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Abstract

This paper is concerned with the numerical modeling of unilateral contact problems in
an electro-elastic material with Tresca friction law and electrical conductivity condi-
tion. First, we prove the existence and uniqueness of the weak solution of the model.
Rather than deriving a solution method for the full coupled problem, we present and
study a successive iterative (decomposition) method. The idea is to solve successively a
displacement subproblem and an electric potential subproblem, in block Gauss-Seidel
fashion. The displacement subproblem leads to a constraint non-differentiable (con-
vex) minimization problem for which we propose an augmented Lagrangian algorithm.
The electric potential unknown is computed explicitly using the Riesz’s representa-
tion theorem. The convergence of the iterative decomposition method is proved. Some
numerical experiments are carried out to illustrate the performances of the proposed
algorithm.

Key-words: Signorini contact problem, Electro-elastostatics, Tresca friction, aug-
mented Lagrangian.
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1 Introduction

Currently there is a considerable interest in contact problems involving piezoelectric ma-
terials, i.e. materials characterized by the coupling between the mechanical and electrical
properties. This coupling, in a piezoelectric material, leads to the appearance of electric
potential when mechanical stress is present and, conversely, mechanical stress is generated
when electric potential is applied. The piezoelectric materials can be divided in two main
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2 MECHANICAL AND VARIATIONAL FORMULATION 2

groups: crystals and ceramics. The most well-known piezoelectric materials are quartz
SiO2 and ceramics (BaTiO3, KNbO3, LiNbO3, etc.). General models for elastic materials
with piezoelectric effects can be found in [15, 18] and, more recently, in [1, 7]. The static
frictional contact problems for electro-elastic materials were studied in [16, 17], under the
assumption that the foundation is insulated, and in [3] under the assumption that the
foundation is electrically conductive. Recent modeling, analysis and numerical simula-
tions of contact with or without friction for piezoelectric materials can be found in [2, 14]
and references therein.

We propose in this paper a decomposition method for an unilateral contact problem
with Tresca friction. Rather than deriving a solution method for the full coupled problem,
we propose and study a successive iterative (decomposition) method. Let u and ϕ be
the displacement vector field and electric potential, respectively. The idea is to solve
successively a subproblem in u and a subproblem in ϕ, in block Gauss-Seidel fashion. The
subproblem in u leads to a constraint non-differentiable (convex) minimization problem for
which we propose an augmented Lagrangian (Uzawa) algorithm. The electric potential ϕ
is computed explicitly using the Riesz’s representation theorem. We prove the convergence
of our method. Some numerical experiments show the behavior of our method.

The rest of the paper is structured as follows. In Section 2, we describe the model of the
frictional contact process between electro-elastic body and a conductive foundation and
derive the variational formulation. In Section 3, We state our main result, the existence
and uniqueness of the weak solution of the model. The decomposition algorithm is detailed
in Section 4 followed by the convergence result. In Section 5 we report some numerical
experiments carried out with the new algorithm.

2 Mechanical and variational formulation

We consider a piezoelectric body that initially occupies an open bounded subset Ω in Rd,
d = 2, 3, with a sufficiently smooth boundary Γ = ∂Ω. This boundary is divided into three
open disjoint parts ΓD, ΓN and ΓC on the one hand and a partition of ΓD ∪ ΓN into two
open parts Γa and Γb on the other hand, such that meas(ΓD) > 0 and meas(Γa) > 0.
The body is submitted to the action of body forces of density f0 and volume electric
charges of density q0. It is also submitted to mechanical and electric constraint on the
boundary. On the boundary part ΓD we assume that the body is clamped and therefore
the displacement field vanishes there. Moreover, we assume that a density of traction
forces, denoted by fN , acts on the boundary part ΓN . We also assume that the electrical
potential vanishes on Γa and a surface electrical charge of density qb is prescribed on Γb.
In the deformed configuration the body may come in contact over ΓC with an electrically
conductive foundation, we assume that its potential is maintained at ϕF . The contact is
frictional and there may be electrical charges on the contact surface. The normalized gap
between ΓC and the rigid foundation is denoted by g.

Here and below, to simplify the notation, we do not indicate the dependence of various
functions on the spatial variable x ∈ Ω, the indices i, j, k, l take values in {1, . . . , d}, the
summation convention over repeated indices is used and the index that follows a comma
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indicates a partial derivative with respect to the corresponding component of the spatial
variable, i.e. ui,j = ∂ui/∂xj . We denote by Sd the space of second order symmetric tensors
on Rd or equivalently, the space of real symmetric matrices of order d. We define the inner
products and the corresponding norms on Rd and Sd by

u · v = ui · vi ; ‖v‖ = (v · v)
1
2 ∀u, v ∈ R

d

σ · τ = σij · τij ; ‖τ‖ = (τ · τ)
1
2 ∀σ, τ ∈ S

d.

Moreover, we denote by Div σ = (σij,j), divD = (Dj,j) the divergence operator for tensor
and vector valued functions, respectively.
The governing equations of piezoelectricity consist of the equilibrium equation, constitutive
relations, strain-mechanical displacement and electric field-potential relations.
The elastic strain-displacement and electric field-potential relations are given by

ε(u) =
1

2
(∇u+ (∇u)∗) in Ω,

E(ϕ) = −∇ϕ in Ω,

where ε(u) = (εij(u)), E(ϕ) = (Ei(ϕ)), u = (ui), ϕ are, respectively, the linear strain
tensor, quasi-static electric field vector, displacement vector field and electric potential.
We suppose that the process is static. The equations of stress equilibrium and the equation
of quasi-stationary electric field are, respectively, given by

Div σ + f0 = 0 in Ω, (2.1)

divD = q0 in Ω, (2.2)

where σ = (σij) and D = (Di) represent the stress tensor and the electric displacement
field, respectively.
The constitutive equations of a linear piezoelectric material can be written as

σ = F ε(u)− E∗E(ϕ) in Ω, (2.3)

D = E ε(u) + β E(ϕ) in Ω, (2.4)

where F = (fijkl), E = (eijk) and β = (βij) are respectively, (fourth-order) elastic, (third-
order) piezoelectric, electric permittivity tensors and E∗ = (e∗ijk) is the transpose of E . We
mention that E∗ = (ekij) and satisfies

Eσv = σE∗v, ∀σ ∈ S
d, v ∈ R

d. (2.5)

Next, to complete the mechanical model according to the description of the physical
setting, we have the following boundary conditions

u = 0 on ΓD, (2.6)

σν = fN on ΓN , (2.7)

ϕ = 0 on Γa, (2.8)

D · ν = q2 on Γb, (2.9)
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Finally, we need to prescribe the contact conditions on ΓC . To this end, it is usual to
decompose the displacement and the stress vector in normal and tangential components
as follows:

vn = v · n ; vτ = v − vnn

σn = σn · n ; στ = σn− σnn.

We model the frictional contact on the contact surface ΓC with Signorini, Tresca’s law
and electrical conductivity conditions given by

σn(u) ≤ 0, un − g ≤ 0, σn(u) (un − g) = 0 on ΓC , (2.10)

‖στ‖ ≤ S
‖στ‖ < S ⇒ uτ = 0
‖στ‖ = S ⇒ ∃λ 6= 0, σ = −λuτ



 on ΓC , (2.11)

D · ν = ψ(uν − g)φL(ϕ− ϕf ) on ΓC . (2.12)

The boundary condition (2.12) represents a regularized electrical contact condition, similar
to that used in [13], such that

φL(s) =





−L if s < −L,

s if − L ≤ s ≤ L,

L if s > L,

ψ(r) =





0 if r < 0,

keδr if 0 ≤ r ≤ 1/δ,

ke if r > 1/δ,

in which L is a large positive constant, δ > 0 denotes a small parameter and ke ≥ 0 is the
electrical conductivity coefficient. Note that when ψ ≡ 0, the equality (2.12) leads to

D · ν = 0 on Γ3. (2.13)

The condition (2.13) models the case when the obstacle is a perfect insulator. Under these
conditions, the mechanical problem may be formulated as follows.

Problem (P ). Find a displacement field u : Ω → Rd, a stress field σ : Ω → S, an electric
potential ϕ : Ω → R and an electric displacement field D : Ω → Rd such that (2.1)-(2.12)
hold.

In the next, we introduce the notations and recall some necessary definitions which we
need later. Moreover, we introduce the following functional spaces:

H = L2(Ω)d, H1 = H1(Ω)d,

H = {τ = (τij) | τij = τji ∈ L2(Ω)}, H1 = {σ ∈ H | Div σ ∈ H}.

These are real Hilbert spaces endowed with the inner products

(u, v)H =

∫

Ω
uivi dx, (u, v)H1 = (u, v)H + (ε(u), ε(v))H ,
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(σ, τ)H =

∫

Ω
σijτij dx, (σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H,

and the associated norms ‖ · ‖H , ‖ · ‖H1 , ‖ · ‖H and ‖ · ‖H1 , respectively.
Let HΓ = H1/2(Γ)d and let γ : H1 → HΓ be the trace map. For every element v ∈ H1,

we also use the notation vγ to denote the trace γv of v on Γ.
Let H

′

Γ be the dual of HΓ and let 〈·, ·〉 denote the duality pairing between H
′

Γ and HΓ.
For every σ ∈ H1, σν can be defined as the element in H

′

Γ which satisfies

〈σν, γv〉 = (σ, ε(v))H + (Div σ, v)H , ∀v ∈ H1. (2.14)

Moreover, if σ is continuously differentiable on Ω, then

〈σν, γv〉 =

∫

Γ
σν · v da. (2.15)

for all v ∈ H1, where da is the surface measure element. Keeping in mind the boundary
condition (2.6), we introduce the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on ΓD},

and K be the set of admissible displacements

K = {v ∈ V | vν − g ≤ 0 on ΓC}.

Since meas(ΓD) > 0 and Korn’s inequality holds,

‖ε(v)‖H ≥ ck‖v‖H1 , ∀v ∈ V, (2.16)

where ck > 0 is a constant which depends only on Ω and ΓD. Over the space V we consider
the inner product given by

(u, v)V = (ε(u), ε(v))H , ‖u‖V = (u, u)
1
2
V , (2.17)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (2.16) that the
norms ‖ · ‖H1and ‖ · ‖V are equivalent on V . Therefore (V, ‖ · ‖V ) is a Hilbert space.
Moreover, by the Sobolev trace theorem, (2.16) and (2.17) there exists a constant c0 > 0
which depends only on the domain Ω, ΓC and ΓD such that

‖v‖L2(Γ)d ≤ c0‖v‖V , ∀v ∈ V. (2.18)

We also introduce the spaces

W = {ψ ∈ H1(Ω) |ψ = 0 on Γa},

W = {D = (Di) ∈ H1(Ω) | (Di) ∈ L2(Ω), divD ∈ L2(Ω)}.

The spaces W and W are real Hilbert spaces with the inner products

(ϕ,ψ)W = (ϕ,ψ)H1(Ω), (D,E)W = (D,E)L2(Ω)d + (divD,divE)L2(Ω).
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The associated norms will be denoted by ‖ · ‖W and ‖ · ‖W , respectively. Notice also that,
since meas(Γa) > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ‖W ≥ cF ‖ψ‖W , ∀ψ ∈W, (2.19)

where cF > 0 is a constant which depends only on Ω and Γa. Moreover, by the Sobolev
trace theorem, there exists a constant c1, depending only on Ω, Γa and ΓC , such that

‖ξ‖L2(Γ3) ≤ c1‖ξ‖W , ∀ξ ∈W. (2.20)

When D ∈ W is a sufficiently regular function, the following Green’s type formula holds,

(D,∇ξ)L2(Ω)d + (divD, ξ)L2(Ω) =

∫

Γ
D · νξ da, ∀ξ ∈ H1(Ω). (2.21)

We assume that the elasticity tensor F, the piezoelectric tensor E , the electric per-
mittivity tensor β and The surface electrical conductivity function ψ satisfy the following
assumptions.

(h1) The elasticity operator F : Ω × Sd → Sd satisfies fijkl = fjikl = flkij ∈ L∞(Ω) and
fijkl(x) ξkξl ≥ mF ‖ξ‖2 ∀ξ ∈ Sd , ∀x ∈ Ω where mF is positive constant.

(h2) The piezoelectric tensor E : Ω× Sd → Rd satisfies E = (eijk), eijk = eikj ∈ L∞(Ω).

(h3) The electric permittivity tensor β : Ω × Rd → Rd satisfies βij = βji ∈ L∞(Ω) and
βij EiEj ≥ mβ ‖E‖2 for all E ∈ R

d and x ∈ Ω, where mβ is a positive constant.

(h4) The surface electrical conductivity ψ : Γ3 × R → R+ is a bounded function by a
positive constant Mψ, such as, x → ψ(x, u) is measurable on Γ3, for all u ∈ R and
is zero for all u ≤ 0.

(h5) The function u → ψ(x, u) is a Lipschitz function on R for all x ∈ Γ3; |ψ(x, u1) −
ψ(x, u2)| ≤ Lψ|u1 − u2| ∀u1, u2 ∈ R, where Lψ is a positive constant.

The forces, traction, volume and surface free charge densities satisfy

(h6) f0 ∈ L2(Ω)d, fN ∈ L2(ΓN )
d,

(h7) q0 ∈ L2(Ω), qb ∈ L2(Γb).

The potential of the contact surface satisfies

(h8) ϕF ∈ L2(ΓC).

Finally, the friction bound function satisfies

(h9) S ∈ L∞(ΓC), S ≥ 0.
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Next, we use Riesz’s representation theorem, consider the elements f ∈ V , and q ∈W
given by

(f, v)V =

∫

Ω
f0 · v dx+

∫

ΓN

fN · v da, ∀v ∈ V, (2.22)

(q, ξ)W =

∫

Ω
q0ξ dx−

∫

Γb

qbξ da, ∀ξ ∈W, (2.23)

and, we define the mappings j : V × V → R and ℓ : V ×W ×W → R, respectively, by

j(v) =

∫

ΓC

S |vτ | da, ∀v ∈ V. (2.24)

ℓ(u, ϕ, ξ) =

∫

ΓC

ψ(uν − g)φL(ϕ− ϕ0)ξ da, ∀u ∈ V, ∀ϕ, ξ ∈W, (2.25)

where in (2.24), | · | stands for the Euclidean norm. Keeping in mind assumptions (h4)-
(h8)-(h9), it follows that the integrals in (2.24)-(2.25) are well-defined.

Using Green’s formula (2.14), (2.15) and (2.21) it is straightforward to see that if
(u, σ, ϕ, D) are sufficiently regular function which satisfy (2.3)-(2.12), then

(
σ, ε(v) − ε(u)

)
H
+ j(v)− j(u) ≥ (f, v − u)V , ∀v ∈ K, (2.26)

(
D,∇ξ

)
L2(Ω)d

= ℓ(u, ϕ, ξ) − (q, ξ)W , ∀ξ ∈W. (2.27)

We plug (2.1) in (2.26), (2.2) in (2.27) and use the notation E = −∇ϕ to obtain the fol-
lowing variational formulation of Problem (P ), in terms of displacements field and electric
potential.

Problem (PV ) Find a displacement field u ∈ K and an electric potential ϕ ∈ W , such
that :

(
Fε(u), ε(v) − ε(u)

)
H
+
(
E∗∇ϕ, ε(v) − ε(u)

)
L2(Ω)d

+ j(v) − j(u)

≥ (f, v − u)V , ∀v ∈ K, (2.28)
(
β∇ϕ,∇ξ

)
L2(Ω)d

−
(
Eε(u),∇ξ

)
L2(Ω)d

+ ℓ(u, ϕ, ξ) = (q, ξ)W , ∀ξ ∈W. (2.29)

3 Existence and uniqueness results

The existence of a unique weak solution of problem (PV ) is stated in the following

Theorem 3.1. Assume that (h1)-(h4) and (h8)-(h9) hold. Then :

(1) Problem (PV ) has at least one solution (u, ϕ) ∈ K ×W ;

(2) Under the assumption (h5), there exists L∗ > 0 such that if LψL+Mψ < L∗. Then
Problem (PV ) has a unique solution.
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The proof of Theorem 3.1 will be carried out in several steps and it is based on
arguments for elliptic variational inequalities and fixed point. We suppose in the sequel
that the assumption of Theorem 3.1 are fulfilled and we consider the product spaces
X = V ×W and Y = L2(Γ3)× L2(Γ3) together with the inner products

(x, y)X = (u, v)V + (ϕ, ξ)W , ∀x = (u, ϕ), y = (v, ξ) ∈ X, (3.1)

(η, θ)Y = (g, λ)L2(Γ3) + (z, ζ)L2(Γ3), ∀η = (g, z), θ = (λ, ζ) ∈ Y, (3.2)

and the associated norms ‖ · ‖X and ‖ · ‖Y , respectively. Let U = K ×W be non-empty
closed convex subset of X. We define the operator A : X → X, the functions j̃ on X, ℓ̃
on X ×X and the element f e ∈ X by equalities:

(Ax, y)X = (Fε(u), ε(v))H + (β∇ϕ,∇ξ)L2(Ω)d + (E∗∇ϕ, ε(v))L2(Ω)d

− (Eε(u),∇ξ)L2(Ω)d , ∀x = (u, ϕ), y = (v, ξ) ∈ X, (3.3)

j̃(y) = j(v), ∀y = (v, ξ) ∈ X, (3.4)

ℓ̃(x, y) =

∫

Γ3

ψ(uν)φL(ϕ− ϕ0)ξ da, ∀x = (u, ϕ), y = (v, ξ) ∈ X, (3.5)

f e = (f, q) ∈ X. (3.6)

We start by the following equivalence result

Lemma 3.2. The pair x = (u, ϕ) is a solution of problem (PV ) if and only if:

(Ax, y − x)X + j̃(y)− j̃(x) + ℓ̃(x, y − x) ≥ (f e, y − x)X ,∀y = (v, ξ) ∈ U. (3.7)

Proof. Let x = (u, ϕ) ∈ U be a solution to problem PV and let y = (v, ξ) ∈ U . We use
the test function ξ − ϕ in (2.29), add the corresponding inequality to (2.28) and use (3.1)
and (3.3)-(3.6) to obtain (3.7). Conversely, let x = (u, ϕ) ∈ U be a solution to the elliptic
variational inequalities (3.7). We take y = (v, ϕ) in (3.7) where v is an arbitrary element
of K and obtain (2.28). Then for any ξ ∈ W , we take successively y = (v, ϕ + ξ) and
y = (v, ϕ− ξ) in (3.7) to obtain (2.29), which concludes the proof of lemma 3.2.

Let η ∈ L2(ΓC) be given, and we define the closed convex set

K = {η ∈ L2(ΓC) / ‖η‖L2(ΓC) ≤ k},

where the constants k is given by

k = Mψ Lmeas(ΓC)
1
2 . (3.8)

We also define the function

ℓη(ξ) =

∫

ΓC

η ξda, ∀ξ ∈W, (3.9)

and we construct the following intermediate problem.
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Problem (PVη). Find xη ∈ U such that :

(Axη , y − xη)X + j̃(y)− j̃(xη) ≥ (f eη , y − xη)X , ∀ y = (v, ξ) ∈ U. (3.10)

Where
(f eη , y − xη)X = (f e, y − xη)X − ℓη(ξ) ∀ y = (v, ξ) ∈ U. (3.11)

We have the following existence and uniqueness result.

Lemma 3.3. For any η ∈ K, assume that (h1)-(h3) hold. Then :

(i) The problem PVη has a unique solution xη = (uη , ϕη) ∈ K × W which depends
Lipschitz continuously on η ∈ L2(ΓC).

(ii) There exists a constant c2 > 0 such that the solution of problem PVη satisfies

‖xη‖X ≤ c2‖f
e
η‖X . (3.12)

Proof. Let the operator A and the functional j̃ given by (3.3) and (3.4), respectively. We
prove that :

(a) The operator A : X → X is strongly monotone and Lipschitz continuous.

(b) The functional j̃ is proper, convex and continuous.

First, consider two elements x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ X, using (3.3) we have

(Ax1 −Ax2, x1 − x2)X =
(
Fε(u1)− Fε(u2), ε(u1)− ε(u2)

)
H

+
(
β∇ϕ1 − β∇ϕ2,∇ϕ1 −∇ϕ2

)
L2(Ω)d

+
(
E∗∇ϕ1 − E∗∇ϕ1, ε(u1)− ε(u2)

)
L2(Ω)d

−
(
Eε(u1)− Eε(u2),∇ϕ1 −∇ϕ2

)
L2(Ω)d

,

and, since if follows by (2.5) that (E∗∇ϕ, ε(u))H = (Eε(u),∇ϕ)L2(Ω)d for all x = (u, ϕ),
we find

(Ax1 −Ax2, x1 − x2)X =
(
Fε(u1)− Fε(u2), ε(u1)− ε(u2)

)
H

+
(
β∇ϕ1 − β∇ϕ2,∇ϕ1 −∇ϕ2

)
L2(Ω)d

.

We use now (2.20), (h1) and (h3) there exists mA > 0 which depends only on F, β, Ω and
Γa such that

(Ax1 −Ax2, x1 − x2)X ≥ mA(‖u1 − u2‖
2
V + ‖ϕ1 − ϕ2‖

2
W ),

and, keeping in mind (3.1), we obtain

(Ax1 −Ax2, x1 − x2)X ≥ mA‖x1 − x2‖
2
X . (3.13)
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In the same way, using (h1)-(h3), after some algebra it follows that there exists cA > 0
which depends only on F, β and E such that

(Ax1 −Ax2, y)X ≤ cA
(
‖u1 − u2‖V ‖v‖V + ‖ϕ1 − ϕ2‖W ‖v‖V

+‖u1 − u2‖V ‖ξ‖W + ‖ϕ1 − ϕ2‖W ‖ξ‖W
)
,

for all y = (v, ξ) ∈ X. We use (3.1) and the previous inequality to obtain

(Ax1 −Ax2, y)X ≤ 4cA(‖x1 − x2‖X ‖y‖X), ∀ y ∈ X,

and, taking y = Ax1 −Ax2 ∈ X, we find

‖Ax1 −Ax2‖X ≤MA‖x1 − x2‖X , (3.14)

where MA = 4cA. Now (a) is a consequence of inequalities (3.13) and (3.14). Next we
investigate the properties of the functional j̃ given by (3.4), (2.25). We first remark that
j̃g is proper and convex on U . Let x1 = (u1, ϕ1), x1 = (u2, ϕ2) ∈ U , we have

|̃j(x1)− j̃(x2)| = |

∫

ΓC

S(|u1τ | − |u2τ |)da| ≤

∫

ΓC

S|u1τ − u2τ |da

≤ ‖S‖L∞(ΓC)meas(ΓC)
1
2‖u1 − u2‖L2(ΓC)d .

Using (2.19), we obtain

||̃j(x1)− |̃j(x2)| ≤ c0 ‖S‖L∞(ΓC)meas(ΓC)
1
2 ‖u− v‖V .

Now, by (3.1), we find that

||̃j(x1)− |̃j(x2)| ≤ c0 ‖S‖L∞(ΓC)meas(ΓC)
1
2 ‖x1 − x2‖X .

Thus j̃ is Lipschitz continuous and, therefore, j̃ is a fortiori lower semi-continuous function.
Moreover, using (3.9) and (3.6) it is easy to see that the function f eη defined by (3.11)

is an element of X. Lemma 3.3 result now from (a), (b) and standard arguments of elliptic
variational inequalities.

We show next that this solution depends Lipschitz continuously on η ∈ L2(ΓC). Let
η1, η2 ∈ L2(ΓC) be given and denote the corresponding solution of the problem PVη by
xη1 = (uη1 , ϕη1) and xη2 = (uη2 , ϕη2). Then we have

(Axη1 , y − xη1)X + j̃(y)− j̃(xη1) ≥ (f eη1 , y − xη1)X , ∀ y ∈ U,

(Axη2 , y − xη2)X + j̃(y)− j̃(xη2) ≥ (f eη2 , y − xη2)X , ∀ y ∈ U.

We take y = xη2 in the first inequality and y = xη1 in the second inequality, successively,
we obtain

(Axη1 −Axη2 , xη1 − xη2) ≤

∫

ΓC

(η1 − η2)(ϕη1 − ϕη2) da

≤ ‖η1 − η2‖L2(ΓC)‖ϕη1 − ϕη2‖L2(ΓC).
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Thus, using (2.21) we deduce

(Axη1 −Axη2 , xη1 − xη2)X ≤ c1‖η1 − η2‖L2(ΓC)‖ϕη1 − ϕη2‖W ,

and, using (3.1) and (3.13)

‖xη1 − xη2‖X ≤ c1
mA

‖η1 − η2‖L2(ΓC),

thus, there exists a positive constant c3 =
c1
mA

such that

‖xη1 − xη2‖X ≤ c3‖η1 − η2‖L2(ΓC), (3.15)

whence (i) follows. We turn now to the proof of (ii). Let η ∈ K, we take y = 0 in the
inequality (3.15), we have

(Axη, xη)X + j̃g(xη) ≤ (f eη , xη)X , ∀xη ∈ X.

As S ≥ 0, we obtain
(Axη, xη)X ≤ (f eη , xη)X , ∀xη ∈ X,

using (3.13), we deduce

‖xη‖X ≤
1

cA
‖f eη‖X .

We now consider the operator Λ : L2(ΓC) → L2(ΓC) such that for all η ∈ L2(ΓC), we
have

Λη = ψ(uην)φL(ϕη − ϕ0), ∀ η ∈ L2(ΓC), (3.16)

it follows from assumptions (h4) that the operator Λ is well-defined. In order to prove
that Λ has a fixed point, we will need the following result

Lemma 3.4. The mapping η → xη, where xη is the solution to PVη, is weakly continuous
from L2(ΓC) to X.

Proof. Let a sequence (ηn) in L2(ΓC) converging weakly to η, we denote by xηn =
(uηn , ϕηn) ∈ U the solution of PVη corresponding to ηn, then we have

(Axηn , y − xηn)X + j̃(y)− j̃(xηn) ≥ (f eηn , y − xηn)X , ∀ y = (v, ξ) ∈ U, (3.17)

where
(f eηn , y − xnηn)X = (f, v − uηn)V + (q, ξ − ϕηn)W − ℓηn(ξ − ϕηn),

taking y = 0 in (3.17) and using (3.13), (2.20) and S ≥ 0, we deduce

‖xηn‖X ≤ c
(
‖f‖V + ‖q‖W + ‖ηn‖L2(ΓC)

)
,

that is, the sequence (xηn) is bounded in X, then, there exists x̃ = (ũ, ϕ̃) ∈ X and a
subsequence, denote again (xηn), such that

xηn ⇀ x̃ ∈ X, as n→ +∞.
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Moreover, U is closed convex set in a real Hilbert space X, therefor U is weakly closed,
then x̃ ∈ U .

We next prove that x̃ is solution of (3.10). First we prove that

(f eηn , y − xǫηn)X → (f eη , y − x̃)X , as n→ +∞· (3.18)

We have

|ℓηn(ξ − ϕ̃)− ℓηn(ξ − ϕηn)| ≤ ‖ηn‖L2(ΓC)‖ϕ̃− ϕηn‖L2(ΓC )

≤ ‖ ηn︸︷︷︸
bounded

‖L2(ΓC)‖x̃− xηn‖L2(ΓC)×L2(ΓC).

Since the trace map γ : X → L2(ΓC)
d × L2(ΓC) is compact operator, from the weak

convergence xηn ⇀ x̃ in X, we obtain the convergence xηn → x̃ strongly in L2(ΓC)
d ×

L2(ΓC). So we have (3.18).
Now, from (3.17), we have

(Axηn , y − xηn)X ≥ (f eηn , y − xηn)X −
(
j̃(y)− j̃(x̃)

)

−
(
j̃(x̃)− j̃(xηn)

)
, ∀y = (v, ξ) ∈ U.

Since

|̃j(x̃)− j̃(xηn)| ≤ ‖S‖L∞(ΓC)meas(ΓC)
1
2 ‖ũ− uηn‖L2(ΓC)

≤ c ‖x̃− xηn
→ 0

‖L2(ΓC)×L2(ΓC).

By pseudomonotonicity of A and (3.17)-(3.18), we get

{
x̃ ∈ U

(Ax̃, y − x̃)X + j̃g(y)− j̃g(x̃) ≥ (fη, y − x̃)X , ∀y = (v, ξ) ∈ U,
(3.19)

from (3.19) we find that x̃ is a solution of problem PVη and from the uniqueness of the
solution for this variational inequality we obtain x̃ = xη. Since xη is the unique weak limit
of any subsequence of (xηn), we deduce that the whole sequence (xηn) is weakly convergent
in X to xη, ensures that the weak continuous mapping η → xη, from L2(ΓC)×L2(ΓC) to
X.

Lemma 3.5. Λ is an operator of K into itself and has at least one fixed point.

Proof. Let η ∈ K, i.e.
‖η‖L2(ΓC) ≤ k.

By (3.16), we have
‖Λη‖L2(ΓC) ≤ ‖ψ(uην)φL(ϕη − ϕ0)‖L2(ΓC),

using the properties of ψ and φL we obtain

‖Λη‖L2(ΓC) ≤Mψ Lmeas(ΓC)
1
2 ,
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and keeping in mind (3.8), we get

‖Λη‖L2(ΓC) ≤ k,

then Λ is an operator of K into itself, and note that K is a nonempty, convex and closed
subset of L2(ΓC). Since L

2(ΓC) is a reflexive space, K is weakly compact. Using continuity
of φL, ψ and lemma 3.4, we deduce that Λ is weakly continuous. Hence, by Schauder’s
fixed point theorem the operator Λ has at least one fixed point.

Proof of theorem 3.1 :

1) Existence. Let η∗ be the fixed point of operator Λ. We denote by (u∗, ϕ∗) the solution
of the variational problem PVη for η = η∗. Using (3.10) and (3.16), it is easy to see that
(u∗, ϕ∗) is a solution of PV . This proves the existence part of theorem 3.1.

2) Uniqueness. We show next that if LψL+Mψ < L∗ the solution is unique.
Let x1 = (u1, ϕ1), x2 = (u2, ϕ2) ∈ U the solution of problem (3.7) we have

(Ax1, y − x1)X + j̃(y)− j̃(x1) + ℓ̃(x1, y − x1) ≥ (f e, y − x1)X , (3.20)

(Ax2, y − x2)X + j̃(y)− j̃(x2) + ℓ̃(x2, y − x2) ≥ (f e, y − x2)X . (3.21)

We take y = x2 in the first inequality, y = x1 in the second, and add the two inequality
to obtain

(A1x1 −Ax2, x1 − x2)X ≤ G, (3.22)

where
G = ℓ̃(x1, x2 − x1) + ℓ̃(x2, x1 − x2). (3.23)

From (3.23) and (3.5), we find

G =

∫

ΓC

ψ(u2ν)
(
φL(ϕ2 − ϕ0)− φL(ϕ1 − ϕ0)

)(
ϕ1 − ϕ2

)
da

+

∫

ΓC

φL(ϕ2 − ϕ0)
(
ψ(u2ν)− ψ(u1ν)

)(
ϕ1 − ϕ2

)
da,

thus, by using (h5), the bounds |φL(ϕ2−ϕ0)| ≤ L, the Lipschitz continuity of the function
φL, (2.18), (2.20) and (3.1) we deduce

G ≤ (Mψ c
2
1 + LLψ c0 c1)‖x1 − x2‖

2
X . (3.24)

Using (3.22) and (3.24) hence there exists a constant c∗ > 0 such that

‖x1 − x2‖
2
X ≤ c∗(Lψ L+Mψ) ‖x1 − x2‖

2
X .

Let L∗ = 1
c∗
, then if Lψ L+Mψ < L∗ therefore x1 = x2.
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Algorithm 1 Successive iterative decomposition method

Step 1 Find u(n+1) ∈ K such that

(Fε(u(n+1)), ε(v) − ε(u(n+1)))H + (E∗∇ϕ(n), ε(v) − ε(u(n+1)))L2 + j(v) − j(u(n+1))

≥ (f, v − u(n+1))V , ∀v ∈ K (4.1)

Step 2 Find ϕ(n+1) ∈W such that

(β∇ϕ(n+1),∇ξ)L2 − (Eε(u(n+1)),∇ξ)L2 + ℓ(u(n+1), ϕ(n+1), ξ)

= (q, ξ)W , ∀ξ ∈W. (4.2)

4 Successive iterative decomposition method

Rather than derive a solution method for the full coupled problem (2.28)-(2.29), we study
a successive iterative (decomposition) method. The idea is to solve successively a sub-
problem in u and a subproblem in ϕ, in block Gauss-Seidel fashion. Given an initial guess
(u(0), ϕ(0)), we define the sequence ((u(n), ϕ(n))) ∈ K ×W as in Algorithm 1.

4.1 Convergence

To study the convergence of the problem (4.1)-(4.2) we make the following smallness
assumption

inf(mF,mβ) > LLψc0c1 + cE , (4.3)

wheremF,mβ, Lψ , c0 and c1 are given in (h1), (h2)(3.13), (h5), (2.18), (2.20), respectively,
and cE is a positive constant which depends on the piezoelectric tensor E .

We have the following convergence result.

Theorem 4.1. Under the assumptions of theorem (3.1) and assumption (4.3), the itera-
tion method (4.1)-(4.2) converges, i.e.

‖u(n) − u‖V → 0 as n→ ∞.

‖ϕ(n) − ϕ‖W → 0 as n→ ∞.

Furthermore, for some constant 0 < k < 1, we have the estimate

‖u(n) − u‖V ≤ ckn.

‖ϕ(n) − ϕ‖W ≤ ckn.
(4.4)

Proof. We take v = u(n+1) in (2.28), ξ = ϕ(n+1) − ϕ in (2.29), and adding, we have
(
Fε(u), ε(u(n+1))− ε(u)

)
H
+

(
β∇ϕ,∇(ϕ(n+1) − ϕ)

)
L2(Ω)d

+
(
E∗∇ϕ, ε(u(n+1))− ε(u)

)
L2(Ω)d

−
(
Eε(u),∇(ϕ(n+1) − ϕ)

)
L2(Ω)d

+ j(u(n+1))−j(u) + ℓ(u, ϕ, ϕ(n+1) − ϕ) ≥ (f, u(n+1) − u)V +(q, ϕ(n+1) − ϕ)W ,(4.5)
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and, taking v = u in (4.1), ξ = ϕ− ϕ(n+1) in (4.2), we find

(Fε(u(n+1)), ε(u) − ε(u(n+1)))H + (β∇ϕ(n+1),∇(ϕ− ϕ(n+1)))L2(Ω)d

+ (E∗∇ϕ(n), ε(u) − ε(u(n+1)))L2(Ω)d − (Eε(u(n+1)),∇(ϕ− ϕ(n+1)))L2(Ω)d

+ j(u) − j(u(n+1)) + ℓ(u(n+1), ϕ(n+1), ϕ− ϕ(n+1))

≥ (f, u− u(n+1))V + (q, ϕ− ϕ(n+1))W . (4.6)

We subtract (4.5) from (4.6), we have

(
Fε(u(n+1) − Fε(u)), ε(u(n+1))− ε(u)

)
H
+

(
β∇ϕ(n+1) − β∇ϕ,∇ϕ(n+1) −∇ϕ)

)
L2(Ω)d

+ℓ(u, ϕ(n+1), ϕ(n+1) − ϕ)− ℓ(u, ϕ, ϕ(n+1) − ϕ)

≤ (E(ε(u(n+1))− ε(u)),∇ϕ(n+1) −∇ϕ)L2(Ω)d −
(
E∗(∇ϕ(n) −∇ϕ), ε(u(n+1))− ε(u)

)
L2(Ω)d

+ℓ(u, ϕ(n+1), ϕ(n+1) − ϕ)− ℓ(u(n+1), ϕ(n+1), ϕ(n+1) − ϕ),

and, by (h4) combined with the monotonicity of the function φL, we obtain

(
Fε(u(n+1) − Fε(u)), ε(u(n+1))− ε(u)

)
H
+

(
β∇ϕ(n+1) − β∇ϕ,∇ϕ(n+1) −∇ϕ)

)
L2(Ω)d

≤ (E(ε(u(n+1))− ε(u)),∇ϕ(n+1) −∇ϕ)L2(Ω)d −
(
E∗(∇ϕ(n) −∇ϕ), ε(u(n+1))− ε(u)

)
L2(Ω)d

+

∫

ΓC

φL(ϕ− ϕ0)
(
ψ(u(n+1)

ν − g)− ψ(uν − g)
)(
ϕ(n+1) − ϕ

)
da.

Using (h1)-(h3), (h5), (2.18) and (2.20) we find

mF‖u
(n+1) − u‖2V +mβ‖ϕ

(n+1) − ϕ‖2W

≤ cE‖u
(n+1) − u‖V ‖ϕ

(n+1) − ϕ‖W + cE‖u
(n+1) − u‖V ‖ϕ

(n) − ϕ‖W

+ LLψc0c1‖u
(n+1) − u‖V ‖ϕ

(n+1) − ϕ‖W .

Thus, using (3.1) we deduce

‖x(n+1) − x‖X ≤
cE

(inf(mF,mβ)− LLψc0c1 − cE)
‖x(n) − x‖X . (4.7)

where x = (u, ϕ) and x(n+1) = (u(n+1), ϕ(n+1)).
Under the stated assumption, k = cE/(inf(mF,mβ)−LLψc0c1 − cE) < 1, and we have the
estimate (4.4).

4.2 Augmented Lagrangian method for (4.1)

To formulate (4.1) as a constrained minimization problem, we set

f (n)(v) = (f, v)V − (E∗∇ϕ(n), ε(v))L2
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and introduce the energy functional due to non-frictional effects

J(v) =
1

2
(Fε(v), ε(v))H − f (n)(v).

The quadratic functional J is strictly convex, coercive and Gâteaux differentiable on V .
Moreover, the friction functional j is convex and lower semi-continuous on V . We can
therefore replace the variational inequality (4.1) by the convex minimization problem

Find u ∈ K such that

J(u) + j(u) ≤ J(v) + j(v), ∀v ∈ K. (4.8)

Since the functional J + j is strictly convex and coercive (mes(ΓD) > 0), there exists a
unique solution to (4.8), see e.g. [8, 10.3]. Note that the functional j is non-differentiable,
then standard optimization methods cannot be used for (4.8). In [10, 11, 12], Uzawa
block relaxation methods are proposed for solving contact problems with Tresca friction.
Uzawa block relaxation through augmented Lagrangian was initiated by Glowinski and
Marocco [6], Fortin and Glowinski [4], Glowinski and Le Tallec [5] who systematically de-
velop augmented Lagrangian methods as technique for solving nonlinear partial differential
equations.

To achieve a solution of (4.8) by a Uzawa block relaxation method, we introduce
auxiliary unknowns p = (pc, pf ) (c for contact and f for friction) and the set

C =
{
pc ∈ L2(Γc), pc − g ≤ 0 on Γc

}

and its characteristic functional

IC(pc) =

{
0 if pc ∈ C,

+∞ if pc 6∈ C.

The constrained minimization problem (4.8) is equivalent to the following minimization
problem

Find (u, pc, pf ) ∈ V × (L2(Γc))
2 such that

J(u) + j(pf ) + IC(pc) ≤ J(v) + j(qf ) + IC(qc) ∀(v, qc, qf ) ∈ V × (L2(Γc))
2, (4.9)

uν − pc = 0 on Γc, (4.10)

uτ − pf = 0 on Γc, (4.11)

We associate with (4.9)-(4.11) the augmented Lagrangian functional Lr defined over V ×
(L2(Γc))

2 × (L2(Γc))
2 by

Lr(v, p;µ) = J(v) + j(qf ) + IC(qc) + (µc, vν − qc)Γc + (µf , vτ − qf )Γc

+
r

2
‖ vν − qc ‖

2
0,Γc

+
r

2
‖ vτ − qf ‖20,Γc

(4.12)
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where we have set q = (qc, qf ) and µ = (µc, µf ), and r > 0 is the penalty parameter.
Uzawa block relaxation method is obtained by minimizing Lr, successively, over u and

p, as follows (starting with p0 and λ0)

u(k+1) = argmin
v

Lr(v, p
(k);λ(k)) (4.13)

p(k+1 = argmin
q

Lr(u
(k+1), q;λ(k)) (4.14)

λ(k+1) = λ(k) + r(u(k+1 − p(k+1) (4.15)

Since v 7→ Lr(v, p
(k);λ(k)) is convex and differentiable, the solution of (4.13) can be

characterized by the Euler-Lagrange equation (see [10, 12])

(Fε(u(k+1)), ε(v))H + r(u(k+1)
ν , vν)Γc + r(u(k+1)

τ , vτ )Γc = f (n)(v) + (p̃(k)c , vν)Γc

+ (p̃
(k)
f , vτ )Γc , ∀v ∈ V (4.16)

where we have set p̃
(k)
c = rp

(k)
c − λ

(k)
c and p̃

(k)
f = rp

(k)
f − λ

(k)
f .

Problem (4.14) is uncoupled in qc and qf . For the contact subproblem, straightforward
calculations using Karush-Kuhn-Tucker optimality conditions yield to (see [10, 12])

p(k+1)
c = u(k+1)

ν +
1

r

[
λ(k)c −max(0, λ(k)c + r(u(k+1)

ν − g))
]
. (4.17)

For the friction subproblem, using the Fenchel duality theory we get (see [10, 12])

p
(k+1)
f =





|λ
(k)
f

+ru
(k+1)
τ |−s

r|λ
(k)
f

+ru
(k+1)
τ |

(
λ
(k)
f + ru

(k+1)
τ

)
if |λ

(k)
f + ru

(k+1)
τ | > s,

0 if |λ
(k)
f + ru

(k+1)
τ | ≤ s.

(4.18)

Gathering the above results, we obtain Algorithm 2. We iterate until the relative error

on uk, p
(k)
c and p

(k)
f is sufficiently ”small”, i.e.

‖ u(k) − u(k−1) ‖20,Ω + ‖ p
(k)
c − p

(k−1)
c ‖20,Γc

+ ‖ p
(k)
f − p

(k−1)
f ‖20,Γc

‖ u(k) ‖20,Ω + ‖ p
(k)
c ‖20,Γc

+ ‖ p
(k)
f ‖20,Γc

< ε2. (4.19)

4.3 Solution for (4.2)

The solution of (4.2) is straightforward. Indeed, we use Riesz’s representation theorem to
define the operators B : W → Wand C : V →W by:

(Bϕ,ψ)W = (β∇ϕ,∇ψ) + ℓ(u, ϕ, ξ), ∀ψ ∈W. (4.20)

(Cu, ψ)W = (Eε(u),∇ψ), ∀ψ ∈W. (4.21)
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Algorithm 2 Uzawa block relaxation algorithm for (4.8)

Initialization: r > 0, p(0) = (p
(0)
c , p

(0)
f ) and λ(0) = (λ

(0)
c , λ

(0)
f ) are given.

Iteration: k ≥ 0. Compute successively u(k+1), p(k+1) = (p
(k+1)
c , p

(k+1)
f ) and λ(k+1) =

(λ
(k+1)
c , λ

(k+1)
f ) as follows

Step 1 Set p̃
(k)
c = rp

(k)
c − λ

(k)
c , p̃

(k)
f = rp

(k)
f − λ

(k)
f . Find u(k+1) ∈ V such that

(Fε(u(k+1)), ε(v))H + r(u(k+1)
ν , vν)Γc + r(u(k+1)

τ , vτ )Γc = f (n)(v) + (p̃(k)c , vν)Γc

+ (p̃
(k)
f , vτ )Γc , ∀v ∈ V.

Step 2 Compute the auxiliary contact and friction variables

p(k+1)
c = u(k+1)

ν +
1

r

[
λ(k)c −max(0, λ(k)c + r(u(k+1)

ν − g))
]
,

p
(k+1)
f =





|λ
(k)
f

+ru
(k+1)
τ |−s

r|λ
(k)
f

+ru
(k+1)
τ |

(
λ
(k)
f + ru

(k+1)
τ

)
if |λ

(k)
f + ru

(k+1)
τ | > s,

0 if |λ
(k)
f + ru

(k+1)
τ | ≤ s.

Step 3 Update the Lagrange multipliers

λ(k+1)
c = λ(k)c + r(u(k+1)

ν − p(k+1)
c ),

λ
(k+1)
f = λ

(k)
f + r(u(k+1)

τ − p
(k+1)
f ).

Hence, Equation (4.2) can be write in the following form

(Bϕ(n+1), ψ)W = (Cu(n+1), ξ)W + (q, ξ)W , ∀ξ ∈W. (4.22)

Then, we deduce that
Bϕ(n+1) = Cu(n+1) + q, (4.23)

It is easy to see that the operator B is a strongly monotone Lipschitz continuous operator
on W and therefore

ϕ(n+1) = B−1Cu(n+1) + B−1q, (4.24)

In the case when the obstacle is a perfect insulator, the operator B is given by

(Bϕ,ψ)W = (β∇ϕ,∇ψ), ∀ψ ∈W. (4.25)

4.4 Algorithm

With the above results, the solution method for (4.1)-(4.2) is presented in Algorithm 2.
We iterate until relative error on (u(n), ϕ(n)) becomes ”sufficiently” small.
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Algorithm 3 Solution method for (4.1)-(4.2)

Initialization: u(0) and ϕ(0) are given.

Iteration: n ≥ 0. Compute successively u(n+1) and ϕ(n+1) as follows

Step 1 Compute u(n+1) using Algorithm 2

Step 2 Compute ϕ(n+1) as solution of

Bϕ(n+1) = Cu(n+1) + q

5 Numerical experiments

Algorithm 3 of the previous section was implemented in Matlab, using piece-wise linear
finite element and vectorized codes [9], on a Linux workstation with 2.67GHz clock fre-
quency and 12GB RAM. The test problem used is designed to illustrate the behavior of
the algorithm more than to model contact actual phenomena. The deformed configuration
is plotted with a magnification of the displacement.

The stopping criterion in Algorithm 3 is

‖ u(n) − u(n−1) ‖2L2(Ω) + ‖ ϕ(n) − ϕ(n−1) ‖2L2(Ω)

‖ u(n) ‖2
L2(Ω)

+ ‖ ϕ(n) ‖2
L2(Ω)

< 10−12.

In Algorithm 2, the stopping criterion is

‖ u(k) − u(k−1) ‖2L2(Ω) + ‖ p(k) − p(k−1) ‖2L2(Γc)

‖ u(k) ‖2
L2(Ω)

+ ‖ p(k) ‖2
L2(Γc)

< 10−12,

where we have set p = (pc, pf ).
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Figure 1: Mesh sample for Ω = (0, 2)× (0, 1)
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We consider the two-dimensional domain (figure 1) Ω = [0, 2] × [0, 1] with ΓD =
{0} × [0, 1], Γc = [0, 2] × {0} and ΓN = [0, 2] × {1}. On ΓD, u = 0 and ϕ = 0 are
prescribed. On ΓN , non-homogeneous Neumann boundary conditions are prescribed,

σ(u) · n = −2x.

The normalized gap between Γc and the foundation is g(x) = 0.01. The material constants
are

• Elasticity: E = 58.7102GPA, ν = 0.3912, νf = 0.6 (friction coefficient);

• Piezoelectric (C/m2): e22 = −5.4, e33 = 15.8, e24 = 12.3;

• Dielectric (nF/m): β22 = 8.11, β33 = 7.35

In the plane deformations setting, the constitutive equations (2.3)-(2.4) can be expressed
as follows 



σ11
σ22
σ12
D1

D2



=




λ+ 2µ λ 0 0 e32
λ λ+ 2µ 0 0 e33
0 0 µ e24 0
0 0 −e24 β22 0

−e32 −e33 0 0 β33







ε11
ε22
2ε23
−E2

−E3



,

where λ and µ denote Lamé (positive) constants. These coefficients are related (in plane
deformations) to the Young modulus E and the Poisson coefficient ν by

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

The penalty parameter is r = 3.25E for all mesh sizes.
To determine the known contact pressure S, we first solve a pure contact problem in

the initialization step. Then we set S = νf |σn|. Note that in Algorithm 2, λc ≈ σn and
λf ≈ σt, see e.g., [10, 12].

We first consider a uniform mesh with size h = 1/32 (i.e. 2145 nodes and 4096
triangles). With ϕf = 8V (the potential of the conductive foun dation), Algorithm 3 stops
after 2 iterations. The deformed configuration is shown in Figure 2 while the contour plots
of the electric potential ϕ are shown in Figure 3. Figure 4 shows the stress distributions
on Γc. The sticking zone (|σt| < S) and sliding zone (|σt| = S) are clearly identified.
Table 1 shows the performances of Algorithm 3 using various values of the potential of
the conductive foundation. One can notice that, the number of iterations is virtually
independent of the potential of the conductive foundation ϕf , for a fixed mesh size.

We now study the scalability of Algorithm 3 by studying the evolution of the number of
iterations versus the mesh size. The largest mesh has 131,841 nodes and 262,144 triangles.
We report in Table 2 the performances of Algorithm 3 in terms of number of iterations
and CPU time. One can notice that the number of iterations is virtually independent of
the mesh size. Note that the timing results in Table 2 do not include the time to assemble
the matrix systems; this time can be significant for large size meshes.
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Figure 2: Deformed configuration
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Figure 3: Contour plots of the electric potential

ϕf (V) 2 4 8 16 32

maxϕ(×10−5V) 1.6958 3.3916 6.7832 13.5667 27.1338

Iterations 2 2 2 2 2

Table 1: Performances of Algorithm 3 with various values of ϕf , h = 1/32.

Mesh size h 1/8 1/16 1/32 1/64 1/128 1/256

Iterations 2 2 2 2 2 2

CPU Time (in Sec.) 0.025 0.034 0.190 1.587 9.618 54.391

Table 2: Performances of Algorithm 3 with various mesh sizes
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Figure 4: Stress distribution on Γc: σn contact pressure, σt tangential stress

6 Conclusion

We have investigate theoretically and numerically a decomposition method for unilateral
contact problem with Tresca friction arising in electro-elastostatics. Rather than solving
the coupled problem, we proposed a method solving successively a displacement sub-
problem and electric potential subproblem. Numerical experiments have shown that the
method is robust and scalable (i.e. the number of iterations is virtually independent of
the mesh size).

The practical implementation of our algorithm still faces the problem of the optimal
choice of the penalty parameter r. Indeed, the number of iterations in the Uzawa block
relaxation Algorithm 2 is highly dependent of the penalty parameter r. Further work is
underway for the automatic penalty adjustment procedure. The problem of a deformable
foundation is also under study.
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