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Abstract

Clustering with Bregman divergences encompasses a wide family of clustering procedures that are
well-suited to mixtures of distributions from exponential families [3]. However these techniques are highly
sensitive to noise. To address the issue of clustering data with possibly adversarial noise, we introduce a
robustified version of Bregman clustering based on a trimming approach. We investigate its theoretical
properties, showing for instance that our estimator converges at a sub-Gaussian rate 1/

√
n, where n

denotes the sample size, under mild tail assumptions. We also show that it is robust to a certain amount
of noise, stated in terms of Breakdown Point. We also derive a Lloyd-type algorithm with a trimming
parameter, along with a heuristic to select this parameter and the number of clusters from sample. Some
numerical experiments assess the performance of our method on simulated and real datasets.

1 Introduction

Clustering is the problem of classifying data in groups of similar points, so that the groups are as homogeneous
and at the same time as well separated as possible [18]. There are no labels known in advance, so clustering
is an unsupervised learning task. To perform clustering, a distance-like function d(·, ·) is often needed to
assess a notion of proximity between points and the separation between clusters.

Suppose that we know such a natural distance d, and assume that the points we want to cluster, say
X1, . . . , Xn, are i.i.d., drawn from an unknown distribution P , and take values in Rd. For k ≥ 1, designing k
meaningful classes with respect to d can be achieved via minimizing the so-called empirical distortion

Rn(c) =
1

n

n∑
i=1

min
j∈[[1,k]]

d(Xi, cj),

over all possible cluster centers or codebooks c = (c1, . . . , ck), with notation [[1, k]] for {1, 2, . . . , k}. This
results in a set of k codepoints. Clusters are then given by the sets of sample points that have the same
closest codepoint.

A classical choice of d is the squared Euclidean distance, leading to the standard k-means clustering
algorithm (see, e.g., [31]). However, some of the desirable properties of the Euclidean distance can be extended
to a broader class of dissimilarity functions, namely Bregman divergences. These distance-like functions,
denoted by dφ in the sequel, are indexed by strictly convex functions φ. Introduced by [7], they are useful in
a wide range of areas, among which statistical learning and data mining ([3], [11]), computational geometry
[34], natural sciences, speech processing and information theory [24]. Squared Euclidean, Mahalanobis,
Kullback-Leibler and L2 distances are all particular cases of Bregman divergences.

A Bregman divergence is not necessarily a true metric, since it may be asymmetric or fail to satisfy the
triangle inequality. However, Bregman divergences fulfill an interesting projection property which generalizes
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the Hilbert projection on a closed convex set [7]. They also satisfy non-negativity and separation, convexity
in the first argument and linearity (see [3], [34]). Moreover, Bregman divergences are closely related to
exponential families [3]. In fact, they are a natural tool to measure proximity between observations arising
from a mixture of such distributions. Consequently, clustering with Bregman divergences is particularly
well-suited in this case.

Clustering with Bregman divergences allows to state the clustering problem within a contrast minimization
framework. Namely, through minimizing Rn(c) = Pndφ(u, c), where Pn denotes the empirical distribution
associated with {X1, . . . , Xn} and Qf(u) means integration of f with respect to the measure Q, we intend
to find a codebook ĉn whose “real” distortion Pdφ(u, ĉn) is close to the optimal k-points distortion R∗k :=
infc Pdφ(u, c). The convergence properties of empirical distortion minimizers are now quite well understood
when the source distribution P is assumed to have a finite support [30, 21], even in infinite-dimensional cases
[4, 28]. In real data sets, the source signal is often corrupted by noise, violating in most cases the bounded
support assumption. In practice, data are usually pre-processed via an outlier-removal step that requires
an important quantity of expertise. From a theoretical viewpoint, this corruption issue might be tackled by
winsorizing or trimming classical estimators, or by introducing some new and robust estimators that adapt to
heavy-tailed cases. Such estimators can be based on PAC-Bayesian or Median of Means techniques [10, 8, 27]
for instance. In a nutshell, these estimators succeed in achieving sub-Gaussian deviation bounds under mild
tail conditions such as bounded variances and expectations, and they are also provably robust to a certain
amount of noise [27].

In the clustering framework, it is straightforward that the k-means procedure suffers from the same
drawback as the empirical mean: only one adversarial datapoint is needed to drive both the empirically
optimal codebook ĉn and its distortion arbitrarily far from the optimal. In fact we show that it is the case
with every possible Bregman divergence. Up to our knowledge, the only theoretically grounded attempt to
robustify clustering procedures is to be found in [16], where a trimmed k-means heuristic is introduced. See
also [19] for trimmed clustering with Mahalanobis distances. In some sense, this paper extends this trimming
approach to the general framework of clustering with Bregman divergences.

We introduce some notation, background and fundamental properties for trimmed clustering with Bregman
divergences in Section 2. This will lead to the description of our robust clustering technique, based on the
computation of a trimmed empirically optimal codebook ĉn,h, for a fixed trim level h.

Theoretical properties of our trimmed empirical codebook ĉn,h are exposed in Section 3. To be more
precise, we investigate convergence towards a trimmed optimal codebook c∗h in terms of distance and distortion,
showing for instance that the excess distortion achieves a sub-Gaussian convergence rate of O(1/

√
n) in terms

of sample size, under a mild bounded variance assumption. This shows that our procedure can be thought
of as robust whenever noisy situations are modeled as a signal corrupted with heavy-tailed additive noise.
We also assess robustness of ĉn,h in terms of Finite-sample Breakdown Point (see, e.g., [32]), showing that
our procedure can theoretically endure a positive proportion of adversarial noise. A precise bound on this
proportion is given, that illustrates the possible confusion between too small clusters and noise.

Then, a modified Lloyd’s type algorithm is proposed in Section 4, along with a heuristic to select both the
trim level h and the number k of clusters from data. The numerical performances of our algorithm are then
investigated. We compare our method to trimmed k-means [16], tclust [22], ToMATo [14], dbscan [25] and a
trimmed version of k-median [9]. Our algorithm with the appropriate Bregman divergence outperforms other
methods on samples generated from Gaussian, Poisson, Binomial, Gamma and Cauchy mixtures. We then
investigate the performances of our method on real datasets. First, we consider daily rainfall measurements
for January and September in Cayenne, from 2007 to 2017, and try to cluster data according to the month.
As suggested by [15], our method with the divergence associated with Gamma distributions turns out to be
the most accurate one. Second, we intend to cluster chunks of 5000 words picked from novels corresponding
to 4 different authors, based on stylometric descriptors [38, Section 10], corrupted by noise. Following [20],
we show that our method with Poisson divergence is particularly well adapted for this framework.

At last, proofs are gathered in Sections 5 and 6. Proofs of technical intermediate results are deferred to
the Appendix, along with some additional figures and results for Section 4.
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2 Clustering with trimmed Bregman divergence

2.1 Bregman divergences and distortion

A Bregman divergence is defined as follows.

Definition 1. Let φ be a strictly convex C1 real-valued function defined on a convex set Ω ⊂ Rd. The
Bregman divergence dφ is defined for all x, y ∈ Ω by

dφ(x, y) = φ(x)− φ(y)− 〈∇yφ, x− y〉.

Observe that, since φ is strictly convex, for all x, y ∈ Rd, dφ(x, y) is non-negative and equal to zero if and
only if x = y (see [35, Theorem 25.1]). Note that by taking φ : x 7→ ‖x‖2, with ‖ · ‖ the Euclidean norm on
Rd, one gets dφ(x, y) = ‖x− y‖2. Let us present a few other examples:

1. Exponential loss: φ : x 7→ ex, from R to R, leads to dφ(x, y) = ex − ey − (x− y)ey.

2. Logistic loss: φ : x 7→ x lnx+(1−x) ln(1−x), from [0, 1] to R, leads to dφ(x, y) = x ln x
y +(1−x) ln

(
1−x
1−y

)
.

3. Kullback-Leibler: φ : x 7→
∑d
`=1 x` lnx`, from the (d − 1)−simplex to R, leads to dφ(x, y) =∑d

`=1 x` ln x`
y`

.

For any compact set K ⊂ Ω, and x ∈ Ω, we also define

dφ(K,x) = min
y∈K

dφ(y, x) and dφ(x,K) = min
y∈K

dφ(x, y).

For every codebook c = (c1, c2, . . . , ck) ∈ Ω(k), dφ(x, c) is defined by dφ(x, c) = mini∈[[1,k]] dφ(x, ci). The main
property of Bregman divergences is that means are always minimizers of Bregman inertias, as exposed below.
For a distribution Q and a function f , we denote by Qf(u) the integration of f with respect to Q.

Proposition 2. [2, Theorem 1] Let P be a probability distribution, and let φ be a strictly convex C1 real-valued
function defined on a convex set Ω ⊂ Rd. Then, for any x ∈ Ω,

Pdφ(u, x) = Pdφ(u, Pu) + dφ(Pu, x).

As mentioned in [3], this property allows to design iterative Bregman clustering algorithms that are similar
to Lloyd’s algorithm. Let P be a distribution on Rd, and c a codebook. The clustering performance of c will
be measured via its distortion, namely

R(c) = Pdφ(u, c).

When only an i.i.d. sample Xn = {X1, . . . , Xn} is available, we denote by Rn(c) the corresponding empirical
distortion (associated with Pn). When P is a mixture of distributions belonging to an exponential family,
there exists a natural choice of Bregman divergence, as detailed in Section 4. Standard Bregman clustering
intends to infer a minimizer of R via minimizing Rn, and works well in the bounded support case [21].

2.2 Trimmed optimal codebooks

As for classical mean estimation, plain k-means is sensitive to outliers. An attempt to address this issue is
proposed in [16, 23]: for a trim level h ∈ (0, 1], both a codebook and a subset of P -mass not smaller than h
(trimming set) are pursued. This heuristic can be generalized to our framework as follows.

For a measure Q on Rd, we write Q� P (i.e., Q is a sub-measure of P ) if Q(A) ≤ P (A) for every Borel
set A. Let Ph denote the set Ph = { 1

hQ | Q � P,Q(Rd) = h}, and P+h = ∪s≥hPs. By analogy with [16],
optimal trimming sets and codebooks are designed to achieve the optimal h-trimmed k-variation,

Vk,h := inf
P̃∈P+h

inf
c∈Ω(k)

R(P̃ , c),
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where R(P̃ , c) = P̃ dφ(u, c). In other words, Vk,h is the best possible k-point distortion based on a normalized
sub-measure of P . Intuitively speaking, the h-trimmed k-variation may be thought of as the k-points optimal
distortion of the best ”denoised” version of P , with denoising level 1−h. For instance, in a mixture setting, if
P = γP0 + (1− γ)N , where P0 is a signal supported by k points and N is a noise distribution, then, provided
that h ≤ γ, Vk,h = 0.

If c is a fixed codebook, we denote by Bφ(c, r) (resp B̄φ(c, r)) the open (resp. closed) Bregman ball with

radius r,
{
x |
√
dφ(x, c) < r

}
(resp. ≤), and by rh(c) the smallest radius r ≥ 0 such that

P (Bφ(c, r)) ≤ h ≤ P (B̄φ(c, r)). (1)

We denote this radius by rn,h(c) when the distribution is Pn. Note that rn,h(c)2 is the Bregman divergence

to the dnhe dφ-nearest-neighbor of c in Xn. Now, if Ph(c) is defined as the set of measures P̃ in Ph that
coincide with P

h on Bφ(c, rh(c)), with support included in B̄φ(c, rh(c)), a straightforward result is the
following.

Lemma 3. For all c ∈ Ω(k), h ∈ (0, 1], P̃ ∈ Ph and P̃c ∈ Ph(c),

R(P̃c, c) ≤ R(P̃ , c).

Equality holds if and only if P̃ ∈ Ph(c).

This lemma is a straightforward generalisation of results in [16, Lemma 2.1], [23] or [13]. A short proof
is given in the Appendix, Section 7.1. As a consequence, for any codebook c ∈ Ω(k) we may restrict our
attention to sub-measures in Ph(c).

Definition 4. For c ∈ Ω(k), the h-trimmed distortion of c is defined by

Rh(c) = hR(P̃c, c),

where P̃c ∈ Ph(c).

Note that since R(P̃c, c) does not depend on the choice of P̃c whenever P̃c ∈ Ph(c), Rh(c) is well-defined.
As well, Rn,h(c) will denote the trimmed distortion corresponding to the distribution Pn. Another simple
property of sub-measures can be translated in terms of trimmed distortion.

Lemma 5. Let 0 < h < h′ < 1 and c ∈ Ω(k). Then

Rh(c)/h ≤ Rh′(c)/h′.

Moreover, equality holds if and only if P (Bφ(c, rh′(c))) = 0.

As well, this lemma generalizes previous results in [16, 23]. A proof can be found in Section 5.2. Lemma
7.1 and Lemma 5 ensure that for a given c, optimal P̃ in P+h for R(P̃ , c) can be found in Ph(c). Thus, the
optimal h-trimmed k-variation may be achieved via minimizing the h-trimmed distortion.

Proposition 6. For every positive integer k and 0 < h < 1,

hVk,h = inf
c∈Ω(k)

Rh(c).

This proposition is an extension of [16, Proposition 2.3]. In other words, Proposition 6 assesses the
equivalence between minimization of our robustified distortion Rh, and the original robust clustering criterion
depicted in [16] (extended to Bregman divergences). Thus, a good codebook in terms of trimmed k-variation
can be found by minimizing Rh.

Definition 7. An h-trimmed k-optimal codebook is any element c∗ in arg minc∈Ω(k) Rh(c).
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Under mild assumptions on P and φ, trimmed k-optimal codebooks exist.

Theorem 8. Let 0 < h < 1, assume that P‖u‖ < +∞, φ is C2 and strictly convex and F0 = conv(supp(P )) ⊂
Ω̊, that is, the closure of the convex hull of the support of P is a subset of the interior of Ω. Then, the set
arg minc∈Ω(k) Rh(c) is not empty.

A proof of Theorem 8 is given in Section 5.3. Note that Theorem 8 only requires P‖u‖ < +∞. This
can be compared with the standard squared Euclidean distance case, where P‖u‖2 < +∞ is required for
R : c 7→ P‖u − c‖2 to have minimizers. From now on we denote by c∗h a minimizer of Rh, and by ĉn,h a
minimizer of the empirical trimmed distortion Rn,h.

2.3 Bregman-Voronoi cells and centroid condition

Similarly to the Euclidean case, the clustering associated with a codebook c will be given by a tesselation of
the ambient space. To be more precise, for c ∈ Ω(k) and i ∈ [[1, k]], the Bregman-Voronoi cell associated with
ci is Vi(c) = {x | ∀j 6= i dφ(x, ci) ≤ dφ(x, cj)}. Some further results on the geometry of Bregman Voronoi
cells might be found in [34]. Since the Vi(c)’s do not form a partition, Wi(c) will denote a subset of Vi(c)
so that {W1(c), . . . ,Wk(c)} is a partition of Rd (for instance break the ties of the Vi’s with respect to the
lexicographic rule). Proposition 9 below extends the so-called centroid condition in the Euclidean case to our
Bregman setting.

Proposition 9. Let c ∈ Ω(k) and P̃c ∈ Ph(c). Assume that for all i ∈ [[1, k]], P̃c(Wi(c)) > 0, and denote by
m the codebook of the local means of P̃c. In other words, mi = P̃c(u1Wi(c)(u))/P̃c(Wi(c)). Then

Rh(c) ≥ Rh(m),

with equality if and only if for all i in [[1, k]], ci = mi.

Proposition 9 is a straightforward consequence of Proposition 2, that emphasizes the key property that
Bregman divergences are minimized by expectations (this is not the case for the L1 distance for instance). In
addition, it can be proved that Bregman divergences are the only loss functions satisfying this property [2].
In line with [3] for the non-trimmed case, Proposition 9 provides an iterative scheme to minimize Rh, that is
detailed in Section 4.

3 Theoretical results

3.1 Convergence of a trimmed empirical distortion minimizer

This section is devoted to investigate the convergence of a minimizer ĉn,h of the empirical trimmed distortion

Rn,h. Throughout this section φ is assumed to be C2, and F0 = conv(supp(P )) ⊂ Ω̊. We begin with a
generalization of [16, Theorem 3.4], assessing the almost sure convergence of optimal empirical trimmed
codebooks.

Theorem 10. Assume that P is absolutely continuous with respect to the Lebesgue measure and satisfies
P‖u‖p <∞ for some p > 2, then there exists c∗h an optimal codebook such that

lim
n→+∞

Rn,h(ĉn,h) = Rh(c∗h) a.e..

Moreover, up to extracting a subsequence, we have

lim
n→+∞

D(ĉn,h, c
∗
h) = 0 a.e.,

where D(c, c′) = minσ∈Σk maxi∈[[1,k]] |ci − c′σ(i)| and Σk denotes the set of all permutations of [[1, k]]. At last,

if c∗h is unique, then limn→+∞D(ĉn,h, c
∗
h) = 0 a.e. (without taking a subsequence).
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Note that, contrary to [16, Theorem 3.4], uniqueness of trimmed optimal codebooks is not required in
Theorem 10. A proof is given in Section 6.2. Interestingly, slightly milder conditions are required for the
trimmed distortion of ĉn,h to converge towards the optimal at a parametric rate.

Theorem 11. Assume that P‖u‖p < ∞, where p ≥ 2. Further, if R∗k,h denotes the h-trimmed optimal
distortion with k points, assume that R∗k−1,h −R∗k,h > 0. Then, for n large enough, with probability larger

than 1− n−
p
2 − 2e−x, we have

Rh(ĉn,h)−Rh(c∗h) ≤ CP√
n

(1 +
√
x).

The requirement R∗k−1,h −R∗k,h > 0 ensures that optimal codebooks will not have empty cells. Note that

if R∗k−1,h −R∗k,h = 0, then there exists a subset A of Rd satisfying P (A) ≥ h and such that the restriction of
P to A is supported by at most k− 1 points, that allows optimal k-points codebooks with at least one empty
cell. It is worth mentioning that Theorem 11 does not require a unique trimmed optimal codebook, and only
requires an order 2 moment condition for ĉn,h to achieve a sub-Gaussian rate in terms of trimmed distortion.
This condition is in line with the order 2 moment condition required in [8] for a robustified estimator of c∗

to achieve similar guarantees, as well as the finite-variance condition required in [10] in a mean estimation
framework. A proof of Theorem 11 is given in Section 6.3. To derive results in expectation, a technical
additional condition is needed.

Corollary 12. Assume that there exists a non-decreasing convex function ψ such that

sup
c∈B(0,t)∩F0

‖∇cφ‖ ≤ ψ(t).

Assume that P‖u‖p < ∞, with p ≥ 2, and let q = p/(p − 1) be the harmonic conjugate of p. If

P‖u‖qψq
(
k‖u‖
h

)
<∞, then

E (Rh(ĉn,h)−Rh(c∗h)) ≤ CP√
n
.

A proof of Corollary 12 is given in Section 6.4. Note that such a function ψ exists in most of the classical
cases. The requirement P‖u‖qψq(k‖u‖/h) roughly ensures that Pdqφ(u, ĉn,h) remains bounded whenever the
event described in Theorem 11 does not occur. The moment condition required by Corollary 12 might be
quite stronger than the order 2 condition of Theorem 11, as illustrated below.

1. In the k-means case φ(x) = ‖x‖2 and Ω = Rd, we can choose ψ(t) = 2t. The condition of Corollary 12
is satisfied for P‖u‖3 < +∞.

2. For φ(x) = exp(x), Ω = R, we may choose ψ(t) = exp(t). The condition of Corollary 12 may be written

for p = 2 as Pu2 exp
(

2k|u|
h

)
< +∞.

3.2 Robustness properties of trimmed empirical distortion minimizers

This section is devoted to discuss to what extent the trimming procedure we propose implies robustness of our
estimator to adversarial contamination. First we choose to assess robustness via the so-called Finite-sample
Breakdown Point [17], that seizes what proportion of adversarial noise can be added to a dataset without
making estimators getting arbitrarily large. To be more precise, for an amount s of adversarial points
{x1, . . . , xs}, we denote by Pn+s the empirical distribution associated with Xn ∪ {x1, . . . , xs} and by ĉn+s,h

a minimizer of c 7→ Rn+s,h(c). We may then define the Finite-sample Breakdown Point (FSBP) as follows:

B̂Pn,h := inf

{
s

n+ s
| sup
{x1,...,xs}

‖ĉn+s,h‖ = +∞

}
.
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To give an intuition, the standard mean (minimizer of the 1-trimmed empirical distortion for k = 1,
φ(u) = ‖u‖2) has breakdown point 1

n+1 , whereas h-trimmed means have breakdown point roughly 1− h (see,
e.g., [32, Section 3.2.5]). According to [40, Theorem 1], this is also the case whenever φ is strictly convex
(but still k = 1). In the case k > 1, as noticed in [16] for trimmed k-means, the breakdown point may be
much smaller than 1− h. Note that if an h-trimmed optimal codebook has a too small cluster, then adding
an adversarial cluster with greater weight might switch the roles between noise and signal, resulting in an
h-trimmed codebook that allocates one point to the adversarial cluster and trims the too small optimal
cluster. To quantify this intuition, we introduce the following discernability factor Bh.

Definition 13. Let h ∈]0, 1[, and, for b ≤ h, denote by h−b = (h − b)/(1 − b), h+
b = h/(1 − b). The

discernability factor Bh is defined as

Bh = sup

{
b ≥ 0 | b ≤ h ∧ (1− h) and min

j∈[[2,k]]
R∗
j−1,h−b

−R∗
j,h+

b

> 0

}
.

In fact, h − h−Bh = (1 − h)Bh/(1 − Bh) is the portion of mass in an optimal k-points h trimming set

that may be considered as noise by an optimal k − 1-points h−Bh trimming set. As exposed in the following
proposition, Bh is related to the minimum cluster weight of optimal h-trimmed codebooks.

Proposition 14. Assume that the requirements of Theorem 8 are satisfied. If R∗k−1,h − R∗k,h > 0, then
Bh > 0.

Moreover, for any j ∈ [[1, k]], if c∗,(j) is a j-points h-trimmed optimal codebook and pj,h = hminp∈[[1,j]] P̃c∗,(j)
(
Wp(c

∗,(j))
)
,

with P̃c∗,(j) ∈ Ph(c∗,(j)), then
Bh(1− (h− pj,h)) ≤ pj,h.

A proof of Proposition 14 is given in Section 5.4. Theorem 15 below makes connection between this
discernability factor and robustness properties of optimal k-points h-trimmed codebook, stated in terms of
Bregman radius.

Theorem 15. For ` ≥ 1, let R∗`,h denote the `-points h-trimmed optimal distortion. Assume that P‖u‖p <
+∞, for some p ≥ 2. Moreover, assume that R∗k−1,h −R∗k,h > 0. Let b < Bh, and assume that s/(n+ s) ≤ b.
Then, for n large enough, with probability larger than 1− n−

p
2 ,

max
j∈[[1,k]]

dφ (B(0, CP,b), ĉn+s,h,j) ≤ KP,b,

where CP,b and KP,b do not depend on n nor s.

A proof of Theorem 15 is given in Section 6.5. Theorem 15 guarantees that the proposed trimming
procedure is robust in terms of Bregman divergence, that is, the corrupted empirical distortion minimizer
belongs to some closed Bregman ball, provided the proportion of noise is smaller than the discernability factor
introduced in Definition 13. Unfortunately Bregman balls might not be compact sets if c 7→ dφ(x, c) is not a
proper map. For instance, with φ(x) = ex and Ω = R, we have ]−∞, 0] ⊂ {c | dφ(0, c) ≤ 1}. In the proper
map case, Theorem 15 entails that the FSBP is larger than Bh, with high probability, for n large enough. In
the other case, Corollary 16 below ensures that this breakdown point is positive, provided that p > 2.

Corollary 16. Assume that P‖u‖p < +∞, for p > 2. Under the assumptions of Theorem 15, there exists

c > 0 such that, almost surely, for n large enough, B̂Pn,h ≥ c.
In addition, if, for every x ∈ Ω, c 7→ dφ(x, c) is a proper map, then almost surely, for n large enough

B̂Pn,h ≥ Bh.

A proof of Corollary 16 can be found in Section 6.6. Corollary 16 guarantees that our trimmed Bregman
clustering procedure is asymptotically robust in the usual sense to a certain proportion of adversarial noise,
contrary to plain Bregman clustering whose FSBP is 1/(n+ 1). However this unknown authorized proportion
depends on both the choice of Bregman divergence and the discernability factor Bh. In the proper map case,

7



the FSBP is larger than Bh. Note that for x ∈ Ω, c 7→ dφ(x, c) is proper whenever φ is strictly convex, that
is the case for trimmed k-means [16]. For this particular Bregman divergence, the result of Corollary 16 is
provably tight.

Example 17. Let φ1 = ‖.‖2, φ2 = exp(−.), Ω = R, P = (1− p)δ−1 + pδ1, with p ≤ 1/2. Then, for φ = φj,

j ∈ {1, 2}, k = 2 and h > (1− p), we have Bh = h+p−1
p ∧ (1− h). Let Qγ,N = (1− γ)P + γδN . The following

holds.

• If (1 + p)h > 1, Bh = 1 − h, and for every γ > 1 − h, any sequence of optimal 2-points h-trimmed
codebook c∗2(Qγ,N ) for Qγ,N satisfies

lim
N→+∞

‖c∗2(Qγ,N )‖ = +∞.

• If (1 + p)h ≤ 1, then Bh = h+p−1
p , and, for γ = Bh, (−1, N) is an optimal 2-points h-trimmed codebook

for Qγ,N .

The calculations pertaining to Example 17 may be found in the Appendix, Section 8.1. Note that upper
bounds on the FSBP when n → +∞ may be derived for Example 17 using standard deviation bounds.
Example 17 illustrates the two situations that can be encountered when some adversarial noise is added,
depending on the balance between trim level and smallest optimal cluster. If the trim level is high enough
compared to the smallest mass of an optimal cluster (first case), then the breakdown point is simply 1− h,
that is the amount of points that can be trimmed. This corresponds to the breakdown point of the trimmed
mean (see, e.g., [40]). When the trim level becomes small compared to the smallest mass of an optimal cluster
(second case), optimal codebooks for the perturbed distribution can be codebooks that allocate one point to
the noise and trim the small optimal cluster, leading to a breakdown point possibly smaller than 1− h. This
corresponds to the situation exposed in Proposition 14. In both cases, the breakdown point is smaller than
Bh, thus, according to Corollary 16, it is equal to Bh.

As mentioned in [16] for the trimmed k-means, in practice, breakdown point and choice of the correct
number of clusters are closely related questions. This point is illustrated in Section 4.6, where the correct
number of clusters depends on what is considered as noise. From a theoretical viewpoint, this question is
tackled by Corollary 16 and Example 17, in the proper map case.

4 Numerical experiments

4.1 Description of the algorithm

The algorithm we introduce is inspired by the trimmed version of Lloyd’s algorithm [16], and is also a general-
ization of the Bregman clustering algorithm [3, Algorithm 1]. We assume that we observe {X1, . . . , Xn} = Xn,
and that the mass parameter h equals q

n for some positive integer q. We also let Cj denote the subset of
[[1, n]] corresponding to the j-th cluster.

Algorithm 1. Bregman trimmed k-means

• Input: {X1, . . . , Xn} = Xn, q, k.

• Initialization: Sample c1, c2,. . . ck from Xn without replacement, c(0) ← (c1, . . . , ck).

• Iterations: Repeat until stabilization of c(t).

– NN
(t)
q ← indices of the q smallest values of dφ(x, c(t−1)), x ∈ Xn.

– For j ∈ [[1, k]], C
(t)
j ←Wj(c

(t−1)) ∩NN (t)
q .

– For j ∈ [[1, k]], c
(t)
j ←

(∑
x∈C(t)

j
x
)
/
∣∣∣C(t)
j

∣∣∣.
8



• Output: c(t), C
(t)
1 , . . . , C

(t)
k .

As for every EM-type algorithm, initialization may be crucial. This point will not be theoretically
investigated in this paper. In practice, several random starts will be proceeded. More sophisticated strategies,
such as k-means ++ [1], could be an efficient way to address the initialization issue. An easy consequence of
Proposition 9 for the empirical measure Pn associated with Xn is the following. For short we denote by Rn,h
the trimmed distortion associated with Pn.

Proposition 18. Algorithm 1 converges to a local minimum of the function Rn,h.

It is worth mentioning that in full generality the output of Algorithm 1 is not a global minimizer of Rn,h.
However, suitable clusterability assumptions as in [26, 37, 29] might lead to further guarantees on such an
output.

4.2 Exponential Mixture Models

In this section we describe the generative models onto which Algorithm 1 will be applied. Namely, we consider
mixtures of distributions belonging to some exponential family. As presented in [3], a distribution from an
exponential family may be associated to a Bregman divergence via Legendre duality of convex functions. For
a particular distribution, the corresponding Bregman divergence is more adapted for the clustering than
other divergences [3].

Recall that an exponential family associated to a proper closed convex function ψ defined on an open
parameter space Θ ⊂ Rd is a family of distributions Fψ = {Pψ,θ | θ ∈ Θ}, such that, for all θ ∈ Θ, Pψ,θ,
defined on Rd, is absolutely continuous with respect to some distribution P0, with Radon-Nikodym density
pψ,θ defined for all x ∈ Ω by

pψ,θ(x) = exp(〈x, θ〉 − ψ(θ)).

The function ψ is called the cumulant function and θ is the natural parameter. For this model, the expectation
of Pψ,θ may be expressed as µ(θ) = ∇θψ. We define

φ(µ) = sup
θ∈Θ
{〈µ, θ〉 − ψ(θ)} .

By Legendre duality, for all µ such that φ is defined, we get φ(µ) = 〈θ(µ), µ〉 − ψ(θ(µ)), with θ(µ) = ∇µφ.
The density of Pψ,θ with respect to P0 can be rewritten using the Bregman divergence associated to φ as
follows:

pψ,θ(x) = exp(−dφ(x, µ) + φ(x)).

In the next experiments, we use Gaussian, Poisson, Binomial and Gamma mixture distributions and the
corresponding Bregman divergences. Table 1 presents the 4 densities together with the functions ψ and φ, as
well as the associated Bregman divergences dφ.
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Distribution pψ,θ(x) θ ψ(θ)

Gaussian 1√
2πσ2

exp
(
− (x−a)2

2σ2

)
a
σ2

σ2

2 θ
2

Poisson λx exp(−λ)
x! log(λ) exp(θ)

Binomial N !
x!(N−x)!q

x(1− q)N−x log
(

q
1−q

)
N log (1 + exp(θ))

Gamma
xk−1 exp(− xb )

Γ(k)bk
− k
µ k log

(
− 1
θ

)
Distribution µ φ(µ) dφ(x, µ)
Gaussian a 1

2σ2µ
2 1

2σ2 (x− µ)2

Poisson λ µ log(µ)− µ x log
(
x
µ

)
− (x− µ)

Binomial Nq µ log
(
µ
N

)
+ (N − µ) log

(
N−µ
N

)
x log

(
x
µ

)
+ (N − x) log

(
N−x
N−µ

)
Gamma kb −k + k log

(
k
µ

)
k
µ

(
µ log

(
µ
x

)
+ x− µ

)
Table 1: Exponential family distributions and associated Bregman divergences.

As emphasized in [3], clustering with Bregman divergence may be thought of as a hard-threshold model-
based clustering scheme, where components of the model are assumed to belong to some exponential family.
The following Remark 19 gives an illustration of this connection in a simple case.

Remark 19. We let k = 2, θ1 6= θ2, z∗1 , . . . , z
∗
n be hidden labels in {1, 2}, and X1, . . . , Xn be an independent

sample such that Xi has density
1z∗i =1pψ,θ1(x) + 1z∗i =2pψ,θ2(x),

where pψ,θj (x) = exp(−dφ(x, µj) + φ(x)), for j ∈ {1, 2}. The parameters of this model are (z∗i )i∈[[1,n]], θ1, θ2.
This model slightly differs from a classical mixture model since the labels are not assumed to be drawn at
random.

Let zi,j, i ∈ [[1, n]], j ∈ {1, 2}, denote assignment variables, that is such that zi,j = 1 if Xi is assigned
to class j and 0 otherwise. Also denote by m =

∑n
i=1 zi,1, n − m =

∑n
i=1 zi,2, X̄1 =

∑n
i=1Xizi,1/m,

X̄2 =
∑n
i=1Xizi,2/(n−m). Maximizing the log-likelihood of the observations boils down to maximizing in

(zi,j)i,j:

ln

n∏
i=1

exp
[
−zi,1dφ

(
Xi, X̄1

)
− zi,2dφ

(
Xi, X̄2

)
+ φ(Xi)

]
= −

n∑
i=1

zi,1dφ
(
Xi, X̄1

)
−

n∑
i=1

zi,2dφ
(
Xi, X̄2

)
+

n∑
i=1

φ(Xi).

On the other hand, since optimal codebooks are local means of their Bregman-Voronoi cells (Proposition
9), minimizing Pndφ(., c) is equivalent to minimizing

∑n
i=1 zi,1dφ

(
Xi, X̄1

)
+
∑n
i=1 zi,2dφ

(
Xi, X̄2

)
. Thus,

clustering with Bregman divergences is the same as maximum likelihood clustering based on this model. Further,
if we assume that µ1 and µ2 are known, then the Bregman assignment rule x 7→ arg minj∈{1,2} dφ(x, µj) is
the Bayes rule.

4.3 Calibration of trimming parameter and number of clusters

When the number of clusters k is known beforehand, we propose the following heuristic to select the trimming
parameter q, that is, the number of points in the sample which are assigned to a cluster and not considered as
noise. We let q vary from 1 to the sample size n, plot the curve q 7→ cost[q] where cost[q] denotes the optimal
empirical distortion at trimming level q, and choose q? by seeking for a cut-point on the curve. Indeed, when
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the parameter q gets large enough, it is likely that the procedure begins to assign outliers to clusters, which
dramatically deprecates the empirical distortion.

Whenever both k (number of clusters) and q are unknown, we propose to select these two parameters
following the same principle as the algorithm tclust [22]. First we draw, for different values of k, the cost
curves q 7→ costk[q], for 1 ≤ q ≤ n. For each curve, the q’s for which there is an abrupt slope increase can
correspond to cases where outliers are assigned to clusters, or where some small clusters are included in the
set of signal points (if k is chosen too small). In the sequel, we split [[1, n]] into several bins [[qj , qj+1]]. On
every such bin, we select a k that provides a significant cost decrease, as well as the q yielding a slope jump.
Note that this heuristic may result in several possible pairs (k, q), corresponding to different point of views,
depending on what data point are considered as outliers or not. An illustration of this fact is given in Section
4.6, where outliers consist in small additional clusters.

4.4 Comparative performances of Bregman clustering for mixtures with noise

To assess the good behavior of our procedure with respect to outliers, we replicate some experiments in [3],
with additional noise. We consider mixture models of Gaussian, Poisson, Binomial, Cauchy and Gamma
distributions in R2. Namely, we sample 100 points from X = (X1, X2), where X1 and X2 are independent,
distributed according to a mixture distribution with 3 components. In each case, the means of the components
are set to 10, 20, 40. The weights of the components are (1/3, 1/3, 1/3). We also consider a mixture of 3
different components in R2: Gamma, Gaussian and Binomial, with respective means 10, 20 and 40. In the
Gaussian case, the standard deviations of the components are set to 5, in the Binomial case, the number of
trials are set to 100 and in the Gamma case the shape parameters are set to 40. Since Gaussian and Cauchy
distributions take negative values, we force the points from each components to lie respectively in the squares
[0, 20]2, [0, 40]2 and [0, 80]2. 20 outliers are added, uniformly sampled on [0, 60]2.

First, we use Algorithm 1 with 20 random starts for each of these noisy mixture distributions, using the
corresponding divergence, and also make the same experiment for the Cauchy distribution with squared
Euclidean distance. For these procedures, we select k and q following the heuristic exposed in Section 4.3.
According to Figure 1, this leads to the choice k = 3, q = 104 for the Gaussian mixture and q = 110 for the
other mixtures. The resulting partitions for the selected parameters are depicted in Figure 2.

Gaussian mixture Poisson mixture Cauchy mixture

Figure 1: Cost curves for selection of k and q.

Then we compare the proposed method, in every case, to clustering with other Bregman divergences
(including trimmed k-means [16]), trimmed k-median [9], tclust [22], and density/distance functions-based
clustering schemes such as a robustified version of the classical single linkage procedure, the ToMATo algorithm
[14] with the inverse of the distance-to-measure function [12] and dbscan [25]. Details concerning these
methods are available in the Appendix, Section 11.1.1. Quality of partitions is assessed via the normalized
mutual information (NMI, [36]) with respect to the ground truth clustering, where the “noise” points are
assigned to one same cluster.

This experiment is repeated 1000 times, the results in terms of NMI’s are exposed in Figure 3: Algorithm
1 refers to our method with q = 110 and k = 3. For the Cauchy and heterogeneous distributions, the Gaussian
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Gaussian Poisson Cauchy

Figure 2: Clustering associated to the selected parameters k and q, where cluster 0 refers to noise.

Figure 3: Comparison of robust clustering methods, for mixtures of Binomial, Gamma, Gaussian, Poisson,
Cauchy, and heterogeneous distributions.

divergence is less efficient, since the 3 clusters have increasing variances. This divergence is well suited for
clusters with the same variance, the Gamma and Poisson divergence for data with increasing variance, the
Binomial divergence for data with increasing and then decreasing variances, for the proper parameter N . It
is also possible to choose a different Bregman divergence for the different coordinates. Further explanations
and numerical illustrations are available in Section 11.2. Choosing between a Gamma or a Poisson divergence
depends on the knowledge on the data, as illustrated in the following section with two different real datasets.
Note that Algorithm 1 with the proper Bregman divergence (almost) systematically outperforms other
clustering schemes. This point is confirmed in Section 11.1.2 for large datasets (n = 12000).

4.5 Daily waterfall data

We consider the daily rainfalls (expressed in mm) for january (241 data points) and september (88 data
points), from 2007 to 2017, in Cayenne/Rochambeau. Datapoints are defined as the amount of rain within
a rainy day. According to [15], the positive daily rainfalls within one month are often modeled as Gamma
distribution with parameters depending on the month. We experiment Algorithm 1 with the Gamma and
the Gaussian Bregman divergences (the latter is plain trimmed k-means). The NMI’s between the true
labels (i.e. the month from which the datapoint was extracted) and the labels returned by the algorithm for
different trimming parameters q are depicted in the right panel of Figure 4. When q is small, the Gaussian
divergence yields better NMI’s than Gamma. In this case, outliers are considered as a significant cluster in
the computation of the NMI. Thus, the “outlier” cluster associated with Gaussian divergence seems closer
to a real cluster than the Gamma one. When q is large enough (small amount of outliers), the clustering
associated with Gamma divergence outperforms the Gaussian clustering. The left panel of Figure 4 depicts
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the associated clustering, for q = 300. Of course we cannot expect a perfect clustering since the true clusters
are not well-separated. However, it seems that the Gamma divergence clustering allows to consider small
precipitations as outliers, contrary to the Gaussian case. This point can be further exploited to choose in
practice an appropriate Bregman divergence for to the data to be clustered. For instance, in the case of
positive data points, if noise points are expected close to zero, then a Poisson or Gamma divergence might be
more suitable than a Gaussian one. Again, the choice of an appropriate Bregman divergence depends on
prior knowledge on the structure of data and noise.

Figure 4: From left to right: Clustering with Gaussian divergence and q = 300. Clustering with Gamma
divergence and q = 300. NMI as a function of the trimming parameter q.

4.6 Authors stylometric clustering

In this Section we perform clustering on texts based on stylometric descriptors exposed in [38, Section 10].
To be more precise, raw data consist in 26 annotated texts from 4 authors (Mark Twain, Sir Arthur Conan
Doyle, Nathaniel Hawthorne and Charles Dickens). These texts are available as supplementary material for
[38], and are framed as a sequence of lemmatized string characters (for instance ”be” and ”is” are instances
of the same lemma ”be”). Following [38], we base our stylometric comparison on lemmas corresponding
to nouns, verbs and adverbs, and split every original text in chunks of size 5000 of such lemmas that will
be considered as data points. Then the 50 overall most frequent lemmas are chosen, and every chunk is
described as the vector of counts of these lemmas within it. Thus, signal points consists of 189 count vectors
with dimension 50, originating from 4 different authors.

The signal points are corrupted using the same process for the 8 State of the Union Addresses given by
Barack Obama (available in obama dataset from package CleanNLP in R), resulting in 5 additional points,
and for the King James Version of the Bible (available on Project Gutenberg) that we preliminary lemmatize
using the CleanNLP package, resulting in 15 more additional points. Our final dataset consists of the 189
signal points and the 20 outlier points described above. Slightly anticipating, these 20 outliers might also be
thought of as two additional small clusters with size 5 and 15.

Since every individual lemma count can be modeled as a Poisson random variable in the random character
sequence model [20], the appropriate Bregman divergence for this dataset is likely to be the Poisson divergence.
In the following, we compare our method with Poisson divergence to trimmed k-means, trimmed k-medians,
and t-clust.

In Figure 5, we draw the cost of our method as a function of q, for different cluster numbers k. According
to this figure, several choices of k and q are possible. For values of q up to 175, the significant jumps in
the risk function are for k = 3 and k = 6. For k = 3, the slope heuristic yields q = 175, whereas for k = 6
the slope heuristic suggests that no data points might be considered as outliers. When q ranges between
175 and 193, the significant distortion jumps are for k = 4 and k = 6, another possible choice is then k = 4
and q = 188. When q is larger than 193, the only significant jump is for k = 6. To summarize, the pairs
(k = 3, q = 175), (k = 4, q = 188), (k = 6, q = n = 209) seem reasonable. These three solutions correspond to
the 3 natural trimmed partitions: clustering only 3 authors writings (Twain writings being considered as
outliers), clustering the 4 authors writings and removing the outliers from the Bible and B. Obama addresses,
and at last clustering the six sources of writings (none of them being considered as noise). The two latter
situations are depicted in Figure 6, in the 2-dimensional basis given by a linear discriminant analysis of the
proposed clustering.
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Figure 5: Cost curves for authors clustering with Poisson divergence.

Figure 6: Author stylometric clustering with Poisson divergence.

For k = 6 and q = 209, our clustering globally retrieves the corresponding author. When k = 4, q = 188 is
chosen, outliers are correctly identified and only one sample text from C. Dickens is labeled as outlier. The
sample points seem on the whole well classified, that is assessed by a NMI of 0.7347. This performance is
compared with the other clustering algorithms in Table 2. Note that values of q have been chosen to minimize
the NMI, leading to q = 190 for trimmed k-means, q = 202 for trimmed k-medians, and q = 184 for tclust.
The NMI curves may be found in the Appendix, Section 11.

Method trimmed 4-means trimmed 4-medians tclust Poisson
NMI 0.5336 0.4334 0.4913 0.7347

Table 2: Comparison of robust clustering methods for Author retrieving.

The associated partitions for k-median and tclust are depicted in Figure 7, showing that these two
methods fail in correctly identifying outliers.
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Figure 7: Author stylometric clustering with trimmed k-median and tclust.

5 Proofs for Section 2

5.1 Intermediate results

The proofs of Theorem 8, Theorem 10 and Theorem 11 make extensive use of the following lemmas, whose
proofs are deferred to the Appendix, Section 9. The first of them is a global upper bound on the radii rh(c),
when c is in a compact subset of Ω.

Lemma 20. Assume that φ is C2 and F0 = conv(supp(P )) ⊂ Ω̊. Then, for every h ∈ (0, 1) and K > 0,
there exists r+ <∞ such that

sup
c∈F0∩B̄(0,K),s≤h

rs(c) ≤ r+.

As a consequence, if c is a codebook with a codepoint cj0 ∈ F0 satisfying ‖cj0‖ ≤ K and s ≤ h, then rs(c) ≤ r+.

Next, the following lemma makes connections between the difference of Bregman divergences and distance
between codebooks.

Lemma 21. Assume that F0 ⊂ Ω̊ and φ is C2 on Ω. Then, for every K > 0, there exists CK > 0 such that
for every c and c′ in B̄(0,K) ∩ F0, and x ∈ Ω,

|dφ(x, c)− dφ(x, c′)| ≤ CKD(c, c′) (1 + ‖x‖) ,

where D(c, c′) = minσ∈Σk maxj∈[[1,k]] |cj − c′σ(j)| (cf. Theorem 10).

We will also need a continuity result on the function (s, c) 7→ Rs(c).

Lemma 22. Assume that F0 ⊂ Ω̊, P‖u‖ <∞ and φ is C2 on Ω. Then the map (s, c)→ Rs(c) is continuous.
Moreover, for every h ∈ (0, 1), ε > 0 and K > 0, there is s0 < h such that

∀s0 < s < h, sup
c∈(F0∩B̄(0,K))

(k)

Rh(c)−Rs(c) ≤ ε.

5.2 Proof of Lemma 5

Set 0 < h < h′ < 1, and recall that F−1
c (u) = r2

u(c) denotes the u-quantile of the random variable dφ(X, c)
for X ∼ P and u ∈ [0, 1]. Since F−1

c is non-decreasing, we may write

Rh(c)

h
=

∫ 1

0

F−1
c (hu)du ≤

∫ 1

0

F−1
c (h′u)du =

Rh′(c)

h′
.
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Equality holds if and only if F−1
c (hu) = F−1

c (h′u) for almost all u ∈ [0, 1]. Since F−1
c is non-decreasing, Lc :=

liml′→0 F
−1
c (l′) exists. Moreover, for l < h′, F−1

c (hu) = F−1
c (h′u) a.s., and F−1

c (l) = limn→∞ F−1
c ((h/h′)nl) =

Lc, that is, r2
l (c) = liml′→0 r

2
l′(c). From (1), it follows that P (Bφ(c, rh′(c))) = 0. Conversely, equality holds

when P (Bφ(c, rh′(c))) = 0.

5.3 Proof of Theorem 8

The intuition behind the proof of Theorem 8 is that optimal codebooks satisfy a so-called centroid condition,
namely their code points are means of their trimmed Bregman-Voronoi cells. Thus, provided that optimal
Bregman-Voronoi cells have enough weight, the assumption P‖u‖ < +∞ leads to a bound on the norm of
these code points. This idea is summarized by the following lemma, that is also a key ingredient in the proofs
of the results of Section 3.

Lemma 23. Assume that the requirements of Theorem 8 are satisfied. For every k ≥ 2, if R∗k−1,h−R∗k,h > 0,
then

α := min
j∈[[2,k]]

R∗j−1,h −R∗j,h > 0.

Moreover there exist h−, h+ ∈ (0, 1) with h ∈ (h−, h+) such that, for every j ∈ [[2, k]], R∗j−1,h− −R
∗
j,h+ ≥ α

2 .

For every b ∈ (0, h ∧ (1 − h)], set h−b = (h − b)/(1 − b) and h+
b = h/(1 − b). Let b be such that

minj∈[[2,k]]R
∗
j−1,h−b

− R∗
j,h+

b

> 0, and, for κ1 in (0, 1), set b1 = κ1b. Then, for every s ∈ [h−b1 , h
+
b1

] and

j ∈ [[1, k]], there exists a minimizer c∗j,s of Rj,s satisfying

∀p ∈ [[1, j]], ‖c∗j,s,p‖ ≤
P‖u‖

b(1− h)(1− κ1)
.

The proof of Lemma 23 is deferred to the Appendix, Section 9. When R∗k−1,h − R∗k,h > 0, Theorem 8
follows from Lemma 23. In the case where R∗k−1,h −R∗k,h = 0, there exists a set A with P (A) ≥ h such that
the restriction of P to A is supported by at most k− 1 points. These k− 1 points provide an optimal k-points
codebook. Hence the result of Theorem 8.

5.4 Proof of Proposition 14

The first part of Proposition 14 follows from Lemma 23. Indeed, if h− and h+ are such that minj∈[[2,k]]R
∗
j−1,h−−

R∗j,h+ > 0, then for b small enough so that h− ≤ h−b < h < h+
b ≤ h+, we have minj∈[[2,k]]R

∗
j−1,h−b

−R∗
j,h+

b

≥
minj∈[[2,k]]R

∗
j−1,h− −R

∗
j,h+ > 0.

We turn to the second part of Proposition 14. Let c∗,(j) be a j-points h-trimmed optimal codebook, and
pj,h = hminl∈[[1,j]] P̃c∗,(j)

(
Wl(c

∗,(j))
)
, where P̃c∗,(j) ∈ Ph(c∗,(j)). Let τj,h denote the [0, 1]-valued function

such that hP̃c∗,(j) = Pτj,h. Assume that pj,h = Pτj,h(u)1W1(c∗,(j))(u), without loss of generality. Then we
have

R∗j,h ≥
k∑
l=2

Pdφ(u, c
∗,(j)
l )(u)τj,h(u)1Wl(c∗,(j))(u) ≥ R∗j−1,h−pj,h .

Thus, (h−Bh)/(1−Bh) ≥ h− pj,h, that entails (1− (h− pj,h))Bh ≤ pj,h.

6 Proofs for Section 3

6.1 Intermediate results

Theorem 10 and 11 require some additional probabilistic results that are gathered in this subsection. Some of
them are applications of standard techniques, their proofs are thus deferred to the Appendix, Section 10, for
the sake of completeness. We begin with deviation bounds.
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Proposition 24. With probability larger than 1− e−x, we have, for k ≥ 2,

sup
c∈(Rd)(k),r≥0

∣∣(P − Pn)1Bφ(c,r)

∣∣ ≤ C√k(d+ 1) log(k)

n
+

√
2x

n
, (2)

sup
c∈(Rd)(k),r≥0

∣∣(P − Pn)1∂Bφ(c,r)

∣∣ ≤ C√k(d+ 1) log(k)

n
+

√
2x

n
,

where ∂Bφ(c, r) denotes
{
x | dφ(x, c) = r2

}
and C denotes a universal constant. Moreover, if r+ and K are

fixed, and P‖u‖2 ≤M2
2 <∞, we have, with probability larger than 1− e−x,

sup
c∈(B̄(0,K)∩F0)

(k)
,r≤r+

∣∣(P − Pn)dφ(., c)1Bφ(c,r)

∣∣ ≤ (r+)2

[
CK,r+,M2

√
kd log(k)√

n
+

√
2x

n

]
, (3)

sup
c∈(B̄(0,K)∩F0)

(k)
,r≤r+

∣∣(P − Pn)dφ(., c)1∂Bφ(c,r)

∣∣ ≤ (r+)2

[
CK,r+,M2

√
kd log(k)√

n
+

√
2x

n

]
,

where we recall that conv(supp(P )) = F0 ⊂ Ω̊.

A key intermediate result shows that, on the probability events defined above, empirical risk minimizers
must have bounded codepoints.

Proposition 25. Assume that P‖u‖p < +∞ for some p ≥ 2, and let b > 0 be such that minj∈[[2,k]]R
∗
j−1,h−b

−
R∗
j,h+

b

> 0, where h−b = (h− b)/(1− b), h+
b = h/(1− b), as in Lemma 23. Let κ2 < 1, and denote by b2 = κ2b.

Then there exists CP,h,k,κ2,b such that, for n large enough, with probability larger than 1− n−
p
2 , we have, for

all j ∈ [[2, k]], and i ∈ [[1, j]],

sup
h
b
−
2
≤s≤h

‖ĉj,s,i‖ ≤ CP,h,k,κ2,b,

where ĉj,s denotes a j-points empirical risk minimizer with trimming level s.

To prove Theorem 10, a more involved version of Markov’s inequality is needed, stated below.

Lemma 26. If P‖u‖p < ∞ for some p ≥ 2, then there exists some positive constant C such that with
probability larger than 1− n−

p
2 , Pn‖u‖ ≤ C.

At last, a technical lemma on empirical quantiles of Bregman divergences will be needed.

Lemma 27. Let (Pn)n∈N be a sequence of probabilities that converges weakly to a distribution P . Assume
that supp(Pn) ⊂ supp(P ) ⊂ Rd, F0 = conv(supp(P )) ⊂ Ω̊ and φ is C2 on Ω. Then, for every h ∈ (0, 1) and
K > 0, there exists K+ > 0 such that for every c ∈ Ω(k) satisfying |ci| ≤ K for some i ∈ [[1, k]] and every
n ∈ N,

rn,h(c) ≤ r+ =
√

4(2K +K+) sup
c∈F0∩B̄(0,2K+K+)

‖∇cφ‖.

6.2 Proof of Theorem 10

The proof of Theorem 10 is an adaptation of the proof of [16, Theorem 3.4]. First note that since φ is strictly
convex and continuous, ψ : x 7→ φ(x)− 〈x, a〉+ b is also strictly convex and continuous, for every a, b. Thus
ψ−1({0}) is a closed set. Moreover, since ψ is strictly convex, any line that contains 0 contains at most two
points of ψ−1({0}). Thus, the Lebesgue measure of ψ−1({0}) is 0. Since P is absolutely continuous, it follows
that boundaries of Bregman balls have P -mass equal to 0.
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According to Proposition 25, provided that P‖u‖p < +∞, for some p > 2, there exists CP > 0 such that
for some N ∈ N,

∑
n≥N P (maxi∈[[1,k]] ‖ĉn,h,i‖ > CP ) <∞. Thus, the Borel-Cantelli Lemma ensures that, a.s.

for n large enough, for every i ∈ [[1, k]], ‖ĉn,h,i‖ ≤ CP . According to the Skorokhod’s representation theorem

in the Polish space Rd, there exists a measured space (Ω̃, F̃ , P̃ ) and a sequence of random variables (Xn)n∈N
along with a random variable X on (Ω̃, F̃ , P̃ ) such that Xn ∼ Pn, X ∼ P and Xn converges to X P̃ -a.s.

Denote by c∗ a minimizer of c 7→ VP
φ,h(c), r′n = rn,h(c∗) and τ ′n a [0, 1]-valued measurable function such

that hPn,c∗,h = Pnτ
′
n, that is, such that Pnτ

′
n(u) = h and

1Bφ(c∗,r′n) ≤ τ ′n ≤ 1B̄φ(c∗,r′n).

According to Lemma 27, with K = ‖c∗1‖ for instance, it comes r′n ≤ r+, for some finite r+. Thus, up to
extracting a subsequence, we may assume that r′n → r′0 for some r′0 ≤ r+. Moreover, it holds

|dφ(Xn, c
∗)− dφ(X, c∗)| ≤ |φ(Xn) − φ(X)| + max

j∈[[1,k]]
‖∇c∗jφ‖|Xn − X|. (4)

Thus, dφ(Xn, c
∗) → dφ(X, c∗) a.e. when n → ∞. As a consequence, τ ′n(Xn) → 1Bφ(c∗,r′0)(X) P̃ -a.e. The

dominated convergence theorem yields h = Pnτ
′
n(u)→ P (Bφ(c∗, r′0)). Thus, 1Bφ(c∗,r′0) = τ0 P -a.e where τ0

denotes the trimming set associated with c∗ and P . Moreover, since τ ′n(Xn)dφ(Xn, c
∗) is bounded by r+ and

converges to τ0(X)dφ(X, c∗) a.e., the dominated convergence theorem entails

Rn,h(ĉn) ≤ Rn,h(c∗) ≤ E [τ ′n(Xn)dφ(Xn, c
∗)]→ E [τ0(X)dφ(X, c∗)] .

Thus, lim supn→∞Rn,h(ĉn) ≤ R∗k,h.

Since, for n ≥ N and every i ∈ [[1, k]], ‖ĉn,i‖ ≤ CP , we have ĉu(n),i → ci for some ci ∈ F0 ∩ B̄(0, CP ),
where ĉu(n) is a subsequence. Set c = (c1, c2, . . . , ck). Again, according to Lemma 27 with K = CP , it comes
that ru(n),h(ĉu(n))→ r for some r ≥ 0. Therefore, from (4), Lemma 21 and the continuity of P ,

lim
n→∞

τu(n)(Xu(n)) = 1Bφ(c,r)(X) a.e.,

where τu(n) = 1Bφ(ĉu(n),ru(n),h(ĉu(n))). According to the dominated convergence theorem, we have h =
P (Bφ(c, r)) = Pu(n)(τu(n)(u)). Again, the dominated convergence theorem implies that

lim inf
n→∞

Ru(n),h(ĉu(n)) ≥ P1Bφ(c,r)(u)dφ(u, c) = Rh(c) ≥ R∗k,h.

As a consequence, limn→∞Ru(n),h(ĉu(n)) = Rh(c) = R∗k,h and c is an optimal trimmed codebook. Since,
given a subsequence of (ĉn)n∈N, we may find a subsequence of indices u(n) such that limn→∞Ru(n),h(ĉu(n)) =
R∗k,h, we deduce that limn→+∞Rn,h(ĉn) = R∗k,h.

Now assume that c∗h is unique. Then, for every subsequence of (ĉn)n∈N, there exists u(n) such that
ĉu(n) → c = c∗h. Thus, a.e., ĉn → c∗h.

6.3 Proof of Theorem 11

For h > 0 and a codebook c, we denote by τh(c) the trimming function 1Bφ(c,rh(c)) + δh(c)1∂Bφ(c,rh(c)), so

that Pτh(c)/h ∈ Ph(c). We also denote by τ̂h(c) its empirical counterpart. Note that δh(c) and δ̂h(c) are
smaller than 1. It follows that

|Pτh(c)− P τ̂h(c)| = |(P − Pn)τ̂h(c)|

≤ |(P − Pn)Bφ(c, rn,h(c))|+ δ̂(c)|(P − Pn)∂Bφ(c, rn,h(c))|
≤ |(P − Pn)Bφ(c, rn,h(c))|+ |(P − Pn)∂Bφ(c, rn,h(c))|.

As well, we bound |Pnτh(c)− Pnτ̂h(c)| the same way. Combining Lemma 23 and Proposition 25, we consider
a probability event onto which, for all j, ‖ĉn,j‖ ≤ CP and supc∈(F0∩B̄(0,CP ))(k) rn,h(c) ∨ rh(c) ≤ r+. This
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occurs with probability at least 1− n−p/2 for CP and r+ large enough (more details are given in Appendix,
Section 10.2). We also assume that the deviation bounds of Proposition 24 hold, with parameter CP and r+,
to define a global probability event with mass larger than 1− n−p/2 − 2e−x. On this event, we have

Rh(ĉn)−R∗k,h = Pdφ(u, ĉn)τ̂h(ĉn)− Pdφ(u, c∗)τ̂h(c∗)
+ Pdφ(u, ĉn)(τh(ĉn)− τ̂h(ĉn)− (Pdφ(u, c∗)(τh(c∗)− τ̂h(c∗))

≤ 2 sup
c∈(F0∩B̄(0,CP ))(k),r≤r+

|(P − Pn)dφ(u, c)1Bφ(c,r)(u)|

+ 2(r+)2 sup
c∈Ω(k),r≥0

|(P − Pn)Bφ(c, r)|

+ 2 sup
c∈(F0∩B̄(0,CP ))(k),r≤r+

|(P − Pn)dφ(u, c)1∂Bφ(c,r)(u)|

+ 2(r+)2 sup
c∈Ω(k),r≥0

|(P − Pn)∂Bφ(c, r)|.

Therefore, Rh(ĉn)−R∗k,h ≤ CP (1 +
√
x)/
√
n, for some constant CP .

6.4 Proof of Corollary 12

Denote by A the intersection of the probability events described in Proposition 25, that has probability larger
than 1− n−

p
2 . Decomposing the excess risk as in the proof of Theorem 11 yields

Rh(ĉn)−R∗k,h = (Rh(ĉn)−R∗k,h)1A + (Rh(ĉn)−R∗k,h)1Ac .

According to Proposition 24, we have E((Rh(ĉn) − R∗k,h)1A) ≤ CP /
√
n. It only remains to bound the

expectation of the second term. This is the aim of the following Lemma, whose proof is deferred to the
Appendix, Section 10.5.

Lemma 28. Assume that P‖u‖qψq(k‖u‖/h) <∞. Then there exists a constant Cq such that ERqh(ĉn) ≤ CqP .

Equipped with Lemma 28, we may bound E(Rh(ĉn)1Ac) as follows, using Hölder’s inequality,

E(Rh(ĉn)1Ac) ≤ (P(Ac))
1
p (ERqh(ĉn))

1
q ≤ CP /

√
n.

6.5 Proof of Theorem 15

A key ingredient of the proof of Theorem 15 is the following lemma, ensuring that every cell of a trimmed
and corrupted empirical distortion minimizer contains a minimal portion of signal points. In what follows,
the τ̂ ’s are the trimming function with respect to Pn (uncorrupted sample), as defined in Section 6.3.

Lemma 29. Assume that Bh > 0 (see Definition 13), let b < Bh and b < b1 < Bh such that b = κ1b1, with
κ1 < 1. Denote by β1 = (1 − κ1)b1 [h ∧ (1− h)] /2. Assume that s/(n + s) ≤ b. Then, for n large enough,
with probability larger than 1− n−

p
2 , we have, for all j ∈ [[1, k]],

Pn

(
τ̂h−b

(ĉn+s,h)1Wj(ĉn+s,h)

)
≥ β1.

The proof of Lemma 29 is postponed to the Appendix, Section 10.6. We are now in a position to prove
Theorem 15.

Proof of Theorem 15. We adopt the same notation and assumptions as in the proof of Lemma 29. We may
write

(n+ s)R̂n+s,h(ĉn+s,h) ≤ n
(
R∗
h+
b +βn

+ αn

)
.
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On the other hand, recall that for all j ∈ [[1, k]], Pn

(
τ̂h−b

(ĉn+s,h)1Wj(ĉn+s,h)

)
≥ β1, and denote by m =

(m1, . . . ,mk) the codebook such that

mj =
[
Pn(uτ̂h−b

(ĉn+s,h)1Wj(ĉn+s,h))
]
/
[
Pn

(
τ̂h−b

(ĉn+s,h)1Wj(ĉn+s,h)

)]
.

Then, for all j, ‖mj‖ ≤ Pn‖u‖/β1 ≤ CP . Using Proposition 2, we may write

R̂n+s,h(ĉn+s,h) ≥ nR̂n,h−b (ĉn+s,h)/(n+ s)

≥ n

n+ s

 k∑
j=1

Pn

(
τ̂h−b

(ĉn+s,h)1Wj(ĉn+s,h)

)
dφ(mj , ĉn+s,h,j)

+ R̂n,h−b
(m)

 .
The last term satisfies

R̂n,h−b
(m) ≥ Pndφ(u,m)τ̂h−b

(m) ≥ Pndφ(u,m)τh−b −βn
(m)

≥ Pdφ(u,m)τh−b −βn
(m)− αn ≥ R∗h−b −βn − αn.

Thus, for all j ∈ [[1, k]],

β1dφ(mj , ĉn+s,h,j) ≤
[
2αn +R∗

h+
b +βn

−R∗
h−b −βn

]
. (5)

6.6 Proof of Corollary 16

With the same setting as Theorem 15, according to (5), we have, almost surely, for n large enough
dφ(K, ĉn+s,j) ≤ 2[2αn +R∗

h+
b +βn

−R∗
h−b −βn

]/[b(1− κ1)(h ∧ (1− h)], whenever s/(n+ s) ≤ b and Bhκ1 > b.

Now let c be defined as
c = sup{r > 0 | {x | dφ(K,x) ≤ r} ⊂ B(K, 1)}.

If c > 0, then requiring b small enough and s/(n+ s) ≤ b ensures that dφ(K, ĉn+s,j) ≤ c/2, almost surely, for
n large enough, hence the result.

Thus, it remains to prove that c > 0. Assume that for every r > 0, {x | dφ(K,x) ≤ r} * B(K, 1). Then
there exists x0 ∈ K and a sequence vn satisfying dφ(x0, vn)→ 0, along with ‖x0 − vn‖ > 1. Noting that, for
t ≥ 0, dφ(x0, vn+ t(vn−x0)) ≥ dφ(x0, vn) yields dφ(x0, vn) ≥ dφ(x0, v

′
n), where v′n = x0 +(vn−x0)/‖vn−x0‖.

Therefore, dφ(vn, x0) ≥ inf‖u−x0‖=1 dφ(x0, u) > 0, hence the contradiction.
At last, if c 7→ dφ(x, c) is a proper map, then dφ(K, ĉn+s,j) ≤ 2[2αn +R∗

h+
b +βn

−R∗
h−b −βn

]/[b(1− κ1)(h ∧
(1−h)], whenever s/(n+ s) ≤ b and Bhκ1 > b entails that, almost surely, for n large enough, ‖ĉn+s‖2 < +∞,

thus B̂Pn,h > b. Hence B̂Pn,h ≥ Bh, almost surely for n large enough.
To ease understanding, the statements of the results are recalled before the proofs. In the sequel, references

with numbers refer to statements in the main paper, whereas letters are devoted to internal references.
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[4] Gérard Biau, Luc Devroye, and Gábor Lugosi. “On the performance of clustering in Hilbert spaces”. In:
IEEE Trans. Inform. Theory 54.2 (2008), pp. 781–790. issn: 0018-9448. doi: 10.1109/TIT.2007.913516.
url: https://doi.org/10.1109/TIT.2007.913516.
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Measures”. In: Foundations of Computational Mathematics archive 11 (2011), pp. 733–751.

[14] Frédéric Chazal et al. “Persistence-based clustering in Riemannian manifolds”. In: J. ACM 60.6 (2013),
Art. 41, 38. issn: 0004-5411. doi: 10.1145/2535927. url: https://doi.org/10.1145/2535927.

[15] R. Coe and R. D. Stern. “Fitting Models to Daily Rainfall Data”. In: Journal of Applied Meteorology
21.7 (1982), pp. 1024–1031. doi: 10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2. eprint:
https://doi.org/10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2. url: https://doi.org/
10.1175/1520-0450(1982)021<1024:FMTDRD>2.0.CO;2.

[16] J. A. Cuesta-Albertos, A. Gordaliza, and C. Matrán. “Trimmed k-means: an attempt to robustify
quantizers”. In: Ann. Statist. 25.2 (Apr. 1997), pp. 553–576. doi: 10.1214/aos/1031833664. url:
http://dx.doi.org/10.1214/aos/1031833664.

[17] David Donoho and Peter J. Huber. “The notion of breakdown point”. In: A Festschrift for Erich L.
Lehmann. Wadsworth Statist./Probab. Ser. Wadsworth, Belmont, CA, 1983, pp. 157–184.

[18] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. New York: Wiley-Interscience, 2000.
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[21] Aurélie Fischer. “Quantization and clustering with Bregman divergences”. In: J. Multivariate Anal.
101.9 (2010), pp. 2207–2221. issn: 0047-259X. doi: 10.1016/j.jmva.2010.05.008. url: https:
//doi.org/10.1016/j.jmva.2010.05.008.

[22] Heinrich Fritz, Luis A. Garcia-Escudero, and Agustin Mayo-Iscar. “tclust: An R Package for a Trimming
Approach to Cluster Analysis”. In: Journal of Statistical Software 47.12 (2012), pp. 1–26. url: http:
//www.jstatsoft.org/v47/i12/.

[23] Alfonso Gordaliza. “Best approximations to random variables based on trimming procedures”. In: J.
Approx. Theory 64.2 (1991), pp. 162–180. issn: 0021-9045. doi: 10.1016/0021-9045(91)90072-I.
url: https://doi.org/10.1016/0021-9045(91)90072-I.

[24] R. M. Gray et al. “Distortion measures for speech processing”. In: IEEE Transactions on Acoustics,
Speech and Signal Processing 28 (1980), pp. 367–376.

[25] Michael Hahsler, Matthew Piekenbrock, and Derek Doran. “dbscan: Fast Density-Based Clustering
with R”. In: Journal of Statistical Software 91.1 (2019), pp. 1–30. doi: 10.18637/jss.v091.i01.

[26] Amit Kumar and Ravindran Kannan. “Clustering with spectral norm and the k-means algorithm”.
In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science—FOCS 2010. IEEE
Computer Soc., Los Alamitos, CA, 2010, pp. 299–308.
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7 Technical proofs for Section 2

7.1 Proof of Lemma 7.1

Lemma (7.1). For all c ∈ Ω(k), h ∈ (0, 1], P̃ ∈ Ph and P̃c ∈ Ph(c),

R(P̃c, c) ≤ R(P̃ , c).

Equality holds if and only if P̃ ∈ Ph(c).

For u ∈ [0, 1], let F−1
c (u) = r2

u(c) denote the u-quantile of the random variable dφ(X, c) for X ∼ P . That
is,

F−1
c (u) = inf {s ≥ 0 | with probability ≥ u, dφ(X, c) ≤ s}

= inf
{
r2 ≥ 0 | P (B̄φ(c, r)) ≥ u

}
.

If F̃ ∗ −1
c (u) denotes the u-quantile of dφ(X̃∗, c), for X̃∗ ∼ P̃c ∈ Ph(c), then F̃ ∗ −1

c (u) = F−1
c (hu). Let U be

a random variable uniform on [0, 1], then F̃ ∗ −1
c (U) and dφ(X̃∗, c) have the same distribution. Thus, we may

write:

R(P̃c, c) = EX̃∗dφ(X̃∗, c) =

∫ 1

0

F−1
c (hu)du.

Let P̃ ∈ Ph(P ) be a Borel probability measure on Ω such that hP̃ is a sub-measure of P , and let F̃−1
c (u) denote

the u-quantile of dφ(X̃, c) for X̃ ∼ P̃ . Since P (Bφ(c, u)) ≥ hP̃ (Bφ(c, u)), it holds that F̃−1
c (u) ≥ F−1

c (hu) .
Thus, we may write

R(P̃ , c) =

∫ 1

0

F̃−1
c (u)du ≥ R(P̃c, c).

Note that equality holds if and only if F̃−1
c (u) = F̃ ∗ −1

c (u) for almost all u ∈ [0, 1], that is P̃ ∈ Ph(c).

8 Technical proofs for Section 3

8.1 Proofs for Example 17

Example (17). Let φ1 = ‖.‖2, φ2 = exp(−.), Ω = R, P = (1− p)δ−1 + pδ1, with p ≤ 1/2. Then, for φ = φj ,

j ∈ {1, 2}, k = 2 and h > (1− p), we have Bh = h+p−1
p ∧ (1− h). Let Qγ,N = (1− γ)P + γδN . The following

holds.
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• If (1 + p)h > 1, Bh = 1 − h, and for every γ > 1 − h, any sequence of optimal 2-points h-trimmed
codebook c∗2(Qγ,N ) for Qγ,N satisfies

lim
N→+∞

‖c∗2(Qγ,N )‖ = +∞.

• If (1 + p)h ≤ 1, then Bh = h+p−1
p , and, for γ = Bh, (−1, N) is an optimal 2-points h-trimmed codebook

for Qγ,N .

We have, for P and any s ∈ [0, 1], R∗2,s = 0, and R∗1,s > 0 if and only if s > (1 − p). Thus, for any

h > (1− p) and b ≤ (1− h), R∗
1,h−b

> R∗
2,h+

b

if and only if h−b > (1− p) that is equivalent to b < (h+ p− 1)/p.

We deduce that Bh = h+p−1
p ∧ (1− h).

Assume that (h+ p− 1)/p ≤ (1− h). Then Bh = (h+ p− 1)/p. For γ = Bh and c = (−1, N), we have
that Qγ,N ({−1, N}) = (1 − γ)(1− p) + γ = h, hence Rh,γ,N (c) = 0, where Rh,γ,N denotes the h-trimmed
distortion with respect to Qγ,N .

Now assume that (h+ p− 1)/p > (1− h). Let γ > (1− h). Then, for any c ∈ R(2), if τh(c) is such that
Qγ,Nτh(c) is a submeasure of Qγ,N with total mass h, then Qγ,Nτh(c)(u)1{N}(u) ≥ γ − (1 − h). Now, if
c∗2(Qγ,N ) is an optimal two-points quantizer for Qγ,N , Proposition 9 ensures that for every j ∈ {1, 2},

c∗2,j(Qγ,N ) =
Puτh(c∗2(Qγ,N ))(u)1Wj(c∗2(Qγ,N ))(u)

Pτh(c∗2(Qγ,N ))(u)1Wj(c∗2(Qγ,N ))(u)
.

Thus, we may assume that Qγ,Nτh(c∗2(Qγ,N ))(u)1W2(c∗2(Qγ,N ))(u)1{N}(u) ≥ γ − (1 − h), without loss of
generality. Hence, for N large enough,

c∗2,2(Qγ,N ) ≥ −(1− p) +N(γ − (1− h)) −→
N→∞

+∞.

9 Technical proofs for Section 5

To ease the understanding the statement of the results are recalled before their proofs.

9.1 Proof of Lemma 20

Lemma (20). Assume that φ is C2 and F0 = conv(supp(P )) ⊂ Ω̊. Then, for every h ∈ (0, 1) and K > 0,
there exists r+ <∞ such that

sup
c∈F0∩B̄(0,K),s≤h

rs(c) ≤ r+.

As a consequence, if c is a codebook with a codepoint cj0 ∈ F0 satisfying ‖cj0‖ ≤ K and s ≤ h, then rs(c) ≤ r+.

Proof of Lemma 20. Let K+ be such that P (B(0,K+)) > h. Thus, if c ∈ B̄(0,K), P (B(c,K + K+)) > h.
Since B(c,K + K+) ⊂ B(0, 2K + K+), and φ is C2, according to the mean value theorem, there exists
C+ such that, for all x, y ∈ B(c,K + K+) ∩ F0, dφ(x, y) ≤ C+‖x − y‖. Therefore, for every c ∈ B̄(0,K),

P
(
Bφ

(
c,
√
C+(2K +K+)

))
> h. Hence rs(c) ≤ rh(c) ≤

√
C+(2K +K+) = r+.

At last, if c is such that cj0 ∈ B̄(0,K)∩F0, then B̄φ(cj0 , rh(cj0)) ⊂ B̄φ(c, r+). Therefore P (B̄φ(c, r+)) ≥ s
for every s ≤ h, hence rs(c) ≤ r+.
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9.2 Proof of Lemma 21

Lemma (21). Assume that F0 ⊂ Ω̊ and φ is C2 on Ω. Then, for every K > 0, there exists CK > 0 such that
for every c and c′ in B̄(0,K) ∩ F0, and x ∈ Ω,

|dφ(x, c)− dφ(x, c′)| ≤ CKD(c, c′) (1 + ‖x‖) ,

where D(c, c′) = minσ∈Σk maxj∈[[1,k]] |cj − c′σ(j)| (cf. Theorem 10).

Proof of Lemma 21. The set F0 ∩ B̄(0,K) is a convex compact subset of Ω̊. Let x ∈ Rd and c, c′ ∈(
F0 ∩ B̄(0,K)

)(k)
. Since φ and x 7→ ∇φ(x) are C1, the mean value theorem yields that for every j ∈ [[1, k]],∣∣dφ(x, cj)− dφ(x, c′j)

∣∣ ≤ ∣∣φ(c′j)− φ(cj)
∣∣+
∣∣∣〈x,∇c′jφ−∇cjφ〉∣∣∣

+
∣∣∣〈∇c′jφ, c′j〉− 〈∇cjφ, cj〉∣∣∣

≤ CK‖cj − c′j‖(1 + ‖x‖),

for some constant CK . Thus,

|dφ(x, c)− dφ(x, c′)| ≤ CK(1 + ‖x‖) max
j
‖cj − c′j‖.

9.3 Proof of Lemma 22

Lemma (22). Assume that F0 ⊂ Ω̊, P‖u‖ <∞ and φ is C2 on Ω. Then the map (s, c)→ Rs(c) is continuous.
Moreover, for every h ∈ (0, 1), ε > 0 and K > 0, there is s0 < h such that

∀s0 < s < h, sup
c∈(F0∩B̄(0,K))

(k)

Rh(c)−Rs(c) ≤ ε.

Proof of Lemma 22. According to Lemma 7.1 and Lemma 21, for every h ∈ (0, 1), c, c′ ∈
(
F0 ∩ B̄(0,K)

)(k)

and P̃c′ ∈ Ph(c′),

Rh(c)−Rh(c′) ≤ h(P̃c′dφ(u, c)− P̃c′dφ(u, c′)) ≤ hP̃c′ |dφ(u, c)− dφ(u, c′)|
≤ CKD(c, c′)(1 + P‖u‖),

for some CK > 0. As a consequence, |Rh(c)− Rh(c′)| → 0 when D(c, c′)→ 0. Now, let s < h, and let αs
and αh be such that 1

h (P1Bφ(c,rh(c)) + δhP1∂Bφ(c,rh(c))) ∈ Ph(c) (resp. 1
s (P1Bφ(c,rs(c)) + δsP1∂Bφ(c,rs(c))) ∈

Ps(c)). Then

Rh(c)−Rs(c) = Pdφ(u, c)
(
1Bφ(c,rh(c))(u) + δh1∂Bφ(c,rh(c))(u)

)
− Pdφ(u, c)

(
1Bφ(c,rs(c))(u) + δs1∂Bφ(c,rs(c))(u)

)
≤ r2

h(c) (h− s) .

Moreover, according to Lemma 20, sup
c∈(F0∩B̄(0,K))

(k) rh(c) ≤ r+ for some r+ <∞, hence the result.

9.4 Proof of Lemma 23

Throughout this section, for any c ∈ Ω(k) and s ∈]0, 1], we denote by τs(c) a map in [0, 1] such that
1
sPτs(c) ∈ Ps(c), and by Ts the operator

Ts :

Ω(k) → F
(k)
0

c 7→
(
Pu1Wj(c)(u)τs(c)(u)

Pτs(c)(u)1Wj(c)(u)

)
j∈[[1,k]]

,

with the convention Ts(c)j = cj whenever Pτs(c)1Wj(c) = 0. The statement of Lemma 23 is recalled below.
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Lemma (23). Assume that the requirements of Theorem 8 are satisfied. For every k ≥ 2, if R∗k−1,h−R∗k,h > 0,
then

α := min
j∈[[2,k]]

R∗j−1,h −R∗j,h > 0.

Moreover there exists 0 < h− < h < h+ < 1 such that, for every j ∈ [[2, k]], R∗j−1,h− −R
∗
j,h+ ≥ α

2 .

For any h ∧ (1 − h) ≥ b > 0, denote by h−b = (h − b)/(1 − b), h+
b = h/(1 − b). Let b be such that

minj∈[[2,k]]R
∗
j−1,h−b

− R∗
j,h+

b

> 0, and, for κ1 in (0, 1), denote by b1 = κ1b. Then, for any s ∈ [h−b1 , h
+
b1

] and

j ∈ [[1, k]], there exists a minimizer c∗j,s of Rj,s satisfying

∀p ∈ [[1, j]], ‖c∗j,s,p‖ ≤
P‖u‖

b(1− h)(1− κ1)
.

The proof of Lemma 23 proceeds from two intermediate results, Lemma 30 and Lemma 31 below. First,
Lemma 30 ensures that there exists bounded optimal codebooks whenever R∗k−1,h −R∗k,h > 0.

Lemma 30. For every k ≥ 2, if R∗k−1,h −R∗k,h > 0, then

α := min
j∈[[2,k]]

R∗j−1,h −R∗j,h > 0.

Moreover there exists 0 < h− < h < h+ < 1 and Ch−,h+ such that, for every j ∈ [[2, k]] and s ∈ [h−, h+],

• R∗j−1,h− −R
∗
j,h+ ≥ α

2 .

• For every α
4 -minimizer c∗j,s of R∗j,s, supp∈[[1,j]] ‖Ts(c∗j,s)p‖ ≤ Ch−,h+ .

• There is a minimizer c∗j,s of R∗j,s such that ∀p ∈ [[1, j]], ‖c∗j,s,p‖ ≤ Ch−,h+ and c∗j,s,p ∈ F0.

A proof of Lemma 30 is given in Section 9.5. The other intermediate result, Lemma 31, ensures that
optimal codebooks cells have enough mass.

Lemma 31. Assume that R∗k−1,h − R∗k,h > 0, and let b be such that minj∈[[2,k]]R
∗
j−1,h−b

− R∗
j,h+

b

> 0. Let

κ1 < 1 and b1 = κ1b. Then, for any s ∈ [h−b1 , h
+
b1

] and j ∈ [[1, k]], if c∗j,s is a minimizer of Rj,s, we have

∀p ∈ [[1, j]] Pτs(c
∗
j,s)1Wp(c∗j,s)

≥ b(1− h)(1− κ1).

The proof of Lemma 31 is given in Section 9.6. Equipped with these two lemmas, we are in position to
prove Lemma 23.

Proof of Lemma 23. Assume that R∗k−1,h −R∗k,h > 0, then Lemma 30 entails that there exists b such that

minj∈[[2,k]]R
∗
j−1,h−b

− R∗
j,h+

b

> 0. Moreover, for any s ∈ [h−b1 , h
+
b1

], and j ∈ [[1, k]], Lemma 30 provides a

minimizer c∗j,s of Rj,s. According to Proposition 9, Ts(c
∗
j,s) is a Rj,s-minimizer. According to Lemma 31, it

satisfies, for all p ∈ [[1, j]],

‖(Ts(c∗j,s))p‖ ≤
P‖u‖

b(1− h)(1− κ1)
.
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9.5 Proof of Lemma 30

First note that if there exists j ≤ k such that R∗j−1,h − R∗j,h = 0, then there exists a set A with P (A) ≥ h
such that the restriction of P to the set A, P|A, is supported on j − 1 points. Thus, R∗k−1,h = R∗k,h = 0. As a
consequence, when R∗k−1,h −R∗k,h > 0, α is positive.

Note also that the third point follows on from the second point. Indeed, for every sequence c
∗ (n)
k,s of

α
4n -minimizers of R∗k,s, for every i ∈ [[1, k]], ‖Ts(c∗ (n)

k,s )i‖ ≤ Ch−,h+ . Since
(
B̄(0, Ch−,h+) ∩ F0

)(k)
is a compact

set, the limit in
(
B̄(0, Ch−,h+) ∩ F0

)(k)
of any converging subsequence of (Ts(c

∗ (n)
k,s ))n is a minimizer of Rk,s.

Now assume that R∗k−1,h −R∗k,h > 0. In order to prove the other points, we proceed recursively. Assume
that k = 2. Since, for s > 0 and any 1-point codebook c, ‖Ts(c)‖ ≤ P‖u‖/s, optimal 1-point codebooks can

be found in B̄(0, C1) ∩ F0, with C1 = P‖u‖
s . From a compactness argument there exists an optimal 1-point

codebook c∗1,s satisfying ‖c∗1,s‖ ≤ P‖u‖/s.
Denote by c∗1,h− a minimizer of R∗1,h− , and c∗2,h an α

8 -minimizer of R∗2,h. According to Lemma 22, for a

fixed c, s 7→ Rs(c) is continuous, thus we may choose h+ such that Rh+(c∗2,h) ≤ Rh(c∗2,h) + α
8 . Then,

R∗2,h+ ≤ Rh+(c∗2,h) ≤ Rh(c∗2,h) +
α

8
≤ R∗2,h +

α

4
.

On the other hand, set h1 = h
2 . Then sups≥h1

‖c∗1,s‖ ≤
P‖u‖
h1

= Ch1 . According to Lemma 22, there exists
h > h2 ≥ h1 such that sup‖c‖≤Ch1

(Rh(c)−Rh2(c)) ≤ α
4 . For such an h2, we may write

R∗1,h2
= Rh2

(c∗1,h2
) ≥ Rh(c∗1,h2

)− α

4
≥ R∗1,h −

α

4
.

Since R∗1,h −R∗2,h ≥ α, it comes that R∗1,h2
−R∗2,h+ ≥ α

2 .

Now, if c = (c1, c2) is an α/4-minimizer of R∗2,s, for h+ ≥ s ≥ h−(h−h2)/2 =: h−, it holds Pτs(c)1Wj(c) ≥
h− h−, for j ∈ {1, 2}. Indeed, suppose that Pτs(c)1W1(c) < h− h−. Then

R∗2,h+ ≥ Rs(c)− α

4
≥ Pdφ(u, c2)τs(c)(u)1W2(c)(u)− α

4
≥ R∗1,h2

− α

4
,

since s− h+ h− ≥ h2, hence the contradiction. Choosing h+ ≥ s ≥ h− entails that ‖Ts(c∗j,s)p‖ ≤
P‖u‖
h−h− for

every p ∈ {1, 2}, this gives the result for k = 2.
Assume that the proposition is true for index k − 1, we will prove that it is also true for index k. Set

α = minj∈[[2,k]]R
∗
j−1,h −R∗j,h > 0. Let h−− and h++ be the elements h− and h+ associated with step k − 1.

Set c∗k−1,h−− a minimizer of R∗k−1,h−− and c∗k,h an α
8 -minimizer of R∗k,h. According to Lemma 22, there exists

h < h+ < h++ such that Rh+(c∗k,h) ≤ Rh(c∗k,h) + α
8 . Thus R∗k,h+ ≤ R∗k,h + α

4 . On the other hand, Lemma 22

provides h > h1 > h−− such that

sup
c∈(B̄(0,Ch−−,h++ )∩F0)

(k)

(Rh(c)−Rh1(c)) ≤ α

4
.

Then, according to step k − 1, since ‖(c∗k−1,h1
)j‖ ≤ Ch−−,h++ for j ∈ [[1, k]], we may write

R∗k−1,h1
= Rh1

(c∗k−1,h1
) ≥ R∗k−1,h −

α

4
.

As a consequence, since R∗k−1,h −R∗k,h ≥ α, we have R∗k−1,h1
−R∗k,h+ ≥ α

2 . Now, let c be an α
4 -minimizer of

R∗k,s, for h+ ≥ s ≥ h− = h+h1

2 , and assume that Pτs(c)1W1(c) < h− h−. Then

R∗k,h+ ≥ Rs(c)− α

4
≥ P

k∑
j=2

dφ(u, cj)τs(c)(u)1Wj(c)(u)− α

4
.

Then, R∗k,h+ ≥ R∗k−1,h1
− α

4 , hence the contradiction. Thus, for such a choice of h− and h− ≤ s ≤ h+,

Pτs(c)1Wp(c) ≥ h− h−, which entails ‖(Ts(c))p‖ ≤ P‖u‖/(h− h−), for every p ∈ [[1, k]].
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9.6 Proof of Lemma 31

Let s ∈ [h−b1 , h
+
b1

], j ∈ [[1, k]] and c∗j,s be a Rj,s minimizer. If j = 1, then Pτs(c
∗
j,s) = s ≥ h−b1 ≥ b(1−κ1)(1−h).

Now assume that j ≥ 2, and, without loss of generality, that Pτs(c
∗
j,s)1W1(c∗j,s)

< b(1−κ1)(1−h) < h−b1 −h
−
b .

We may write

R∗
j,h+

b

≥ R∗j,s ≥
j∑
p=2

Pdφ(u, c∗j,s,p)τs(c
∗
j,s)(u)1Wp(c∗j,s)

(u)

≥ R∗
j−1,s−(h−b1

−h−b )
≥ R∗

j−1,h−b
,

hence the contradiction.

10 Technical proofs for Section 6

10.1 Proof of Proposition 24

Proposition (24). With probability larger than 1− e−x, we have, for k ≥ 2,

sup
c∈(Rd)(k),r≥0

∣∣(P − Pn)1Bφ(c,r)

∣∣ ≤ C√k(d+ 1) log(k)

n
+

√
2x

n
, (6)

sup
c∈(Rd)(k),r≥0

∣∣(P − Pn)1∂Bφ(c,r)

∣∣ ≤ C√k(d+ 1) log(k)

n
+

√
2x

n
,

where ∂Bφ(c, r) denotes
{
x | dφ(x, c) = r2

}
and C denotes a universal constant. Moreover, if r+ and K are

fixed, and P‖u‖2 ≤M2 <∞, we have, with probability larger than 1− e−x,

sup
c∈(B̄(0,K)∩F0)

(k)
,r≤r+

∣∣(P − Pn)dφ(., c)1Bφ(c,r)

∣∣ ≤ (r+)2

[
CK,r+,M2

√
kd log(k)√

n
+

√
2x

n

]
, (7)

sup
c∈(B̄(0,K)∩F0)

(k)
,r≤r+

∣∣(P − Pn)dφ(., c)1∂Bφ(c,r)

∣∣ ≤ (r+)2

[
CK,r+,M2

√
kd log(k)√

n
+

√
2x

n

]
,

where we recall that conv(supp(P )) = F0 ⊂ Ω̊.

The proof of Proposition 24 will make use of the following results. The first one deals with VC dimension
of Bregman balls.

Lemma 32. Let C (resp. C̄) denote the class of open (resp. closed) Bregman balls Bφ(x, r) = {y ∈ Rd |√
dφ(y, x) < r} (resp. B̄φ(x, r) = {y ∈ Rd |

√
dφ(y, x) < r}), x ∈ Rd, r ≥ 0. Then

dV C(C) ≤ d+ 1,

dV C(C̄) ≤ d+ 1,

where dV C denotes the Vapnik-Chervonenkis dimension.

Proof of Lemma 32. Let S = {x1, . . . , xd+2} be shattered by C, and let A1, A2 be a partition of S. Then we
may write

A1 = S ∩Bφ(c1, r1) ∩Bφ(c2, r2)c

A2 = S ∩Bφ(c2, r2) ∩Bφ(c1, r1)c,
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for c1, c2 ∈ Rd and r1, r2 ≥ 0. Straightforward computation shows that, for any x ∈ A1,

`1,2(x) := dφ(x, c1)− dφ(x, c2) < 0.

Similarly we have that, for any x ∈ A2, `1,2(x) > 0. Since `1,2(x) = φ(c2) − φ(c1) + 〈x,∇c2φ−∇c1φ〉 +
〈∇c1φ, c1〉 − 〈∇c2φ, c2〉 − r2

1 + r2
2, S is shattered by affine halfspaces (whose VC-dimension is d+ 1), hence

the contradiction. The same argument holds for C̄.

Next, to bound expectation of suprema of empirical processes, we will need the following result. For
any set of real-valued functions F , let N (F , ε, L2(Pn)) denote its ε covering number with respect to the
L2(Pn) norm. In addition, the pseudo-dimension of F , dV C(F), is defined as the Vapnik dimension of the
sets {(x, t) | f(x) ≤ t}.

Theorem 33. [33, Theorem 1] If F is a set of functions taking values in [−1, 1]. Then, for all ε ≤ 1

N (F , ε, L2(Pn)) ≤
(

2

ε

)κdV C(F)

,

where κ denotes a universal constant and with a slight abuse of notation dV C(F) denotes the pseudo-dimension
of F .

We are now in a position to prove Proposition 24.

Proof of Proposition 24. Let c ∈ R(k). Since Bφ(c, r) =
⋃k
j=1Bφ(cj , r), according to [39, Theorem 1.1] and

Lemma 32, we may write

dV C

({
Bφ(c, r) | c ∈ (Rd)(k), r ≥ 0

})
≤ c1k(d+ 1) log(c2k),

where c1 and c2 are universal constant. Thus, applying [5, Theorem 3.4] gives the first inequality of (6). The
second inequality of (6) follows from

sup
c∈(Rd)(k),r≥0

∣∣(P − Pn)1∂Bφ(c,r)

∣∣ ≤ sup
c∈(Rd)(k),r≥0

∣∣(P − Pn)1Bφ(c,r)

∣∣
+ sup

c∈(Rd)(k),r≥0

∣∣∣(P − Pn)1B̄φ(c,r)

∣∣∣ .
The inequalities of (7) are more involved. Denote by Z the left-hand side of the first inequality. A

bounded difference inequality (see, e.g., [6, Theorem 6.2]) yields

P

(
Z ≥ EZ + (r+)2

√
2x

n

)
≤ e−x.

It remains to bound

EZ ≤ 2EXEσ
1

n
sup

c∈(B(0,K)∩F0)(k),r≤r+

n∑
i=1

σidφ(Xi, c)1Bφ(c,r)(Xi),

according to the symmetrization principle (see, e.g., [6, Lemma 11.4]), where for short EY denotes expectation

with respect to the random variable Y . Let Γ0 denote the set of functions
{
dφ(.,c)
(r+)2 1Bφ(c,r) | c ∈ B(0,K)(k), r ≤ r+

}
.

We have to assess the covering number N (Γ0, ε, L2(Pn)). It is immediate that

N (Γ0, ε, L2(Pn)) ≤ N (Γ1, ε/2, L2(Pn))×N (Γ2, ε/2, L2(Pn)),
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where Γ1 =
{
dφ(.,c)
(r+)2 ∧ 1

}
and Γ2 =

{
1Bφ(c,r)

}
. On one hand, we have

N (Γ2, u, L2(Pn)) = N (1− Γ2, u, L2(Pn))

= N


k∏
j=1

1Bφ(cj ,r)c | c, r

 , u, L2(Pn)


≤ N

({
1Bφ(c,r) | c ∈ Rd, r ≥ 0

}
, u/k, L2(Pn)

)k
≤
(

2k

u

)κ(d+1)k

,

according to Theorem 33.
Now turn to Γ1. According to Lemma 21, we may write

N (Γ1, u, L2(Pn)) ≤ N
({

dφ(., c)

(r+)2
| c ∈ (F0 ∩B(0,K))

(k)

}
, u, L2(Pn)

)
≤ N

(
B(0,K)k,

(r+)2u

CK(1 + ‖x‖L2(Pn))
, dH

)
.

Since N (B(0, 1), u, ‖ · ‖) ≤
(

3
u

)d
, it follows that

N (Γ1, u, L2(Pn)) ≤
(

3KCK(1 + ‖x‖L2(Pn)))

(r+)2u

)kd
,

hence

N (Γ0, ε, L2(Pn)) ≤
(

6KCK(1 + ‖x‖L2(Pn))

(r+)2ε

)kd
×
(

4k

ε

)κ(d+1)k

.

Using Dudley’s entropy integral (see, e.g., [6, Corollary 13.2]) yields, for k ≥ 2,

Eσ
1

n
sup

c∈(B(0,K)∩F0)(k),r≤r+

n∑
i=1

σi
dφ(Xi, c)

(r+)2
1Bφ(c,r)(Xi)

≤ C (r+)2

√
n

√
kd log

(
CK(1 + ‖x‖L2(Pn))

(r+)2

)
+ κ(d+ 1)k log(4k).

Thus, applying Jensen’s inequality leads to

EXEσ
1

n
sup

c∈(B(0,K)∩F0)(k),r≤r+

n∑
i=1

σi
dφ(Xi, c)

(r+)2
1Bφ(c,r)(Xi) ≤ (r+)2CK,r+,M2

√
kd log(k)

n
.

Replacing 1Bφ(c,r) with 1∂Bφ(c,r) in the definition of Γ0 and Γ2 gives the same inequality, and (7).

10.2 Proof of Proposition 25

Proposition (25). Assume that P‖u‖p < +∞ for some p ≥ 2, and let b > 0 be such that minj∈[[2,k]]R
∗
j−1,h−b

−
R∗
j,h+

b

> 0, where h−b = (h− b)/(1− b), h+
b = h/(1− b), as in Lemma 23. Let κ2 < 1, and denote by b2 = κ2b.

Then there exists CP,h,k,κ2 such that, for n large enough, with probability larger than 1− n−
p
2 , we have, for

all j ∈ [[2, k]], and i ∈ [[1, j]],

sup
h
b
−
2
≤s≤h

‖ĉj,s,i‖ ≤ CP,h,k,κ2,b,

where ĉj,s denotes a j-codepoints empirical risk minimizer with trimming level s.
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Proof of Proposition 25. For a codebook c, let τ̂s(c) denote the trimming function 1Bφ(c,rn(c))+αn,s(c)1∂Bφ(c,rn(c)),

so that 1
sPnτ̂s ∈ P̂s(c), and let τs(c) denote the trimming function for the distribution P . Similarly to the

proof of Theorem 8, we denote by T̂s the operator that maps ĉ to the empirical means of its Bregman-Voronoi
cells, that is

(T̂s(c))j =
Pnuτ̂s(c)1Wj(c)

Pnτ̂s(c)1Wj(c)
.

We let b2 = κ2b, κ2 < 1, and choose b1 = (κ2 + 1−κ2

2 )b so that b2 < b1 < b. At last we denote by

η =
[
(h−b2 − h

−
b1

) ∧ (h+
b1
− h+

b2
)
]
/2, and will prove recursively that, for j ∈ [[1, k]] and i ∈ [[1, j]],

sup
h−b1

+η+ jη
k ≤s≤h

‖ĉj,s,i‖ ≤ CP,h,k,κ2,b,

where ĉj,s denotes a j-codepoints empirical risk minimizer with trimming level s.
Since P‖u‖p < +∞, Lemma 26 yields that Pn‖u‖ ≤ C1, for C1 large enough, with probability larger than

1− 1

8n
p
2

. We set

CP,h,k,κ2,b =
C1

h−b1 + η(1 + 1/k)
∨ Cb1,P,h ∨

2kC1

η
,

where Cb1,P,h is given by Lemma 23. According to Proposition 24, for n large enough, we have that,

sup
c∈(Rd)(k),r≥0

|(P − Pn)Bφ(c, r)| ≤ η

4k
(8)

sup
c∈(Rd)(k),r≥0

|(P − Pn)∂Bφ(c, r)| ≤ η

4k
,

with probability larger than 1− 1

8n
p
2

. On this probability event, from Lemma 20 and the fact that s 7→ rs(c)

is non-decreasing, we deduce that for some r+ > 0,

sup
c∈B(0,CP,h,k,κ2,b)∩F0,s≤h+

b1

rn,s(c) ∨ rs(c) ≤ r+.

We recall that since P‖u‖p < +∞, Lemma 26 yields that Pn‖u‖ ≤ C1, for C1 large enough, with probability
larger than 1− 1

8n
p
2

. Besides, choosing x = log(8n
p
2 ) in Proposition 24, we also have, with probability larger

than 1− 1

8n
p
2

,

sup
c∈(B̄(0,CP,h,k,κ2,b)∩F0)(k),r≤r+

∣∣(P − Pn)dφ(u, c)1Bφ(c,r)(u)
∣∣ ≤ αn (9)

sup
c∈(B̄(0,CP,h,k,κ2,b)∩F0)(k),r≤r+

∣∣(P − Pn)dφ(u, c)1∂Bφ(c,r)(u)
∣∣ ≤ αn,

where αn = O(
√

log(n)/n). We then work on the global probability event on which all these deviation
inequalities are satisfied, that has probability larger than 1− 1

n
p
2

. We proceed recursively on j.

For j = 1 and h ≥ s ≥ h−b1 + η(1 + 1/k), according to Proposition 9, T̂s(ĉ1,s) = ĉ1,s, hence

‖ĉ1,s‖ ≤
Pn‖u‖

h−b1 + η(1 + 1/k)
≤ C1

h−b1 + η(1 + 1/k)
≤ CP,h,k,κ2,b.

Now assume that the statement of Proposition 25 holds up to order j − 1. Let ĉj,s be a j-points empirically
optimal codebook with trimming level h ≥ s ≥ h−b1 + η(1 + j/k). Assume that there exists one cell (say W1)
such that Pn(1W1(ĉj,s)τ̂s(ĉj,s)) ≤

η
k . On the one hand, we may write

R̂s(ĉj,s) ≤ R̂s(c∗j,h+
b1

) ≤ Pndφ(u, c∗j,h+)τ̂s(c
∗
j,h+

b1

)(u)

≤ Pndφ(u, c∗j,h+)τs+2η/k(c∗
j,h+

b1

)(u) ≤ R∗
j,h+

b1

+ αn,
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where c∗
j,h+

b1

is a Rj,h+
b1

minimizer provided by Theorem 8.

On the other hand, we have

R̂s(ĉj,s) ≥
j∑
p=2

Pndφ(u, ĉj,s,p)1Wp(ĉj,s)τ̂j,h−b1+η(1+(j−1)/k)(u)

≥ R̂h−b1+η(1+(j−1)/k)(ĉj−1,h−b1
+η(1+(j−1)/k)).

Thus,

R̂s(ĉj,s) ≥ Pdφ(u, ĉj−1,h−b1
+η(1+(j−1)/k))τh−b1+η(1+(j−1)/k)−η/2k(ĉj−1,h−b1

+η(1+(j−1)/k))− αn,

according to the recursion assumption and (9). It comes

R̂s(ĉj,s) ≥ R∗j−1,h−b1
− αn,

hence R∗
j−1,h−b1

≤ R∗
j,h+

b1

+ 2αn, that is impossible for n large enough. Therefore, for n large enough and every

p ∈ [[1, j]],

Pn(1Wp(ĉj,s)τ̂s(ĉj,s)) ≥
η

k
.

According to Proposition 9, equality T̂s(ĉj,s) = ĉj,s holds and entails ‖ĉj,s,p‖ ≤ 2kPn‖u‖
η ≤ CP,k,b,κ2 .

10.3 Proof of Lemma 26

Lemma (26). If P‖u‖p < ∞ for some p ≥ 2, then, there exists some positive constant C such that with
probability larger than 1− n−

p
2 ,

Pn‖u‖ ≤ C.

Proof of Lemma 26. According to the Markov inequality, we may write

P (Pn‖u‖ − P‖u‖ ≥ ε) ≤
E
[∣∣ 1
n

∑n
i=1 ‖Xi‖ − P‖u‖

∣∣p]
εp

.

That leads to

P (Pn‖u‖ − P‖u‖ ≥ ε) ≤
E
[
|
∑n
i=1 (‖Xi‖ − P‖u‖)|

p]
npεp

.

From the Marcinkiewicz-Zygmund inequality applied to the real-valued centered random variables Yi =
‖Xi‖ − P‖u‖ and the Minkowski inequality, it follows that

E

[∣∣∣∣∣
n∑
i=1

(‖Xi‖ − P‖u‖)

∣∣∣∣∣
p]

= E

[∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
p]

≤ BpE

( n∑
i=1

Y 2
i

) p
2


≤ Bp

(
n∑
i=1

(E|Yi|p)
2
p

) p
2

= Bpn
p
2E [|Y |p]

= Bpn
p
2P (|‖u‖ − P‖u‖|p) ,

for some positive constant Bp. Since P (|‖u‖ − P‖u‖|p) ≤ P‖u‖p + (P‖u‖)p ≤ 2P‖u‖p, according to Jensen
inequality, the result derives from a suitable choice of ε.
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10.4 Proof of Lemma 27

Lemma (27). Let (Pn)n∈N be a sequence of probabilities that converges weakly to a distribution P . Assume
that supp(Pn) ⊂ supp(P ) ⊂ Rd, F0 = conv(supp(P )) ⊂ Ω̊ and φ is C2 on Ω. Then, for every h ∈ (0, 1) and
K > 0, there exists K+ > 0 such that for every c ∈ Ω(k) satisfying |ci| ≤ K for some i ∈ [[1, k]] and every
n ∈ N,

rn,h(c) ≤ r+ =
√

4(2K +K+) sup
c∈F0∩B̄(0,2K+K+)

‖∇cφ‖.

Proof of Lemma 27. Set c ∈ B̄(0,K) ∩ F0. Since Pn converges weakly to P , according to the Prokhorov
theorem, (Pn)n is tight. Thus, there is K+ > 0 such that Pn(B(0,K+)) > h for all n ∈ N and P (B(0,K+)) > h.
It comes that Pn(B(c,K + K+)) > h. Moreover, for every x, y in F0 ∩ B̄(0, 2K + K+), the mean value
theorem yields

dφ(x, y) ≤ 2 sup
c∈F0∩B̄(0,2K+K+)

‖∇cφ‖‖x− y‖

≤ 4(2K +K+)C+ = (r+)2,

for C+ = supc∈F0∩B̄(0,2K+K+) ‖∇cφ‖ < +∞. Thus, it follows that

B(c,K +K+) ⊂ Bφ(c, r+). (10)

As a consequence, Pn(Bφ(c, r+)) > h and Pn(Bφ(c, r+)) > h if c ∈ c and rn,φ,h(c) ≤ r+.

10.5 Proof of Lemma 28

Lemma (28). Under the assumptions of Corollary 12, if P‖u‖qψq(k‖u‖/h) <∞, then there exists a constant
Cq such that ERqh(ĉn) ≤ CqP .

Let τ̂h(ĉn) be such that 1
hPnτ̂h(ĉn) ∈ Pn,h(ĉn), and ĵ be such that Pn(τ̂h(ĉn)1Wĵ(ĉn)) ≥ nh

k . According
to the mean-value theorem and since q ≥ 1 we may write

E (Rh(ĉn))
q ≤ EPdqφ(u, ĉn,ĵ)

≤ EP3q−1
[
φq(u) + φ(ĉn,ĵ)

q + ψq(‖ĉn,ĵ‖)‖u− ĉn,ĵ‖
q
]

≤ EP3q−1
[
φq(u) + φ(ĉn,ĵ)

q + ψq(‖ĉn,ĵ‖)2
q−1

(
‖u‖q + ‖ĉn,ĵ‖

q
)]

≤ 3q−1P‖u‖qψq(u) + 3q−1(1 + 2q−1)E‖ĉn,ĵ‖
qψq(‖ĉn,ĵ‖)

+ 6q−1P‖u‖qEψq(‖ĉn,ĵ‖).

Since ψ(t) ≤ ψ
(
kt
h

)
, the first term is bounded. Also, note that since p ≥ 2, q ≤ 2 ≤ p so that P‖u‖q <∞.

Next, since ĉn satisfies the centroid condition, we have

‖ĉn,ĵ‖ ≤
Pnuτ̂h(ĉn)(u)1Wĵ(ĉn)(u)

Pnτ̂h(ĉn)(u)1Wĵ(ĉn)(u)
≤ k

nh

n∑
i=1

‖Xi‖.

Since u 7→ ‖u‖qψq(u) is convex we may write

E‖ĉn,ĵ‖
qψq(‖ĉn,ĵ‖) ≤ E

[(
k

nh

n∑
i=1

‖Xi‖

)q
ψq

(
k

nh

n∑
i=1

‖Xi‖

)]

≤
(
k

h

)q
P (‖u‖qψq(k‖u‖/h)) <∞.
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At last, note that

Pψq(k‖u‖/h) ≤ P ((‖u‖q ∨ 1)ψq(k‖u‖/h))

≤ P
(
‖u‖qψq(k‖u‖/h)1‖u‖>1

)
+ P

(
ψq(k‖u‖/h)1‖u‖≤1

)
≤ P‖u‖qψq(k‖u‖/h) + ψq(k/h) <∞,

so that, using convexity of ψ,

Eψq(‖ĉn,ĵ‖) ≤ E

[
ψq

(
k

nh

n∑
i=1

‖Xi‖

)]
≤ Pψq(k‖u‖/h) <∞.

Combinining all pieces entails that E(Rh(ĉn)) <∞.

10.6 Proof of Lemma 29

Lemma (29). Assume that Bh > 0 (see Definition 13), let b < Bh and b < b1 < Bh such that b = κ1b1, with
κ1 < 1. Denote by β1 = (1 − κ1)b1 [h ∧ (1− h)] /2. Assume that s/(n + s) ≤ b. Then, for n large enough,
with probability larger than 1− n−

p
2 , we have, for all j ∈ [[1, k]],

Pn

(
τ̂h−b

(ĉn+s,h)1Wj(ĉn+s,h)

)
≥ β1.

Proof of Lemma 29. As in the proof of Proposition 25, we assume that

sup
c∈(Rd)(k),r≥0

|(P − Pn)Bφ(c, r)| ∨ |(P − Pn)∂Bφ(c, r)| ≤ βn ≤ β1.

According to Proposition 24, for n large enough, this occurs with βn = O
(√

log(n)/n
)

, and with probability

larger than 1− 1

8n
p
2

. On this probability event, we deduce as well that supc∈B(0,CP )∩F0,s≤h+
b1

rn,s(c) ∨ rs(c) ≤
r+, for some r+ > 0. We also assume that Pn‖u‖ ≤ C1, for C1 large enough, and

sup
c∈(B(0,CP )∩F0)(k),r≤r+

∣∣(P − Pn)dφ(u, c)1Bφ(c,r)(u)
∣∣

∨
∣∣(P − Pn)dφ(u, c)1∂Bφ(c,r)(u)

∣∣ ≤ αn,
where αn = O(

√
log(n)/n). We then work on the global probability event on which all these deviation

inequalities are satisfied, that have probability larger than 1− 1

n
p
2

, according to Proposition 24 and Lemma

26. We let α1 > 0 be such that minj∈[[2,k]]R
∗
k−1,h−b1

−R∗
k,h+

b1

≥ α1, according to Lemma 23, and let b < Bh

such that s/(n + s) ≤ b = κ1b1. Let ĉn+s,h denote an h-trimmed empirical risk minimizer based on
{X1, . . . , Xn, xn+1, . . . , xn+s}, and c∗

h+
b1

a h+
b1

-trimmed optimal codebook. Then

R̂n+s,h(ĉn+s,h) ≤ R̂n+s,h(c∗
h+
b1

) ≤ 1

n+ s

[
n∑
i=1

dφ(Xi, c
∗
h+
b1

)τ̂h+
b

(c∗
h+
b1

)(Xi)

]
,
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since (n+ s)h ≤ nh+
b < nh+

b1
≤ n. We may write

R̂n+s,h(ĉn+s,h) ≤ n

n+ s

(
Pndφ(u, c∗

h+
b1

)τh+
b +βn

(c∗
h+
b1

)(u)

)
≤ n

n+ s

(
Pndφ(u, c∗

h+
b1

)τh+
b1

(c∗
h+
b1

)(u)

)
≤ n

n+ s

(
Pdφ(u, c∗

h+
b1

)τh+
b1

(c∗
h+
b1

)(u) + αn

)
≤ n

n+ s

(
R∗
h+
b1

+ αn

)
,

for n large enough. Now assume that Pn

(
τ̂h−b

(ĉn+s,h)1W1(ĉn+s,h)

)
< β1. Then,

R̂n+s,h(ĉn+s,h) ≥ n

n+ s
R̂n,h−b

(ĉn+s,h),

since n− (n+ s)(1− h) ≥ n(1− h−b ). Thus, removing one quantization point,

R̂n+s,h(ĉn+s,h) ≥ n

n+ s
Pn

[
dφ(u, ĉ

(k−1)

n,h−b −β1
)τ̂h−b −β1

(ĉ
(k−1)

n,h−b −β1
)(u)

]
≥ n

n+ s
Pn

[
dφ(u, ĉ

(k−1)

n,h−b −β1
)τh−b1

(ĉ
(k−1)

n,h−b −β1
)(u)

]
,

where ĉ
(k−1)

n,h−b −β1
denotes a h−b − β1-trimmed empirical risk minimizer with k − 1 codepoints. Since h−b − β1 ≥

h−b − 2β1 ≥ hb−1 , Proposition 25 implies

R̂n+s,h(ĉn+s,h) ≥ n

n+ s
Pn

[
dφ(u, ĉ

(k−1)

n,h−b −β1
)τh−b1

(ĉ
(k−1)

n,h−b −β1
)(u)

]
≥ n

n+ s
P
[
dφ(u, ĉ

(k−1)

n,h−b −β1
)τh−b1

(ĉ
(k−1)

n,h−b −β1
)(u)− αn

]
.

Thus, R̂n+s,h(ĉn+s,h) ≥ n(R∗
k−1,h−b1

+ αn)/(n+ s) hence the contradiction for 2αn < α1.

11 Supplementary material for Section 4

11.1 Additional files for the comparison of Bregman clusterings for mixtures
with noise

11.1.1 Details on the different clustering procedures

In Section 4.4, we compared our trimmed Bregman procedures with the following clustering schemes :
trimmed k-median [9], tclust [22], single linkage, ToMATo [14] and dbscan [25]. Trimmed k-median denotes
the k-median clustering trimmed afterwards. Actually, we keep the q = 110 points which l1-norm to their
center is the smallest. In order to compute the centers, we use the function kGmedian from the R package
Gmedian, with parameters gamma = 1, alpha = 0.75 and nstart = nstartkmeans = 20. For tclust, we
use the function tclust from the R package tclust with parameters k = 3 (number of clusters) and
alpha = 10/120, the proportion of points to consider as outliers. We use the C++ ToMATo algorithm,
available at https://geometrica.saclay.inria.fr/data/ToMATo/. We compute the inverse of the distance-to-
measure function [12] with paramter m0 = 10/120 (that can be considered as a density) at every sample
point, and keep the 110 highest valued points. We use the first parameter 5 (the radius for the Rips graph
built from the resulting sample points) and the second parameter 0.01 (related to the number of clusters).
For the single linkage method, we first keep the 110 points with the smallest distance to their 10th nearest
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neighbor, then, cluster points according to the R functions hclust with the method “single” and cutree with
parameter h = 4 (related to the number of clusters). For the dbscan method, we use the dbscan function
from the R package dbscan. We set the parameters eps to the 110-th smallest distance to a third nearest
neighbor among points in the sample, minPts = 3 and borderPoints = FALSE.

For these three last methods, we cannot calibrate the parameters so that the algorithms return 3 clusters,
because of the systemmatic presence of many additional small clusters.

11.1.2 Clustering for 12000 sample points

This section exposes additional experimental results. We proceed exactly like in Section 4.4, but with samples
made of 10000 signal points and 2000 noise points.

Gaussian

Poisson

Binomial

Gamma Cauchy

Mixture

Figure 8: NMI for samples of 12000 points

For each clustering procedure, we decide to consider 11000 points as signal. The parameters for the
different procedures are the same as described in Section 11.1.1, except for the ToMATo algorithm, we set
the parameter m0 = 200/12000. As well, the number of nearest neighbors for the single linkage method is set
to 200 and the parameter h is set to 0.8 for Gaussian distribution, 0.8 for Poisson, 1.1 for Binomial, 0.6 for
Gamma, 0.4 for Cauchy and 0.4 for the mixture of 3 different distributions. For dbscan, eps is the 11000-th
smallest distance of a point to its third nearest neighbor.

The NMI over 1000 replications of the experiments are represented via boxplots in Figure 8. Algorithm 1
with the proper Bregman divergence systematically (slightly) outperforms other clustering schemes.

11.2 Discussion about the choice of the Bregman divergence

We consider three mixtures of Gaussian distributions L(c, σ) = 1
3N (c1, σ1I2) + 1

3N (c2, σ2I2) + 1
3N (c3, σ3I2)

with c = (c1, c2, c3) for c1 = (10, 10), c2 = (25, 25) and c3 = (40, 40), I2 the identity matrix on R2 and
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σ = (σ1, σ2, σ3). The first distribution L1 corresponds to clusters with the same variance, with σ = (5, 5, 5),
the second distribution L2 to clusters with increasing variance, with σ = (1, 4, 7), and the third distribution
L3 to clusters with increasing and decreasing variance, with σ = (2, 7, 2). We cluster samples of 100 points
from L1, L2 and then L3. We use Algorithm 1 with the Gaussian, Poisson, Binomial and Gamma Bregman
divergences. Note that we set N = 50 for the Binomial divergence, so that we expect a clustering with
clusters size symmetric with respect to 25. The performance of the clustering in terms of NMI is represented
in Figure 9, after 1000 replications of the experiments.
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Figure 9: Comparison of Bregman divergences efficiency for different clusters variances.

The corresponding clustering with the best suited Bregman divergence is represented in Figure 10. In
particular, we used the Gaussian divergence for L1, the Poisson divergence for L2 and the Binomial divergence
for L3.

L1 – Gaussian divergence L2 – Poisson divergence L3 – Binomial divergence

Figure 10: Clustering with the best suited Bregman divergence

Since the sum of two Bregman divergences is a Bregman divergence, it is also possible to cluster data with
Algorithm 1, with a different divergence on the different coordinates. For instance, we sample 100 points

from 1
3N (c1,Σ1) + 1

3N (c2,Σ2) + 1
3N (c3,Σ3), with for every i ∈ [[1, 3]], Σi diagonal with coefficients (σ

(2)
i , σ

(3)
i )

with σ(2) = (1, 4, 7) and σ(3) = (2, 7, 2). In Figure 11, we represented the clustering obtained with Algorithm
1 with the Poisson divergence on the first coordinate and the Binomial divergence on the second coordinate.
We observe that the shape of the clusters obtained correspond roughly to the shape of the sublevel sets of the
sampling distribution.
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Figure 11: Clustering with hybrid Bregman divergence

11.3 Additional files for Stylometric author clustering

This section exposes the graphics and additional numerics that support several results from Section 4.6, for
instance about the calibration of parameters.
Trimmed k-median:

In Figure 12 we plot the cost and the NMI as a function of q for different numbers of clusters k, in Figure
13 we focus on the case k = 4. Finally, in Figure 14 we plot the best clusterings in terms of NMI for k = 4
and k = 6.

0

3000

6000

9000

0 50 100 150 200

q

co
st

k

1

2

3

4

5

6

7

k−Median method for Authors

0.0

0.2

0.4

0 50 100 150 200

q

N
M

I
k

1

2

3

4

5

6

7

k−Median method for Authors

Figure 12: Cost and NMI for Author clustering with k-Median method
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Figure 13: Cost and NMI for Author clustering with k-Median method – k = 4
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Figure 14: Examples of Author clusterings obtained with k-Median method

These graphics suggest that k = 4 and k = 6 are possible choices. The corresponding q that minimize
NMI’s are respectively q = 202 (NMI = 0.4334372), and q = 208 (NMI = 0.4721967).
tclust:

Figure 15 and 16 do not allow to select k. If k = 4 is chosen, Figure 16 suggests that q ' 184 is a relevant
choice. Figure 17 provides the associated clustering, whose NMI is 0.4912537.
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Figure 15: Cost and NMI for Author clustering with tclust algorithm
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Figure 16: Cost and NMI for Author clustering with tclust algorithm – k = 4
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Figure 17: Examples of Author clusterings obtained with tclust algorithm

Trimmed k-means:
Figure 18 suggests the choice k = 4, and Figure 19 shows that q = 190 yields a slope jump and NMI peak.

The associated clustering is depicted in Figure 20, its NMI is 0.5336308.
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Figure 18: Cost and NMI for Author clustering with trimmed k-means
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Figure 19: Cost and NMI for Author clustering with trimmed k-means – k = 4
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Figure 20: Examples of Author clusterings obtained with trimmed k-means
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