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1Institut NÉEL, CNRS, 25 avenue des Martyrs, F-38042 Grenoble France
2Univ. Grenoble Alpes, Institut NÉEL, F-38042 Grenoble France

(Dated: October 17, 2018)

In differential scanning calorimetry, the thermal properties of a sample are recorded as a func-
tion of temperature during a predetermined temperature scan. Sometimes, changes of such thermal
properties are so fine that it could be interesting to differentiate the recorded signal as a function of
time or temperature. This mathematical operation brings out these fine and broad signal variations
by removing a ’non-interesting’ background. Unfortunately, this also brings out the experimental
peak to peak noise, preventing a clear observation. This work presents a new method in differential
calorimetry that gives access directly to the temperature derivative of usual differential scanning
calorimetry signals. With this method signals are recorded with the same level of noise than those
measured by differential scanning calorimetry. As a matter of fact, by means of a mathematical in-
tegration, differential scanning calorimetry properties can be recovered with a greater signal to noise
ratio. This method can be generalized to any other differential thermal techniques and calorimeters.

PACS numbers: Thermal instruments and apparatus, 07.20.-n, Calorimeters, 07.20.Fw, Specific phase tran-
sitions, 64.70.kj, Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.,
65.60.+a, Glasses and polymers, 66.70.Hk,

Introduction

Among experimental methods of measurement, calorime-
try has a particular status. It gives access directly to
thermodynamic data measured during phase changes or
transformations occurring in a given material. Calorime-
try was born since the emergence of thermodynamics and
the discovery of the fundamental laws driving the evolu-
tion of heat and work in a system. By means of exper-
imental thermometry and the measurement of tempera-
ture, the notions of specific heat and thermal conductiv-
ity have been clarified. Since all materials in every ther-
modynamic states contain an amount of energy that can
be probed, calorimetry covers plenty of different fields
of research in science and industry. Despite its univer-
sal nature, calorimetry suffers from a lack of selectivity,
and it is generally unsuitable for probing the matter at
the atomic or molecular scale. In order to avoid this
drawback, new sensitive calorimeric methods, such as
nanocalorimetry or dynamic calorimetry (ac-calorimetry,
temperature modulated calorimetry, . . . ) have emerged,
allowing a separation between different thermal events
involved in a process [1]. Analytical calorimetry is nowa-
days commonly used in chemistry, physics and biology,
as well as in different industries (food, pharmacy, agri-
culture,. . . ) [2]. Despite this universal feature, calorime-
try still suffers from a lack of resolution, and detecting
small thermal events remains difficult, particularly if one
want to probe small-scale systems or biological molecules
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highly diluted in a solvent. This is because temperature
measurement not only gives access to thermal properties
of the system under investigation, but also to the thermal
properties of the sample-holder, the thermometer itself,
the heater, and all the components surrounding the sam-
ple (addenda). To avoid this problem, a big forward-step
was made by means of differential temperature measure-
ment. With this technique, the differential temperature
between a sample and a neutral reference is recorded at
any time, like in differential thermal analysis (DTA), dif-
ferential scanning calorimetry (DSC), differential thermal
gravimetry (DTG), and so on. Since differential signals
are smaller than direct ones, they must be amplified with
low noise amplifiers, increasing the signal to noise ratio.
Among differential calorimetric techniques, DSC is cer-
tainly the most common [3, 4]. Using thermopiles in op-
position, or by means of two thermometers mounted in
differential mode (e.g. Wheatstone bridge), the amount
of heat coming from the sample is compared at any time
to that coming from a neutral reference whose properties
do not change appreciably on the considered temperature
interval.
Here we present a new highly sensitive method of mea-
surement in the field of differential calorimetry. This
method allows to access directly to fine thermal events
that are generally hidden in the signal to noise ratio of
classical DSC-calorimeter. This method, called deriva-
tive scanning calorimetry (DeSC) may be set up easily
on classical DSC-apparatus. In the first part of the pa-
per, we recall the basic principles of DSC measurement,
and then we describe the DeSC method. In the second
part of the paper, we present experimental data in com-
paring DSC and DeSC methods on different samples. All
the important experimental parameters are examined in
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detail, and an analysis is made on the improvement of
the signal to noise ratio with DeSC. In the last parts of
the paper, we discuss on the generalization of the DeSC
method to other calorimetric methods and give exemple
on temperature modulated techniques.

Theory

Differential scanning calorimetry (DSC)

A differential scanning calorimeter is merely consti-
tuted by two cells or containers, each of them being in
good thermal contact with a thermometer. The whole is
connected to a heat bath (oven) that controls the tem-
peratures of the two cells. The theory of DSC is well
described in benchmark books [3, 4], but for the sake of
clarity we briefly recall the basis of the theory. In Fig.(1)
a typical differential scanning calorimeter is schematized
by thermal conductances and heat capacities. The two
cells are assumed to be isothermal, i.e. we do not take
into account the possible temperature gradients inside
each cell. One cell having the index S contains the sam-
ple. Its heat capacity is noted CS and its temperature is
noted TS . The other cell contains a neutral reference and
all the variables have the index R. The two cells of the
DSC are thermally coupled to the surrounding by the
thermal links represented by the conductances KS and
KR respectively. These thermal links also account for
radiative and convective thermal exchanges with the sur-
rounding. The temperature of the surrounding is noted
T0. It may be represented by the oven in a heat-flux DSC,
for example. This temperature T0 is enslaved to follow a
scanning temperature ramp (cooling or heating) during
an experiment. The thermal links KS and KR allow to
the heat to flow between the oven and the cells, whereas
the link Kint represents the possible thermal connection
between the two cells. Finally, sometimes it may have

FIG. 1: Thermal scheme of a differential scanning calorime-
ter represented by thermal conductances, heat capacities and
temperatures.

a thermal power represented by PS and PR in Fig.(1),
that can be generated by heaters directly at the level of
the two cells S and R respectively. In power compen-
sated DSC these thermal powers compensate the possi-
ble thermal events involved in the sample during a scan.
The differential temperature remains equal to zero in this
case. In Fig.(1), the temperatures of the cells obey to the
following system of differential equations:

PS = CS
dTS
dt

+KS (TS − T0) +Kint (TS − TR) (1a)

PR = CR
dTR
dt

+KR (TR − T0) +Kint (TR − TS) (1b)

It is convenient to write ∆T = TS − TR; ∆C = CS − CR;
∆P = PS − PR; ∆K =KS −KR ; β = dTR/dt.

With these notations, Eq.(1a) becomes:

PS = CS ×β +CS
d∆T

dt
+KS∆T +KS (TR − T0)+Kint∆T

(2)
In making the difference between this latter equation and
Eq.(1b), we obtain:

∆P = PS − PR = ∆C × β +CS
d∆T

dt
+ (KS + 2Kint)∆T

+∆K(TR − T0) (3)

Generally, instruments are designed for having Kint <<
KS ,KR. Moreover, if the thermal symmetry of the
calorimeter is correct, it could be assumed to a first order
that KS ∼KR. Under these circumstances, the simplified
Eq.(3) is written:

∆P = PS − PR = ∆C × β +CS
d∆T

dt
+KS∆T (4)

For heat-flux DSC, the ramp is generated via the oven
(thermal surroundings of the cells), and there is no
thermal power generated at the level of the two cells
(PS = PR = 0). In this case Eq.(4) becomes:

CS
d∆T

dt
+KS∆T = −∆C × β (5)

This is the basis equation driving a heat-flux DSC. This
is a first order linear differential equation for the differ-
ential temperature ∆T . During the temperature ramp,
all the events occurring in the sample induce a varia-
tion of ∆C which in turn yields to a ∆T change. When
the differential temperature is measured by means of two
thermopiles in opposition, it is usual to calibrate them
by generating a thermal power P0 of given value in one
of the cell (with a joule effect heater placed in the sample
cell for example). In this case, in stationary conditions
we have ∆P = P0 = KS∆T . The heat exchange coef-
ficient KS is thus measured, knowing that the Seebeck
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coefficient S of the thermopiles has been previously cal-
ibrated with two thermometers S = ∆V /∆T (∆V is the
voltage measured with the thermopiles in opposition). As
a consequence, a calibration curve KS = S × ∆P /∆V is
obtained as a function of temperature. This KS = f(T )
calibration curve is used to transform the measurand ∆T
in differential heat flux ∆P . The differential Eq.(5) for
∆T is transformed in the differential equation for ∆P :

τ
d∆P

dt
+∆P = −∆C × β (6)

This equation is of practical importance because experi-
mental data are generally presented by means of graphs
∆P = f(T ) or ∆P = f(t). With this type of representa-
tion, the energy variation involved in the sample during
a thermal event is simply obtained by time or tempera-
ture integration of the previous curves. The relaxation
time τ = CS/KS is of very high importance in calorimetry
because it defines the adiabaticity conditions of the mea-
surement. It governs the power of resolution in tempera-
ture (the ability to separate two distinct thermal events
for a given value of the temperature rate β). For a given
temperature rate β, when a thermal event generates a
power which does not vary too rapidly, we can neglect
the derivative in Eq.(6). This yields to a simplified equa-
tion for heat-flux DSC:

∆P = −∆C × β (7)

The measured differential heat flux is in this case directly
proportional to the differential heat capacity. Therefore,
when ∆C is changing due to transformations occurring
inside the sample during the scans, the signal ∆P re-
flects directly this thermodynamic transformations. It is
important to have β = β0 = constant in order that the
signal does not also reflect the unphysical variation of
the temperature scanning rate.

Derivative scanning calorimetry (DeSC)

As in the previous paragraph, the DeSC method is
explained with the help of Fig.(2). In DeSC method,
two samples, the most identical as possible (same mass
and composition), are placed one in the sample-cell, and
the other in the reference-cell of a DSC. Under these
circumstances, if we proceed to a classical DSC exper-
iment, the signal will remain equal to zero during the
ramp since the same thermal event should occur at the
same time, or same temperature, in the two cells (at
least to a first order). It is assumed that the two sam-
ples are perfectly identical in mass, in composition, and
placed in the same way inside the DSC-cells. In a sec-
ond step, we unbalance the DSC in generating a given
temperature difference ∆T0 between the two cells. For
that purpose, a supplementary determined power is gen-
erated in one of the two cells. In this case, one sample

FIG. 2: Thermal scheme of a derivative scanning calorime-
ter represented by thermal conductances, heat capacities and
temperatures.

(that of the sample-cell for example) has a higher tem-
perature than the other one (in the reference-cell). Upon
this disequilibrium condition, a classical DSC experiment
is then carried out, in starting a temperature scan. Un-
der these experimental conditions, we will show that the
measured differential temperature signal is directly pro-
portional to the temperature derivative of the classical
DSC signal. With DeSC method, temperature derivative
of usual DSC signals are directly recorded. This could
be of interest under certain situations, for example when
fine thermal events are hidden inside a non relevant con-
stant background. Moreover, this derivative is measured
with the same level of noise than in DSC experiment. As
a consequence, by means of a mathematical integration
the corresponding DSC signal may be recovered with a
better signal to noise ratio than usually. Let be CS1 the
sample-cell heat capacity with the sample and addenda.
Let be TS1 its temperature. Let be CS2 the reference-cell
heat capacity with the second sample and addenda. Let
be TS2 its temperature. Let us note ∆C = CS1 − CS2 .
Let us note TS1

− TS2 = ∆T0 + δT with ∆T0 the tem-
perature disequilibrium imposed by the experimentalist
before the experiment, and δT the small temperature dif-
ference due to potential thermal events appearing inside
the samples during the experiment. Like for DSC, we
suppose KS1 = KS2 = K. For the sake of simplicity, let
us suppose that the temperature disequilibrium has been
generated via a heater in the sample cell, in order to have
∆P = PS1 − PS2 = PS1 = P0 = K∆T0 = constant. Finally,
like in DSC, to a first order we suppose Kint <<K. With
all these new experimental conditions and notations, the
system of differential equation (1a and 1b) that governs
the temperature of each cell becomes:

P0 = CS1

dTS1

dt
+K (TS1 − T0) +Kint (TS1 − TS2) (8a)

0 = CS2

dTS2

dt
+K (TS2 − T0) +Kint (TS2 − TS1) (8b)
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The analogous of Eq.(4) above becomes:

∆P = P0 = ∆C × β +CS1

d∆T

dt
+K∆T =K∆T0 (9)

Since ∆T0 is the predetermined constant part of ∆T =
∆T0 + δT , then (9) is transformed into:

CS1

dδT

dt
+KδT = −∆C × β (10)

which has the same meaning than Eq.(5) of DSC, but
this time δT is recorded around the constant term ∆T0.
This δT is due to the evolution along the scan of the
differential heat capacity ∆C. It is straightforward to
notice that, this time, the differential heat capacity is
not the difference between a sample and a neutral ref-
erence, but between two same samples having different
temperatures:

∆C = CS1(TS1) −CS2(TS2) = CS1(TS2 +∆T0 + δT )
−CS2(TS2) ≃

dCS

dT
∣
T=TS2

× (∆T0 + δT ) (11)

Eq.(11) is no more no less the mathematical expression of
the temperature derivative of the sample heat capacity.
It has been assumed that CS1 ∼ CS2 = CS up to a first
order. Indeed, small differences in masses or in composi-
tions of the two samples, as well as thermal contacts, are
terms of second order as we will see in the next section.
When we want to recover the classical signals of DSC
from DeSC, we have to know exactly during the experi-
ment the value of the differential temperature ∆T0 + δT .
In most of the case, we have ∆T0 >> δT because δT is the
temperature change coming from the fact that a thermal
event occurs in one sample just before it occurs in the
second one, and the energy difference involved is small.
∆T0 is the initial temperature difference that has been
managed by the experimentalist and it is not due to the
sample transformations. As a matter of fact, it can be
chosen by the experimentalist so as to fulfill the inequal-
ity above. Consequently, up to a first approximation the
temperature derivative of the heat capacity is simply ob-
tained in dividing the measured differential heat capacity
by the initial disequilibrium temperature difference:

∆C

∆T0
≃ dCS

dT
∣
T=TS2

(12)

For a heat-flux DSC with a thermopile that has been
calibrated, we have ∆P =K∆T with ∆P = ∆P0+δP with
∆T0 = P0 =K∆T0 and δP =KδT . Eq.(10) becomes:

τ
dδP

dt
+ δP = −∆C × β (13)

where δP is the heat flux difference measured across the
thermopiles around the disequilibrium ∆P0. Here again,

this initial disequilibrium is not due to sample thermo-
dynamical transformations. The assumption δT << ∆T0
allows to Eq.(13) taking the interesting shape:

τ
dδP

dt
+ δP = − dCS

dT
∣
T=TS2

×∆T0 × β (14)

This equation shows that, with the DeSC method, there
is one supplementary control parameter other than the
usual scanning temperature rate β. This is the initial
temperature disequilibrium ∆T0 managed by the exper-
imentalist before the scan. This allows one to adapt the
amplitude of the measured signal to the physical event or
transformation that we want to investigate. But, like in
DSC, to increase inconsiderately the value of ∆T0 may re-
duce the resolving power in temperature of the calorime-
ter, exactly like to increase inconsiderately the scanning
rate may do the same.

Experiments

DSC measurements

The polytetrafluoroethylene (PTFE) is a calorimetric
standard of polymeric system with two crystalline solid-
solid phase transitions around room temperature. These
two phase transitions have already been studied in our
group by means of DSC, and by ac-calorimetry [5, 6]. It is
used here in order to test the DeSC method. In Fig.(3),
we firstly present raw data of two DSC measurements
during increasing temperature scans performed at tem-
perature rates of 1 K/min and 0.5 K/min respectively.
The DSC-apparatus used is a commercial calorimeter
micro-DSCIII from Setaram company. The convention
for the presented DSC heat flow data is that exother-
mal events are directed to the top while endothermal
events are directed to the bottom. The PTFE sample
is a small cylinder of 134.85 mg weight placed inside the
batch cell of the microDSCIII. The reference cell is left
empty during the experiment. The y-axis represents the
heat flow ∆P since the micro-DSCIII sensor is consti-
tuted by two thermopiles in opposition that have been
previously calibrated by means of joule effect heater. The
two phase transitions are clearly distinguished, the first
one around 293 K, due to a twist of the helicoidal macro-
molecular chain, and the second one around 303 K, due
to small conformational changes along the chain [5, 6]. In
Fig.(3), we may observe the proportionality of the mea-
sured signal with the scanning temperature rate ampli-
tude. Data of blue square symbols are obtained for the
temperature rate of 0.5 K/min, and those of red circle
symbols are for the temperature rate of 1K/min. When
dividing these raw data by the corresponding scanning
temperature rate, we obtain directly the differential heat
capacity of the PTFE sample such as given in Eq.(7) (see
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FIG. 3: Heat flow of a PTFE sample measured by DSC at
two different heating rates of 0.5 K/min (blue square symbols)
and 1 K/min (red circle symbols).

Fig.(4)). Since the reference cell is empty, the differential
heat capacity is equal to the PTFE heat capacity which
is presented in Fig.(4) for the two scanning rates. In
this figure, the two PTFE heat capacity curves are nev-
ertheless slightly different in particular for the first peak
amplitude. This may be due to three different reasons:
-it may be due to the calibration of the DSC calorimeter
which is dependent on the scanning rates. -it may be
due to thermal gradients inside the PTFE sample due to
low value of the thermal diffusivity of the PTFE poly-
mer in the substantial volumes used. -it may be due to
the intrinsic thermodynamics and kinetics of the PTFE
itself, particularly on the first phase transition occurring
at around 293 K [5]. In taking the time derivative of
the data in Fig.(3), the more exact Eq.(6) should also be
used, but there are no striking differences with ∆C ex-
tracted directly from simpler Eq.(7) such as shown only
for scanning rate at 0.5 K/min in inset in Fig.(4).

r20ptb35pt

FIG. 4: Heat capacity of a PTFE sample measured by DSC at
two different heating rates of 0.5 K/min (blue square symbols)
and 1 K/min (red circle symbols). Inset: Heat capacity of a
PTFE sample measured by DSC at the scanning rate of 0.5
K/min, one using the exact Eq.(6) (blue point symbol) and
the other using the simplified Eq.(7) (red point symbol)

DeSC MEASUREMENTS

Sample and method

Two PTFE samples have been machined in order to
have the same mass. The sample-1 has a mass of 134.85
mg (the one used in DSC experiments), while the second
one has a mass of 134.82 mg. They are both placed in
the sample-cell and reference-cell of the micro-DSCIII. In
order to generate a temperature disequilibrium between
the two cells, the classical batch cells of the micro-DSCIII
have been modified. We have included a small heating
element in each cell. These small heaters have been glued
at the bottom inside the cells. The thin copper connect-
ing wires get out by a small hole at the bottom of each cell
and they are sticked inside a thin groove machined along
the side of each cell such as depicted in Fig.(5). The thin
copper wires then go through the different shields of the
calorimeter across small holes. Outside the calorimeter,
they are connected to a low noise current source that may
generate currents of different amplitudes. From these
currents, heat flux disequilibrium (i.e. temperature dise-
quilibrium) of different magnitudes may be generated be-
tween each cell. Here, we have supplied power of about
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FIG. 5: Modified batch cell of a Setaram microDSCIII
calorimeter. The connecting wires get out by a small hole
and they are glued inside a thin groove machined along the
side of the cell.

FIG. 6: Full scale DeSC raw data obtained for disequilibrium
conditions of: 100 mW (1K temperature disequilibrium; red
data symbols), 50 mW (0.5 K temperature disequilibrium;
blue data symbols), 10 mW (0.1 K temperature disequilib-
rium, black data symbols).

10 mW, 50 mW and 100 mW respectively, that corre-
spond to temperature differences of about 0.1 K, 0.5 K
and 1 K respectively.

DeSC data

In Fig.(6), DeSC raw data are presented. These three
curves have been obtained for the above different dise-
quilibrium conditions (0.1 K, 0.5 K and 1 K) with the
same increasing temperature rate of 0.5 K/min. As can
be seen for the three conditions, there is a varying signal
around the initial disequilibrium value such as expected.
How to treat these data is discussed in a next section.

Influence of the disequilibrium

For the sake of clarity, in order to emphasize the varia-
tions of each signal, in Fig.(7) we have subtracted for each
of them a value close to the disequilibrium power, and
we have shown them on the same graph. The low tem-
perature baseline is now close to zero for all the curves.
A first remark that can be made is that, now, the two
PTFE phase transitions appear as a double peak for the
first one (a first downward peak followed by an upward
one), and an upward smaller peak for the second phase
transition. One can point out that, the higher the ini-
tial disequilibrium is, the higher the signal variation is
with amplitudes of the peaks becoming more and more
pronounced (red circle symbols for 1 K disequilibrium,
blue square symbols for 0.5 K disequilibrium, black tri-
angle symbols for 0.1 K disequilibrium). In other word,
the higher the temperature difference between the two
samples during a scan, the higher the energy involved in
the measurement. This proves that this initial temper-
ature difference is a new interesting control parameter
which can be tuned in order to increase the signal inten-
sity during a scan. Obviously, to increase inconsiderately
this initial disequilibrium leads to a decrease of the re-
solving power of the instrument. The resolving power of
the calorimeter is the ability of the instrument to sep-
arate two close thermal events in a given sample for a
given scanning rate. We may easily understand that if
the temperature difference is higher, or in the same order
of magnitude, than the temperature difference between
the two events that we want to separate, the temperature
derivative of such events cannot be correctly recorded
anymore. In this case, two separated heat capacity peaks
may lead to a broad asymmetrical peak. In Fig.(7), this
later effect starts to be observed for the higher tempera-
ture difference of 1 K (red circle symbols). The thermal
events occur on a larger temperature interval than for the
experiments with smaller temperature differences. This
is exactly the same effect that occurs in DSC when the
scanning rate becomes too high with respect to the ther-
mal time constant of the calorimeter. As a conclusion,
the experimentalist has to adapt this new tuning param-
eter to the physics of the process under study, exactly
like he has to adapt the scanning rate. Finally, as can
be estimated from the three graphs, the assumption dis-
cussed beforehand that the small measured temperature
difference δT is negligible as compared to the imposed
temperature difference ∆T0 is fulfilled. To prove it, we
have δT /∆T0 = δP /∆P0 ∼ 2% for the three experiments
(where δP is the maximum heat flux difference taken be-
tween the maximum and the minimum of the peaks of
the 293 K phase transition).
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FIG. 7: Rescaled DeSC data where each heat flow disequi-
librium have been subtracted to raw data. Disequilibrium of
100 mW corresponds to red circle symbols, of 50 mW to blue
square symbols, of 10 mW to black triangle symbols respec-
tively. The higher the initial disequilibrium is, the higher the
heat flow signature of the two PTFE phase transitions is, but
the larger the temperature transition range is.

Influence of the scanning rate

In the following Fig.(8), we compare two DeSC mea-
surements carried out with the same initial temperature
difference ∆T0 = 0.5 K (∆P0 = 50 mW), but at two dif-
ferent scanning rates (blue square symbols for 0.5 K/min
and red circle symbols for 1 K/min). As can be observed,
the higher the scanning rate is, the higher the signal vari-
ation is, like in DSC. We also observe that the temper-
ature range over which the phase transition takes place
is higher for the higher scanning rate. This confirms an-
other time that, the higher the intensity of the tuning
parameter, the smaller the resolving power of the mea-
surement.

Noise reduction in DeSC method

Since the DeSC method gives rise to a direct access to
the temperature derivative of usual DSC signals, it may
be interesting to recover such DSC signals. We present
here a first simple data treatment for that purpose. But,
we would like to show here that it is possible to recover
such signals with a higher signal to noise ratio. From the
raw data of the DeSC measurement with ∆T0 = 0.5 K
and β = 0.5 K/min (see the square blue symbols curve
in Fig.(8) or the middle blue curve in Fig.(6)), we adjust
a sigmoid to the DeSC curve that is then subtracted in
order to obtain two flat baselines equal to zero in the

FIG. 8: Two raw DeSC data obtained for a same initial dis-
equilibrium of 50 mW (corresponding to a temperature dise-
quilibrium of 0.5 K) at two different temperature rates of 0.5
K/min (blue square symbols) and 1 K/min (red circle sym-
bols). The higher the scanning rate, the higher the signal
variation.

low and high temperature ranges outside the transitions
range. The result of such correction is shown in Fig.(9)
(see the red point symbol curve) along with the tempera-
ture derivative of the DSC curve that have been obtained
at the same rate of β = 0.5 K/min (square blue symbols
DSC curve in Fig.(3)). The result of such mathematical
differentiation is shown on the same scale than for the
corrected DeSC curve in Fig.(9) (see the blue cross sym-
bol curve in Fig.(9)). As can be observed, the two graphs
in Fig.(9) are quite similar, confirming that what is mea-
sured by DeSC is the temperature derivative of classical
DSC signals. A magnification of the two previous curves
in the flat part of the high temperature regime (see in-
set in Fig.(9) between 310 K and 320 K) shows that the
short term noise is lower on the DeSC signal than on
the mathematically differentiated DSC signal. It is ob-
vious that in integrating the two curves, we will obtain
a DSC signal (obtained from DeSC) with less noise than
classical one (obtained from DSC). As a conclusion, the
DeSC method allows to recover DSC signals with less
noise than if there are directly measured by DSC. This
could be very important in many different applications.
For example this could be interesting in the case of highly
diluted biological macromolecules thermal denaturation
in solution, where the associated heat capacity peak is
generally small and hidden in an non-interesting high
heat capacity background coming principally from the
aqueous solvent.
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FIG. 9: Two heat flow signals are presented on the same
scale, one coming from data processing of DeSC experiment
(red point symbols), and the other coming from mathematical
differentiation of corrected DSC signal (blue cross symbols).
The comparison of the two signals confirms that with DeSC
method we access to a temperature derivative of DSC signal.
Inset: magnification of the two signals in the flat part of the
high temperature range between 310 K and 320 K. Short term
noise is smaller with DeSC than with DSC.

Influence of the differential mass

When the masses of the two samples are substantially
different, this may introduce a supplementary parasitic
temperature difference during the scan. In dividing the
differential heat capacity by the PTFE mass in Fig.(4),
the PTFE specific heat is obtained as a function of tem-
perature. From this measurement, the PTFE specific
heat is directly obtained because the reference-cell is
empty. The difference in the masses of the two samples
for DeSC measurement is of 30 µg only. This is merely
the mass inaccuracy given by our balance. Such mass
difference may induce a supplementary heat flux disequi-
librium equal to ∆m × cPTFE × β during the scan made
at the temperature rate β. This is a supplementary con-
tribution which has to be added to the right-hand-side
term of Eq.(13) of DeSC. In this case, the disequilibrium
is due to the differential mass and not only to the initial
temperature difference. Such parasitic term has to be
compared with respect to the principal DeSC term given
by ∆C × β. This comparison is done in Fig.(10) where,

r0ptt0pt

FIG. 10: Two heat flow signals are presented on the same
scale (-0.06 to 0.2 mW). One is the principal term of a DeSC
experiment measured at the scanning rate of 0.5 K/min (red
circle symbols) where the constant 10 mW term has been sub-
tracted, and the other is the parasitic DSC term coming from
the mass difference between the two samples (black point sym-
bols). The latter is negligible, practically equal to zero on this
scale, by comparison with the usual DeSC term. Inset: the
same parasitic term due to the differential mass is presented
on a lower scale (0 to 5.10−4 mW) showing that its variations
are completely negligible compared to the DeSC variations.

with the help of the DSC curve in Fig.(4), we have intro-
duce ∆m × cPTFE × β in the DeSC raw data. This was
made for the experiment with the temperature difference
of 0.1 K and a scanning rate of 0.5 K/min (the lowest
signal). In inset in Fig.(10), we present a magnification
of this parasitic term which reproduces the PTFE heat
capacity such as mentioned. As can be seen, variations in
PTFE specific heat give variations in heat flow of about
few 10−4 mW for this contribution, which is negligible
with respect to the principal DeSC term. This being,
we thus have observed that a DeSC experiment can be
implemented in a DSC-calorimeter without the use of a
supplementary heater. Indeed, let us consider that in
one of the cell of the DSC-calorimeter we add a reference
material of a given mass with a specific heat which does
not vary significantly inside the considered temperature
range. For example, let us place a copper piece of mass
m with one of the two samples in the calorimeter. Un-
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FIG. 11: DeSC raw data carried out under a disequilibrium
of about 1 mW (i.e. temperature disequilibrium of about 10
mK) produced by a supplementary mass of copper of 123 mg
in one of the cell of the DSC. There is no heat supplied by a
heater in this experiment.

der these circumstances, during the scan, there will be a
supplementary △ccop = m × ccop term which will induce
a quite constant ∆T term, with ccop, the copper spe-
cific heat. For instance, this ∆T contribution will be as
constant as ccop on all the temperature range. This ∆T
naturally will unbalance the calorimeter, making possi-
ble to carry out a DeSC measurement. This is what we
have done in using a supplementary piece of copper of
mass of 123 mg placed with one of the two PTFE sam-
ples (the PTFE samples used in this try have a mass of
about 248.15 mg). In Fig.(11), we present the DeSC ex-
periment carried out under these conditions at a rate of
1K/min. As can be shown, the derivative of the PTFE
heat capacity is measured again. It could also be pointed
out that a disequilibrium of about 1 mW is obtained by
this means, that corresponds to a temperature disequi-
librium of about 10 mK. For obtaining greater values of
the temperature difference between the two cells (such as
0.5 K or 1 K for example like we did with heater), copper
masses on the order of grams are necessary.

Derivative Scanning Calorimetry for
modulated calorimetry: ac-DeSC

As a sake of generality, in this section we will show
experimentally how the DeSC method is also suitable
for any other calorimetric methods, and in particular
for temperature modulated calorimetry. The PTFE is
a polymer which has been studied in our group by ac-

FIG. 12: Modulus of the dynamic heat capacity of a PTFE
sample as measured by ac-calorimetry at a thermal frequency
of 0.32 Hz. The kinetic effect due to temperature oscillation
is clearly observed on the first phase transition around 294 K
if we compare to DSC measurement in Fig.(4).

calorimetry [5–8]. The influence of the oscillating tem-
perature frequency on the recorded dynamic heat capac-
ity for the 294 K first crystalline phase transition has
been investigated [5–8]. The ac-calorimeter used is based
on two microfabricated cells described in Ref.[5]. On
one cell there is a heater supplying the oscillating power
Pac = P0 cos(ωt) while on the other cell there is a plat-
inum thermometer recording the oscillating temperature
Tac = δTac cos(ωt − ϕ), the PTFE sample being com-
pressed between such two cells during a measurement
ensuring thermal homogeneity. The dynamic heat ca-
pacity is obtained by means of the classical expression
C∗ = Q̇ac/Ṫac = Pac/iωTac. On the graph in Fig.(12), the
modulus of the dynamic heat capacity ∣C∗∣ = P0/ωδTac is
represented as a function of temperature during a mean
temperature scanning rate of 0.5 K/min and an ampli-
tude of temperature oscillation of about 0.1 K at a ther-
mal frequency of about 0.32 Hz. The kinetic effect oc-
curring on the 294 K phase transition is clearly revealed
(smaller amplitude of the peak) if we compare with the
same transition measured by DSC (see Fig.(4)). In or-
der to implement the DeSC method for ac-calorimetry, a
microfabricated cell has been developed for that purpose
(see the schematic drawing in Fig.(13)). The thermomet-
ric cell is now composed of two separated thermometers
with two corresponding dc-heaters at the back face of
the suspended membrane. One of this heater is used for
producing the temperature difference between the two
thermometers (named ∆Tdc in Fig.(13)). The other cell
contains a heater on all the surface that may supply an
oscillating power (named Pac in Fig.(13)) in the sam-
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FIG. 13: Schematic drawing showing the principle of function-
ing of the two microfabricated cells for ac-DeSC. The PTFE
sample is enclosed between two suspended membranes one
containing the ac-heater and the other one containing two
thermometers and two corresponding dc-heaters at the other
face of the same membrane. The dc temperature disequilib-
rium is made by the use of the dc-heaters. Two thermally
independent parts of the PTFE sample oscillate at a given
frequency due to the ac-heater, each of them being at differ-
ent dc temperature.

ple and the thermometric cell. The schematic drawing
in Fig.(13) shows how oscillating heat is generated in
the sensor, and how the oscillatory differential temper-
ature is recorded. Under these circumstances, we have
two thermally independent parts of the PTFE sample
which oscillate, receiving the same oscillatory power, but
each of them being at a different dc temperature. The
recording differential ac temperature is just the signa-
ture of the differential heat capacity between each part
of the PTFE sample being at a different dc tempera-
tures ∆δTac = δTac(T1) − δTac(T2) = (P0/ω) × δ(1/C)
with T1 = T2 +∆Tdc. For instance, the differential mea-
surement yields to the difference of the inverse heat ca-
pacities δ(1/C) = 1/C1(T1) − 1/C(T2) of the same mate-
rial, but taken at different dc temperatures T1 and T2.
These are the experimental requirements for the DeSC
method. The derivative of the PTFE sample is just ob-
tained knowing that δ(1/C) = −δC/C2. We have to di-
vide δC = −(ωC2/P0) × ∆δTac = −(C/δTac) × ∆δTac by
∆Tdc to obtain the derivative of the sample heat capac-
ity. The measured differential signal of the two oscillat-
ing temperatures ∆δTac is thus directly proportional to
the derivative of the sample heat capacity. The result of
such an experiment is depicted in Fig.(14). The curve
with blue square symbols is the mathematical tempera-
ture derivative of the ∣C∗∣ (T ) curve in Fig.(12) obtained
by classical ac-calorimetry, while the curve with red cir-

FIG. 14: Two temperature derivatives of the modulus of the
dynamic heat capacity of a PTFE sample are presented. The
curve with blue square symbols is the mathematical temper-
ature derivative of the curve in Fig.(12). The curve with red
circle symbols is obtained by ac-DeSC such as explained in
the text.

cle symbols has been obtained from the measured ∆δTac
at the same frequency, the same scanning rate, and with
a temperature difference of about 1.3 K between the two
platinum thermometers. This latter signal has been nor-
malized by a coefficient taking into account the amplifier
gain and the calibration of the thermometers. The visi-
ble drift in temperature between both curves comes from
the fact that we have presented the normalized differen-
tial signal ∆δTac has a function of the absolute temper-
ature T1 of the coldest thermometer. The generalisation
of the DeSC method for all other temperature modulated
calorimetric techniques is obvious.

Glass transition measured by DeSC

The DeSC method may be useful in the study of the
glass transition. In most of the cases, during vitrifica-
tion heat capacity jumps may be of small magnitudes
and may take place on broad temperature ranges. In
this case, due to the improvement of the signal to noise
ratio, DeSC may be useful. In this section, we focalise on
DeSC measurements performed on a model of polymeric
glass-former, the PolyVinylAcetate [PVAc, (C4H6O2)n].
Fig.(15) shows six DeSC curves with heating scans at 0.5
K/min and temperature disequilibrium of 1 K. These six
curves have been obtained on the same PVAc sample,
measured after a cooling rate of -1.2 K/min, followed by
different aging times at the temperature of 293 K (the
starting temperature is of about 363 K where the sample
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FIG. 15: DeSC raw data of PVAc sample during heating scans
at 0.5 K/min with temperature disequilibrium of about 1K
(heat flow disequilibrium of 100 mW). The scans are made
after cooling from the starting temperature of 363K at -
1.2K/min followed by an aging process with time periods of
10 min, 30 min, 100 min, 300 min, 1000 min, 3000 min re-
spectively, and then followed by a new cooling at -1.2K/min
until the lowest temperature of 278 K just before the starting
of the scanning ramps. The black arrow points out the evolu-
tion of the different curves with increasing aging time. Inset:
Left-hand scale : DSC heat capacity of PVAc during a heating
scan at 1 K/min after the same type of cooling than for DeSC
experiment with an aging time of 1200 min at 293 K (red cir-
cle symbols). Right-hand scale: temperature derivative of the
DSC heat capacity of PVAc such as measured.

is under the supercooled liquid state). The aging times
were of 10 min, 30 min, 100 min, 300 min, 1000 min,
3000 min respectively. After this aging process, the two
samples have been cooled both toward the lowest temper-
ature of 278 K before the starting of the heating scans.

As can be seen in Fig.(15), the DeSC signals look like
temperature derivatives of classical DSC signals mea-
sured by DSC. In inset in Fig.(15), we present a clas-
sical DSC signal recorded at 1 K/min with the associ-
ated mathematical temperature derivative on the same
graph (up curve with the right hand scale). This DSC
experiment corresponds to a cooling followed by an aging
process of 1200 min at the same aging temperature of 293
K. If we do not consider the decreasing slopes observed

on the DeSC curves, they all have the same shape of a
DSC temperature derivative such as presented in inset.
The two peaks around 313 K correspond to the deriva-
tive of the enthalpy recovery peak usually measured by
DSC. It may be pointed out that all the curves are well
separated, particularly at low temperatures, which corre-
spond to different temperature variations (slopes) of the
heat capacity during heating. These differences are little
by little attenuated until around 363 K at the highest
temperature where all the memory of the PVAc sample
has been erased. Before this last temperature, the PVAc
follows an irreversible path depending on its history, es-
pecially due to the different aging times at 293 K. As a
conclusion, by means of DeSC it is possible to observe
classical events, like changes in the magnitude of the en-
thalpy recovery peaks as a function of the aging times,
like in DSC, but it is also possible to clearly reveal finer
events, like changes in the slopes of the Cp(T) curves dur-
ing heating, which is generally less accessible by DSC.

Generalisation of DeSC to other thermal
analysis techniques

A generalisation of the method can be made to ev-
ery other thermal analysis techniques. Let us suppose
a physical property M that must be measured. Let us
then suppose that the property depends on temperature
M = M(T ), and that the experimental technique used
consists in varying the temperature in order to access to
the interesting changes of this property. For example, M
could be the mass of a sample in thermogravimetry. If
the experimental set-up is differential, i.e. it contains two
crucibles which can contain two samples. If the set-up al-
lows the control of the temperature of the two crucibles
so that a temperature difference may be generated be-
tween them, then the recorded signal of such set-up can
yield to the temperature derivative of the given property
along the temperature scan. For example, if the prop-
erty M =M(T ) is the sample mass in a differential ther-
mogravimeter, then by putting two identical samples in
each crucible, and by producing an initial disequilibrium
dc temperature, then the recorded signal gives directly
the temperature derivative of the sample mass:

M1(T1) −M2(T2) ∼ dM

dT
∣
T
×∆T (15)

Here again, to use directly a derivative as a recording
signal may improve the signal to noise ratio as compared
to usual differential thermogravimetric techniques.
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Discussion on problems encountered with
DeSC

Besides all advantages of the DeSC technique discussed
in the text, we would like to mention in this short dis-
cussion some problems we have faced during these first
measurements. Although the temperature derivative of
classical DSC signals can be directly recorded, with a
smaller level of noise than for DSC, it remains rather dif-
ficult to recover the exact DSC signal. Indeed, we have
to bear in mind that with DeSC all usual second order
parasitic effects are also magnified. For example, even if
the two samples are the most identical as possible in their
compositions, or in their masses, if they are positioned
slightly differently in the two crucibles of the DSC (differ-
ent thermal contacts), this small difference may be am-
plified by the method itself. It is then difficult afterward
to recover a perfect DSC signal. A second point is that
the dissymmetry of the calorimeter is also magnified with
DeSC. Indeed, this time it unbalances the sample 1 with
respect to the sample 2, while usually this dissymmetry
unbalances the sample with respect to the reference. This
is why we have difficulty to recover a perfect “flat base-
line” after integration of the DeSC signal. However, this
may be a very efficient method to calibrate the calorime-
ter. A calorimeter, which may be calibrated taking into
account second order dissymmetrical terms, may be more
accurate on first order signals. A third point, which is
usual in the integration process of differentiated signals,
is that we need a supplementary measurement in order to
access to the absolute value of the sample heat capacity.
We can imagine a first DeSC measurement made with two
identical references. Only in a second step, we perform
the second measurement with the two samples. Finally,
we may subtract the two previous results before the inte-
gration in order to recover the classical DSC signal. This
two measurement steps have the merit to eliminate the
mentioned asymmetry problem. Finally, more numerical
data-processing developments may also be necessary to
be able to recover the most perfectly as possible classical
heat flux signals (heat capacity). As a final point of the
discussion, we can ask whether new or additional phys-
ical or thermodynamic information can be gained with
DeSC method if we compare with DSC. Since DeSC is
like a magnification process obtained with a higher signal
to noise ratio, it is indeed possible to have access to very
tiny thermal events which usually are hidden in the noise
of the DSC. By analogy with microscopy, DeSC is like an
eyepiece of a microscope with a higher magnification.

Conclusion

We have presented a new technique in the field of dif-
ferential scanning calorimetry. This new method is able
to record directly the temperature derivative of signals
(heat flow, heat capacity) which are usually recorded by
differential calorimetry techniques. We have discussed
the influence of different parameters on this new method.
We have given few examples of measurements, and dis-
cussed the potentiality of this method in terms of signal
to noise ratio. The derivative scanning calorimetry has
been generalized to other differential thermal analytical
techniques, enlarging the research field in experimental
thermal analysis and calorimetry.
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