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I. Introduction 
 

Event-related potentials (ERPs) are very small voltage potentials produced by the brain 

in response to external stimulation and are measured with an electroencephalogram 

(EEG). Differences in the onset time and amplitude of ERPs reflect different sensory and 

high-level brain processing functions, such as the recognition of symbols (e.g., words or 

figures) or of the correctness of presented information, or changes in a subject's attention 

(1). For these reasons, ERPs are a useful tool for describing the processing of information 

inside the brain, with practical applications, for example, in the domain of brain-computer 

interfaces (BCIs), which allow for direct communication between the brain and an 

electronic device, bypassing the usual muscular and peripheral nerve pathways (2). The 

first BCI was designed by Vidal in the late 1970s (3) and allowed control of a cursor on a 

computer screen using an EEG signal. Recent improvements in EEG signal processing (4,5) 

have made the detection of ERPs more reliable, opening a promising field of BCI 
applications for people with disabilities (6–8) as well as for the general public (e.g., 9,10). 

In order to detect and evaluate an ERP in an ongoing electroencephalogram (EEG), it is 

necessary to tag the EEG with the exact onset time of the stimulus. A fixed latency 

engenders a constant offset which can be easily removed. Variance in latency, referred to 

as jitter, is more problematic, since it invalidates common operations such as trial 

averaging. Failing to control sequencing in the tagging pipeline causes problems when 
interpreting latency and can lead to contradictory conclusions (11–13). In this work, we 

present number of technical aspects which can influence latency. 

The remainder of this report is organised as it follows: Section II describes a model for 

estimating latency. It contains A) the description of the tagging pipelines, B) an estimation 

of the latency for each tagging pipeline, and C) these estimations applied to the particular 

case of stimuli displayed in a matrix. Section III contains specific considerations on the 

case of a stimulus rendered by multiple cameras. Section IV reports on an example 

experiment. Section V presents our conclusions and recommendations. 

II. Model for estimating latency 
 

A. Tagging pipelines 
 

On most platforms, we separate software rendering (SoR) from screen rendering (ScR). In 

the first case, the software is drawing the stimulus to display on a texture (via the 

GPU/CPU); in the second case, the pre-rendered texture is being displayed on the screen. 

Tagging rarely occurs after ScR, since this would require observing the colour of the pixels 

on the screen by means of a hardware or software component to ensure that the texture 

is displayed. More likely it would take place before or after SoR: 

 

 



Pipeline A SoR  Tagging  ScR  Observation 

Pipeline B Tagging  SoR  ScR  Observation 

 

Once the stimulus is displayed on the screen, it can be observed by a photodiode. The 

response time of the photodiode is nearly instantaneous, less than one millisecond (ms). 

We define the latency (L) as the delay between the time the tagging command is sent and 

the detection of the stimulus by the photodiode. 

 

B. Latency of tagging pipelines 
 

In pipeline A, L is mainly due to ScR, which is a linear function of the height h of the 

stimulus on the screen, with the LCD screen refreshing from top to bottom. On a screen 

with a refresh rate (RR) of 60 Hz, ScR typically finishes within 20 ms:  

ScR(h) = a * h + b, where 

h is the position of the stimulus in screen height percentage, a is the time taken to update 

the screen (16 ms by default), and b is the time taken by a pixel to switch its colour (about 

6 ms, Figure 1). 

 

 

 
Figure 1.  LCD refreshes from top to bottom in linear time (14). 
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ScR does not depend on SoR, but SoR does influence the perceived ScR (PScR). Ideally, 

when the number of frames per second (FPS) is equal to RR, a texture is displayed each 

time the screen is refreshed. However, when FPS is lower than RR, the time between two 

textures may be higher than 20 ms. In contrast, when FPS is higher than RR, this may 
cause screen tearing, that is, two frames rendering at the same time (15). Ideally, a stimulus 

should be drawn within a single frame and then displayed during ScR. This is generally 

the case when just one camera is rendering a virtual scene. However, it is not always so 

when the stimulus is rendered by more than one camera, as is the case in virtual reality 

(VR). 

In pipeline B, the latency is due to both SoR and PScR. 

 

L(h) of Pipeline A  PScR(h) + e 

L(h) of Pipeline B SoR + PScR(h) + e 

 

In both conditions, e stands for hardly measurable delays, due to software and screen 

drivers, between the moment when the texture is ready and the moment when it is 

displayed. When estimating the latency with a photodiode, e also includes delays due to 

the sampling rate of the acquisition unit, the threshold used to detect the peaks of the 

photodiode and tagging signals, and the method used to remove the drift of the 

photodiode signal. We assume e and SoR to finish in near-constant time. 

 

C. Matrix of stimuli 
 

When multiple stimuli are displayed, they are regrouped in a matrix (e.g. (16)). Thus, we 

can refer to a stimulus S using its position (i, j) in the matrix I x J rather than its height h 

on the screen. Therefore, we need to express PScR as a function of (i, j). The size of the 

screen is defined by W x H, corresponding to the actual width and height of the screen in 

pixels. PScR (i, j) may be seen as a compound of three functions: 

1. P: i, j  x, y is the position of the stimulus in screen percentage, where (Figure 2) 

𝑥 =
(𝑚𝑗 + 𝑗𝑢𝑗)

𝑊
 and 𝑦 =  

(𝑚𝑖 + 𝑖𝑢𝑖)

𝐻
 , 0 < 𝑖 < 𝐼 and 0 < 𝑗 < 𝐽 ; 

2. H: x, y  h is the height of the stimulus on the screen, where h = x if the screen is 

turned 90° (as is the case for smartphone-based VR) and h = y otherwise; and 

 

3. PScR(h) already defined 

such that 

PScR(i, j) = PScR(h) o H(x, y) o P(i, j)  



with the following property (P), which corresponds to the delay between the observation 

of two stimuli 

(P) |𝐿(𝑖1, 𝑗1) −  𝐿(𝑖0, 𝑗0)| = |𝑃𝑆𝑐𝑅(𝑖1, 𝑗1) −  𝑃𝑆𝑐𝑅(𝑖0, 𝑗0)| . 

 

 
Figure 2.  Example of a matrix of stimuli with J stimuli 
in a row and I stimuli in a column. Ui is the distance 
between two adjacent stimuli in the same column. Uj 
is the distance between two adjacent stimuli in the 
same row. Mi and Mj are, respectively, the top or 
bottom and left or right margins. 

 
 

III. Multiple display of a stimulus 
 

As explained in section II.B, the PScR is probably modified when a stimulus is rendered by 

multiple cameras. This is always the case when using VR, for example, since it requires 

the display of two images for stereoscopic vision (Figure 3).  

 

 
Figure 3.  Example of matrix of stimuli in VR having J stimuli in a line 
and I stimuli in a column. 

 
 

To avoid having a single stimulus being perceived as multiple stimuli, the delay between 

multiple appearances of the same stimulus on screen has to be as short as possible; that 

is, ideally PScR ~ ScR. 



In practice, this is only the case if single-pass rendering is implemented. For instance, 

frameworks such as Unity (Unity, San Francisco, US), starting from version 2017.3, help 

to render the content of two stereoscopic cameras within a single frame (17). 

Whenever this feature is not available, a solution is to take into account the ScR of just one 

camera, a camera being a priori rendered within a frame. However, it is not clear which 

camera has to be considered. At this point, we propose the latency-of-first-appearance 

principle (LOFAP); that is, the first appearance of the stimulus on screen induces the ERP, 

and thus the latency of this first appearance should be used to correct the offset of the 

ERP. 

Under single-pass rendering or the LOFAP, the property (P) is simplified as follows: 

(P) |𝐿(𝑖1, 𝑗1) −  𝐿(𝑖0, 𝑗0)| =|𝑆𝑐𝑅(𝑖1, 𝑗1) −  𝑆𝑐𝑅(𝑖0, 𝑗0)| = 𝑎
𝑢𝑖 

𝐻
|𝑖1 − 𝑖0| or 𝑎

𝑢𝑗 

𝑊
|𝑗1 − 𝑗0| by 

symmetry. 

Notice that at this point the latency between two stimuli depends only on the orientation 

of the screen (turned or not). 

Nevertheless, the LOFAP does not correct for differences in amplitude which may result 

from multiple-pass rendering. Indeed, a high latency between the rendered content of the 

cameras may cause the stimulus to stay longer on the screen. In the case of visual 

stimulation such as the P300, however, this effect is minimal (18). 

 

IV. Experiment 
 

We conducted an experiment to compare the ERPs produced by a user under two 

conditions: when the stimulus was displayed within a traditional PC application using a 

flat-panel display refreshing from top to bottom (condition 1), and when it was displayed 

on a smartphone-based VR immersion screen refreshing from left to right (condition 2). 

We used pipelines A and B for conditions 1 and 2, respectively. Pipeline A introduced less 

variability since it depended only on ScR. Unexpectedly, pipeline B gave better results (in 

terms of jitter) in condition 2. This can be attributed to the tagging method, which was 

partially asynchronous (Figure 4). Clearly this explanation has to be investigated further 

and the relationship between tagging pipelines and asynchronous tagging clarified. 



 

Figure 4.  Model for explaining the impact of asynchronous 
tagging: By moving asynchronous tagging before SoR, it 
finishes before ScR. Thus, the stimulus is observable 
subsequent to the tagging. 
 

 

We measured the latency between the tag and the appearance of a centred stimulus on 

the screen for each experimental condition. In condition 1, the latency was around 38 ms 

(standard deviation, or SD, = 5.3 ms). In condition 2, the stimulus appeared at two 

different locations on the screen, with latencies of 117 ms (SD = 5.8 ms) and 143 ms (SD 

= 6.6 ms) for the left and right parts of the smartphone screen, respectively. It was clear 

that the latency was higher in condition 1 than in condition 2. This was partially explained 

by the computation time due to the SoR, which was not present in pipeline A. Moreover, 

in VR two images are rendered at the same time, resulting in an extended computation 

time for the SoR in comparison to a traditional application. This impacted the PScR, as it 

became greater than 20 ms (143 ms – 117 ms > 20 ms), thus we applied the LOFAP and 

retained only the shorter latency (117 ms).  

Having different latencies is a problem when comparing averaged ERPs in two conditions, 

since there is no way to know whether the difference in latency is physiological or is due 

to the tagging process. A solution is to subtract the estimated latencies we found in the 

two conditions from their respective ERPs. This removes the latency due to SoR, but not 

the latency due to PScR. In fact, the latency due to PScR in the averaged ERP depends on 

the location of the stimuli on the screen. If the distribution of the stimuli is uniform, their 

barycentre should be at the same location as the centred stimulus we used for estimating 

the latency. In practice, a centred stimulus in the matrix may differ from the barycentre if 

the matrix is even and/or if the number of stimuli is low (Figure 5). 



 

Figure 5.  Distance between the barycentre of the stimuli and the location of the photodiode. 
In this example, the photodiode was placed under the stimulus at position (2, 2) in a 6 x 6 
matrix (indices start from zero). The Y axis represents the number of stimuli between the 
barycentre and the photodiode. The X axis represents the number of stimuli displayed during 
the experiment. 

 

In such case, the latency between the barycentre (𝑖,̅  𝑗̅) and the centred stimulus 
(𝑖0, 𝑗0) can be estimated with the following: 

(P) |𝐿(𝑖,̅  𝑗̅) −  𝐿(𝑖0, 𝑗0)| = 𝑎′
𝑢𝑗 

′

𝑊
|𝑗0 − 𝑗|̅   (condition 1) and 𝑎

𝑢𝑖 

𝐻
|𝑖0 − 𝑖|̅ (condition 2).  

Notice that the latency depends only on the orientation of the screen—top-to-bottom 

(flat-panel display) or left-to-right (smartphone).  

The values of u, H, and W were computed by measuring on the screens, and we used a = 

a’ = 16 ms. Twelve stimuli were used for this experiment, with mean (N = 10,000) row 

and column distance to photodiode of 0 ms (SD = 0.4) and 0.2 ms (SD = 0.4), respectively, 

leading to 

(P) |𝐿(𝑖,̅  𝑗̅) −  𝐿(𝑖0, 𝑗0)| = 0.54(1.23) ms in VR and 0.00(0.87) ms in PC with 𝐿(𝑖,̅  𝑗̅) ≥

 𝐿(𝑖0, 𝑗0) in the two conditions. 

The average variability under the two conditions was reduced since we used the same 

stimulus for the photodiode. A maximum difference in latency of 0.9 ms (0.54 ms + 1.23 ms 

– 0 ms – 0.87 ms) between the two conditions can be observed due to the variability in 

the location of the barycentre. If the uniform hypothesis is fulfilled (as it is in the case using 

12 stimuli) but the location of the photodiode is not known, the maximum difference in 

latency is about 2.6 ms for the matrix we used. 
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V. Conclusion 
 

In summary, tagging latency depends on the location of all stimuli on screen. This latency 

causes variability in the position of ERPs and can introduce a shift when averaging ERPs 

because not all stimuli have the same position on the screen. This variability is high when 

the number of stimuli is low. For a 6 x 6 matrix and 12 stimuli, the variability is only about 

1 ms. Additional variability is introduced by positioning the photodiode at different 

locations when estimating latency. These errors can be corrected for if the location is 

known. When either the barycentre (of all the stimuli) or the photodiode location is not 

known, the maximum latency between two pixels on the screen should be lower than the 

refresh time of the screen, which is around 20 ms when the screen RR is 60 Hz. 

Uncertainty being cumulative, the maximum uncertainty is then in the range 30–40 ms 

when comparing two averaged ERPs (2 x 20 ms for a screen with RR of 60 Hz).  

The subjects themselves are a source of variability (19,20). In fact, (20) reported that 

aircraft pilots were able to perceived between 12 and 220 FPS. The variability of the 

subject’s perception of FPS is a priori negligible if the number of subjects is high and the 

experiment is paired (i.e., the paired ERPs in the two conditions are produced by the same 

subjects).  

In conclusion, we recommend the following guidelines: 

1) Use pipeline A with synchronous tagging when possible. With asynchronous tagging, 

pipeline B may lead to better performance. 

2) The higher the RR, the better: whenever possible use a modern gaming monitor with 

a refresh rate of 140 FPS. 

3) Use the VSync or, preferably, the NVIDIA GSync method. VSync allows the graphic card 

to match its FPS to the RR of the screen. Ideally GSync also lets the monitor vary its RR 

according to the FPS of the graphic card. 

4) When multiple cameras are rendering, try to enable single-pass rendering. This helps 
to draw all cameras within a single frame (17). Otherwise, use the latency of the first 

displayed camera. 

5) Make sure stimuli are uniformly distributed on the screen or that the barycentre of 

the displayed stimuli can easily be predicted. 

6) Use the same photodiode location in all experimental conditions, close to the 

barycentre of the displayed stimuli. 

7) Each subject has to be assessed under both conditions. Employ a substantial number 

of subjects to prevent variability in the perception of FPS by the human eye (increasing 

the sample size lower the variance). Exclude from the study subjects having trained 

vision, such as pilots or hard-core gamers. 
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