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a b s t r a c t 

The transport of finite-size particles in a turbulent plane Couette flow has been studied by particle- 

resolved numerical simulations based on the Force Coupling Method. The influence of the deviation of

particle shape from sphericity was addressed, using neutrally buoyant spheroids with aspect ratio rang- 

ing from 0.5 to 2. The particle transport was compared to the case where the inertia of spherical par- 

ticles was varied by considering different particle densities (while keeping comparable Stokes number).

This work has shown that close to the wall, the symmetry axis of oblate particles is almost parallel to

the wall-normal direction and the major axis of prolate particles tends to align in the flow direction.

Both types of particles have a kayaking type of rotation in the core region which yields homogeneous

collisions. The spatial particle distribution is strongly correlated to coherent structures. However, strong

deviations occur for the most inertial particles which accumulate in the near wall region. Successive

stages of accumulation and release in the streaks are observed while the regeneration cycle of turbulence

proceeds. The case of massless bubbles is characterized by a very strong correlation with the large scale

vortices that span over the depth of the Couette gap. Even though the particles do not modify drastically

the flow, they have some effect on the fluctuating energy, as suggested from the pdf. This effect is more

clear for non-spherical particles compared to the spherical ones with various density ratios.
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1. Introduction

Wall-bounded turbulent flows are populated by coherent flow

structures that are largely responsible for enhancing heat and mass

transfer ( Robinson, 1991 ). Understanding the particle dynamics in

these coherent flow structures is fundamental to understand and

predict particle transport, entrainment and deposition in environ-

mental systems or industrial processes. For example particles can

form particle streaks near the wall where the vortical flow struc-

tures create suitable conditions for particle entrainment, and par-

ticipate to particle deposition by conveying them from the core re-

gion to the wall region Kaftori et al. (1995) . 

The dynamics of wall-bounded turbulent flows is very rich,

and the literature on this subject is abundant. We will focus in

this introduction on some aspects related to our investigation. The

key structures in wall-bounded turbulence are the spatially coher-

ent, temporally evolving, large-scale streaks (wall-normal sweeps
(  

r  

e  
nd ejections) and large-scale streamwise vortices. The turbu-

ence is sustained through a sequence of linear (lift-up) and non-

inear (stretching and break-up) structure interactions, forming the

o-called regeneration cycle ( Hamilton et al., 1995; Jiménez and

inelli, 1999 ). We are interested in the transport of finite-size par-

icles in wall-bounded turbulent flows. By finite-size we mean that

he particle diameter is comparable to or larger than the small

cales of the flow. 

Particles can modulate the flow regime if they sufficiently per-

urb the turbulence regeneration cycle. For example, in turbulent

lane Couette flow, Wang et al. (2017) have shown in details that

eutrally buoyant finite-size particles with moderate volume con-

entration hardly alter the coherent structures in plane Couette

ow. This was in agreement with the observation of Brandt (2014) .

owever particles with the same size and concentration enhance

he turbulence in pressure driven flow, as observed experimentally

y Matas et al. (2003) and confirmed later by many simulations

 Yu et al., 2013; Loisel et al., 2013; Picano et al., 2015 ). In a more

ecent paper Wang et al. (2018) , we have shown that turbulence

nhancement in pressure-driven flow is due to the accumulation of
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articles in ejection regions, leading to the modulation of the re-

eneration cycle stages (mainly the lift-up and the vortex stretch-

ng mechanisms). All these afore-mentioned studies were carried

ut with spherical particles. 

If the particles are much smaller that the small eddies, they are

onsidered as pointwise. Marchioli and Soldati (2002) have shown

hat the sweep and ejection events are effective in transferring

hese particles toward the wall and the core respectively. Point-

ise inertial particles are known to accumulate in high strain rate

egions while bubbles tend to move towards the core of vortical

egions ( Balachandar and Eaton, 2010 ). 

As for non-spherical particles, they experience forces and

orques that depend on particle orientation. In wall-bounded tur-

ulent flow, their axis was shown to preferentially orient towards

he fluid vorticity direction ( Parsa et al., 2012; Voth and Soldati,

017 ). The orientation dynamics of non-spherical particles depends

n their aspect ratio A r . Even in the simplest case, a pure shear

aminar flow, the particle rotation rate depends on its aspect ratio

following Jeffery’s orbit ( Jeffery, 1922 )). When coupled to transla-

ion, particle rotation leads to cross-streamline motion even in the

bsence of particle inertia. In addition, non-spherical particles ex-

erience torque from the local flow deformation, which possibly

eads to preferential alignment. Because of the rich orientation dy-

amics, the flow statistics of two-phase flows might depend on the

eviation of particles from sphericity, in a non-trivial way ( Voth

nd Soldati, 2017; Einarsson et al., 2015b; Dabade et al., 2016 ). 

Most studies performed with anisotropic particles considered

article transport by fluid, without accounting for the parti-

le two-way coupling with the fluid flow structures. For non-

pherical particles which size is small compared to the small-

st turbulent flow structures, many properties of particle mo-

ion are similar between different turbulent flows since the fluid

train is dominated by small scales, which share universal prop-

rties. Zhang et al. (2001) have shown that prolate ellipsoidal

nertial particles accumulate in the viscous sublayer of a di-

ute turbulent channel flow (in the ejection regions like spher-

cal particles), and the aspect ratio influences their deposition

ate. In the same flow configuration, Mortensen et al. (2008) and

archioli et al. (2010) observed in addition that prolate parti-

les exhibit preferential orientation in the streamwise direction,

specially near the channel walls, the aspect ratio having a neg-

igible effect on particle distribution in the flow. Recently, the

article rotation dynamics was a subject of interest in addi-

ion to particle orientation, both being dependent on the parti-

le position: whether near the channel center (similar to homo-

eneous turbulence) or near the walls where the shear is strong.

hao et al. (2015b) found that near the channel center, inertia-free

pheroids were evenly distributed across the channel, the flattest

isks ( A r = 0 . 01 ) mainly tumbling in the plane normal to the vor-

icity, whereas the longest ( A r = 50 ) rods spinning in the vortic-

ty direction, as in homogeneous isotropic turbulence ( Byron et al.,

015 ). Inertia was found to reduce the preferential spinning or

umbling leading to more isotropic rotation. Near the channel

alls, Zhao et al. (2015b) observed that preferential orientation

f spheroids in the streamwise direction is induced by the coher-

nt flow structures. When the feedback forcing from the particles

nto the flow is taken into account, turbulence intensity reduc-

ion was observed for a channel flow laden with prolate particles

 Zhao et al., 2015a ). 

Studies on turbulent flows laden with finite-size non-spherical

articles are scarce. Experiments of Parsa et al. (2012) in isotropic

urbulence with nearly isolated neutrally buoyant rod-like particles

ith the axis being larger than the Kolmogorov scale confirmed

he preferential alignment of the particle axis with the local fluid

orticity. Based on numerical simulations, they have shown that

he particle rms rotation rate depends strongly on the aspect ratio
ith an abrupt reduction of 80% occurring for A r between 0.5 and

. Do-Quang et al. (2014) showed that finite-size fibers in turbu-

ent channel flow behave differently from pointwise particles. They

ccumulate in high-speed streaks, staying there due to collisions

ith the wall. In the channel core, they confirmed that fibers align

ith the mean flow vorticity direction. Closer to the wall the fibers

umble in the shear plane. Very close to the walls they become

ligned in the flow direction. For oblate particles with A r = 1 / 3 in

urbulent channel flow, Niazi Ardekani et al. (2017) observed a drag

eduction due to the absence of a near-wall particle layer which is

therwise found when particles are spherical. They mainly found

hat the symmetry axis of the oblate particles tend to be preferen-

ially oriented normal to the channel walls in the near wall region.

o the authors’ knowledge, the transport of non-spherical particles

n plane turbulent Couette flow configuration has not been consid-

red so far. 

We investigate in this paper a plane Couette flow, as it is a

eneric and simple configuration to point out interesting features

f the complex dynamics of non-spherical (prolate and oblate) fi-

ite size particles. We focused particularly on particle rotation dy-

amics, orientation and transport within large-scale structures. We

onsider spheroidal particles of minor radius r p = L y / 40 with as-

ect ratio from 0.5 to 2 (where r p and L y are the particle and Cou-

tte gap size respectively). Their behavior is compared to that of

nertial spherical particles of radius r p = L y / 40 with density ratio

rom 0 to 5. The Reynolds number is slightly above the onset of

urbulence. The paper is organized as follows. In Section 2 , the nu-

erical method used for this study is detailed, with a special em-

hasis on its extension to simulate ellipsoidal shape particles. Val-

dations tests are also presented. Section 3 provides the details of

he suspension flow simulations carried out in turbulent Couette

onfiguration, with the characteristic dimensionless numbers. The

esults are described in Section 4 , where we mainly focus on the

article spatial distribution, their rotational dynamics, their resi-

ence time in flow rotational structures and correlation of particle

istribution with main turbulent flow structures. The paper ends

ith a conclusion on the major findings. 

. Simulation method and validation

Direct numerical simulations of single-phase flows are per-

ormed by using the code JADIM for an incompressible Newtonian

uid ( Calmet and Magnaudet, 1997 ). The unsteady 3-D Navier–

tokes equations discretized on a staggered grid are integrated in

pace using the finite volume method. All terms involved in the

alance equations are written in a conservative form and are dis-

retized using second order centered schemes in space. The solu-

ion is advanced in time by a second-order semi-implicit Runge–

utta/Cranck Nicholson time stepping procedure and incompress-

bility is achieved by a pressure correction which is solution of a

oisson equation. 

Numerical simulations of particle trajectories and suspension

ow dynamics are based on multipole expansion of momen-

um source terms added to the Navier–Stokes equations (namely

orce-Coupling Method as described in Maxey and Patel (2001) ,

omholt and Maxey (2003) and Climent and Maxey (2009) ).

he comparison of FCM with other methods that belong to the

lass of Fictitious Domain methods can be found in a review by

axey (2017) for particulate flows. FCM is based on a low-order, fi-

ite force multipole representation of the effect of the particles on

he surrounding fluid flow. Although no-slip boundary condition is

ot strictly enforced at the particle surface, the flow field perfectly

grees with the exact solution within a typical distance of 10% of

he radius away from the particle surface. Optimal results are ob-

ained with FCM on a uniform grid with only 6 mesh grids along

he diameter. Compared to other fictitious domain methods such as



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�

 

 

s

σ  

σ  

 

t  

t  

p  

r  

t

 

 

e  

b

Q  

�

 

�

 

 

t  

g  

p  

i  

a  

t

 

w

A  

R  

a  

c  
direct forcing methods (immersed boundary method or immersed

body method) we obtain the same level of accuracy but with less

computing effort s. Flow dynamics is coupled to Lagrangian track-

ing of particles. The fluid is assumed to fill the entire simulation

domain, including the particle volume. The fluid velocity and pres-

sure fields are solutions of continuity Eq. (1) and momentum bal-

ance Eqs. (2) and (3) . 

∇ · u = 0 (1)

ρ
D u 

D t 
= −∇ p + μ∇ 

2 u + f (x , t) (2)

f i (x , t) = 

N p ∑ 

n =1

F n i � (x − Y 

n (t))

+ G 

n
i j 

∂ 

∂x j 
� 

′ (x − Y 

n (t)) (3)

The spatial force distribution f ( x , t ) in the momentum balance

Eq. (3) accounts for the presence of particles in the flow. It is writ-

ten as a multipole expansion truncated after the second term. The

first term of the expansion called the monopole represents the

force F n that the particle exerts on the fluid due to buoyancy, par-

ticle inertia and particle-to-particle contact forces ( Eq. (23) ). This

monopole term balances the drag, added-mass, lift and history

forces ( Climent and Maxey, 2003 ). 

F n = (m p − m f ) 

(
g − dV 

n

dt 

)
+ F next (4)

The second term, called dipole, is based on a tensor G 

n sum of

two contributions: an anti-symmetric part A 

n 
i j 

= 

1 
2 εi jk T 

n is related

to the torque T n applied on the particle, which is a combination of

the external torque and inertial terms ( Climent and Maxey, 2009 ),

and a symmetric part which accounts for the rigidity of finite-size

particle ( Lomholt and Maxey, 2003 ). 

T 

n = T 

n 
ext − (I p − I f )

(
d�n 

dt 

)
(5)

where I p (resp. I f ) is the particle (resp. appropriate fluid) rotational

inertia. The symmetric part S n 
i j 

that accounts for the resistance of a

rigid particle to local strain by ensuring zero average deformation

inside the particle volume, Eq. (6) . 

E n i j (t) = 

1

2 

∫ (
∂u i 

∂x j 
+ ∂u j

∂x i

)
� 

′ (x − Y 

n (t)) d 3 x = 0 (6)

The particle finite-size is accounted for by spreading the mo-

mentum source terms around the particle center Y 

n using a Gaus-

sian spherical envelope. For an ellipsoidal particle having its prin-

cipal axes aligned with the axes and its center located at the origin

of the reference framework, the implicit equation of the surface is

written in the form of Eq. (7) . 

x 2 

a 2 
+ y 2 

b 2 
+ z 2 

c 2 
= 1 (7)

where a, b and c are the lengths of its semi-axes. 

In the frame of the Force Coupling Method, the Gaussian en-

velopes are adapted in order to take into account the particle

shape. Therefore, the generalized Gaussian envelopes can be writ-

ten for the monopole in Eq. (8) and dipole terms in Eq. (9) , follow-

ing Liu et al. (2009) : 

� (x ) = (2 π) −3 / 2 (σ1 σ2 σ3 ) 
−1

exp 

[
−1

2

(
x 2 

σ1 
2 

+ y 2

σ2 
2

+ z 2

σ3 
2

)]
(8)
M

′ (x ) = (2 π) −3 / 2 (σ ′ 
1 σ

′ 
2 σ

′ 
3 ) 

−1

exp 

[
−1

2 

(
x 2 

σ ′ 
1

2
+ y 2

σ ′ 
2

2
+ z 2

σ ′ 
3

2

)]
(9)

It was shown by the same authors that the widths of the Gaus-

ian envelopes σ i ( Eq. (10) ) and σ ′ 
i 

( Eq. (11) ) are related to the

semi-axis a, b, c similarly to a spherical shape. 

1 = a/ 
√ 

π ; σ2 = b/ 
√ 

π ; σ3 = c/ 
√ 

π (10)

′ 
1 = a/ (6 

√ 

π) 1 / 3 ; σ ′ 
2 = b/ (6 

√ 

π) 1 / 3 ; σ ′ 
3 = c/ (6 

√ 

π) 1 / 3 (11)

In addition to the update of the particle positions, it is impor-

ant to update the particle orientation in time. The general orienta-

ion of an ellipsoid is determined from the orthogonal unit vectors

 1 , p 2 and p 3 following the ellipsoid semi-axes. They rotate as a

igid body. Therefore, for a particle n , their evolution in time is ob-

ained from the particle rotation velocity �n as: 

dp 

n 
i 

dt 
= �n × p 

n 
i (12)

The transformation between the fixed coordinate axes of refer-

nce and the instantaneous semi-axes of an ellipsoid is specified

y the orthogonal matrix Q : 

 = [ p 1 
T , p 2 

T , p 3 
T ] (13)

The general form of the Gaussian envelop is then written as: 

 (x ) = (2 π) −3 / 2 (σ1 σ2 σ3 ) 
−1

exp 

⎡⎢ ⎣ 

−1 

2 

x 

T Q 

T 

⎛ ⎜ ⎝ 

σ−2 
1 

0 0 

0 σ−2 
2 

0 

0 0 σ−2 
3 

⎞⎟ ⎠ 

Qx 

⎤⎥⎦ (14)

′ (x ) = (2 π) −3 / 2 (σ ′ 
1 σ

′ 
2 σ

′ 
3 ) 

−1

exp 

⎡⎢ ⎣ 

−1 

2 

x 

T Q 

T 

⎛ ⎜⎝σ ′−2
1 

0 0 

0 σ ′−2
2 

0 

0 0 σ ′−2 
3 

⎞⎟ ⎠ 

Qx 

⎤⎥⎦ (15)

The separate temporal integration of the three particle unit vec-

ors in Eq. (11) can lead to some inconsistency in the particle an-

ular dynamics. Therefore, following Nikravesh et al. (1985) we re-

lace the time integration of separate unit vectors p i by the time

ntegration of the quaternion q of a unit vector of an orientational

xis of rotation. The derivative in time of the quaternion is related

o the particle rigid motion as follows: 

dq 

n 

dt 
= 

1 

2 

( A 

n ) 
T × �n (16)

here A 

T is the matrix detailed in Eq. (17) . 

 

T = 

⎛⎜ ⎝ 

−q 1 −q 2 −q 3
q 0 q 3 −q 2

−q 3 q 0 q 1
q 2 −q 1 q 0

⎞⎟⎠ (17)

The rotation matrix R ( Eq. (18) ) 

 = 2 

( 

q 20 + q 21 − 1 / 2 q 1 − q 0 q 3 q 1 q 3 + q 0 q 2 
q 1 q 2 + q 0 q 3 q 2 0 + q 22 − 1 / 2 q 2 q 3 − q 0 q 1 
q 1 q 3 − q 0 q 2 q 2 q 3 + q 0 q 1 q 2 0 + q 23 − 1 / 2

)
(18)

llows to obtain the projection of a vector M 

′ from the particle

oordinate system onto the Cartesian frame of reference M using:

 = R M 

′ (19)



Fig. 1. Schematic representation of the repulsive force and torque at the center of

a pair of ellipsoids if their surface is closer than a distance of 0 . 1(‖ O αA α ‖ + ‖ 
O β A β ‖ ) . 
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With two perpendicular axes of the same length and a third

ne shorter (resp. longer), the ellipsoid is called oblate (resp. pro-

ate) spheroid. Only spheroids will be considered in this work,

ithin different flow configurations. 

Furthermore, the particle translation and rotation velocities are

btained from a local weighted average of the volumetric fluid ve-

ocity (resp. rotational velocity) field over the region occupied by

he particle ( Eqs. (20) and (21) ). 

 

n (t) = 

∫ 
u (x , t) � (x − Y 

n (t)) d 3 x (20)

n (t) = 1 

2

∫ 
(∇ × u (x , t)) � 

′ (x − Y 

n (t)) d 3 x (21)

Particle trajectories are then obtained from numerical integra-

ion of the equation of motion as in Eq. (22) . 

dY 

n 

dt 
= V 

n (22) 

This modeling approach allows calculating the hydrodynamic

nteractions with a moderate computational cost. In order to cap-

ure correctly the dynamics of dilute suspension flow, four grid

oints per particle radius (for spherical particles) are usually re-

uired when the monopole force is not zero, and in the case where

nly dipole forcing is relevant, three grid points per particle radius

re sufficient. For the simulation of ellipsoids, we ensure 3–4 grid

oints for within the semi-minor axis direction. 

The repulsive model related to the distance between two par-

icles (expressed as Eqs. (23) and (24) ) is important to prevent

he overlapping of non-spherical moving particles because it se-

iously influences the particle orientation and consequently their

nteraction with the flow. For a pair of ellipsoids ( α) and ( β),

he collision barrier is activated when the particles are very close.

he minimal distance between the surfaces of two ellipsoids, or

he surface of one ellipsoid and the wall, is calculated follow-

ng Pope (2008) by successive approximations. The iterations stop

hen the difference between two successive iterations, T OL =
A α,i A β,i ‖ min − ‖ A β,i −1 A α,i −1 ‖ min , is less than 0.001 a ( a being the

ength of the major semi-axis). Note that for the aspect ratios

sed for this paper, i = 8–10 iterations are needed if we require

OL ≤ 0.001 a and i = 4–6 iterations if TOL ≤ 0.01 a . 

The contact force is added at the points of “contact” A α and

 β (which are the closest points between both particle surface)

f their distance is less than 0 . 1(‖ O αA α ‖ + ‖ O βA β ‖ ) . As shown

n Fig. 1 , the repulsive force at the contact point A α is normal to

he plane tangent to the surface at that point. This force is acti-

ated as soon as the two dashed ellipsoidal lines intersect with

ach other, the expanding factor being 1.1. Since the direction of
he force does not necessarily pass through the ellipsoid center,

he repulsive force ( F 
αβ
c ) is supplemented by a torque ( T 

αβ
c ), both

f them being applied at the center of the ellipsoid ( O α). The force

nd torque applied on particle ( α) are formulated in Eqs. (23) and

24) .

 

αβ
c = F re f 

[
1 − ‖ A αA β ‖ 

2 

(0 . 1 ‖ O αA α ‖ +0 . 1 ‖ O βA β ‖ ) 2 

]
A αA β

‖ A αA β ‖ 

(23)

 

αβ
c = O βA β × F 

αβ
c (24) 

However, if the particles actually overlap with each other, we

mpose a constant magnitude equal to F ref . F ref is simply scaled

ith the Stokes drag force F d = 6 πμγ a 2 applied on a correspond-

ng sphere based on characteristic particle relative velocity in shear

ow γ a , where a is the semi-major axis and γ is the shear rate.

n turbulent flow simulations through this paper, F ref was chosen

uch that the number of overlapping particles was found to be

ess than 1% of the total particle number. Simultaneously, the force

 F 
βα
c = −F 

αβ
c ) and torque ( T 

βα
c = O αA α × F 

βα
c ) are applied at O β of

he other ellipsoid ( β). The forces and torques on both particles are

dded as external forces and torques to the FCM in Eqs. (4) and (5) .

When particles are very close, lubrication due to fluid drainage

ithin the gap between particle surfaces is not captured by FCM.

his limits our present study to dilute or moderately concen-

rated suspensions. The repulsive model we used reproduces a

oft contact between particles assuming no rebound. As shown in

e Motta et al. (2013) , when particles approach each other with

 low impact Stokes numbers ( St < 10), kinetic energy is damped

y viscous dissipation in the fluid gap and no-rebound occurs. For

ll the simulations under investigation in this paper, the impact

tokes number is below the critical value for actual rebound. 

Many tests were performed to validate the numerical approach,

specially particle rotation under shear flow and the interaction of

 pair of particles. Some of them will be discussed below. 

.1. Interaction of two spheroids in shear flow 

This test is dedicated to validate the calculation of the Stresslet

f an ellipsoid in a linear flow, and to verify if the collision barrier

s suitable to recover the interaction of two ellipsoids. The refer-

nce case that we use for comparison is obtained with the Bound-

ry Element method of Pozrikidis (2006) for Stokes flow. 

We consider a pair of prolate spheroids in a linear flow. The

nitial orientation of the particles is ϕ 0 = π/ 2 and θ0 = 0 ( p is

riented in the flow direction initially). Particle centers are sepa-

ated in the streamwise direction by a distance �x before interac-

ion. The two particle axes are rotating in the shear-gradient ( x –y )

lane during the interception. We select particle size a = 0 . 1 , b =
 = 0 . 05 and domain size L x × L y × L z = 1 . 5 × 1 × 0 . 5 with a mesh-

rid of 95 × 62 × 32 points. The particle Reynolds number in the

CM simulation is Re p = γ a 2 /ν = 0 . 1 , where γ is the shear rate. 

Fig. 2 shows a sequence of particle positions and orientations

hat compare very well with the result of Pozrikidis (2006) ob-

ained with the same initial condition. The initial separation is

x = −10 a, �y = 1 . 5 a, �z = 0 . Snapshots of pair particle posi-

ions and orientations are selected at dimensionless instants γ t =
 , 2 . 5 , 5 , 7 . 5 , 10 , 12 . 5 , 15 . 

Fig. 3 shows the evolution of the particle angular velocity �z =
 θ/d t and shear Stresslet G 12 together with the corresponding evo-

ution of an isolated particle. The results from FCM agree quanti-

atively well with Pozrikidis (2006) for Stokes flow. As stated by

his author, the particle interception has only a weak effect on the

ffective viscosity and this effect is expected to become stronger

hen the particles interact under lubrication. The lubrication ef-

ect is not included neither in FCM nor in the spectral boundary-

lement method for Stokes flow. 





Fig. 6. Instantaneous angular velocity along the vorticity vector in a shear flow

for spheroid (oblate Ar = 0 . 5 and prolate Ar = 2 − 5 ) in a suspension with volume 

fraction ϕ = 0 . 058 . FCM at Re p = 0 . 1 compared with Stokes solu- 

tion of Jeffery. Colors distinguish four aspect ratios. Black: Ar = 0 . 5 , blue: Ar = 2 , 

red: Ar = 3 and green: Ar = 5 . Symbols are results from Daghooghi and Boraz- 

jani (2015) at Re p = 0 . 01 where ◦: Ar = 2 , �: Ar = 3 and � : Ar = 5 . (For inter- 

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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Fig. 7. Effect of the Reynolds number on the instantaneous angular velocity ( ω z = 

d θ/d t). ( a ): a prolate spheroid ( Ar = 2 ) about the vorticity vector in a shear 

flow. The volume fraction is ϕ = 0 . 058 . Jeffery orbit. FCM: Re p = 0 . 1 , 

Re p = 1 and Re p = 10 . Symbols are results from Daghooghi and Boraz- 

jani (2015) where + : Re p = 0 . 1 , ∗: Re p = 1 and ◦: Re p = 10 ; ( b ) is the comparison 

between FCM (line) and DF/FD (dash line): the top panel shows the symmetry axis

of an oblate spheroid ( Ar = 0 . 5 ) rotating about the vorticity vector at two Reynolds 

numbers, black is Re p = 1 and red is Re p = 4 ( Re p is based on its semi-major axis). 

The bottom panel shows the symmetry axis of a prolate spheroid ( Ar = 2 ) rotating 

about the vorticity vector. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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ere. Furthermore, we performed numerical simulations using

he direct-forcing fictitious domain (DF/FD) method from Yu and

hao (2007) . The method is a non-Lagrange-multiplier version

f the distributed-Lagrange-multiplier/fictitious-domain (DLM/FD) 

ethod proposed by Glowinski et al. (1999) . Its accuracy and ro-

ustness are fully demonstrated in Yu and Shao (2007) , in partic-

lar at low Reynolds numbers and for neutrally-buoyant particles.

oth DF/FD and FCM are used in similar configurations, and the

esults are directly compared. 

.2.1. Effect of aspect ratio 

The first test is realized at relatively low Re p (based on the

emi-major axis and the shear rate) and aspect ratio Ar that

anges between 0.5 and 5. p lays in the shear plane ( x –y ) and

ill stay there (since ˙ ϕ = 0 ). Fig. 6 displays the angular ve-

ocity ( �z = d θ/d t) obtained by the FCM with Re p = 0 . 1 com-

ared to the Jeffery orbit (Stokes flow), and Re p = 0 . 01 from the

ork of Daghooghi and Borazjani (2015) who used the curvilinear

mmersed-boundary method (CURVIB). The angular velocity result-

ng from FCM simulations are close to the theoretical solution over

ost of the period. For the prolate particle, the largest deviation

akes place near the maximum velocity, when the prolate major

xis is almost aligned with the shear direction. At the same angu-

ar orientation, the simulation from CURVIB shows even a smaller

otation rate at that orientation, especially when the symmetric

xis p is perpendicular to the flow direction (e.g. θ is an odd mul-

iples of π /2). 

.2.2. Effect of particle Reynolds number 

The second test considers the effect of the Reynolds number on

he ellipsoid rotation. In the case of a prolate spheroid with Ar = 2 .

he Reynolds number Re p ranges between 0.1 and 10. Fig. 7 (a)

hows that increasing the flow inertia tends to decrease the par-

icle angular velocity, especially near the peaks, in agreement with

he simulations of Daghooghi and Borazjani (2015) . 

Simulations using the FCM and DF/FD were run in the case of

n oblate ( Ar = 0 . 5 ) and prolate ( Ar = 2 ) spheroids with the semi-

inor axis length equal to 0.05 in a unit cubic computational do-

ain at two Reynolds numbers ( Re p = 1 . 0 and Re p = 4 . 0 ). The grid

patial resolution is of 64 × 64 × 64 in FCM and 128 × 128 × 128 in

F/FD. The rotational axis of the oblate spheroid is initially aligned

ith streamwise direction whereas it is aligned with the wall-

ormal direction for the prolate spheroid. The particle angular tra-

ectory shown in Fig. 7 (b), is calculated from both FCM and DF/FD

ethods. The results obtained from both methods agree very well
or the oblate spheroid whereas there is a small discrepancy for

he prolate spheroid. In general, the FCM slightly overestimates the

aximum prolate particle velocity (corresponding to the orienta-

ion along the shear direction), due to lower resolution near the

article endpoints. 

.2.3. Particle drift to stable orbit 

The third test is related to the orientational dynamics of an el-

ipsoid which axis of symmetry is initially not in the shear plane

either parallel to the vorticity axis. Jeffery (1922) suggested that

he particles will tend to adopt that motion which, of all the mo-

ions possible under the approximated equations, corresponds to the

east dissipation of energy. Therefore the steady state orbit of a pro-

ate spheroidal particle in a shear flow tends toward the spinning

otion (particle major axis aligned with the vorticity direction),

hereas the oblate spheroidal particles tend toward the tumbling

otion (the axis of symmetry rotate in the shear plane). After

 decades, Saffman (1956) showed that when the flow inertia is

nite but small and the deviation from sphericity is small, the

rbit at equilibrium is unchanged with respect to the inertialess

egime, for both types of spheroids, a finding that was later con-

rmed by Subramanian and Koch (2006) . This was revisited after

ecent simulations of ( Qi and Luo, 2003; Yu et al., 2007; Huang

t al., 2012; Rosén et al., 2014 ) who found the opposite: tumbling

s the stable orbit for a prolate spheroid, whereas spinning is the

table one for oblate spheroid using a wide range of aspect ra-

io 1/3 < Ar < 3 and particle Reynolds number Re p < 15. This was



Fig. 8. Comparison of FCM and DF/FD: orientation vector p of a prolate and an oblate spheroid in simple shear flow at finite-size Reynolds number ( Re p = 1 . 0 ). ( a ) 

cos θ x ( p x ), cos θ z ( p z ), red is for DF/FD and black is for FCM, the top panel corresponds to oblate spheroid and bottom panel for prolate particle; ( b ) projection of p

on the unit sphere corresponding to ( a ) and the blue solid circle is the initial position of particle center, red cross is for DF/FD and black dot is for FCM, the top panel

corresponds to oblate spheroid and bottom panel for prolate particle. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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later demonstrated theoretically by Einarsson et al. (2015a) . To-

gether with Dabade et al. (2016) they have shown that for thin

oblates (close to disks) with aspect ratios Ar < 1/7.3, both tumbling

and spinning are stable orbits, which makes the dilute suspension

rheology not uniquely defined in theory. 
D  
In this test, neutrally buoyant prolate ( Ar = 2 ) and oblate ( Ar =
 . 5 ) particles are considered and Re p = 1 (based on the semi-major

xis and the shear rate). The initial orientation is ϕ 0 = π/ 4 and

0 = π/ 2 . The domain size is set equal to L x = L y = L z = 5 max (a, b)

or both simulations. The orientation orbits obtained with FCM and

F/FD are compared in Fig. 8 . Directional cosines p x and p z of a
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Fig. 9. ( a ) and ( b ) show the velocity magnitude and particle distribution with its

orientation of C500-5-05-1 (oblate) and C500-5-2-1 (prolate particles), respectively.

The figures are chosen when the large scale streaks are the strongest. The isocon- 

tours represent the instantaneous velocity magnitude in y –z slice. ( c ) Particle con- 

centration profiles for different particle shapes and density ratios. (For interpreta- 

tion of the references to color in the text, the reader is referred to the web version

of this article.)
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rolate and an oblate spheroid are plotted in Fig. 8 (a). The con-

ergence of a prolate (resp. oblate) particle toward stable tumbling

resp. log-rolling) orbits is a very slow process at low Re p = 0 . 125 .

he convergence is faster at higher Re p (figure is not shown here).

he angular trajectory of the oblate spheroid obtained by FCM is

n good agreement with DF/FD. As for the prolate spheroid, in the

rst several orbits, FCM is in good agreement with DF/FD. Then

he FCM tends to be slower than DF/FD to reach a stable state.

e plot the orientation vector p on the unit sphere in Fig. 8 (b).

 nearly closed orbit is observed for the prolate spheroid after it

rifts to a stable tumbling state whereas orientation vector p gets

o a convergence point for the oblate spheroid after it drifts to a

table log-rolling state. 

. Suspension flow configuration

The turbulent plane Couette flow is generated by two walls

oving in opposite directions with equal velocities, the dimen-

ions of the domain being the same as the minimal flow unit

ang et al. (2017) . Table 1 reports on all numerical parameters.

he length and velocity are scaled by wall units y + ≡ yu τ /ν, and

 

+ ≡ u/u τ where u τ = 

√ 

τw 

/ρ f , τw 

being the wall shear stress.

lthough the Reynolds number in this paper is only slightly

bove the onset of turbulence (far from the regime of developed

urbulence), we can give an estimate of the Kolmogorov scale

/ δν ≈ 1.5 at the wall and η/δν = (κy + ) 0 . 25 ≈ 2 . 0 in the central re-

ion ( Pope, 20 0 0 ). All the cases of Table 1 fall in the range where

he Force Coupling Method captures well the particle response to

ow fluctuations ( Wang et al., 2017 ). The results with neutrally

uoyant spheroidal particles are compared with different particle-

o-fluid density ratios. The size ratio between the Couette gap and

he radius of smallest spherical particles r p used for this study

s L y /r p = 40 . The particle Reynolds number Re p ≡ �(V 1 / 3 r r p ) 
2 /ν is

ased on local shear rate � = | d u / dy | and the effective radius eval-

ated from the particle volume r eff ≡ ( V r ) 
1/3 r p . V r is the ratio of

he spheroid volume to the reference sphere volume (see Table 1 ).

he value of F ref in Eq. (23) has been set to 5 F d for all simula-

ions. The Stokes number St ≡ (2 ρp /9 ρ f ) Re p takes into consideration

he increase of inertia due to particle volume or to density ratio

r ≡ρp / ρ f . The Stokes number defined here gives values close to

he definition based on the relaxation time of non-spherical par-

icles (summarized in Voth and Soldati (2017) ). For example for

 r = 2 (resp A r = 0 . 5 ), the Stokes number is 1.52 (resp 2.42) larger

han the reference particle Stokes number when calculated from

oth and Soldati (2017) whereas the increase is 1.59 (resp 2.51)

imes in the present study. 

. Results on suspension flow in pCf

.1. Particle spatial distribution 

Fig. 9 (a and b) show the spheroidal particle distribution and

rientation in the ( y –z ) plane. The spheroids, like spheres as shown

n Wang et al. (2017) , tend to rather accumulate in the center

f the vortices, whereas the strong ejection regions are quasi-free

rom particles. It is observed that at moderate inertia spatial par-

icle distribution is not influenced by inertia when the particle

hape is spheroidal (see bottom profiles in Fig. 9 (c)). This obser-

ation holds for spherical particles with density ratio lower than

. However, when the density ratio is equal to 5 (see concentra-

ion profiles in Fig. 9 (c) for 10% concentration), the probability of

nding particles accumulated close to Couette walls is significantly

ncreased (peaks in the red dashed line). This is consistent with

hat has been observed for inertial pointwise spherical particles

n turbulence ( Balachandar and Eaton, 2010 ). However, this is dif-

erent with inertial finite-size particles in pressure-driven turbu-
ence ( Fornari et al., 2016 ), who found the local volume fraction

ncreases drastically at the centerline. Particle spatial distribution

s hardly affected by the shape (at least to the aspect ratio we in-

estigated), as it was already observed for pointwise inertial non-

pherical particles in a channel flow ( Mortensen et al., 2008; Mar-

hioli et al., 2010 ). Indeed, for a lower aspect ratio ( Ar = 1 / 3 ) and

olume concentration lower than 10%, the concentration profile of

blate particles ( Niazi Ardekani et al., 2017 ) is similar to spherical

articles ( Picano et al., 2015 ) in channel flow. 



Fig. 10. ( a ) Wall-normal profiles of the particle orientation angles θ and ϕ (projections of the p vector). The angle between the symmetry axis ( p or −p ) with the positive 

axis ( + x or + z) is used. ∗ and ◦ stand for oblate and prolate particles respectively. ( b –d ): Profiles of the particle absolute angular velocity in streamwise ( | ω x | ), wall-normal 

( | ω y | ) and spanwise ( | ω z | ) directions normalized by the average shear rate γ . The shape effect is shown for y / h < 1 and density ratio effect for y / h > 1 on the same graph. 
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4.2. Particle rotation dynamics 

The rotation dynamics of spheroids in laminar plane Cou-

ette flow was already discussed in Section 2.2 . As shown by

Rosén et al. (2014) , tumbling is the stable rotation orbit of a pro-

late spheroid, whereas spinning is the stable regime for oblate par-

ticles. Also in Section 2.2 , we have shown that oblate and pro-

late spheroids both tend to migrate towards the core of a laminar

pCf, no matter if the initial orientation of their symmetry axis is

aligned with the vorticity (along z , the spanwise direction) or in

the shear plane ( x –y plane). 

Consider a spheroid with the unit vector p along the symme-

try axis. The projection of p on the Cartesian frame of reference

is given in Eq. (25) , where the angles ϕ and θ are defined in

Fig. 10 (b). The particle is mainly tumbling when ϕ is close to 90 °
or spinning if ϕ is close to 0. The angle θ indicates if the symme-

try axis is rather oriented in the streamwise direction or along the

shear direction. 

In Fig. 10 (a), we show the inclination angle of the symmetry

axis instead of using cosine to avoid confusion in the averages

since the cosine function is not linear. For oblate spheroids, both θ
and ϕ are relatively high, which means that oblate spheroids tend

to move with the symmetry axis almost parallel to the wall-normal

direction especially in the near wall region, indicating that oblate

particles have more tumbling activity than spinning. This is simi-

lar to oblate spheroids with A r = 1 / 3 in turbulent pressure-driven

flow ( Niazi Ardekani et al., 2017 ). However, prolate spheroids tend

rather to align their major axis in the flow direction especially

close to the wall and to tumble ( ϕ is large and θ is small in aver-

age). This is consistent with the observations in turbulent pressure-

driven flow by Do-Quang et al. (2014) . 

The three components of particle absolute angular velocity are

shown in Fig. 10 (b–d). Near the walls, the particles rotate pre-

dominantly along the spanwise direction due to the mean shear.

In the core region the dominant component is the rotation along

the wall-normal direction ( ω y ). This is due to the gradient of the

streamwise velocity in spanwise direction ( ∂ u / ∂ z ) which is formed

by the gradient of streamwise velocity between low-speed (neg-

ative u ′ ) and high-speed streaks (positive u ′ ) in spanwise direc-

tion. For both types of spheroids, the particle rotation rate is de-

p  
reased in the spanwise direction whereas it is increased in the

ther two directions, when compared to the spherical particle ro-

ation rate. In the core region, the rotation rate in the three di-

ections are non-zero, for both prolate and oblate spheroids. This

ndicates a kayaking type of motion similar to what has been ob-

erved for prolate spheroids in turbulent pressure-driven flow by

o-Quang et al. (2014) . For spherical particles, the density ratio

nd concentration (from 5 to 10%) have both a negligible effect on

he rotational rates in the three directions. 

The kayaking type of rotation in the core region can yield ho-

ogeneous collisions. The three components of the particle colli-

ion forces are plotted in Fig. 11 (a), where they were averaged in

he homogeneous streamwise and spanwise directions. In the core

egion, the dominant collision force between spherical particles is

n streamwise direction which is both due to particle collisions

n ( x –z ) plane due to high- and low-speed streaks in that plane,

nd to the mean shear in the ( x –y ) plane (which is non-zero at

he Couette center). This effect is enhanced by particle inertia as

hown in Fig. 11 (b). Near the Couette walls, the dominant com-

onent is in the wall-normal direction which is due to collisions

ccurring when particles are swept towards the walls. Fig. 11 (c

nd d) show the collision forces scaled by F ref . These forces give

n indication on the momentum transfer by particle interactions.

t is clear to see that at equal volume fraction, all the collision

orce component are much stronger when the particles are not 

pherical. 

.3. Probability density function of velocity fluctuations 

To characterize the particle transport by fluid flow structures,

e focus on the buffer layer region, 0.15 < y / L y < 0.5 ( 10 < y + <
0 ), where the regeneration cycle governs the flow behavior

 Jiménez, 2013 ). The probability density functions (PDF) of parti-

le velocity fluctuations helps to describe if strong and weak fluc-

uations of particles are similar to that of the fluid. In Fig. 12 (a

nd b), the PDFs of streamwise and wall-normal velocity fluctu-

tions are shown, for simulations realized with different particle

hapes and densities. Every panel compares the PDF of the particle

elocity fluctuations with, on one hand, the fluid surrounding the

articles in the two-phase simulations (which is not expected to



Fig. 11. Profiles of the repulsive force components ( F i ) in directions x black, y blue and z red. In ( a ) simulation results with spherical particles C500-5-1-1(s) are com- 

pared to the simulations with prolate particles C500-5-2-1. In ( b ) the effect of inertia is shown with cases C500-10-1-0 and C500-10-1-5. Corresponding

to ( a ) and ( b ), ( c ) and ( d ) are the ratio between the repulsive force components with F d . (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 1

Parameters of the numerical simulations. The Reynolds number of the singe-phase flow is Re b ≡ U w h/ν = 500 

where U w = 0 . 5 is half of the relative wall velocity and h = L y / 2 is half of the Couette gap. r p = L y / 40 is the 

radius of the reference sphere and A r is the aspect ratio between symmetry axis with rotation axis. The Stokes

number is low near the Couette center (where the average shear rate is low) and maximum near the walls.

Simulations start with a random initial seeding of particles which reach a steady statistical distribution after

half period of the regeneration cycle. Then, statistics are formed over ∼ 500 time units ( h / U w ). 

Domain size: L x × L y × L z = 0 . 88 π × 1 . 0 × 0 . 6 π

Case �(%) A r ρr V r L + y Re τ Re p ( max ) St ( max ) Line type

N x × N y × N z = 30 × 86 × 32 

Single-phase – – – – 81 40.2 – – + 

Shape effect N x × N y × N z = 182 × 66 × 128 

C500-5-1-1(l) 5 1 1 8 80.6 40.3 12.5 2.78

N x × N y × N z = 280 × 100 × 256 

C500-5-1-1(s) 5 1 1 1 80.6 40.3 3.75 0.83

C500-5-05-1 5 0.5 1 4 80.1 40.0 6.9 1.53

C500-5-2-1 5 2 1 2 81.4 40.2 3.5 0.78

Inertia effect N x × N y × N z = 382 × 134 × 256 

C500-10-1-0 10 1 1 . 25 10 −3 1 84.7 42.4 3.75 1 . 1 10 −3 

C500-10-1-1 10 1 1 1 84.1 42.1 3.75 0.83

C500-10-1-2 10 1 2 1 85.1 42.5 3.75 1.67

C500-10-1-5 10 1 5 1 87.6 43.9 3.75 4.15
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e significantly different from the particle velocity) and the single

hase fluid flow fluctuations on the other hand. 

The PDF of the wall-normal velocity fluctuations are almost

aussian with zero mean and symmetric for all cases reported in

ig. 12 . The PDF of the particle velocity fluctuations, and that of the

urrounding fluid in the two-phase simulations are very similar to

he single phase case, with a slight reduction of the peak at zero.

he skewness of this distribution with the wall-normal velocity in

he range −0 . 1 < v ′ /U w 

< 0 . 1 is almost zero for single-phase flow

the skewness is equal to 0.034). This indicates that the intensities

f wall-normal velocity fluctuations in inward and outward direc-

ions are statistically equal in the buffer layer of turbulent pCf. 

The PDF of the streamwise velocity fluctuations are bimodal,

ith one velocity peak positive velocity and another one at neg-

tive velocity related to the ejection events. The intensity of nega-

ive u ′ in low-speed streaks is stronger (but with a lower probabil-

ty) than the positive u ′ in high-speed streaks in the buffer layer,

o  
hich is similar to what has been observed in turbulent pressure-

riven flow ( Kim et al., 1987 ). Particles increase slightly the proba-

ility of negative fluctuations, and shift the peak of positive veloc-

ty fluctuations toward smaller values. 

.4. Residence time of particles in LSVs 

In homogeneous and isotropic turbulence, the time scale of

he coherent motion of particles is comparable to the large-eddy

urnover time ( Bhatnagar et al., 2016 ). The most energetic struc-

ures of a turbulent plane Couette flow in the regime of weak

urbulence, consist in pairs of contra-rotating Large Scale Vortices

hich size is comparable to the Couette gap and large scale streaks

 Komminaho et al., 1996 ). The Large Scale Vortices (LSVs) carry sig-

ificant fraction of turbulent kinetic energy ( Pirozzoli et al., 2014 ). 

In Wang et al. (2017) , we found that the lightest particles tend

o be trapped in the LSVs whereas heavy particles tend to move

utward. The outward motion of particles by centrifugation from



Fig. 12. Probability density functions of velocity fluctuations in the buffer layer

( 10 < y + < 40 ). Symbols represent the particle velocity (circles) and the single- 

phase flow fluctuations (crosses). In addition, the PDF of fluid fluctuation in a shell

of thickness 0.5 a around the particle surface is represented by lines which color leg- 

end according to Table 1 ). Both streamwise and wall-normal velocity components

are shown, and the PDFs are averaged over ∼ 400 time units. ( a ) shows the effect 

of particle shape and ( b ) the effect of particle-to-fluid density ratio. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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the flow coherent vortices influences particle dispersion, leading

or not to preferential accumulation ( Marshall, 1998 ). We have cal-

culated the particle residence time in a vortex (mainly the large

rolls) using the temporal evolution of the wall-normal position.

In Fig. 13 (a), the wall-normal position of oblate and prolate neu-

trally buoyant spheroids are plotted over time, in addition to the

spherical particle trajectories. The spheroids behave qualitatively

like neutrally-buoyant spherical particles, with a clear periodic os-

cillatory motion between both walls. Two distinct motions can be

observed in the particle trajectories: a rotation in a single LSV for

instance from i to ii and so on (dashed line of Fig. 13 a), and a ro-

tation of a particle in a LSV followed by its transfer to the other

counter-rotating LSV from iii to iv . 

In order to have a quantitative measure of the residence time

in one vortex, we calculated Eq. (29) the temporal auto-correlation

of the particle wall-normal position. 

R yy (�t) = 

y ′ p (t) y ′ p (t + �t)

y ′ 2 p rms

(29)
t  
here y ′ p is the fluctuation of the wall-normal particle position

ith respect to the average value, which was verified to be h in

he simulations (on average, the particles scan all the simulation

omain equally). 

Fig. 13 (b and c) show the temporal auto-correlation functions.

he auto-correlation function characterizes the particle large scale

scillatory motion. It becomes negative when the particle passes

rom one half of the Couette gap to the other, then almost zero

hen the particle leaves the large scale vortex. In Fig. 13 (b and

) there are two sets of statistics. The particles that were trapped

n a unique LSV were computed in one set, whereas the particles

ransferred from one LSV to the other were computed in another

et.

The mean characteristic residence time of particles in a single

SV (set I) is ∼ 100 U w 

/ h and ∼ 150 U w 

/ h for particles that are trans-

erred from one LSV to another LSV (set II). The smaller and lighter

pherical particles have shorter periods in a single LSV whereas

hey have longer periods when they move from one LSV to the

ther. The residence time of particles in a single LSV approximately

oincides with the period of the regeneration cycle observed by

amilton et al. (1995) , which indicates the strong relation between

ransport process of finite-size particles and the three sub-steps of

he regeneration cycle in turbulent plane Couette flow. 

.5. Correlation of particle distribution with flow structures 

The Reynolds shear stress contributions are classically di-

ided into four quadrants: Q1(+ u ’, + v ’), Q2( −u ’, + v ’), Q3( −u ’,

v ’), Q4(+ u ’, −v ’) where + means positive and m ̧ eans negative

alues of the velocity fluctuations. Beside large scale vortices,

he x-independent streaks contribute the most to turbulent ki-

etic energy. The x-independent streaks predominantly consist in

2 (−u ′ , + v ′ ) and Q4 (+ u ′ , −v ′ ) regions (ejection and sweep re-

pectively) which make the largest contributions to the Reynolds

hear stress. They are offset from the interaction quadrants,

1 (+ u ′ , + v ′ ) and Q3 (−u ′ , −v ′ ) , which are counter-gradient type

motions ( Wallace, 2016 ). The energy of this mode decreases dur-

ng its breakdown to x-dependent streaks (wavy streaks). We show

ere that the accumulation of particles in the sweep and ejec-

ion regions is correlated, in time, to the evolution of the streaks

nd therefore to the regeneration cycle. For the temporal evolu-

ion of the streaky motion, it is represented by the modal analysis

f the flow fluctuating energy. The Fourier decomposition of the

nergy over streamwise and spanwise directions, as introduced by

amilton et al. (1995) , is written as follows: 

(k x = mα, k z = nβ) ≡
{∫ Y 2 

Y 1

[ ̂  u 

′ 
i ̂

 u 

′ 
i 
(mα, y, nβ)] dy 

}1 / 2

(30)

here Y 1 and Y 2 stand for the integration bounds in wall-normal

irection, ( α, β) are the fundamental wavenumbers in streamwise

nd spanwise directions defined as (2 π / L x , 2 π / L z ), and m and n

re integers. Any turbulent structure can be represented by one

ode ( m α, n β). For instance, the mode (0, n β) with n  = 0 is an

-independent structure and the mode ( m α, n β) with m  = 0 is

the x-dependent structure (e.g. streaks confined in the streamwise

irection). The temporal evolution of the x-independent streaks

mode (0, β)) is displayed in blue in Fig. 14 (a–f), for suspen-

ion flows with different particle shapes and densities. Moreover,

ig 14 presents the temporal evolution of the percentage of parti-

les contained within the streaky regions Q2 and Q4. The calcula-

ion was realized only in the buffer layers where the sweep and

jection events are strong, i.e. near the walls at 10 < y + < 40 . It

an be noticed that more than half of the particles are contained

ithin the sweep and ejection regions. The fluctuations in time of

article concentration in these regions are in-phase with the fluc-

uation of energy contained in the x-independent streaks. This is



Fig. 13. ( a ) Temporal evolution of the wall-normal position of a particle in turbulent pCf at Reynolds number 500 for different particle shapes and densities: ρr = 

1 . 25 10 −3 ; ρr = 5 and A r = 0 . 5 ; A r = 2 . ( b ) and ( c ) show the temporal auto-correlation functions of the wall-normal particle position fluctuation. The line 

style of ( b ) and ( c ) is shown in Table 1 . Set I noted in these figures contains the statistics of particles trapped in one large scale vortex and set II contains particles transferred

from one LSV to the other. The criteria used to attribute each particle to set I, set II or neither of the two sets, is based on �t min at which the minimum of R yy corresponding

to each particle occurs: if �t min U w / h < 60, particle belongs to set I; if 60 < �t min U w /h < 100 , particle belongs to set II. Overall, 10–20 percents of the total number particles

belong to each set.

Fig. 14. Temporal evolution of mode (0, n β) representing turbulent kinetic energy contained in the x-independent streaks (blue lines), and of the local particle percentage

(ratio of particles in Q2 and Q4 to the total number of particles) in both ejection and sweep event regions (red dot lines). ( a, c, e ) show the particle shape effect with the

cases from top to bottom: C50 0-5-1-1, C50 0-5-05-1 and C500-5-2-1. ( b, d, f ) show the effect of particle density, using from top to bottom: C50 0-10-1-0, C50 0-10-1-2 and

C500-10-1-5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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particularly evident at low Stokes numbers (C500-5-2-1 and C500-

10-1-0). In the same context, we found that the percentage of par-

ticles contained in the Q1 and Q3 regions (not shown here) is cor-

related with the flow circulation, which is out-of-phase with the

time evolution of x-independent streak energy.

5. Conclusion

The Force Coupling Method has been used for the simulation of

spheroidal particles. The method has been validated for the specific

cases of prolate and oblate ellipsoids. The configuration of a sin-

gle spheroidal particle in shear flow has proven that FCM is suit-

able to handle the dynamics of finite-size particles. The agreement

with theoretical predictions on the stable orbit is good and finite

Reynolds effects have been compared to reference data simulation

from literature. Then, results on a pair of spheroids interacting in a

shear flow have been successfully compared to reference numerical

data from boundary element method for Stokes flows. 

We have investigated the spatial distribution and orientation

statistics of finite-size particles in turbulent plane Couette flow for

different inertia and shapes. When particles are neutrally buoyant,

their overall dynamics is driven by the large scale turbulent struc-

tures of the fluid flow up to Stokes numbers ( St ≈ 5). However, we

have observed that inertial spherical particles tend to accumulate

more in the near wall region (for 10% volume concentration) than

spheroids. This effect can be attributed to enhanced centrifugation

of dense particles by longitudinal vortices and more diffusion of

non-spherical particles due to their rotational dynamics and hydro-

dynamic interactions with the walls and among the suspension. 

Because of the rich orientation dynamics, the flow statistics

of two-phase flows might depend on the deviation of particles

from sphericity, in a non-trivial way. Regarding rotational dynam-

ics, many features of our study are confirming what has been ob-

served in a turbulent channel flow. Oblate particles tend to move

with the symmetry axis almost parallel to the wall-normal direc-

tion especially in the near wall region where they have more tum-

bling activity than spinning. However, prolate spheroids tend to

align their major axis in the flow direction especially close to the

wall. Near the walls, the particles rotate predominantly along the

spanwise direction due to the mean shear. In the core region, the

dominant component is the rotation along the wall normal direc-

tion with a kayaking type of motion yielding to direct interactions

among spheroids enhancing the spreading of the suspension. 

The typical residence time of a single particle in a large scale

vortex is equal to the characteristic time scale of the regenera-

tion cycle of turbulence. At equivalent volume fraction, the parti-

cle distribution of spheroids in the flow is not significantly altered

by their shape (prolate or oblate). Particles are on average more

present inside the large scale streamwise vortices, compared to the

x-independent streaks. However, instantaneous particle spatial dis-

tribution depends on the successive steps of turbulence regenera-

tion cycle. The ejection regions are seeded by more particles dur-

ing streak formation (when the x-independent structures are en-

ergetic) and they release particles during streak breakdown (when

the energy of x-independent structures is reduced). During streak

formation (resp. breakdown), the flow circulation decreases (resp.

increases), and the Q1 region mainly located inside large scale vor-

tices loses (resp. gains) particles, migrating toward (resp. coming

from) large scale streaks. 

The next steps towards the numerical modeling of real suspen-

sions would be to include the effects of polydispersity in size and

shapes for given material properties of particles and then evaluate

the overall response of the suspension in order to propose effective

rheological properties for engineering applications. 
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