
HAL Id: hal-01947847
https://hal.science/hal-01947847v1

Preprint submitted on 7 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of scheduling tasks with processing time
dependent profit

Florian Fontan, Pierre Lemaire, Nadia Brauner

To cite this version:
Florian Fontan, Pierre Lemaire, Nadia Brauner. Complexity of scheduling tasks with processing time
dependent profit. 2018. �hal-01947847�

https://hal.science/hal-01947847v1
https://hal.archives-ouvertes.fr

Complexity of scheduling tasks with processing time
dependent profit

Florian Fontan, Pierre Lemaire, Nadia Brauner

Univ. Grenoble Alpes, CNRS, Grenoble INP1, G-SCOP, 38000 Grenoble, France

Abstract

In this paper, we introduce and study scheduling problems, where tasks yield
a processing time dependent profit. In these problems, the processing time of
a task is not given as input but must be decided; the profit from a task then
depends on its allocated processing time and the objective is to maximize the
total profit. These problems originate from astrophysics.

First, we state formally the problem and propose several profit functions, in-
cluding non-continuous and non-concave ones. Next, we prove and discuss some
generic properties on the structure of solutions. Then, we study the complex-
ity of the main models, proving the NP-completeness of some, and proposing
polynomial algorithms for others.

Keywords: complexity, scheduling, processing time dependent profit,
polynomial algorithms, controllable processing times
2010 MSC: 00-01, 99-00

In this paper, we study the complexity of scheduling problems where jobs
have a variable processing time: one can decide the processing time of each job.
The profit for a job then depends on its allocated processing time.

In our experience, the problem originates from astrophysics and the search
for exoplanets [1], but it could model various situations. Astrophysicists want to
schedule observations on a telescope and, for each possible target (star), there
exist a time-window when it is visible, a required duration for its observation,
and an interest for observing it; the objective is to maximize the total interest
of the schedule. This primary version of the problem has been described and
solved in [2], but it appears that shortening an observation would be worth doing
if that makes room for another one. More generally an observation remains
relevant even if its processing time is slightly less than the required value, with
an accordingly downgraded interest. Such a situation, and many others, can be
modelled by processing time dependent profits: hence there is a need to study
such models and, first of all, their complexity. That is the point of this article.

1Institute of Engineering Univ. Grenoble Alpes

1

In the remainder of this paper, we first state formally the problem and pro-
pose several profit functions (Section 1); then, we prove some generic properties
(Section 2) moving on to NP-completeness results (Section 3) before considering
polynomial cases (Section 4).

1. Processing time dependent profit

We consider a scheduling problem with n jobs; each job Tj has a deadline
dj and a profit function wj(pj) that depends on the decided processing time pj .
The objective is to maximize the total profit:

max

n∑
j=1

wj(pj)

with the convention that pj = 0 if Tj is not scheduled. Figure 1 shows three
examples of profit functions. Note that, for some settings, it may be impossible
to schedule all jobs, even with null processing time (for example when there
are release dates) and that this is not a regular criterion. Also, note that the
instance size (as input of a Turing machine) depends on how wj are defined. In
the remainder of this paper, we call this problem and its variants Processing
time Dependent Profit Scheduling Problems (PDPSP).

p

wj(p)

pj

wj

p

wj(p)

p

wj(p)

Figure 1: Examples of profit functions of: (a) a classical scheduling problem (wj(p) = wj if
p ≥ pj , 0 otherwise); (b) basic (linear profit) problem; (c) the star observation problem

Some cases of processing time dependent profit are found in the literature
under the keywords “Increasing Reward with Increasing Service”. In partic-
ular, [3] solves the case of non-decreasing concave models with deadlines (the
idea is to allocate service to the task with the highest marginal reward till its

2

marginal reward equals that of the task with the second-highest marginal re-
ward, and then to allocate service to both till both their marginal rewards equal
that of the task with the third-highest marginal reward, and so on).

PDPSP are connected to problems where processing times are controllable
by allocating a resource; those have received a lot of attention (see [4, 5] for
surveys). They are particularly close to those problems where the objective is
to minimize the amount of ressources that are used, but they fundamentally
differ because, in the latter case, all jobs have to be scheduled (unlike PDPSP).

PDPSP are also related to scheduling problems with late work criteria, noted
Yw (see [6] for a survey), in which only the units executed after the due dates
are penalized.

We propose now several profit functions that are studied thereafter; to this
extent, we adapt the 3-field notation (see e.g. [7]) as follows:

α | f, β | −
∑

wj(pj)

where, in addition to the classical α and β, parameter f describes the profit
function.

In this paper, we consider the profit functions presented in Figure 2 (the one
corresponding to the original astrophysics problem is the last). The mnemonic
for the abbreviations is: ST stands for Setup Time, B for Bounded, L for Linear,
and IP for Initial Profit. In all cases, the parameter bj is called the growth rate
of job Tj , w

min
j its minimum profit, wmax

j its maximum profit, pmin
j its minimum

processing time and pmax
j its maximum processing time.

All these models can be generalized into a Piecewise Linear Profit (PLP)
model. In this model, each job Tj has Kj pieces. A piece is given by an initial
processing time pkj , an inital profit wkj and a growth rate bkj :

wj(p) = wkj + bkj (p− pkj) for pk−1
j ≤ p < pkj

and we assume that:

(1) p0
j = 0 and w0

j = 0 (no profit for a null processing time);

(2) pKj ≥ dj (profit must be defined at least up to the deadline);

(3) wk+1
j ≥ wkj + bkj (pk+1

j − pkj) (profit is non-decreasing);

(4) all data are integers.

A PLP can be any non-decreasing piecewise-linear function starting at 0 and
may be neither continuous nor concave; Figure 3 shows the different possible
configurations of pieces. The assumption that input data are integers holds for
every model (and is further discussed later on, see Section 2). Note that if p is
an integer, wj(p) is also an integer for all profit functions defined previously; in
particular, wmax

j is also an integer. Also, note that, for a given p, computing

wj(p) requires O(logKj) time to search for the piece k such that pj ∈ [pkj , p
k+1
j [.

3

Linear Profit (LP)

wj(p) = bjp

p

wj(p)

Linear Profit with Setup Time (LPST)

wj(p) =

{
0 for p < pmin

j

bj(p− pmin
j) for p ≥ pmin

j

p

wj(p)

pmin
j

Linear Bounded Profit (LBP)

wj(p) =

{
bjp for p < pmax

j

bjp
max
j for p ≥ pmax

j

p

wj(p)

pmax
j

wmax
j

Linear Profit with Setup Time and Initial Profit (LPSTIP)

wj(p) =

{
0 for p < pmin

j

wmin
j + bj(p− pmin

j) for p ≥ pmin
j

p

wj(p)

pmin
j

wmin
j

Linear Bounded Profit with Setup Time (LBPST)

wj(p) =

0 for p < pmin

j

bj(p− pmin
j) for pmin

j ≤ p < pmax
j

bj(p
max
j − pmin

j) for p ≥ pmax
j

p

wj(p)

pmin
j

pmax
j

wmax
j

Linear Bounded Profit with Setup Time and Initial Profit (LBPSTIP)

wj(p) =

0 for p < pmin

j

wmin
j + bj(p− pmin

j) for pmin
j ≤ p < pmax

j

wmin
j + bj(p

max
j − pmin

j) for p ≥ pmax
j

p

wj(p)

pmin
j

pmax
j

wmax
j

wmin
j

Figure 2: Profit functions

p

wj(p)

p0
j p1

j p2
j p

3
j p4

j p5
j p6

j

w0
j

w1
j = w2

j

w3
j

w4
j

w5
j

w6
j

Figure 3: A PLP function showing the different types of pieces

In this paper, we study the complexity of the various PDPSP with a focus
on the PLP model. In the process, we shall deduce the complexity of several of
the particular cases presented above.

2. Notations and general results

Some notations are used consistently throughout the rest of this article. I
denotes an instance and |I| is its size (as input of a Turing machine). S denotes a
solution, |S| is the number of tasks included in S (possibly with a null processing
time). For a task Tj ∈ S: pj(S) denotes its processing time, sj(S) its start date
and Cj(S) its completion time (end date). When there is no ambiguity on the
solution, we will just write pj , sj and Cj . w(S) denotes the total profit of S
(i.e., w(S) =

∑
Tj∈S wj(pj)). U denotes a dominant set of solutions (i.e. for

any instance, there exists an optimal schedule in U).
Furthermore, when considering complexity issues and thus decision prob-

lems, we shall add a bound W ∈ N and ask whether there exists a feasible
schedule such that

∑
j wj(pj) ≥ W . For all the cases considered in this paper,

providing start dates, processing times and, if needed, processing machines for
all tasks completely defines a solution; for each case, such a solution is indeed a
polynomial certificate and will be enough to straightforwardly conclude that it
belongs to NP.

The first remarkable fact about processing time dependent profit scheduling
problems, is that the profit functions proposed in the previous section strongly
relate one to another, and there is indeed a whole complexity hierarchy that
exists among them and is represented by Figure 4. This hierarchy is useful to
exhibit maximally-polynomial or minimally-NP-complete cases.

Then, a generic dominance property exists:

5

LP

LBP

LPST

LBPST

LPSTIP

LBPSTIP

classical scheduling

PLP(K)

pmax
j = d

pmin
j = 0

pmin
j = 0

wmin
j = 0

pmax
j = d

wmin
j = 0

pmax
j = d

(or wmax
j = dbmax)

bj = 0

Figure 4: Complexity hierarchy of PDPSP problems. An arc from A to B means that A is
a special case of B, and a label indicates the particular settings of B that corresponds to A.
PLP (K) is the particular case when the number of pieces is bounded by K.

Lemma 2.1. For P | | −
∑
wj(pj), the set of solutions for which all tasks are

scheduled (possibly with pj = 0) and such that, on each machine, tasks are
scheduled in non-decreasing order of their deadlines and without idle time, is
dominant.

Proof In any solution, idle times can always be removed and tasks that are not
scheduled can always be added at time 0 with a null processing time, without
altering the feasibility nor the value of the solution. Hence, we can consider,
without loss of generality, that all tasks are scheduled and without idle time.

Then, the proof relies on a classical exchange argument. Let S be an optimal
solution. If there exist unordered pairs of tasks (that is (Tj , Tk) such that Tj
is scheduled after Tk whereas dj < dk), then there exists an unordered pair
(T ∗j , T

∗
k) such that T ∗j is scheduled immediately after T ∗k . The solution obtained

by exchanging T ∗j and T ∗k remains feasible and optimal, while strictly decreasing
the number of unordered pairs. Repeating this operation leads to a feasible
optimal solution without any unordered pairs, i.e. with tasks scheduled in non-
decreasing order of their deadlines. �

This lemma is very useful but is not enough to directly provide optimal
solutions, as one does not know how long each task must be executed. Still,
note that for the single machine case, a solution can be characterized by the list
of the processing times allocated to each task.

In scheduling, it is quite common that start dates and end dates are integers
as soon as input data are integers and there is no preemption. So one could think
that similar results could be designed for all but exotic profit functions. This is
not that simple and one should be aware that tasks may end at non-integer (even
irrational) instants as soon as the profit function is not linear (simple such cases
are depicted in Figure 5). However, for the PLP model, as we assume integer

6

0 1

0
1

p

w
(p

)

w1(p)

w2(p)

w3(p)

Three tasks T1, T2, T3 such that :

• w1(p) = p

• w2(p) =
√
p/2

• w3(p) = 2− 2/(1 + p)

and d1 = d2 = d3 = 1

Example 1: I = {T1, T2}. In an optimal solution: p1 = 15/16, p2 = 1/16.
Example 2: I = {T1, T3}. In an optimal solution: p1 =

√
2− 1, p2 = 2−

√
2.

Figure 5: Two simple examples of non-linear PDPSP for which an optimal solution must have
some tasks with non-integer start or end dates.

data and (piecewise) linear profit, solutions with integer processing times are
indeed dominant:

Lemma 2.2. For P | PLP | −
∑
wj(pj), the set of solutions such that:

(1) all tasks are scheduled (possibly with pj = 0) and on each machine, tasks
are scheduled in non-decreasing order of their deadlines without idle time;

(2) all start dates and processing times are integers, i.e. for all j = 1, . . . , n:
sj , pj ∈ {0, . . . , dj}

is dominant.

Proof (1) has already been proven by Lemma 2.1.
For (2), let us first remind that dj ∈ N and pkj ∈ {0, . . . , dj} for all j =

1, . . . , n and k = 1, . . . ,Kj . In any solution, idle times can be removed and the
last task on a machine can always be extended up to its deadline (possibly with
no profit). As a consequence, one can assume without loss of generality that on
each machine: the first task starts at time 0, every other task starts as soon as
the preceding one ends, and the last task ends at an integer time (its deadline).
Clearly, if all processing times are integers, then all start dates and end dates
are integers. So, let’s prove that there always exists an optimal solution with
only integer processing times.

If that is not true, then there exists a solution S which has the above prop-
erties, which is optimal, and which is “minimal”, in the sense that it has the
minimum number of tasks with non-integer processing times. Let Tj1 be the
first task such that pj1 /∈ N; as the total processing times on a machine sums
up to an integer, there exists another task Tj2 , on the same machine, such that
pj2 /∈ N; we assume Tj2 to be the first such task after Tj1 . There exists k1

7

such that pk1j1 ≤ bpj1c < pj1 < dpj1e ≤ pk1+1
j1

and there exists k2 such that

pk2j2 ≤ bpj2c < pj2 < dpj2e ≤ p
k2+1
j2

.
If bj1 = bj2 , then pj1 can be decreased, and pj2 increased by the same amount,

until either pj1 or pj2 is an integer (which then contradicts that S is “minimal”).

If bk1j1 < bk2j2 then there exists ε > 0 such that decreasing pj1 by ε and increasing
pj2 by the same amount yields a feasible and strictly better solution, which

contradicts the optimality of S; the reverse holds if bk1j1 > bk2j2 . In this case, note
that Tj1 and Tj2 being the two first tasks with non-integer durations, none of
the tasks in between can end on an integer date, and in particular, none ends
at its deadline; hence it is indeed always possible to increase pj1 by some ε > 0
and decrease pj2 by the same amount, without altering the feasibility of the
solution. �

Lemma 2.2 still does not provide a direct optimal solution, but we can de-
velop a dynamic programming algorithm on it:

Theorem 2.3. Algorithm 1 returns an optimal solution to P | PLP | −
∑

wj(pj) in time O(n(mdm+1 + log n)).

Algorithm 1 P | PLP | −
∑
wj(pj)

INPUTS: an instance I

1: Sort tasks in non-decreasing order of their deadlines
2: Precompute wj(p) for all task Tj , j = 1, . . . , n and for all p = 0, . . . , dj
3: Let C = {C ∈ {0, . . . , d}m , C1 ≤ · · · ≤ Cm}. Return maxC∈C f

∗(n,C) such
that:

f∗(j, C) =

0 ∀j = 0, . . . , n and C = {0, . . . , 0}

−∞ if j = 0 and C 6= {0, . . . , 0}
(idle time at the beginning is never necessary)

−∞ if dj < maxCi
(no task can end at Ci)

max
1≤i≤m

s∈{0,...,Ci}

f∗(j − 1, C − (Ci − s)ei) + wj(Ci − s)
otherwise

where C is a m-dimensional vector containing the required completion time
of the last task scheduled on each machine and ei is the vector such that
eii = 1 and eik = 0 for all k 6= i.

Proof Algorithm 1 is a standard dynamic-programming algorithm. The value
f∗(j, C) is the best value that can be obtained by scheduling the first j tasks so
that the machines end at the completion times defined by C.

8

By Lemma 2.2, there exists an optimal solution with tasks ordered as in step
1. Thus, it is enough to consider the tasks in this order and to enumerate, for
a task Tj , all possible end dates on all machines. This is done by step 3: the
base case is straightforward, whereas the two next cases forbid idle time (since
there always exists an optimal solution without idle time) and the general case
performs the actual enumeration.

The complexity of step 1 is O(n log n). Then, the complexity of step 2
is O(nd logK) which is O(nd2) since K ≤ d; this pre-computing enables to
get wj(Ci − s) in O(1) during step 3. The size of f∗ is ndm and it takes
O(md) to compute a given value in step 3. The overall complexity is thus
O(nmdm+1 + n log n). �

Note that Algorithm 1 runs in pseudo-polynomial time if the number of ma-
chines is fixed and even in polynomial time if d is also fixed (or more generally
if either due-dates or processing times are bounded). That is: Algorithm 1 runs
in a reasonable time if the numbers involved are reasonable. This is a stan-
dard property for a number-problem (well-known for, e.g., Partition or Subset
Sum) which may actually apply in practice. For instance, in the star schedul-
ing problem, the duration of a night is naturally bounded and the duration
of an observation is technically limited, providing practical upper bounds on
respectively due-dates and processing times.

Lemma 2.2 provides a first overview of the structure of solutions with a PLP
function. Still, we can have better results: most tasks can be scheduled during
a pkj , and only a few will not. If two consecutive tasks are not scheduled during

a pkj , one of them can have its processing time decreased for the benefit of the
other one (the increase of the first task may be limited by its deadline).

We get even stronger results if we only consider “interesting” processing
times instead of all pkj . We define Pj the set of “interesting” processing times
of task Tj as follows:

Pj =
{
ρ1
j , . . . , ρ

Kρ
j

j

}
=
{
ρ, ∃k, ρ = pkj and wkj (ρ− 1) < wkj (ρ)

}
with ρ1

j ≤ · · · ≤ ρ
Kρ
j

j and we call Tj a regular task if pj ∈ Pj and a singular task
if pj /∈ Pj (note that Kρ

j ≤ Kj).

An “interesting” processing time corresponds to a pkj except when the pre-
vious piece has a null growth rate and there is no discontinuity between them.
The need to define Pj is illustrated in Figure 6; for instance, pmin

j is “interesting”
for LPSTIP or LBPSTIP, but it is not for LPST and LBPST. The following
lemma indicates what makes those processing times “interesting”:

Lemma 2.4. For P | PLP | −
∑
wj(pj), the set of solutions such that:

(1) all tasks are scheduled (possibly with pj = 0) and, on each machine, tasks
are scheduled in non-decreasing order of their deadlines without idle time;

(2) for all pairs of singular tasks Tj1 , Tj2 scheduled on the same machine,
there exists at least one task Tk scheduled on the same machine between
Tj1 and Tj2 and ending at its deadline

9

p

wj(p)

pkj pk+1
j

p

wj(p)

pkj pk+1
j

p

wj(p)

pkj pk+1
j

pkj ∈ Pj
pk+1
j ∈ Pj

pkj /∈ Pj
pk+1
j ∈ Pj

pkj ∈ Pj
pk+1
j ∈ Pj

Figure 6: Examples of “interesting” and not “interesting” processing times.

is dominant.
Furthermore, there exists a polynomial time algorithm that, given any opti-

mal solution, returns an optimal solution satisfying those properties.

Proof (1) have already been proven by Lemma 2.1.
Let S be an optimal solution such that all tasks are scheduled without idle

time and in non-decreasing order of their deadlines, and which is “minimal”, in
the sense that it has the minimum number x of pairs of singular tasks scheduled
on the same machine without any task ending at its deadline in between. If
x = 0 then the Lemma is proven.

Otherwise, let Tj1 , Tj2 be such a consecutive pair. Let k1, k2 be such that

pk1j1 ≤ pj1 < pk1+1
j1

and pk2j2 ≤ pj2 < pk2+1
j2

, and let kρ1 , kρ2 be such that ρ
kρ1
j1
<

pj1 < ρ
kρ1+1
j1

and ρ
kρ2
j2
< pj2 < ρ

kρ2+1
j2

. Remark that:

(1) There may be many processing times (pk1−1
j1

, pk1−2
j1

. . .) between ρ
kρ1
j1

and

pk1j1 , but they are all not interesting processing times, meaning null growth
rate and no discontinuity. As a consequence, decreasing pj1 to any value

in [ρ
kρ1
j1
, pk1j1] yields a loss of profit of only bk1j1 (pj1 − p

k1
j1

).

(2) If bk2j2 > 0 then pk2+1
j2

is an interesting processing time. As a consequence,
increasing pj2 to the next interesting processing time yields a gain of profit

of bk2j2 (ρ
kρ2+1
j2

− pj2).

If bk1j1 = 0, then we can set pj1 = ρ
kρ1
j1

and shift all the jobs scheduled after
to the left. The solution value is not downgraded (remark 1) and x stricly
decreases. Therefore, S was not minimal. The case bk2j2 = 0 is similar.

10

If 0 < bk1j1 ≤ bk2j2 , we can reduce the processing time of Tj1 by min{pj1 −
ρ
kρ1
j1
, ρ
kρ2+1
j2

− pj2}, shift all the regular tasks scheduled between Tj1 and Tj2
toward Tj and increase the processing time of Tj2 by the same quantity. In the

process the profit is not downgraded (remarks 1 and 2, with bk1j1 ≤ b
k2
j2

) and thus
the solution remains optimal, but either Tj1 or Tj2 is now a regular task, and x
strictly decreases. Therefore, S was not minimal.

If bk1j1 > bk2j2 > 0, we can increase the processing time of Tj1 by min{ρk
ρ
1+1
j1

−
pj1 , {dl−Cl}sj1≤sl<sj2 , pj2−ρ

kρ2
j2
} (with l restricted to tasks on the same machine

as Tj1 and Tj2), shift all the tasks scheduled between Tj1 and Tj2 toward Tj2
and decrease the processing time of Tj2 by that quantity; this is valid and the
solution remains optimal, but either Tj1 is now a regular task, or Tj2 is now a
regular task, or there exists a task Tl such that Cl = dl between Tj1 and Tj2 : in
any case, x stricly decreases and therefore S was not minimal.

In all cases, there is a contradiction, so x = 0.
Furthermore, the operations described above can be used to strictly decrease

x in an optimal solution with x > 0. Then, after a polynomial number of poly-
nomial iterations, we can tranform any optimal solution in an optimal solution
belonging to the dominant set. �

A direct corollary from Lemma 2.4 is that when all tasks have the same
deadline, there will be at most one singular on each machine:

Corollary 2.5. For P | PLP, dj=d | −
∑
wj(pj), the set of solutions such that:

(1) all tasks are scheduled (possibly with pj = 0) and, on each machine, tasks
are scheduled in non-decreasing order of their deadlines without idle time;

(2) on each machine, there is at most one singular tasks

is dominant.
Furthermore, there exists a polynomial time algorithm that, given any opti-

mal solution, returns an optimal solution satisfying these properties.

3. NP-complete cases

Intuitively, some problems are NP-complete since several profit functions
can be shaped to fit with the profit function of classical scheduling problems
(for example LPSTIP , bj=0). Then, reductions from P | | Cmax, Pm | | Cmax

or the Knapsack Problem will be straightforward. In the former case, the
problems will be proven to be strongly NP-complete. In the latter cases, with
fixed m, the problems will be only weakly NP-complete as we already know a
pseudo-polynomial algorithm to solve them.

For one machine problems, we have:

Theorem 3.1. 1 | dj=d | −
∑
wj(pj) is weakly NP-complete with the following

profit functions:

11

• LPSTIP, bj=b

• LBPST, bj=b

• LBPSTIP, bj=b, w
max
j =wmax

• LBPSTIP, pmax
j =pmax, wmax

j =wmax

Proof As remarked before, those problems clearly belong to NP. Furthermore,
they have already been proven to be solvable in pseudo-polynomial time (The-
orem 2.3). We prove their NP-completeness using reductions from Knapsack,
known to be NP-complete [8] and defined as follows.

Let I be an instance of Knapsack: given a finite set A of items and for
each item j ∈ A a size aj ∈ N and a value vj ∈ N, and given bounds B ∈ N
and V ∈ N; the question is: is there a subset S ⊂ A such that

∑
j∈S aj ≤ B

and
∑
j∈S vj ≥ V ?

For LPSTIP, bj = b, Knapsack happens to be the particular case with
bj = 0: there are as many tasks as there are items, and for task Tj we set
wmin
j = vj , p

min
j = aj and we use B as the common due-date d.

For LBPST, bj=b, the idea is to set the growth rate to 1 and to stretch the
minimum processing times and common deadline. The maximum processing
time of a task is then relatively close to its minimum processing time, and every
task scheduled, will necessarily be executed during its maximum processing
time.

Technically, let v = n(maxk vk + 1) and let I ′ be an instance of 1 | LBPST,
bj=b, dj=d | −

∑
wj(pj) with n tasks Tj , j = 1, . . . , n, such that wmax

j = vj ,

b = 1, pmax
j = vaj , p

min
j = vaj − vj (note that pmin

j ≥ 0) and d = vB; the
question is: is there a schedule S such that w(S) ≥ V ?

If I has a “yes” answer, then clearly, I ′ has a “yes” answer too. If I ′ has
a “yes” answer, then let S be an optimal solution of I ′. Corollary 2.5 provides
a polynomial time algorithm to transform S such that it contains at most one
task that is not scheduled during its maximum processing time (all tasks have
the same deadline). Suppose that there is one such task Tj . The schedule is
full (otherwise pj could be increased and the solution value improved). Thus,
p(S) =

∑
Tk∈S pk = d = vB. Furthermore, p(S) =

∑
Tk∈S pk = v

∑
Tk∈S ak −

(pmax
j − pj). However pmax

j − pmin
j < v, therefore, p(S) is not a multiple of v,

which contradicts p(S) = vB. As a consequence, all tasks in S are scheduled
during their maximum processing time and it is clearly possible to build the
corresponding solution for Knapsack. Therefore, I has a “yes” answer.

For LBPSTIP one could use the fact that LBPSTIP generalizes LPSTIP:
hence a consequence of the first case (LPSTIP, bj = b) is that LBPSTIP is
NP-complete even if bj = b. However, the proof relies on bj = 0 and thus one
must add the additional requirement that wmin

j = wmax
j ; with such restrictions,

LBPSTIP and LPSTIP are indeed the same problem and so there is nothing new.

12

The two particular cases of LBPSTIP considered are different; we nevertheless
use the same general idea.

For LBPSTIP, bj=b, w
max
j =wmax, we set growth rates to 1 and the minimum

profits large enough so that processing a task beyond its minimum processing
time always yields a negligible profit, mimicking a classical scheduling problem.

Let I be an instance of Knapsack. Let I ′ be an instance of 1 | LBPSTIP,
bj=b, w

max
j =wmax, dj=d | −

∑
wj(pj) with n tasks Tj , j = 1, . . . , n, such

that b = 1, pmin
j = aj , w

min
j = (B + 1)vj , w

max = (B + 1)(maxk vk + 1),
pmax
j = aj + (B + 1)(maxk vk + 1 − vj) and d = B; the question is: is there a

schedule S such that w(S) ≥ (B + 1)V ?
If I has a “yes” answer, then clearly, I ′ has a “yes” answer too. If I ′

has a “yes” answer, then let S be an optimal solution for I ′. Corollary 2.5
provides a polynomial algorithm to transform S such that it contains at most
one task that is not scheduled during its minimum processing time in polynomial
time (no task can be scheduled during its maximum processing time since they
are all greater than the deadline). If there is no such task, then S directly
provides an optimal solution to I. Otherwise, let Tj be this task. Let S′ be
a solution identical to S except that Tj is only scheduled during pmin

j . Then
w(S′) =

∑
Tk∈S′(B + 1)vk and it is therefore a multiple of B + 1. However,

w(S) ≥ (B+1)V and w(S′)−w(S) ≤ bjd < B+1. Therefore, w(S′) ≥ (B+1)V ,
and it is possible to build the corresponding solution for Knapsack. Therefore,
I has a “yes” answer.

For LBPSTIP, pmax
j =pmax, wmax

j =wmax, we set the maximum processing
time large enough so that processing a task beyond its minimum processing
time always yield a negligible profit, mimicking a classical scheduling problem.

Let I ′ be an instance of 1 | LBPSTIP, pmax
j =pmax, wmax

j =wmax, dj=d |
−
∑
wj(pj) with n tasks Tj , j = 1, . . . , n, such that pmin

j = aj , p
max =

B(maxk vk + 2), x =
∏n
j=1(B(maxk vk + 2) − aj), bj = x

max vk+1−vj
B(maxk vk+2)−aj ,

wmin
j = xvj , w

max = x(maxk vk + 1) and d = B; the question is: is there a
schedule S such that w(S) ≥ xV ?

Note that all parameters are integers and all maximum profits are equal.
If I has a “yes” answer, then clearly, I ′ has a “yes” answer too. If I ′ has a
“yes” answer, then let S be an optimal solution of I ′. Corollary 2.5 provides a
polynomial algorithm to transform S such that it contains at most one task that
is not scheduled during its minimum processing time in polynomial time (no task
can be scheduled during its maximum processing time since they are all greater
than the deadline). If there is no such task, then S directly provides an optimal
solution to I. Otherwise Let Tj be this task. Let S′ be a solution identical to S
except that Tj is only scheduled during pmin

j . Then w(S′) =
∑
Tk∈S′ xvk and it

is therefore a multiple of x. However, w(S) ≥ xV and w(S′)−w(S) ≤ bjd < x.
Therefore, w(S′) ≥ xV , and it is possible to build the corresponding solution
for Knapsack. Therefore, I has a “yes” answer. �

13

Note that the proofs for the LBPSTIP cases do not hold if, for all Tj , we
impose pmax

j ≤ dj .

Now using a reduction from P | | Cmax and Pm | | Cmax, we have:

Theorem 3.2. P | dj=d | −
∑
wj(pj) is strongly NP-complete and Pm | dj=d

| −
∑
wj(pj) is weakly NP-complete with the following profit functions:

• LPSTIP, wmin
j =wmin, bj=b

• LBP, wmax
j =wmax

• LBP, bj=b

• LBPST, bj=b, w
max
j =wmax

Proof As remarked before, these problems clearly belong to NP . Furthermore,
the cases with a fixed number of machines have already been proven solvable in
pseudo-polynomial time (Theorem 2.3 as special cases of PLP). We prove their
NP-completeness using reductions from Pm | | Cmax and P | | Cmax, respectively
known to be NP-complete [8] and strongly NP-complete [9].

Let I be an instance of Pm | | Cmax: n tasks Tj , j = 1, . . . , n, processing
times xj ∈ N, j = 1, . . . , n and a deadline δ ∈ N; the question is: is there a
m-processor schedule, m ∈ N, for {Tj}j=1,...,n that meets the overall deadline δ?

For the first item, Pm | | Cmax happens to be a particular case of Pm |
LPSTIP, wmin

j =wmin, bj=b, dj = d | −
∑
wj(pj) with bj = 0: there are as many

tasks as there are items, and for task Tj we set wmin = 1, pmin
j = xj and d = δ.

For the second item, let I ′ be an instance of Pm | LBP, wmax
j =wmax, dj=d |

−
∑
wj(pj), with n tasks Tj , j = 1, . . . , n, such that pmax

j = xj , w
max =

∏n
k=1 xk

and d = δ; the question is: is there a schedule S such that w(S) ≥ n? Note that
for all j = 1, . . . , n, bj = wmax

pmax
j

=
∏n
k=1,k 6=j xk is an integer.

I responds “yes” if and only if each task Tj is scheduled during xj before δ,
yielding a solution to I ′. Conversely, I ′ responds “yes” if and only if each task
is scheduled during its maximum processing time, yielding a solution to I.

For the third item, we choose b = 1 and wmax
j = xj and the question is: is

there a schedule S such that w(S) ≥
∑n
j=1 xj? The reasonning is the same.

For the last item, let I ′ be an instance of 1 | LBPST, bj=b, w
max
j =wmax,

dj=d | −
∑
wj(pj) with n tasks Tj , j = 1, . . . , n, such that wmax = 1, b = 1,

pmax
j = xj , p

min
j = xj − 1 and d = δ; the question is: is there a schedule S such

that w(S) ≥ n?
I responds “yes” if and only if each task Tj is scheduled during xj before δ,

yielding a solution to I ′. Conversely, I ′ responds “yes” if and only if each task
is scheduled during its maximum processing time, yielding a solution to I.

In all cases, the transformations are not only polynomial but even strongly
polynomial; hence the strong NP-completeness of the concerned cases. �

14

Corollary 3.3. P | PLP | −
∑
wj(pj) is strongly NP-complete. Pm | PLP |

−
∑
wj(pj) is weakly NP-complete.

4. Polynomial algorithms for some piecewise-linear profit functions

In this section, we propose three new algorithms for PDPSP with a PLP
function, that return optimal solutions in polynomial time for several profit
functions.

The first algorithm is an adaptation of Algorithm 1 where instead of con-
sidering all instants {0, . . . , d}, we only consider a polynomial subset of relevant
instants, thus reducing the number of states to a polynomial number.

From Lemma 2.4, we can deduce the dominant set of possible start dates
and end dates:

Θ0 =

dj +

n∑
l=j+1

ρl

j=0,...,n−1
ρj+1∈Pj+1

...
ρn∈Pn

∪

{
dj −

j∑
l=1

ρl

}

j=1,...,n
ρ1∈P1

...
ρj∈Pj

The size of this set is a priori exponential. However, it can be rewritten as

follows. Let P = ∪j=1,...,nPj and let

Θ =

dj +
∑
ρ∈P

lρρ

(j=0,...,n−1
lρ=0,...,n−j∑

lρ≤n−j

) ∪
dj −∑

ρ∈P
lρρ

(j=1,...,n
lρ=0,...,j∑

lρ≤j

)

Clearly: Θ0 ⊂ Θ, and

|Θ| = O
(
n|P|+1

)
In the general case, |P| = O (nK), but if |P| is independent of the in-

stance size, |Θ| is polynomial in the instance size. For example, for LBPSTIP,
pmin
j =pmin, pmax

j =pmax: |P| = 2. More generally, we note |{pkj }| ≤ κ to specify

problems for which the number of different values for pkj is bounded by κ.
Then we can adapt Algorithm 1 to run on instants of Θ instead of {0, . . . , d}:

Theorem 4.1. Algorithm 2 returns an optimal solution to Pm | PLP, |{pkj }| ≤
κ | −

∑
wj(pj) in polynomial time.

Proof The proof is similar to the one of Theorem 2.3 in combination with
Lemma 2.4 which ensures that the problem is solved optimally.

The complexity of step 1 is O(n log n). The size of f∗ is n|Θ|m, that is
O(nm(|P|+1)+1), and since O(m log |Θ|) is required to retrieve a value of f∗, it
takes O(mn|P|+1(m|P| log n + logK) to compute a given value in step 2. The
overall complexity is thus polynomial in the size of the input. �

15

Algorithm 2 Pm | PLP | −
∑
wj(pj)

INPUTS: an instance I

1: Sort tasks in non-decreasing order of their deadlines
2: Let C = {C ∈ Θm, C1 ≤ · · · ≤ Cm}. Return maxC∈C f

∗(n,C) such that:

f∗(j, C) =

0 ∀j = 0, . . . , n and C = {0, . . . , 0}

−∞ if j = 0 and C 6= {0, . . . , 0}
(idle time at the beginning is never necessary)

−∞ if dj < maxCi
(no task can end at Ci)

max
1≤i≤m
s∈Θ,s≤Ci

f∗(j − 1, C − (Ci − s)ei) + wj(Ci − s)
otherwise

where C is a m-dimensional vector containing the required completion time
of the last task scheduled on each machine and ei is the vector such that
eii = 1 and eik = 0 for all k 6= i.

The complexity hierarchy among models allows to derive the following par-
ticular cases:

Corollary 4.2. Pm | | −
∑
wj(pj) can be solved in polynomial time with the

following profit functions:

• LPST (and thus LP)

• LBPST, |{pmax
j }|≤κ (and thus LBP, |{pmax

j }|≤κ)

• LBPSTIP, |{pmin
j , pmax

j }|≤κ (and thus LPSTIP, |{pmin
j }|≤κ)

Besides, for PLP, if the pieces are all of the same duration (or more precisely,
if there exists ρ0 such that for all ρ ∈ P, there exists k ≤ K: ρ = kρ0), then:

Θ′ = {dj + lρ0}(j=0,...,n
l=−jK,...,(n−j)K

)

is a dominant set of instants of size

|Θ′| = O
(
n2K

)
Furthermore, a value f∗(j, C) can be retrieved in O(1) and wj(p) can be com-
puted in O(1). Therefore the complexity of the algorithm is dramatically re-
duced to O(mn2m+3Km+1 + n log n).

Algorithm 2 is handy when there is some regularity among the pkj , as that
allows to enumerate all possible end dates. When there is no such regularity,

16

the problem remains polynomial in some cases, provided some regularity on
the profit. Again, the trick is to use dynamic programming schemes, but now
the recursive functions do not represent a maximum profit for given completion
times, but required time to achieve a given profit.

We will exhibit a polynomial algorithm for 1 | PLP, |{wkj }|≤κ, bkj∈{0, b} |
−
∑
wj(pj). First, consider the following dominant set:

Lemma 4.3. For 1 | PLP, bkj∈{0, b} | −
∑
wj(pj), the set of solutions U1 such

that:

(1) all tasks are scheduled (possibly with pj = 0) and on each machine, tasks
are scheduled in non-decreasing order of their deadlines without idle time;

(2) there exists at most one singular task

is dominant.

Proof (1) has already been proven in Lemma 2.1.
Let S be an optimal solution such that all tasks are scheduled without idle

time and in non-decreasing order of their deadlines, and which is “minimal”, in
the sense that it has the minimum number x of singular tasks. If x ≤ 1 then
the Lemma is proven.

Otherwise, let Tj1 , Tj2 be two singular tasks. Let k1, k2 be such that pk1j1 ≤
pj1 < pk1+1

j1
and pk2j2 ≤ pj2 < pk2+1

j2
, and let kρ1 , kρ2 such that ρ

kρ1
j1
< pj1 < ρ

kρ1+1
j1

and ρ
kρ2
j2
< pj2 < ρ

kρ2+1
j2

.

If bk1j1 = 0, then we can set pj1 = ρ
kρ1
j1

and shift all the tasks scheduled
after to the left. The solution value is not downgraded and x stricly decreases.
Therefore, S was not minimal. The case bk2j2 = 0 is similar.

If 0 < bk1j1 = bk2j2 , we can reduce the processing time of Tj1 by min{pj1 −
ρ
kρ1
j1
, ρ
kρ2+1
j2

− pj2}, shift all the regular tasks scheduled between Tj1 and Tj2
toward Tj1 and increase the processing time of Tj2 by the same quantity. In the
process the profit is not downgraded and thus the solution remains optimal, but
either Tj1 or Tj2 is now a regular task, and x strictly decreases. Therefore, S
was not minimal. �

Even though dominant, U1 remains too large for an exhaustive search. We
restrict it to another dominant set of smaller size.

Among the solutions with exactly one singular task Tl such that the tasks
scheduled before Tl yield a profit wC and the tasks scheduled after a profit wS ,
we will only consider solutions such that Tl starts as early as possible and ends
as late as possible. Therefore, we define the function C∗(j, w) (resp. s∗(j, w))
that computes the earliest makespan (resp. the latest possible start date) to
schedule tasks T1, . . . , Tj (resp. Tj , . . . , Tn) in this order with a profit w and

17

such that all tasks are regular:

C∗(j, w) =

0 if w = 0
+∞ if j = 0 and w 6= 0

min
k=1,...,K

wkj≤w
C∗(j−1,w−wkj)+pkj

≤dj

C∗(j − 1, w − wkj) + pkj otherwise

s∗(j, w) =

dn if w = 0
−∞ if j = n+ 1 and w 6= 0

max
k=1,...,K

wkj≤w
s∗(j+1,w−wkj)≤dj

s∗(j + 1, w − wkj)− pkj otherwise

Lemma 4.4. For 1 | PLP, bkj∈{0, b} | −
∑
wj(pj), the set of solutions U2 such

that, for all S ∈ U2:

(1) S ∈ U1;

(2) if S contains a singular task Tl, then for all S′ ∈ U1 such that

•
∑l−1
j=1 wj(pj(S

′)) =
∑l−1
j=1 wj(pj(S))

•
∑n
j=l+1 wj(pj(S

′)) =
∑n
j=l+1 wj(pj(S))

then Cl−1(S) ≤ Cl−1(S′) and sl+1(S) ≥ sl+1(S′)

is dominant.

Proof (1) has already been proven by Lemma 4.3.
Let S ∈ U1 be an optimal solution. If S contains no singular task, then

S ∈ U2. If S contains a singular task Tl, then let

Sc = arg min
S′∈U1∑l−1

j=1 wj(pj(S
′))=

∑l−1
j=1 wj(pj(S))∑n

j=l+1 wj(pj(S
′))=

∑n
j=l+1 wj(pj(S))

Cl−1(S′)

Ss = arg max
S′∈U1∑l−1

j=1 wj(pj(S
′))=

∑l−1
j=1 wj(pj(S))∑n

j=l+1 wj(pj(S
′))=

∑n
j=l+1 wj(pj(S))

sl−1(S′)

and let S′′ be the solution of U1 such that:

pj(S
′′) =

 pj(Sc) if j < l
pl(S) if j = l
pj(Ss) if j > l

Since S is feasible, S′′ is also feasible. Furthermore, w(S′′) = w(S) and thus S′′

is optimal. Eventually, by construction, S′′ ∈ U2. �

18

Let

Ω0 =

n∑
j=1

wj

w1∈{wk1}k=1,...,K1

...
wn∈{wkn}k=1,...,Kn

For all j = 1, . . . , n, for all w /∈ Ω0: C∗(j, w) = +∞ and s∗(j, w) = −∞.

Thus, we only need to compute C∗(j, w) and s∗(j, w) when w ∈ Ω0.
As for Θ0, the size of this set is a priori exponential. However, it can be

rewritten as follows. Let W = ∪ j=1,...,n
k=1,...,Kj

{
wkj
}

and let

Ω =

{∑
w∈W

lww

}
lw∈{0,...,n}

Clearly, Ω0 ⊂ Ω, and

|Ω| = O
(
n|W|

)
In the general case, |W| = O (nK), but if |W| is independent of the in-

stance size, |Ω| is polynomial in the instance size. For example, for LBPSTIP,
wmin
j =wmin, wmax

j =wmax: |W| = 2. We can therefore deduce a polynomial

algorithm for the problem when the number of wkj is bounded:

Theorem 4.5. Algorithm 3 returns an optimal solution to 1 | PLP, |{wkj }| ≤ κ,

bkj∈{0, b} | −
∑
wj(pj) in polynomial time.

Algorithm 3 1 | PLP, |{wkj }| ≤ κ, bkj∈{0, b} | −
∑
wj(pj)

INPUTS: an instance I

1: Sort tasks in non-decreasing order of their deadlines
2: Compute C∗(j, w) and s∗(j, w) for all (j, w) ∈ ({0, . . . , n} × Ω)
3: return

max

max
w∈Ω

C∗(n,w)<+∞

w (no singular task)

max
(l,wC ,ws)

∈({1,...,n}×Ω×Ω),
C∗(l−1,wC)
≤s∗(l+1,ws)

wC + ws + wl(s
∗(l + 1, ws)− C∗(l − 1, wC))

(one singular task Tl)

Proof Algorithm 3 searches exhaustively the dominant set U2 and therefore
returns an optimal solution.

19

The complexity of step 1 is O(n log n). The sizes of C∗ (resp. s∗) is
n|Ω| = n|W|+1 and since O(log |Ω|) time is required to retrieve an already com-
puted value of C∗ (resp. s∗), it takes O(K|W| log n) to compute a given value.
Therefore, the complexity of step 2 is O(K|W|n|W|+1 log n). The complexity
of computing the first max in step 3 is O(|W|n|W| log n) and the complexity of
computing the second one is O(n2|W|+1(|W| log n + logK)). The overall com-
plexity is thus polynomial in the size of the input. �

Corollary 4.6. 1 | | −
∑
wj(pj) can be solved by Algorithm 3 in polynomial

time with the following profit functions:

• LPSTIP, |{wmin
j }| ≤ κ, bj=b

• LBPST, bj=b, |{wmax
j }| ≤ κ

• LBPSTIP, |{wmin
j , wmax

j }| ≤ κ, bj=b

One may remark that the dominance property from Lemma 4.4 can be gen-
eralized to the case of parallel machines. However, this will not lead to a poly-
nomial algorithm (unless P = NP) as was proved by Theorem 3.2.

We will now propose our last algorithm, based on similar ideas. Tasks are
now allowed to have different growth rates (still bkj=bj), but they should have a
common deadline. Since all deadlines are equal, Corollary 2.5 directly provides
a dominant set U3 such that:

(1) all tasks are scheduled (possibly with pj = 0) in non-decreasing order of
their deadlines and without idle time;

(2) for all S ∈ U3, S contains at most one singular task.

Once again, this set is too large for an exhaustive search and we restrict this
set to another dominant set of smaller size.

We now define C̄∗(j, w, l) that computes the earliest makespan to schedule
tasks T1, . . . , Tj but not Tl with a profit of w such that all tasks are regular:

C̄∗(j, w, l) =

C̄∗(j − 1, w, l) if j = l
0 if w = 0
+∞ if j = 0 and w 6= 0

min
k=1,...,K

wkj≤w

C̄∗(j − 1, w − wkj , l) + pkj otherwise

Lemma 4.7. For 1 | PLP, bkj∈{0, bj}, dj=d | −
∑
wj(pj) , the set of solutions

U4 such that, for all S ∈ U4:

(1) S ∈ U3

(2) if S contains a singular task Tl, then for all S′ ∈ U3 such that∑n
j=1,j 6=l wj(pj(S

′)) =
∑n
j=1,j 6=l wj(pj(S)),

then
∑n
j=1,j 6=l pj(S) ≤

∑n
j=1,j 6=l pj(S

′)

20

is dominant.

Proof (1) has already been proven by Corollary 2.5.
Let S ∈ U3 be an optimal solution. If S contains no singular task, then

S ∈ U4. If S contains a singular task Tl, then let

SC = arg min
S′∈U3∑n

j=1,j 6=l wj(pj(S
′))=

∑n
j=1,j 6=l wj(pj(S))

n∑
j=1,j 6=l

pj(S
′)

and let S′′ be the solution of U3 such that:

pj(S
′′) =

{
pj(SC) if j 6= l
pl(S) if j = l

Since S is feasible, S′′ is also feasible. Furthermore, w(S′′) = w(S) and thus S′′

is optimal. Eventually, by construction, S′′ ∈ U4. �

We can therefore deduce a polynomial algorithm for the problem when the
number of wkj is bounded:

Theorem 4.8. Algorithm 4 returns the optimal value of 1 | PLP, |{wkj }| ≤ κ,

bkj∈{0, bj}, dj=d | −
∑
wj(pj) in polynomial time.

Algorithm 4 1 | PLP, |{wkj }|≤κ, bkj∈{0, bj}, dj=d | −
∑
wj(pj)

INPUTS: an instance I

1: Compute C∗(j, w) for all (j, w) ∈ ({0, . . . , n} × {1, . . . , n}) and
C̄∗(j, w, l) for all (j, w, l) ∈ ({0, . . . , n} × Ω× {1, . . . , n})

2: return

max

max
w∈Ω

C∗(n,w)≤d

w (no singular task)

max
l=1,...,n
w∈Ω

C̄∗(n,w,l)≤d

w + wl(d− C̄∗(n,w, l)) (one singular task Tl)

Proof Algorithm 4 searches exhaustively the dominant set U4 and therefore
returns an optimal solution.

The complexity of step 1 is dominated by the computation of C̄∗. The size
of C̄∗ is n2|Ω| = n|W|+2 and since O(log |Ω|) time is required to retrieve an al-
ready computed value of C̄∗, it takes O(K|W| log n) to compute a given value.
Therefore, the complexity of step 1 is O(K|W|n|W|+2 log n). The complexity
of computing the first max in step 2 is O(|W |n|W| log n) and the complexity of
computing the second one is O(n|W|+1(|W | log n + logK)). The overall com-
plexity is thus polynomial in the size of the input. �

21

Corollary 4.9. 1 | dj=d | −
∑
wj(pj) can be solved by Algorithm 4 in polyno-

mial time with the following profit functions:

• LPSTIP, |{wmin
j }|≤κ

• LBPST, |{wmax
j }|≤κ

• LBPSTIP, |{wmin
j , wmax

j }|≤κ

One may remark that the dominance property from Lemma 4.7 can be gen-
eralized to the case of parallel machines. However, this will not lead to a poly-
nomial algorithm (unless P = NP) as was proved by Theorem 3.2.

In this section, we proposed several algorithms to solve different flavors of
PLP functions. Even though polynomial, the proposed complexities may appear
discouraging. However they are tremendously reduced when the algorithms
are applied to particular cases, e.g., those presented in the corollaries. For
example, Algorithm 5 is directly derived from Algorithm 4 to solve 1 | LPSTIP,
wmin
j =wmin, dj=d | −

∑
wj(pj) in O(n2).

Algorithm 5 1 | LPSTIP, wmin
j =wmin, dj=d | −

∑
wj(pj)

INPUTS: an instance I

1: Sort tasks in non-decreasing order of their minimum processing time
2: OPT← 0
3: for l from 1 to n do
4: w ← wmin, C ← pmin

l

5: OPT← max {OPT, w + bl(d− C)}
6: for j from 1 to n, j 6= l do
7: w ← w + wmin, C ← C + pmin

j

8: if C > d then
9: break

10: OPT← max {OPT, w + bl(d− C)}
11: return OPT

5. Conclusions

We proposed and defined a new category of scheduling problems which are
of practical interest: processing time dependent profit scheduling problems.
We discussed some unusual properties and we proposed several piecewise-linear
models as references. Then we underlined the complexity hierarchy that exists
among those models, and we proved several cases to be polynomial and some
others to be NP-complete, drawing a first map of these territories.

In the process, the complexity of many cases, including that of an original
astrophysics application, have been derived. However, we merely laid some
foundations, and many cases remain open or incomplete, and new models of
profit functions or other constraints are still to be studied.

22

References

[1] A.-M. Lagrange, P. Rubini, N. Brauner, H. Cambazard, N. Catusse,
P. Lemaire, L. Baude, SPOT: an optimization software for dynamic ob-
servation programming, in: SPIE 9910, Observatory Operations: Strate-
gies, Processes, and Systems VI, 991033 (July 18, 2016), Edinburgh, United
Kingdom, 2016.

[2] N. Catusse, H. Cambazard, N. Brauner, P. Lemaire, B. Penz, A.-M. La-
grange, P. Rubini, A Branch-And-Price Algorithm for Scheduling Observa-
tions on a Telescope, in: Twenty-Fifth International Joint Conference on
Artificial Intelligence (IJCAI-16), AAAI Press, 2016, pp. 3060–3066.

[3] J. K. Dey, J. Kurose, D. Towsley, On-line scheduling policies for a class
of IRIS (increasing reward with increasing service) real-time tasks, IEEE
Transactions on Computers 45 (1996) 802–813.

[4] D. Shabtay, G. Steiner, A survey of scheduling with controllable processing
times, Discrete Applied Mathematics 155 (2007) 1643–1666.

[5] A. Shioura, N. V. Shakhlevich, V. A. Strusevich, Preemptive models of
scheduling with controllable processing times and of scheduling with impre-
cise computation: A review of solution approaches, European Journal of
Operational Research 266 (2018) 795–818.

[6] M. Sterna, A survey of scheduling problems with late work criteria, Omega
39 (2011) 120–129.

[7] M. L. Pinedo, Scheduling: theory, algorithms, and systems, Springer, 2016.

[8] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, 1979.

[9] M. R. Garey, D. S. Johnson, Strong NP-Completeness Results: Motivation,
Examples, and Implications, J. ACM 25 (1978) 499–508.

23

	Processing time dependent profit
	Notations and general results
	NP-complete cases
	Polynomial algorithms for some piecewise-linear profit functions
	Conclusions

