H NMR signals A, B, C, D and E plotted as a function

Figure S14 .

 S14 Figure S14. Temperature-dependence of the mean molar residue ellipticities at 205 nm, 215

  

  

  

  

  

  

  

  Na 2 HPO 4 8 mM, KH 2 PO 4 2 mM in H 2 O, pH = 7.2).

γ-benzyl-Lglutamate N-carboxyanhydride (γ-BLG NCA) was purchased from Isochem and used without any purification. PBS corresponds to a phosphate-buffered saline (PBS) prepared in deionized water while PBS-D 2 O was prepared in heavy water. In both cases, the composition is: NaCl 137 mM, KCl 2.7 mM, Na 2 HPO 4 8 mM, KH 2 PO 4 2 mM and pH = 7.2. The composition of the phosphate buffer used is the following: (

Table 2 .

 2 Parameters describing the thermoresponsive behavior of native ELP and PGlu-b-ELP block conferred a higher concentration dependence to T t as compared to the native ELP. This result is comparable with observations by Meyer et al.[START_REF] Meyer | Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides[END_REF] regarding the increase of the slope with decreasing ELP chain length, and by Petitdemange et al.[START_REF] Petitdemange | Selective tuning of elastin-like polypeptide properties via methionine oxidation[END_REF] that chemically oxidized the methionine residues, which in both cases correlates with increased hydrophilicity. The strengthening of the concentration dependence can be directly attributed to the increase of overall hydrophilicity as demonstrated previously with different ELPs with changes in the peptide sequence.39,48,74 

	copolypeptides than for the ELP. Indeed, the slope and k values for the ELP were -1.996 and
	34.71 °C respectively, while the slope and k values, for the diblock copolypeptides, are ranged
	from -7.578 to -9.061 and from 131.79 °C to 157.58 °C, respectively, in an increased order of

*taking account the following equality: a×ln(C) = 2.30×a×log 10 (C) All the data were properly fitted using this equation, allowing accurate estimations of the T t of ELP as well as of the T t of the diblock copolypeptides at specific concentrations (Figure

1

, panel C). Importantly, we observed a steeper slope of the fits for the PGlu-b-ELP diblock DPs (from 23 to 61). These results confirmed that the presence of the hydrophilic poly(L-

  23 -b-ELP, PGlu 45 -b-ELP and PGlu 61b-ELP were therefore analyzed by SANS in D 2 O. The shift on T t values observed in H 2 O and D 2 O was previously quantified by UV-Visible spectrometry. T ts in D 2 O were found 5 °C below T ts in H 2 O (data shown for PGlu 23 -b-ELP diblock copolypeptide only, Figure

Table 3 .

 3 Characteristics of the thermoresponsive nanoparticles of PGlu-b-ELP copolypeptides determined by SANS in D 2 O-PBS.

	Polydisperse Sphere Model

Scheme 1. Two-step synthesis of poly(L-glutamic acid)-block-ELP diblock copolypeptides.
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between negatively charged Glu units in the shell. These findings demonstrated the utmost effect of the aqueous environment on the thermoresponsive properties of such hybrid synthetic recombinant diblock copolypeptides. This also highlights the importance of controlling both the macroscopic and the molecular interactions when designing responsive polymer systems, particularly based on such thermoresponsive ELPs. 
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