
HAL Id: hal-01947518
https://hal.science/hal-01947518v1

Submitted on 6 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Type Theories and Lexical Networks: Using Serious
Games as the Basis for Multi-Sorted Typed Systems
Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel Ramadier, Manel

Zarrouk

To cite this version:
Stergios Chatzikyriakidis, Mathieu Lafourcade, Lionel Ramadier, Manel Zarrouk. Type Theories
and Lexical Networks: Using Serious Games as the Basis for Multi-Sorted Typed Systems. Journal
of Language Modelling, 2017, Type-theoretical approaches to lexical semantics, 5 (2), pp.229-272.
�10.15398/jlm.v5i2.145�. �hal-01947518�

https://hal.science/hal-01947518v1
https://hal.archives-ouvertes.fr

Type Theories and Lexical Networks:
using Serious Games as the basis for

Multi-Sorted Typed Systems*

Stergios Chatzikyriakidis1, Mathieu Lafourcade2, Lionel Ramadier3, and
Manel Zarrouk4

1 Centre for Linguistic Theory and Studies in Probability (CLASP), Department of
Philosophy, Linguistics and Theory of Science, University of Gothenburg;

Open University of Cyprus
2 LIRMM, University of Montpellier
3 Radiology Dept. CHU Montpellier

4 National University of Ireland, Galway

abstract

Keywords: Lexical
Networks,
JeuxDeMots,
Type Theory,
Type Ontologies,
Formal Semantics,
Natural Language
Inference

In this paper, we show how a rich lexico-semantic network which has
been built using serious games, JeuxDeMots, can help us in grounding
our semantic ontologies in doing formal semantics using rich or mod-
ern type theories (type theories within the tradition of Martin Löf).
We discuss the issue of base types, adjectival and verbal types, hy-
peronymy/hyponymy relations as well as more advanced issues like
homophony and polysemy. We show how one can take advantage of
this wealth of lexical semantics in a formal compositional semantics
framework. We argue that this is a way to sidestep the problem of de-
ciding what the type ontology should look like once a move to a many
sorted type system has been made. Furthermore, we show how this
kind of information can be extracted from a lexico-semantic network
like JeuxDeMots and inserted into a proof-assistant like Coq in order
to perform reasoning tasks.

*The first author supported by a grant from the Swedish Research Council for
the establishment of the Centre for Linguistic Theory and Studies in Probability
(CLASP) at the University of Gothenburg.

Journal of Language Modelling Vol 5, No 2 (2017), pp. 229–272

Stergios Chatzikyriakidis et al.

1 introduction

Modern Type Theories (MTTs), i.e. Type Theories within the tradi-
tion of Martin-Löf (1975); Martin-Löf (1984), have become a major
alternative to Montague Semantics (MS) in the last twenty years.
A number of influential approaches using MTTs have been proposed
throughout this period (Ranta 1994; Luo 2011; Retoré 2014; Cooper
et al. 2014), showing that the rich typing system offered by these
approaches (type many-sortedness, dependent types, type universes
among other things) has considerable advantages over simple typed
systems predominantly used in mainstream formal semantics. A fur-
ther important aspect for considering the use of MTTs over tradi-
tional Montagovian frameworks concerns the proof-theoretic nature
of the former but not of the latter.1 This latter fact makes MTTs
a suited formal semantics language to perform reasoning tasks, as
these are exemplified for example in work on inference using proof-
assistant technology (Chatzikyriakidis and Luo 2014b,a; Bernardy
and Chatzikyriakidis 2017). However, this expressiveness of typing
comes with a cost. For example, how does one decide on the base
types to be represented? On the one hand, we do have a way to get
a more fine-grained type system unlike the monolithic domain of en-
tities found in MS, but on the other hand, constructing such a type
ontology is not at all a straightforward and easy task. Different ap-
proaches and assumptions have been put forward w.r.t this issue. For
example Luo (2011, 2012); Chatzikyriakidis and Luo (2017b) pro-
posed to treat CNs as types, in effect arguing that every CN is a type
(roughly a one to one correspondence between common nouns and
types). Approaches like Retoré (2014) on the other hand, take a more
moderate view and build their typing ontology according to classifier
systems, i.e. the intuitions for deciding which types are to be repre-
sented or not are taken from classifier systems found in a number of
natural languages. On the other hand, work in lexical-semantic net-
works have provided us with structured lexicons specifying elaborate

1At least in the way it is employed in the Montagovian setting, simple type
theory can be viewed as model theoretic. However, there is interesting work on
the proof theory of simple type theory. The higher order theorem prover LEO-
II Benzmüller et al. (2007) is an example of such work. We are grateful to an
anonymous reviewer for pointing this out to us.

[230]

Serious Games as the basis for Multi-Sorted Typed Systems

lexical and semantic relations. A classic such case is e.g. WordNet
Fellbaum (1998). A very promising line of research in lexico-semantic
network construction concerns networks which are built collabora-
tively by using Games with a Purpose (GWAPs). This is the case of the
Lexical Network JeuxDeMots (JDM) (Lafourcade 2007b). JDM is con-
structed through many GWAPs along with a contributive tool (Diko)
which allows players/users to contribute directly and to browse the
knowledge base.

Given this background, what we want to propose in this paper is
the grounding of our semantic ontologies, as well as any other infor-
mation needed in order to perform reasoning tasks using MTT seman-
tics, in JDM. In order to do this, we present some first thoughts on
how such an endeavour can be accomplished by looking at the way a
translation procedure from JDM to MTTs can be performed. Issues to
be discussed include the domain of base types, instances of these types,
adjectival and verbal types, hyponymy/hypernomy relations, as well
as more advanced issues like homophony and polysemy.We then show
how one can exploit this translation procedure by extracting this infor-
mation from JDM in order to feed a reasoning device that implements
an MTT. We show some easy cases of inference that are taken care of
via a combination of the lexical semantics information extracted from
JDM and the proof theoretic power of MTTs (performed by the proof-
assistant Coq) and further show how JDM can actually help us in order
to reason with cases where reasoning with implicit premises is at play.
The structure of the paper is as follows: in Section 2, the JDM project
is described as well as the produced lexical network. In Section 3, we
describe two main endogenous inference mechanisms (deductive and
inductive scheme), followed by a discussion on the annotation of re-
lations between terms. Then, in Section 4, we discuss the building of
type ontologies using information from JDM and propose a number
of translation procedures between JDM and an MTT. The section also
includes a brief intro to MTT semantics, highlighting aspects of the
theory that will play a role in this paper the most. Lastly, in Section 5
we look at the possibility of performing natural language inference
tasks using MTT semantics powered by information drawn from JDM.
We present a number of inference cases that rely mostly on lexical-
semantic information taken by JDM and the proof-theoretic power of
MTT semantics using the proof-assistant Coq.

[231]

Stergios Chatzikyriakidis et al.

2 building a lexical network

JeuxDeMots2, a project launched in September 2007, aims to build
a large lexico-semantic network (Lafourcade 2007a). The network is
composed of terms (nodes or vertices) and typed relations (links be-
tween nodes). It contains terms and possible refinements in the same
spirit as WordNet synsets (Miller 1995), although being organized as
decision trees. There are more than 80 different relation types which
occurrences are directed, weighted, and possibly annotated (Lafour-
cade et al. 2015).

2.1 GWAPs
The game JeuxDeMots is a two player GWAP (Game With A Purpose,
see von Ahn and Dabbish 2008), where people are supposed to earn
and collect words. The main mechanism whereby this goal is achieved
is the provision of lexical and semantic associations to terms proposed
by the system.

When a Player (let’s call him/her A) starts a game, a term T, along
with some instructions concerning the type of lexical relation (e.g. syn-
onym, antonym, domain, etc.), is displayed. The term T could have
been chosen from the database by the system or offered to be played
by other players. Player A has a limited amount of time (around 60 sec-
onds) to enter terms which, to his/her mind, are relevant w.r.t. both
the term T and the lexical relation. The maximum number of terms a
player can enter is limited, thus encouraging the player to think care-
fully about his/her choices. A screenshot of the user interface is shown
in Figure 1.

The very same term T, along with the same set of instructions,
will be later given to another player, Player B, for whom the process
is identical. In order to make the game more entertaining, the two
players score points for words they both choose. Score calculation is
explained in Lafourcade (2007a) and was designed to increase both
precision and recall in the construction of the database. The more
‘original’ a proposition given by both players is, the more it is re-
warded. Figure 2 shows an end of game with collected rewards. An-
swers given by both players are displayed and those common to both
players, as well as their scores, are highlighted.

2http://www.jeuxdemots.org

[232]

Serious Games as the basis for Multi-Sorted Typed Systems

Figure 1: Screenshot of an ongoing game with the target verb fromage (cheese).
Several propositions have been given by the user and are listed on the right
hand side

Figure 2: Screenshot of the game result with the target noun fromage. Proposals
of both players are displayed, along with points won by both

[233]

Stergios Chatzikyriakidis et al.

For a target term T, common answers from both players are in-
serted into the database. Answers given by only one of the two players
are not, thus reducing noise and the chance of database corruption.
The semantic network is, therefore, constructed by connecting terms
by typed and weighted relations, validated by pairs of players. These
relations are labeled according to the instructions given to the players
and weighted according to the number of pairs of players who choose
them. Initially, prior to putting the game online, the database was pop-
ulated with nodes. However if a pair of players suggests a non-existing
term, the new node is added to the database.

In the interest of quality and consistency, it was decided that the
validation process would involve anonymous players playing together.
A relation is considered valid if and only if it is given by at least one
pair of players. This validation process is similar to that presented by
von Ahn and Dabbish (2004) for the indexing of images, by Lieberman
et al. (2007) and von Ahn et al. (2006) to collect common sense knowl-
edge, and Siorpaes and Hepp (2008) for knowledge extraction. As far
as we know, this technique has never been used for building seman-
tic networks. Similar Web-based systems already exist in NLP, such
as Open Mind Word Expert (Mihalcea and Chklovski 2003), which
aims to create large sense-tagged corpora with the help of Web users,
and SemKey Marchetti et al. (2007), which makes use of WordNet and
Wikipedia to disambiguate lexical forms referring to concepts, thus
identifying semantic keywords.

For the design of JeuxDeMots, we could have chosen to take
into account all of the players’ answers according to their frequency
from the very outset. The database would have grown much quicker
this way, but to the detriment of quality. The rationale behind this
choice was to limit the impact of fanciful answers or errors due to
misinterpreted instructions or terms. The integration of rarer terms
and expressions is slower; nevertheless, these terms are added to the
database eventually, once the more common solutions have been ex-
hausted, thanks to the process of creating taboo terms. Once a relation
with term T has been proposed by a large number of pairs of players,
it becomes taboo. During a game, taboo terms are displayed along
with term T, discouraging (but not forbidding) players from enter-
ing them. In this way, players are encouraged to make other, more
original choices. Therefore, more infrequent terms eventually find

[234]

Serious Games as the basis for Multi-Sorted Typed Systems

their way into the database, and the chances of error are reduced to
a minimum.
Even if a relation becomes taboo, its weight can, and does, evolve.

However, this tends to be done slowly as the relation is proposed to
the players less often. It is important to allow relation weights to con-
tinue to evolve, as we can hardly consider such a relation as com-
plete. Eventually, a given term can become taboo when involved in
several different relation types. The fact that taboo relations continue
to evolve is essential, otherwise the weights of two given relations
could become equal and then information about the relative strength
relations would be lost.
The approach presented here complements that developed by

Zock and Bilac (2004) and Zock and Schwab (2008) who tried to
create an index based on the notion of association to assist users in
navigating the Web or elsewhere, or to help a person find a word on
the tip of their tongue. Their approach is bottom-up, i.e. the terms
are known (based on word proximity in corpora), but the nature of
the link isn’t. This has to be inferred, which is far from an easy task.
In our case, we provide one of the two terms, term T as well as the
relation type. It is the target terms which interest us. Our approach is
top-down.

Some other games3 complement the main game of JDM. Their
purpose is to cross validate the information collected in the main
game, or to accelerate the relation harvesting for some specific types
of relations. For instance, there are games for collecting word polarity
(positive, negative, and neutral), for sentiments associated with words,
guessing games, sorting games, location preposition games, and so on.

Since September 2007, around 1.5 million matches have been
played for JDM, a total of 25 000 hours of cumulative playing. More
than 250 million matches have been played for the other games of the
JDM platforms.4

2.2 Direct crowdsourcing
Playing games in order to fill the lexical network is a kind of indirect
crowdsourcing, where people (players) do not negotiate their contri-

3http://imaginat.name/JDM/Page_Liens_JDMv1.html
4http://www.jeuxdemots.org/jdm-about.php

[235]

Stergios Chatzikyriakidis et al.

bution beforehand. In some cases, direct crowdsourcing (with negoti-
ation between contributors) is desirable. Indeed, some lexical relation
might be complicated enough to be playable without some linguis-
tic knowledge. This is for example the case for telic role, which is
the goal/purpose of an object (or action). For instance, a butcher knife
has the telic role of cutting meat. It is to be differentiated from the in-
strument of a predicate, which indicates what can be done with the
object. A butcher knife could be used to stab someone, but this is not
its telic role.

In some other cases (depending on each term), a given relation
might not be productive enough to be playable. For example, the can
produce relation for cow could reasonably be milk, but there are not
many other answers.

All theses considerations lead to the need of a more direct crowd-
sourcing interface. The Diko5 service allows to visualize and con-
tribute to the JDM lexical network. A voting mechanism is at the
core of the validation (or invalidation) of proposed relations between
terms.

2.3 Inside the JDM Lexical Network
As mentioned above, the structure of the lexical network we are build-
ing relies on the notions of nodes and relations between nodes, as it
was initially introduced in the end of 1960s by Collins and Quillian
(1969), developed in Sowa and Zachman (1992), used in the small
worlds by Gaume et al. (2007), and more recently clarified by Polguère
(2014). Every node of the network is composed of a label (which is
a term or an expression, or potentially any kind of string) grouping
together all of its possible meanings.
The relations between nodes are typed. Each type corresponding

to specific semantics that could be more or less precise. Some of these
relations correspond to lexical functions, some of which have been
made explicit by Mel’cuk and Zholkovsky (1988) and Polguère (2003).
We would have liked our network to contain all the lexical functions
defined by Mel’cuk, but, considering the principle of our software,
JDM, this is not viable. Indeed, some of these lexical functions are too
specialized and typically aim at some generative procedure (instead of

5http://www.jeuxdemots.org/diko.php

[236]

Serious Games as the basis for Multi-Sorted Typed Systems

automatic text analysis and understanding), as in our case. For exam-
ple, we can consider the distinction between the Conversive, Antonym,
and Contrastive functions, a distinction that could be made through
annotations for a quite generic antonym relation. Mel’cuk also con-
siders function refinements, with lexical functions characterized as
“wider” or “narrower”. Given that JDM is intended for users who are
“simple Internet users” and not necessarily experts in linguistics, such
functions could be wrongly interpreted. Furthermore, some of these
functions are clearly too poorly lexicalized, that is, very few terms
feature occurrences of such relations. This is, for example, the case of
the functions of ‘Metaphor’ or ‘Functioning with difficulty’.
JDM has a predefined list of around 80 relation types, and players

cannot define new types by themselves. These types of relations fall
into several categories:
• Lexical relations: synonymy, antonymy, expression, lexical fam-

ily. These types of relations are about vocabulary and lexicalization.
• Ontological relations: generic (hyperonymy), specific (hypo-

nymy), part of (meronymy), whole of (holonymy), mater/substance,
instances (named entities), typical location, characteristics and rele-
vant properties.
• Associative relations: free associations, associated feelings,

meanings, similar objects, more and less intense (Magn and anti-
Magn). These relations are rather about subjective and global knowl-
edge; some of them can be considered phrasal associations.
• Predicative relations: typical agent, typical patient, typical in-

strument, location where the action takes place, typical manner, typi-
cal cause, typical consequence etc. These relations are about types of
relations associated with a verb (or action noun) as well as the values
of its arguments (in a very wide sense).

Some relation types are specific to some noun classes. For exam-
ple, for a noun referring to an intellectual piece of work (book, novel,
movie, piece of art, etc.), the relation of author is defined. In case of a
medical entity, targets and symptoms are defined.

Some outgoing relations for the French word fromage are shown
below:

fromage → r_associated 800 → lait
fromage → r_associated 692 → camembert
fromage → r_associated 671 → chèvre

[237]

Stergios Chatzikyriakidis et al.

fromage → r_associated 580 → vache
fromage → r_associated 571 → gruyère
fromage → r_associated 460 → brebis
fromage → r_associated 419 → roquefort
fromage → r_isa 310 → produit laitier
fromage → r_associated 257 → produit laitier
fromage → r_associated 221 → brie
fromage → r_hypo 214 → gruyère
fromage → r_meaning 205 → produit laitier
fromage → r_hypo 204 → brie
fromage → r_associated 201 → dessert
fromage → r_associated 201 → fromage blanc
fromage → r_locution 199 → fromage de brebis
fromage → r_patient-1 199 → manger
fromage → r_locution 195 → fromage de tête
fromage → r_hypo 189 → fromage blanc
fromage → r_isa 189 → aliment
fromage → r_raff_sem 183 → fromage > produit laitier
fromage → r_isa 182 → ingrédient
fromage → r_lieu 182 → pizza
fromage → r_carac 180 → puant
fromage → r_sentiment 177 → envie
fromage → r_consequence 173 → puer du bec
fromage → r_holo 171 → pizza
fromage → r_associated 168 → laitage
fromage → r_hypo 167 → fromage de vache
fromage → r_hypo 163 → fromage double crème
fromage → r_hypo 163 → fromage à pâte pressée cuite
fromage → r_part_of 163 → lipide
fromage → r_part_of 161 → croûte
fromage → r_lieu :160 → plateau à fromage
fromage → r_carac 160 → odorant
fromage → r_associated#0:154 → raclette
fromage → r_locution :154 → dommage fromage
fromage → r_associated 149 → cancoillotte
fromage → r_locution 148 → faire tout un fromage
fromage → r_locution :148 → fromage analogue
fromage → r_locution :148 → fromage de synthèse

[238]

Serious Games as the basis for Multi-Sorted Typed Systems

fromage → r_hypo 148 → fromage à pâte dure
fromage → r_similar 148 → substitut de fromage
fromage → r_hypo#8:147 → emmental
…

2.4 Refinements
Word senses (or usages) of a given term T are represented as standard
nodes T>glose1, T>glose2, ..., T>glosen which are linked with re-
fine(ment) relations. Glosses are terms that help the reader to identify
the proper meanings of the term T. For example, consider the French
term frégate (Eng. frigate):
• frégate→refine→frégate>navire
• frégate>navire →refine→ frégate>navire>ancient
• frégate>navire →refine→ frégate>navire>modern

• frégate→refine→frégate>bird
A frigate can be a ship or a bird (both English and French have

the same ambiguity for this word), and as a ship it can either be an
ancient ship (with sails) or a modern one (with missiles and such).
As can be seen in the above example, word refinements are organized
as a decision tree, which can have some advantages over a flat list of
word meanings for lexical disambiguation.
A given word sense is treated as any standard term; it can be

played regularly. The general polysemous term contains (in principle)
the union set of all possible relations given by the senses. In practice,
we proceed the other way around, trying to distribute relations from
the appropriate term to the proper senses.
2.5 Negative relations
A given relation is weighted, and the weight could be negative. A neg-
ative weight is only the result of some contributive process (i.e. it is
never an outcome of the games) where volunteers add information to
the lexical network. The purpose of negative weights is to give some
foundation to the inhibitory process that allows us to reject (instead of
select) some given meaning during a Word Sense Disambiguation task.
• frégate>navire →refine→ coque (Eng. hull)
• frégate>bird →refine<0→ coque

[239]

Stergios Chatzikyriakidis et al.

Consider the sentence (in English): The frigate had her hull breached.
Obviously, the negative relations immediately forbid the frigate from
being a bird in this sentence. Hence, negative relations are of primary
interest for representing contrastive phenomena among the various
senses of a given term.

2.6 Aggregate nodes
The JDM lexical network also contains aggregate nodes that are in-
ferred from the set of relations produced by players and contributors.
An aggregate (node) is a node that encompasses either:
• a predicate (a verb) + one argument, like for example:
lion [agent] eat,
eat [patient] salad.

• a noun + one feature, like for example:
cat [carac] black,
cat [location] sofa,
rabbit [made-of] chocolate.
Aggregates can be combined recursively, for example (parenthe-

ses are given for for the purpose of readability):
A :: (cat [carac] black) [agent] eat
B :: (cat [carac] black) [agent] (eat [patient]mouse)
The motive of such aggregate nodes is to associate information

(through relations) with some contextualized items:
• A →patient→ bird
• B →location→ garden
The choice of aggregate node depends on the weight of the re-

lations in the lexical network. An automated process will randomly
select some relations and propose them as the aggregate to the play-
ers. Those which are selected for playing are dubbed as interesting
and reified (instantiated as node) in the lexical network. For example,
the relation:

soldier →agent→ kill
it could lead to the aggregated node:
soldier [agent] kill

[240]

Serious Games as the basis for Multi-Sorted Typed Systems

can be proposed to player with various relation types to fill, as pa-
tient, location, manner, instrument, etc.
2.7 Some figures
By February 2017, the JDM lexical network contained roughly 67 mil-
lion relations between more than 1 million nodes. Around 24 000
terms are refined into 65 000 word senses (word usages). More than
800 000 relations are negative and can be used as inhibitory items. The
generic ‘associated ideas’ relations represent around 25% of the rela-
tion total. Annotations (see below) represent around 4.5% of the to-
tal. Informational relations (like part-of-speech, some conceptual val-
ues like human, alive, place, substance, artifact, etc.) stand
for 20%.

3 inferring and annotating relation
Inference is the process of proposing new relations on the basis of the
actual contents of the network. Simple procedures tend to provide cor-
rect but mostly irrelevant results. In Sajous et al. (2013) an endogenous
enrichment of Wiktionary is done with the use of a crowdsourcing
tool. A similar approach of using crowdsourcing has been consider-
ing by (Zeichner et al. (2012)) for evaluating inference rules that are
discovered from texts.
In what follows, we describe two endogenous inference mecha-

nisms which assist the annotation spreading, although other schemas
are running in the inference engine, producing new relations and de-
riving benefit from the produced annotations (Zarrouk 2015).
3.1 Inference
In order to increase the number of relations inside the JDM network,
an inference engine proposes relations to be validated by other human
contributors (or experts in the case of specialized knowledge). The
core ideas about inferences in our system are the following:
• as far as the engine is concerned, inferring is deriving candidate
conclusions (in the form of relations between terms) from previ-
ously known ones (existing relations);
• candidate inferences may be logically blocked regarding the pres-
ence or absence of some other relations;

[241]

Stergios Chatzikyriakidis et al.

• candidate inferences can be filtered out on the basis of a strength
evaluation.

3.1.1 Deductive scheme
The first type of inference we are describing is the deduction or top-
down scheme, which is based on the transitivity of the ontological
relation is-a (hypernym). If a term A is a kind of B and B holds a
relation R with C, then we can expect that A holds the same relation
with C. The scheme can be formally written as follows:
(1) A

is−a−−→ B ∧ B
R−→ C ⇒ A

R−→ C

If we consider a term Twith a set of weighted hypernyms, for each
hypernym, the inference engine deduces a set of inferences. Those
inference sets are not disjoint in the general case, and the weight of a
proposed inference in several sets is the incremental geometric mean
of each occurrence.

Of course, the scheme above is far too naive, especially consider-
ing the resource we are using. Indeed, B may be, possibly, a polyse-
mous term and ways to block inferences that are certainly wrong can
be devised. If there are two different meanings of term B that hold be-
tween the first and the second relation (Figure 3), then the inference
is most likely wrong.

Figure 3:
Triangular inference scheme with logical
blocking based on the polysemy of B

Moreover, if one of the premises is tagged as true but irrelevant,
then the inference is blocked. It is possible to assess a confidence level
for each produced inference in a way that dubious inferences can be
filtered out. The weight w of an inferred relation is the geometric mean
of the weight of premises. If the second premise has a negative value,

[242]

Serious Games as the basis for Multi-Sorted Typed Systems

the weight is not a number and the proposal is discarded. As the geo-
metric mean is less tolerant of small values than the arithmetic mean,
inferences which are not based on two valid relations (premises) are
unlikely to go through.
3.1.2 Induction scheme
As for the deductive inference, induction exploits the transitivity of
the relation is-a. If a term B is a hypernym of A and A holds a relation
R with C, then we might expect that B could hold the same type of
relation with C.
(2) A

is−a−−→ B ∧ A
R−→ C ⇒ B

R−→ C

This schema is a generalization inference. The global processing is
similar to the one applied to the deduction scheme and similarly some
logical and statistical filtering may be undertaken. The term joining
the two premises is possibly polysemous. If the term A presents two
distinct meanings which hold respectively of the premises (Figure 4),
then the inference done from that term may be probably wrong.

Figure 4:
Induction scheme. Central Term A may be
polysemous with meanings holding premises,
thus inducing a probably wrong relation

3.2 Relation annotations
JDM is a combined lexical semantic network (i.e one containing both
general knowledge but also specialist domain knowledge). Besides
being typed, relations are weighted and directed. In general, and espe-
cially in cases of specialized knowledge, the correlation between the
weight of the relation and its importance is not strict. This is why it
seems interesting to introduce annotations for some relations as these
can be of great help in such areas as medicine, for instance.

[243]

Stergios Chatzikyriakidis et al.

In information retrieval, this annotation can be helpful to the
users. For instance, in the field of medicine, practitioners may want
to know if the characteristic of a given pathology is rare or frequent.
For example, the relation between measles and children is frequent and
as such will be available in the network.
3.3 Annotation values
These annotations will have a filter function in the inference scheme.
The types of annotations are of various kinds (mostly frequency and
relevance information). The different main annotation labels are:
• frequency annotations: very rare, rare, possible, frequent, always
true;
• usage annotations: often believed true, language misuse;
• quantifier: any number like 1, 2, 4, etc. or many, few;
• qualitative: pertinent, irrelevant, inferable, potential, preferred.
Concerning language misuse, a doctor can use the term flu (ill-

ness) instead of virus of influenza: it is a misuse of language as the doc-
tor makes use of a “language shortcut”. The annotation often believed
true is applied to a wrong relation. This is very often considered true,
for instance, spider (is-a/often believed true) insect. This kind of anno-
tation could be used to block the inference scheme. Qualitative anno-
tation relates to the inferable status of a relation, especially concerning
inference. The pertinent annotation refers to a proper ontological level
for a given relation. For instance: living being (charac/pertinent) alive
or living being (can/pertinent) die. Another case concerns synonyms:
in this case, it may be relevant to choose a preferred synonym, as in
the case of hepatocellular carcinoma (preferred), HCC, malignant hep-
atoma.

The annotation inferable is used when a relation is inferable (or
has been inferred) from an already existing relation. For example: cat
(charac/inferable) alive because cat (is-a) living being.

The annotation potential may be used for terms above the
pertinent ones in the ontological hierarchy, for example: bird (has-
part/always true) wings and animal (has-part/potential) wings.

Finally, the annotation irrelevant is used for a valid relation that
is considered as too far below the pertinent level, for example, animal
(has-part/irrelevant) atoms.

[244]

Serious Games as the basis for Multi-Sorted Typed Systems

The annotation quantifier represents the number of parts of an
object. Each human has two lungs so the quantifier relation there is 2.
This kind of annotation is not necessarily a numeral, but can be more
or less a subjective value, e.g. few, many, etc.

The annotation frequency can be of five different types: always
true, frequent, possible, rare and exceptional. There are also two quali-
tative types (pertinent and irrelevant).
The first annotations have been introducedmanually, but with the

help of the inference scheme, they will spread through the network.
We assign empirical values to each annotation’s label: 4 to always
true, 3 to frequent, 2 to possible, 1 to rare and 0 to the rest of the
annotations. These allow us to select annotations to facilitate or block
an inference scheme.
The annotation possible is a special case. Depending of the con-

figuration of the system, it may block (stricter approach) or not block
(lenient approach) the inference mechanism. If a system is lenient, we
may obtain many inference proposals that might be wrong (high re-
call, low precision). On the other hand, if a system is strict, we reduce
the risk of wrong proposals, but at the cost of missing adequate ones
(low recall, high precision).

4 from jdm to mtts

In this section, we show how we can exploit the richness of the lexico-
semantic information found in JDM, in order to decide on the typ-
ing ontology and assign types to objects in a compositional semantics
framework that is richly typed. But before we get into this discussion,
a very brief intro to MTT semantics.
4.1 A gentle and brief intro to MTT semantics
We use the term Modern Type Theory (MTT) to refer to a variant of
a class of type theories as studied by Martin-Löf (1975); Martin-Löf
(1984) and others, which have dependent types, inductive types and
other powerful and expressive typing constructions. In this paper, we
are going to employ one of these variants, namely the Unified Theory
of dependent Types (UTT) complemented with the coercive subtyping
mechanism (Luo 1994, 1999; Luo et al. 2012). Given the different typ-
ing constructions found in MTTs, various interpretations of linguistic

[245]

Stergios Chatzikyriakidis et al.

semantics might be different than what we usually find in traditional
Montagovian formal semantics based on simple type theory.

4.1.1 Common nouns as types and subtyping
A key difference between MTT-semantics and Montague semantics
(MS) lies in the interpretation of common nouns (cns). In Montague
(1974), the underlying logic, i.e. Church’s simple type theory (Church
1940), is ‘single-sorted’ in the sense that there is only one type, e,
of all entities. The other types such as the type of truth values, i.e.
t, and the function types generated from types e and t do not stand
for types of entities. Thus, no fine-grained distinctions between the
elements of type e exist, and as such all individuals are interpreted
using the same type. For example, John and Mary have the same type
in simple type theory, i.e. the type e of individuals. An MTT, on the
other hand, can be regarded as a ‘many-sorted’ logical system in that
it contains many types. In this respect, MTTs can make fine-grained
distinctions between individuals and use those different types to inter-
pret subclasses of individuals. For example, one can have John : man
andMary : woman, where man and woman are different types. Another
very basic difference between MS and MTTs is that common nouns in
MTTs (cns) are interpreted as types (Ranta 1994) rather than sets or
predicates (i.e., objects of type e→ t) as in MS. The cns man, human,
table and book are interpreted as types man, human, table and book,
respectively. Then, individuals are interpreted as being of one of the
types used to interpret cns.

This many-sortedness has the welcome result that a number
of semantically infelicitous sentences, which are however syntacti-
cally well-formed, like e.g. the ham sandwich walks can be explained
easily. This is because a verb like walks will be specified as being of
type Animal → Prop while the type for ham sandwich will be food or
sandwich:6

6This is of course based on the assumption that the definite NP is of a lower
type and not a Generalized Quantifier. Furthermore, the idea that common nouns
should be interpreted as types rather than predicates has been argued in Luo
(2012) on philosophical grounds as well. There, Luo argues that the observation
found in Geach (1962) according to which common nouns, in contrast to other
linguistic categories, have criteria of identity that enable them to be compared,
counted or quantified, has an interesting link with the constructive notion of

[246]

Serious Games as the basis for Multi-Sorted Typed Systems

(3) the ham sandwich : food
(4) walk : human→ Prop
Interpreting cns as types rather than predicates has also a signifi-

cant methodological implication: compatibility with subtyping. For in-
stance, one may introduce various subtyping relations by postulating a
collection of subtypes (physical objects, informational objects, eventu-
alities, etc.) of the type Entity (Asher 2012). It is a well-known fact that
if cns are interpreted as predicates as in the traditional Montagovian
setting, introducing such subtyping relations would cause problems
given that the contravariance of function types would predict that if
A < B, then B → Prop < A→ Prop would be the case. Substituting A
with type man and B with type human, we come to understand why
interpreting CNs as predicates is not a good idea if we want to add a
coercive subtyping mechanism.

The subtyping mechanism used in the MTT endorsed in this paper
is that of coercive subtyping (Luo 1999; Luo et al. 2012). Coercive
subtyping can be seen as an abbreviation mechanism: A is a (proper)
subtype of B (A< B) if there is a unique implicit coercion c from type
A to type B and, if so, an object a of type A can be used in any context
CB[_] that expects an object of type B: CB[a] to be legal (well-typed)
and equal to CB[c(a)].
To give an example: assume that both man and human are base

types. One may then introduce the following as a basic subtyping re-
lation:
(5) man< human
4.1.2 Σ-types, Π-types and universes
In this subsection, the dependent types Σ and Π. as well as universes
are briefly introduced.
Dependent Σ-types. One of the basic features of MTTs is the use of De-
pendent Types. A dependent type is a family of types that depend
set/type: in constructive mathematics, sets (types) are not constructed only by
specifying their objects but they additionally involve an equality relation. The
argument is then that the interpretation of cns as types in MTTs is explained and
justified to a certain extent. Extensions and further theoretical advances using
the cns as types approach can be found in Chatzikyriakidis and Luo (2017b).

[247]

Stergios Chatzikyriakidis et al.

on some values. The constructor/operator Σ is a generalization of
the Cartesian product of two sets that allows the second set to de-
pend on the values of the first. For instance, if human is a type and
male : human → Prop, then the Σ-type Σh : human. male(h) is intu-
itively the type of humans who are male.

More formally, if A is a type and B is an A-indexed family of types,
then Σ(A, B), or sometimes written as Σx:A.B(x), is a type, consisting
of pairs (a, b) such that a is of type A and b is of type B(a). When B(x)
is a constant type (i.e., always the same type no matter what x is),
the Σ-type degenerates into the product type A× B of non-dependent
pairs. Σ-types (and product types) are associated projection operations
π1 and π2 so that π1(a, b) = a and π2(a, b) = b, for every (a, b) of type
Σ(A, B) or A× B.

The linguistic relevance of Σ-types can be directly appreciated
once we understand that in their dependent case Σ-types can be used
to interpret linguistic phenomena of central importance, like adjecti-
val modification (see for example Ranta 1994). To give an example,
handsome man is interpreted as Σ-type (6), the type of handsome men
(or more precisely, of those men together with proofs that they are
handsome):
(6) Σm : man. handsome(m)
where handsome(m) is a family of propositions/types that depends on
the man m.
Dependent Π-types. The other basic constructor for dependent types is
Π.Π-types can be seen as a generalization of the normal function space
where the second type is a family of types that might be dependent
on the values of the first. A Π-type degenerates to the function type
A→ B in the non-dependent case. In more detail, when A is a type and
P is a predicate over A, Πx:A.P(x) is the dependent function type that,
in the embedded logic, stands for the universally quantified proposi-
tion ∀x:A.P(x). For example, the following sentence (7) is interpreted
as (8):
(7) Every man walks.
(8) Πx : man.walk(x)

Π-types are very useful in formulating the typings for a number
of linguistic categories like VP adverbs or quantifiers. The idea is that

[248]

Serious Games as the basis for Multi-Sorted Typed Systems

adverbs and quantifiers range over the universe of (the interpretations
of) cns and as such we need a way to represent this fact. In this case,
Π-types can be used, universally quantifying over the universe cn.
Example (9) is the type for VP adverbs7 while (10) is the type for
quantifiers:
(9) ΠA : cn. (A→ Prop)→ (A→ Prop)
(10) ΠA : cn. (A→ Prop)→ Prop

Further explanations of the above types are given after we have intro-
duced the concept of type universe below.
Type Universes. An advanced feature of MTTs, which will be shown
to be very relevant in interpreting NL semantics in general, is that
of universes. Informally, a universe is a collection of (the names of)
types put into a type (Martin-Löf 1984).8 For example, one may want
to collect all the names of the types that interpret common nouns into
a universe cn : Type. The idea is that for each type A that interprets a
common noun, there is a name A in cn. For example,

[[man]] : cn and Tcn([[man]]) = [[man]] .

In practice, we do not distinguish a type in cn and its name by omitting
the overlines and the operator Tcn by simply writing, for instance,
[[man]] : cn.

Having introduced the universe cn, it is now possible to explain
(9) and (10). The type in (10) says that for all elements A of type
cn, we get a function type (A→ Prop) → Prop. The idea is that the
element A is now the type used. To illustrate how this works let us
imagine the case of the quantifier some which has the typing in (10).
The first argument we need has to be of type cn. Thus some human is

7This was proposed for the first time in Luo (2011).
8There is quite a long discussion on what properties these universes should

have. In particular, the debate is largely concentrated on whether a universe
should be predicative or impredicative. A strongly impredicative universe U of
all types (with U : U and Π-types) has been shown by Girard (1971) to be para-
doxical, and as such logically inconsistent. The theory UTT we use here has only
one impredicative universe Prop (representing the world of logical formulas) to-
gether with infinitely many predicative universes which as such avoids Girard’s
paradox (Luo 1994).

[249]

Stergios Chatzikyriakidis et al.

of type (human → Prop) → Prop given that the A here is human : cn
(A becomes the type human in (human→ Prop)→ Prop). Then given a
predicate like walk : human→ Prop, we can apply some human to get
some human : Prop.
4.2 Getting MTT typings from JDM
In this section, we will show how we can define a translation proce-
dure between JDM and MTTs, in order to base our typing judgments
and other related lexico-semantic information in JDM. We show some
basic examples in which this can be done.
4.2.1 Base types and instances of base types
MTTs, as already said, are many-sorted systems in that they involve
a multitude of types rather than just one monolithic type e domain of
entities. In the accounts proposed by Luo (2011, 2012), every com-
mon noun is associated with a base type. What this idea amounts to,
among other things, is that in this approach, CNs are base types and as
such, are clearly separated in terms of their formal status with either
adjectives or intransitive verbs. The type of CNs, likeMan, Human and
Animal is cn, the universe of common nouns.

The idea is then to extract these base types from common nouns
in JDM (terms in JDM). POS tagging of JDM will provide information
about which words are the common nouns. What we further have to
do in getting the base types, is to exclude instances of terms (for ex-
ample John as an instance of Man) in order to distinguish between
instances of terms and the terms themselves (CNs).9 This can be done
by excluding named entities (NEs). The second part of the conjunction
takes care of that by not allowing A to be an instance, i.e. an NE:10
(11) ∀A.POS(N , A)∧¬(Ins(A))⇒ A:cn.

9This does not mean that we are not interested in instances. On the contrary.
What we are saying here is that this rule distinguishes between CNs and instances
of these CNs (the difference between a type like Man and an instance of this type,
e.g. John). There will be a separate rule to derive instances.

10Note that modified CNs are also going to be of type cn. To give an example,
consider the analysis of adjectival modification. In MTTs, this would be a Σ type,
where the first component would be an element A of type cn and the second
projection a predicate over A. The first projection is defined as a coercion, and
thus the modified CN can be used as being of type cn. For more information on
this, please refer to (Chatzikyriakidis and Luo 2013, 2017a) for more information.

[250]

Serious Games as the basis for Multi-Sorted Typed Systems

Hyponym and hypernym (noted as isa in JDM) relations naturally
correspond to subtypes and supertypes. We only use the subtype rela-
tion in order to provide a translation procedure:
(12) ∀A, B.Hyp(A, B)⇒ A< B:cn.

(13) ∀A, B.Hyper(A, B)⇒ B < A:cn.

This basically means that as soon as you have, let us say, a hy-
ponym relation, e.g. Hyp(A, B), this will be translated into a type-
theoretic judgment of the following form:
(14) A< B:cn
If we want to be more meticulous, we first have to judge A and B

as being of type cn and then we can further add the subtype relation.
Moving on to synonyms, these can be defined using equality:11

(15) ∀A, B.Syn(A, B)⇒ A= B:cn.

Synonymicity is not only relevant for CNs but for other linguistic
categories. We can encode this intuition as follows:
(16) ∀A, B.Syn(A, B)⇒ A= B:C(CLType)

The above rule can declare synonymous words that have the same
type via the equality relation. The type itself belongs in the universe
LType. LType can be seen as a universe of linguistic types. The main
intuition is that it includes the types instantiated in linguistic seman-
tics (CN, adjectival and verbal types, types for quantifiers etc.). The
interested reader is directed to Chatzikyriakidis and Luo (2012) for
more details as well as some of the introduction rules for LType).

For instances of terms, such as proper names, we define the fol-
lowing:12
(17) ∀A.∃B.Ins(A, B)⇒ A:B

This means that if A is an instance of B, then A is of type B.
For example, if Einstein is an instance of person, then what we get is

11Of course, this will treat A and B as perfect synonyms. We make this simple-
minded assumption in this paper, even though perfect synonyms do not really
exist in natural language.

12Note that here we overload the notation and sometimes treat Ins as an one
place predicate and sometimes like a two place predicate.

[251]

Stergios Chatzikyriakidis et al.

Einstein:person with person:cn. In more detail, the procedure is as fol-
lows: given an instance A of a term B, first you declare B:cn and then
judge the instance A to be of that type, i.e. B. This is the easy straight-
forward case and assumes that every instance will be an instance of
one term. However, things are more complicated in practice. Given
that JDM is a very elaborate lexical network, proper names will be
instances of many terms (and thus, in MTT terms, types). To give an
example: in the case of a proper name like Einstein, what we get is a
number of terms from JDM that Einstein is an instance of: physicist,
scientist, human individual. The question is which one do we choose.
This is not an easy question to answer. One option would be to go for
the term that is the most specific. But how do we define this? One way
to do this, and given the discussion on relations of hyponymy, is to de-
fine it by saying that the term chosen should not have any subtypes
in the given entry. For example individual will have subtypes (scien-
tist, and also physicist) scientist (physicist). In this case, we are left with
physicist. This is one way to do it. Note that given subtyping, we do
get that Einstein is also an instance of the supertypes. This is a viable
solution provided that all the terms are somehow connected in terms
of subtyping. But there might be discontinuous relations. For example,
imagine the case of the term man. Let us assume that Einstein is an in-
stance of this term (surprisingly the term does not arise in JDM). Now,
physicist and scientist are not subtypes ofman. In this case, it seems that
one has to make a decision about the type of Einstein based on those
two types. It seems to us that in principle one should be able to make
use of both types depending on the context. How one disambiguates is
another issue however. Another way to do this is to assume that such
instances are complex types, and treat them as disjoint union types in
type-theoretical terms. Doing so will mean that Einstein will be of the
following complex type physicistman:
(18) physicistman= physicist+man
(19) Einstein:physicist+man
Now, in this situation one can have such a complex case without

actually resorting to context. The correct type will be disambiguated
according to what is needed. In case a term of type man is needed like
in Einstein was a bachelor, then the type man is going to be used. In
cases like Einstein was a well-known physicist, the type physicist is to be

[252]

Serious Games as the basis for Multi-Sorted Typed Systems

used. Note that this relies on the assumption that a subtyping mech-
anism is at play which will provide us with the following subtyping
relations:
(20) physicistman<man
(21) physicistman< physicist
In this context, a more general way of translating these cases into

MTTs would be as follows:

∀A, D.∃B, C .Ins(A, B)⇒
¨
A:B iff Ins(A, D) ∧ B<D
A:B+C, iff Ins(A, C)∧ Ins(A, D) → ¬ (B<D ∨ C<D)

The first case is trivial. The second case says that each A that is
an instance of type B has the type B + C , in case it is also an instance
of C and for every other type D that A is an instance of, it is not the
case that either B or C are subtypes of D.
4.2.2 Predicates and world knowledge information
The next question is, how can one extract information on the type of
predicates, like for example verbs. JDM provides loads of information
with every word, for example characteristics, synonyms, antonyms,
collocations. For verbs, agent, patient and thematic relations in general
are defined. This is particularly helpful for a rich type theory like the
one used here, since predicates also make use of type many-sortedness.
Thus, walk will be defined as being a function from type animal to
propositions, black from type object to propositions and so on:
(22) walk:animal→ Prop
(23) black:object→ Prop
The information in JDM is enough to provide MTT typings for

predicates as well. In JDM, as already said, one can look at seman-
tic relations like action,patient, dubbed as predicative relations in the
classification given in the previous section, and various other such re-
lations. For example, man appears as the agent of a number of verbs
that express actions, e.g. question. But, the most helpful relation is the
inverse agent/theme/patient relation, agent−1. This relation returns a
list of terms (and instances of terms) that can function as the agent
for the action denoted by the verb. For example, the verb question will

[253]

Stergios Chatzikyriakidis et al.

involve among others teacher, mother, child, daugther, person, human.
How can we make sense in order to provide typings in MTTs? There
is a straightforward way to do this. What we need is to find the most
general term, i.e. the term of which all the other terms are hyponyms.
Instances of terms are not needed in this process.13

(24) ∀A, B.∃C .Ag(A, B)∧ (Hyp(A, C)∨ (A= C))⇒ B:C → Prop
However, things may be less straightforward than that simply be-

cause there exists no term in the agent−1 relation that is a supertype
of all the others. In this case, we see two plausible options: a) intro-
duce a supertype or b) split the refinements into different classes. For
example in case we have refinements human, man, pilot, vehicle, car,
bike, we can split this into class A = pilot,man < human and class
B = bike, car< vehicle and propose an overloaded polysemous type for
the verb in question, with two different typings, human → Prop and
vehicle→ Prop. As far as the supertype is concerned, the suggestion is
that we go for a default supertype, which will be the supertype of all
types. For example in the work of Chatzikyriakidis and Luo (2014a),
this type is object. We can think of such a type, no matter whether we
agree that this should be type object or not (denoted as Toptype below).
Then, with these considerations in mind, we may want to update the
previous correspondence:

∀A, B.Ag(A, B)⇒
(B:C → Prop iff ∃ C.((Hyp(A,C)∧ Ag(C,B))∨ (A=C))
B:D→ Prop iff ¬∃C .(Hyp(A, C) ∧ D = TopType)

The first condition says that if A is the agent of predicate B (ex-
pressed by an adjective here), then in case there is a type C that is also
the agent of B, it is a supertype of A as well as a supertype of all other
types that are agents of B,14 or if C is actually A, then the type for the
adjective will just be a predicate over C . In case there is no hypernym
of A, we choose as our type a predicate over the Toptype (the type of
which all other types are subtypes).

13The formula reads as follows: for all A and B, where A is an agent of B (so
B is a predicate), if there exists a C such than all A are either hyponyms of C or
are equal to C, the predicate C → Prop is returned.

14This last bit is not actually encoded in the rule for formatting reasons. The
following condition is implicit: ∀ E.Ag(E,B)→Hyp(E,C).

[254]

Serious Games as the basis for Multi-Sorted Typed Systems

Moving on to adjectives, similar processes can be defined. How-
ever, this time we look at another relation, called carac (characteris-
tic) that denotes a characteristic of a term. For example, for grand,
we find the characteristics chose and homme, ‘object’ and ‘man’ respec-
tively among others. There are two ways to assign types for adjectives
here: a) propose a type using the same reasoning for predicates above
or b) propose a polymorphic type extending over a universe which
includes the most general type found satisfying the characteristic in
question (e.g. blackness, bigness, etc.), along with its subtypes:15

(25) ∀A, B.∃C .Car(A, B)∧ (Hyp(A, C)∨ (A= C))⇒ C → Prop
(26) ∀A, B.∃C .Car(A, B)∧ (Hyp(A, C)∨ (A= C))⇒ ΠU:cnC .U → Prop

Using a polymorphic universe in terms of inference will suffice in
order to take care of the class of adjectives known as subsective (e.g.
skilful), while for intersective adjectives (e.g. black) a non-polymorphic
type is needed. This, along with the use of Σ types for modified, by
adjectives, CNs (e.g. black man, skillful surgeon etc.) will suffice to take
care of the basic inferential properties of the two classes of adjectives
Chatzikyriakidis and Luo (2013, 2017a) for more details on this anal-
ysis). However, as in the case of verbs, more should be said in order to
take care of the complications already discussed for verbs previously.
Taking these issues into consideration, the updated rule is as follows:

∀A, B.Car(A, B)⇒
(B:C → Prop iff ∃ C.((Hyp(A,C)∧ Ag(C,B))∨ (A=C))
B:D→ Prop iff ¬∃C .(Hyp(A, C) ∧ D = TopType)

∀A, B.Car(A, B)⇒
(B:ΠU:CNC U → Prop iff ∃ C.((Hyp(A,C)∧ Ag(C,B))∨ (A=C))
B:ΠU:CND U → Prop iff ¬∃C .(Hyp(A, C) ∧ D = TopType)

The above two rules are for intersective and subsective adjectives.
Hyponymy relations between adjectives can be encoded as meaning
postulates.
(27) ∀A, B.POS(adj, A)∧ POS(Adj, B)∧Hyp(A, B)⇒∀x:C .A(x)→ B(x)
where A, B:C → Prop

15For example the universe U:cnC will contain the type C along with its sub-
types.

[255]

Stergios Chatzikyriakidis et al.

Due to the abundance of information that JDM has to offer, one can
further encode different sorts of information in the form of axioms or
definitions. For example the has_part relation, in effect a mereological
relation, can be translated as a part of relation with part_of:object →
object → Prop and follow a translation procedure along standard as-
sumptions for mereology for formal semantics16. There are manymore
interesting relations in JDM, like for example the collocation relation,
(locution in JDM) or the magnifying and its inverse anti-magnifying
relation, magn and anti-magn respectively. Now, there is no clear way
of what we can do with these relations. One can of course just encode
a similar relation in the type-theoretic language used, but the question
is what do we gain in terms of reasoning for example, by doing so. For
instance, looking at the entry for homme ’man’, we see a number of
collocations like homme grande and homme libre. The collocations that
involve adjectival modification most of the times give rise to subsec-
tive inferences. For example a great man is a man and a free man is
also a man. It would be tempting in this respect to treat these cases as
subtypes of the term. In this case, we allow some non-compositionality
and treat collocations as involving one word. Of course, this will not
give us the correct results in all cases. For example, think of the term
objet ‘object’. Among the collocations in the category discussed, e.g.
object du désir or objet de curiosité, there are also collocations like pro-
grammation orientée objet ‘object oriented programming’ that will give
us the wrong results if we go the subtyping route. One can however
decide on whether to take such a stance based on the amount of col-
locations that can be correctly captured in going the subtype route in
relation to those that are not. This is a complex issue with which we
will not deal in this paper.

4.2.3 Polysemy
The next issue we want to look at is polysemy, more specifically the
translation process in case of polysemous terms. First of all, we have
to note here that JDM does not distinguish between homophony and
polysemy in the sense these are usualy understood in the literature
on formal semantics (e.g. bank as homophonous and book as polyse-
mous). For JDM, there is only one term to refer to both homophony

16For an overview see Champollion and Krifka (2016).

[256]

Serious Games as the basis for Multi-Sorted Typed Systems

and polysemy, and this is polysemy. This is what we are going to
use here as well, a single notion for all cases where different mean-
ings associated with a given word are found. For JDM, there is this
first level where words with more than one meaning (irrespective of
whether the meanings are related or not) are dubbed as polysemous,
and then additional levels of refinement are provided. In MTTs, as in
formal semantics in general, there are different treatments with re-
spect to cases of homophony and cases of polysemy. For example, in
Luo (2011), homophony is treated via local coercions (local subtyp-
ing relations), while logical polysemy (cases like book) via introducing
dot-types, types that encode two senses that do not share any compo-
nents (Luo 2010). It is a difficult task to be able to translate from a
polysemous term identified in JDM to the correct mapping in MTTs.
However, there are some preliminary thoughts on how this can be
achieved. First of all, let us look at some cases of polysemy identi-
fied in JDM that would not be considered such cases in mainstream
formal semantics. For example the term individual is marked as poly-
semous in JDM. The reason for this is that JDM goes into more detail
than what most formal semantics theories do. For example, JDM dis-
tinguishes different meanings of individual with respect to its domain
of appearance, e.g. a different notion of individual is found in the do-
main of statistics, a different one in the domain of biology, and so on.
This level of fine-grainedness is usually not found in formal semantics.
However, there is no reason why we should not go into this level of
detail in MTTs. In order to encode domains, we use type theoretic con-
texts as these have been used by Ranta (1994); Chatzikyriakidis and
Luo (2014c), among others. The idea is that a relation can appear in
different domains. If this is the case, then different relations might be
at play depending on the domain. For example, different refinements
of a term might be possible in a domain A than in a domain B.17

(28) ∀A, C .Domain(C)∧ POS(N , A) in C ∧¬(Ins(A))⇒ A:cn in ΓC

17An anonymous reviewer asks how does the equation help us in using this
information. The idea is that as soon as the conditions are satisfied, i.e. there is a
relevant domain for a given type declaration, then this declaration is made inside
the relevant type theoretic context, e.g. the context of zoology, philosophy, etc.
In the case of Coq, this can be done by introducing local sections.

[257]

Stergios Chatzikyriakidis et al.

The above example identifies a noun, which is not an instance, in
a domain C and declares this to be of type cn in context ΓC . All this in-
formation such as POS, domain and instance status is part of the JDM
network. To give an example, take the term French term fracture (frac-
ture) in JDM. This is associated with a number of different domains,
let us mention two here, géologie and médicine. This will basically add
the term fracture into two different contexts where the relations be-
tween fracture and other terms in the given context might differ in
the different contexts. For example, one might have a term B being a
subtype of fracture in one domain but not in the other:

What about other cases of polysemy like book or bank? One way
to look at the translation process in these cases is the following: in
case a term is dubbed polysemous in JDM, we look at the semantic
refinements and introduce all these refinements as subtypes of the
initial term:
(29) ∀A, C .POS(N , A)∧¬(Ins(A))∧Ref(A, C)⇒ A< C:cn

Now in order to decide whether we are going to use local coer-
cions or dot-types we proceed as follows: the types that participate in
dot-types are limited and enumerable:18 some of these include phy,
info, event, inst among others. We can thus create such a set of refine-
ments that can be senses of a dot-type. Call this set dot refinements, DR.
Now, in case the refinements happen to be members of this set then
we can form a dot-type out of the individual refinements:
(30) ∀A, B, C .POS(N , A)∧Ref(A(B, C)) ∈ DR⇒ A:CN < B • C

Other cases of polysemy that should be taken into consideration
involve cases where the two meanings are associated with different
types (e.g. cases like run). In this case, we have at least two verbal
meanings with a different verbal arity as well as a different cn argu-
ment. An easy way to do this is to just overload the types to take care
of situations like these. For example, in Luo (2011), the polysemy of

18An anonymous reviewer asks how these types are chosen. This is not an
easy question. For the needs of this paper, and given that dot-types have specific
properties compared to other polysemous terms, the types comprising the dot-
types are limited. We enumerate these types based on existing theoretical work
on co-predication by Pustejovsky (1995) and Asher (2008), among others.

[258]

Serious Games as the basis for Multi-Sorted Typed Systems

run is assumed to be captured using a Unit type which allows us to
overload the type with the two different typings:
(31) run1 : human→ Prop
(32) run2 : human→ institution→ Prop

With this last note, we will move on to look how information from
JDM can be used in order to perform reasoning tasks. What we are
going to do is to look at simple cases of lexical semantics information
extraction from JeuxdeMots, their direct translation to MTT semantics
feeding the proof-assistant Coq. Reasoning is then performed using the
assistant.

5 jdm, mtts and reasoning using
proofʿassistants

Coq is an interactive theorem prover (proof-assistant). The idea behind
it and proof-assistants in general is simple and can be roughly summa-
rized as follows: one uses Coq in order to check whether propositions
based on statements previously pre-defined or user defined (defini-
tions, parameters, variables) can be proven or not. Coq is a depen-
dently typed proof-assistant implementing the calculus of Inductive
Constructions (CiC, see Coq 2007). This means that the language used
for expressing these various propositions is an MTT. To give a very
short example of how Coq operates, let us say we want to prove the
following propositional tautology in Coq:
(33) ((P ∨Q)∧ (P → R)∧ (Q→ R))→ R

Given Coq’s typed nature we have to introduce the variables P,Q, R
as being of type Prop (P,Q, R:Prop). To get Coq into proof mode, we
have to use the command Theorem, followed by the name we give to
this theorem, followed by the theorem we want to prove:
(34) Theorem A: ((P ∨Q)∧ (P → R)∧ (Q→ R))→ R

This will put Coq into proof mode:
Theorem A:((P\/Q)/\(P -> R)/\(Q->R))->R.
1 subgoal
============================
(P\/Q)/\(P -> R)/\(Q -> R)->R

[259]

Stergios Chatzikyriakidis et al.

Now, we have to guide the prover to a proof using its pre-defined
proof tactics (or we can define our own). For the case under considera-
tion, we first introduce the antecedent as an assumption using int ro:19

A < intro.
1 subgoal
H :(P \/ Q)/\(P -> R)/\(Q -> R)
============================
R

We split the hypothesis into individual hypothesis using destruct:20

destruct H. destruct H0.
1 subgoal
H : P \/ Q
H0 : P -> R
H1 : Q -> R
============================
R

Now, we can apply the elimination rule for disjunction which will
basically result in two subgoals:

elim H.
2 subgoals
H : P \/ Q
H0 : P -> R
H1 : Q -> R
============================
P -> R
subgoal 2 is:
Q -> R

The two subgoals are already in the hypotheses. We can use the
assumption tactic that matches the goal in case an identical premise
exists, and the proof is completed:

19This tactic moves the antecedent of the goal into the proof context as a
hypothesis.
20After destructing H, we get H0 as H0:(P → R)∧ (Q ∧ R).

[260]

Serious Games as the basis for Multi-Sorted Typed Systems

assumption. assumption.
1 subgoal
H : P \/ Q
H0 : P -> R
H1 : Q -> R
============================
Q -> R
Proof completed.

Now, as we have already said, Coq implements an MTT. In this re-
spect, Coq ‘speaks’ an MTT so to say. It is also a powerful reasoner,
i.e. it can perform elaborate reasoning tasks. These two facts open up
the possibility of using Coq for reasoning with NL using MTT seman-
tics. Indeed, earlier work has shown that Coq can be used to perform
very elaborate reasoning tasks with very high precision (Mineshima
et al.; Bernardy and Chatzikyriakidis 2017). To give an example, con-
sider the case of the existential quantifier some. Quantifiers in MTTs
are given the following type, where A extends over the cn (this is
reminiscent of the type used for VP adverbs):

(35) ΠA : cn. (A→ Prop)→ (A→ Prop)

We provide a definition based on this type, giving rather standard
semantics for the existential quantifier (in Coq notation):

Definition some:=fun(A:CN)(P:A->Prop)=>exists x:A,P x.

This says that given an A of type cnand a predicate over A, there
is an x:A such that P holds of x . Imagine, now, that we want to see the
consequences of this definition. For example we may want to check
whether John walks implies that some man walks or that some man walks
implies that some human walks. We define, following our theoretical
assumptions about cns, man and human to be of type cn and declare
the subtyping relation man < human. The subtyping relations in Coq
are declared by first introducing them as axioms and then coercing
them:

Parameter man human: CN
Axiom mh: man -> human. Coercion mh: man >-> human.

[261]

Stergios Chatzikyriakidis et al.

This is all we need to get the above inferences. These assumptions
suffice to prove these inferences in Coq. We formulate the theorem and
put Coq into proof mode:
Theorem EX: walk John-> (some man) walk.

Unfold the definition for some and use intro
EX < intro.
1 subgoal
H : walk John
============================
exists x : man, walk x

Using the exists tactic to substitute x for John. Using assumption
the theorem is proven. Now, what we want to show is that we can
actually use JDM to extract lexical and typing information, translate
this information into MTT semantics in the form of Coq code and then
perform reasoning tasks. Let us look at the following example:
(36) John Fitzgerald Kennedy ate some gruyère
Suppose, now, that we further want to check whether the follow-

ing is true:
(37) John Fitzgerald Kennedy ate some gruyère ⇒ John Fitzgerald

Kennedy ate some cheese
Let us see whether we can extract this information from JDM.

We use the JDM XML version, and further use simple Python code to
extract the relevant information and turn it into Coq code. We first
extract all the synonyms and subtypes of cheese and translate them to
MTT semantics (in Coq code). The result is more than 200 subtypes for
cheese (fromage in French), among them the type for gruyère. What the
code does is that it first declares all subtypes to be of type cn and then
further declares them to be subtypes of the cn in question (cheese in
our case. The result is something like this (we use the first 5 subtypes
to illustrate this):
Parameter gruyere:CN.
Parameter brie:CN.
Parameter kiri:CN.

[262]

Serious Games as the basis for Multi-Sorted Typed Systems

Parameter camembert:CN.
Axiom Gruyere:gruyere -> fromage.
Coercion Gruyere:gruyere>-> fromage.
Axiom Brie:brie->fromage.Coercion Brie:brie>->fromage.
Axiom Kiri:kiri->fromage.Coercion Kiri:kiri>->fromage.
Axiom Camembert:camembert->fromage.
Coercion Camembert:camembert>-> fromage.

The next step is to extract information about John Fitzgerald Ken-
nedy. The only thing needed here is to extract the information for the
instances of the type man (homme in French). Simple coding in Python
can extract all the subtypes for man as well as its instances, declaring
them as being of type man. What we get in doing so is the following
(we only show the information relevant to our example):
Parameter man: CN.
Parameter John Fitzgerald Kennedy: man.

The next step is extracting the information for the verb eat (manger
in French). Here we use a more simple and less elegant way of extract-
ing the function types than we have described in the previous section.
We first chose 6 very basic types, woman, man, human, animal, food,
object. If any of these types is present as an agent argument (starting
hierarchically from type object and all the way down to the other
types), it is added as an argument to the function type. Thus, in case
of a predicate which has an object agent, the type object→ Prop is re-
turned. The other types, even if present, are neglected. If object is not
present, the next type is checked and so on. Doing so, we end up with
the type Animal → food → Prop for eat. Cheese is of course a subtype
of food (we get this from the hyponyms of food), and human of animal.
So, the only thing left is a definition of the quantifier. Quantifiers and
related elements can perhaps be assumed to belong to a closed set of
words that can be given their semantics manually. This is what we do
here by manually providing a definition for some. With this in place,
what we get is the following information for Coq (only the relevant
code to the example is shown):
Definition CN:= Set.
Definition some:= fun(A:CN)(P:A->Prop)=>exists x:A,P x.
Parameters man woman human animal food object: CN.

[263]

Stergios Chatzikyriakidis et al.

Axiom Man:man->human. Coercion Man:man>->human.
Axiom Human: human->animal.Coercion Human:human>->animal.
Axiom Animal: animal->object.
Coercion Animal: animal>->object.
Axiom Food: food->object.Coercion food:food>->object.
Axiom Woman: woman->human. Coercion Woman:woman>->human.
Parameter gruyere: CN.
Axiom Gruyere: gruyere->fromage.
Coercion Gruyere:gruyere>-> fromage.
Parameter John_Fitzgerald_Kennedy: human.

This is in fact enough to work through the inference we are inter-
ested in. Of course, this is not a very elaborate example, but it is a nice
way to exemplify how information from a lexical network can be used
in a compositional semantics framework to perform reasoning tasks.
Note, that a number of other inferences also follow from the previous
example:
(38) John Kennedy ate some gruyère⇒ some man ate some gruyère.
(39) John Kennedy ate some gruyère⇒ John Kennedy ate some food.
Let us look at another example:

(40) The frigate had its hull breached.
In this example, what we need to predict is that the bird sense

cannot be used. On the contrary, we should predict that the ship sense
is required. First of all, the way this is achieved in JDM is via using
negative weights as we have mentioned in chapter 2. We will now see
that compositional semantics can further help us in this task. We start
with the assumption that frigate is not yet refined or can be either
a bird or a ship. The next thing we have is an NP with a possessive
pronoun. Following Ranta (1994), we assume a pronominalization and
a genitive rule. The two rules are shown below (adapted from Ranta
(1994):21

A:cn a:A(PRON(A,a):A
PRON(A,a) = a:A

A:cn B:cn C(x:A, y:B) a:Ab:B c:C(a, b)(Gen(A,B(x,y),C(x,y),a,b,c):B
Gen(A,B(x,y),C(x,y),a,b,c=b):B

21Ranta (1994) uses type Set instead of cn that we are using.

[264]

Serious Games as the basis for Multi-Sorted Typed Systems

The result of sugaring in English will be A’s B. The pronominal-
ization rule will depend on the type that A will take. For example
Pron(man, a) will return he, Pron(woman, a) she and Pron(object, a) it.
Returning to our example, the possessive its is a combination of the
two rules we have presented, i.e. Pron and Gen. As we have said, the
semantics for pronouns will depend on the value for cn. This is also
the case obviously for its. Let us assume that A takes the value frigate.
This will give us:
(41) Gen(frigate,hull(x , y), C(x , y),Pron(frigate, a), b hull, c):hull.

The C relation is an underspecified relation, since it can take dif-
ferent values, given the semantic polysemy of the genitive. Assuming
that the relation involved in our example is one of meronymy, what
we get is an elaboration of C(a, b) to has_part(a, b). Now, notice that
JDM provides meronymy relation refinement between two objects, of
which one is a ship and the other a hull, but not between a bird and
a hull. Specifically, supplies us with the following information (trans-
lated into MTT semantics):
(42) ∀a:ship.∃b:hull.has_part(a)(b)
But not:

(43) ∀a:bird.∃b:hull. has_part(a)(b)
Parsing The frigate had its hull breached, what we get is the follow-

ing (simplified):
(44) breached(the(ship, a))(Gen(ship,hull(x , y),has_part(x , y),

Pron(ship, a), b:hull, c))

Now, we can assume that the negative weight amounts to the
negation of the has_part relation:
(45) ∀a:bird¬(∃b:hull.(has_part(a)(b)))
If now, we substitute with bird and given the information associ-

ated with hull as a refinement of bird, what we will get is a contradic-
tion:
(46) breached(the(ship, a))(Gen(bird,hull(x , y),has_part(x , y),

Pron(ship, a), b:hull, c))∧∀a:bird.¬(∃b:hull.(has_part(a)(b)))

[265]

Stergios Chatzikyriakidis et al.

If we have a system that can spot contradictions between informa-
tion derived from lexical semantics (in our case the negative weight
translating into a meaning postulate) and information derived for se-
mantic compositionality, we might use this in order to disambiguate
word senses as well. For example, one can define a ranking algorithm
that will rank the senses of a given word in a sentence depending on
whether they give rise to contradictions between lexical semantics in-
formation and information derived for semantic compositionality. In
this manner, one can seek to define a combined strategy to disam-
biguate using insights from both the lexical network itself as well as
the formal system in which this information is encoded.
5.1 Reasoning with missing premises: enthymematic reasoning
It is a well-known fact that natural language inference (NLI) is not
only about logical inference. Better put, logical inference is only part
of NLI. Other kinds of non-logical inferencing is going in NLI, e.g. im-
plicatures, presuppositions, or enthymematic reasoning to name a few.
The latter form of reasoning is particularly important for the scope of
this article, since enthymematic reasoning is basically deriving con-
clusions from missing premises or implicit premises. Consider the fol-
lowing classic case of an enthymeme:
(47) Socrates is human, therefore he is mortal
In this example, there is an implicit premise at play, namely that

all humans are mortal. This is not given however. It is somehow pre-
supposed as part of the general world knowledge. What would be in-
teresting to see is to check whether such implicit arguments can be
retrieved via the richness of a network like JDM. Indeed, this can be
done. In particular, the entry formortal in JDM, specifies human as one
of its hyponyms. So, extracting lexical relations for humanwill also ex-
tract the synonym relation. Thus, it is easy to get the inference we are
interested in. The same kind of information that can lead to retrieving
the implicit argument in further examples like the ones shown below
can be found using the richness of a network like JDM:22
(48) He coughs. He is ill.
22We are rather simplifying here, given that in JDM there is more than one

relation between human and mortal. One finds the hyponym relation, the syn-
onym relation as well as the characteristic relation (mortality as a characteristic

[266]

Serious Games as the basis for Multi-Sorted Typed Systems

(49) She has a child, thus she has given birth.

Of course, it would be naive to think that enthymematic infer-
ence can be dealt with in full via using only information present in a
lexical network, no matter how rich that network is. We are not sug-
gesting anything like this. The interested reader that wants to have a
deeper look at the issue of enthymemes and reasoning with them in
a type-theoretic framework is directed to Breitholtz (2014). For the
needs of this paper, it is enough to mention that at least some cases
of enthymemes can be captured via a combination of lexical seman-
tics information taken from a rich lexical network like JDM and their
feeding to a richly typed logical system like the one we are endorsing
in this paper.

6 conclusion

In this paper we have looked at the way one can use information
from a rich GWAP lexical network in order to construct typing on-
tologies for NL in rich type theories. Rich or modern type theories
offer us elaborate typing structures and type many-sortedness, where
the monolithic domain of individuals is substituted by a multitude of
types. The problem that is created however, given this context, con-
cerns which types need to be represented and which not, as well as
the criteria that one uses in order to reach to such a decision. In this
paper, we have proposed that one does not have to take such a de-
cision but rather leave this information flow from a lexical network,
in our case a rich GWAP network, JDM. We have proposed an initial
way of doing this, namely extracting information from JDM w.r.t. to
base types for common nouns as well as the types for other categories
like verbs and adjectives. We have also proposed to use MTTs for sev-
eral other types of information obtained from such a rich network.
Lastly, we have initiated a discussion on how one can further use this
of humans). From a logical point of view, it cannot be the case that two terms are
both synonyms and hyponyms. Furthermore, as one of the reviewer’s notes, the
synonym relation in JDM seems to be assymetrical, otherwise one would expect
things like pandas are human to be inferred. This raises a more general issue, i.e.
handling potentially contradictory information in the network. This is something
that we will definitely explore in the future.

[267]

Stergios Chatzikyriakidis et al.

richness of information, especially common knowledge information,
in order to deal with aspects of inference. On the one hand you have a
wealth of lexical-semantic relations and on the other, a very rich and
expressive compositional framework with powerful reasoning mech-
anisms. The result one would aim at, given this situation, is a combi-
nation of these two aspects in order to perform reasoning tasks with
NLI. We have discussed some simple reasoning examples using the
Coq proof-assistant, a proof-assistant that implements an MTT. Infor-
mation is extracted from JDM and then translated into Coq code (thus
into an MTT variant). The results are promising, showing a potential
to deal with important aspects of NL reasoning. Furthermore, some
easy cases of reasoning under implicit premises, i.e. enthymematic in-
ference, were also shown to be captured via retrieving the implicit
premises as lexical information associated with words appearing in
the explicit premises. It is our hope that this work will initiate a more
active discussion on the need for more fine grained frameworks for
formal semantics as well as an active dialogue between people work-
ing on lexical networks and type theoretical (or logical in general)
semantics from both a theoretical and an implementational point of
view.

references
Nicholas Asher (2008), A type driven theory of predication with complex
types, Fundamenta Informaticae, 84(2):151–183.
Nicholas Asher (2012), Lexical Meaning in Context: a Web of Words, Cambridge
University Press.
Christoph Benzmüller, Frank Theiss, and Arnaud Fietzke (2007), The
LEO-II Project, in Automated Reasoning Workshop.
Jean-Philippe Bernardy and Stergios Chatzikyriakidis (2017), A
Type-Theoretical system for the FraCaS test suite: Grammatical Framework
meets Coq, ms, University of Gothenburg.
http://www.stergioschatzikyriakidis.com/uploads/1/0/3/6/
10363759/iwcs_bercha.pdf.
Ellen Breitholtz (2014), Enthymemes in Dialogue: A micro-rhetorical approach,
Ph.D. thesis, University of Gothenburg.
Lucas Champollion and Manfred Krifka (2016), Mereology, in Paul
Dekker and Maria Aloni, editors, Cambridge Handbook of Semantics,
pp. 369–388, Cambridge University Press.

[268]

http://www.stergioschatzikyriakidis.com/uploads/1/0/3/6/10363759/iwcs_bercha.pdf
http://www.stergioschatzikyriakidis.com/uploads/1/0/3/6/10363759/iwcs_bercha.pdf

Serious Games as the basis for Multi-Sorted Typed Systems

Stergios Chatzikyriakidis and Zhaohui Luo (2012), An Account of Natural
Language Coordination in Type Theory with Coercive Subtyping, in
Y. Parmentier and D. Duchier, editors, proceedings of Constraint Solving and
Language Processing (CSLP12). LNCS 8114, pp. 31–51, Orleans.
Stergios Chatzikyriakidis and Zhaohui Luo (2013), Adjectives in a modern
type-theoretical setting, in G. Morrill and J.M Nederhof, editors,
Proceedings of Formal Grammar 2013. LNCS 8036, pp. 159–174.
Stergios Chatzikyriakidis and Zhaohui Luo (2014a), Natural Language
Inference in Coq, Journal of Logic, Language and Information., 23(4):441–480.
Stergios Chatzikyriakidis and Zhaohui Luo (2014b), Natural Language
Reasoning Using proof-assistant technology: Rich Typing and beyond, in
Proceedings of the EACL 2014 Workshop on Type Theory and Natural Language
Semantics (TTNLS), pp. 37–45.
Stergios Chatzikyriakidis and Zhaohui Luo (2014c), Using Signatures in
Type Theory to Represent Situations, Logic and Engineering of Natural Language
Semantics 11. Tokyo.
Stergios Chatzikyriakidis and Zhaohui Luo (2017a), Adjectival and
Adverbial Modification: The View from Modern Type Theories, Journal of Logic,
Language and Information, 26(1):45–88.
Stergios Chatzikyriakidis and Zhaohui Luo (2017b), On the Interpretation of
Common Nouns: Types Versus Predicates, pp. 43–70, Springer International
Publishing.
Alonzo Church (1940), A Formulation of the Simple Theory of Types, J.
Symbolic Logic, 5(1).
Allan M Collins and M Ross Quillian (1969), Retrieval time from semantic
memory, Journal of verbal learning and verbal behavior, 8(2):240–247.
Robin Cooper, Simon Dobnik, Shalom Lappin, and Staffan Larsson (2014),
A probabilistic rich type theory for semantic interpretation, in Proceedings of the
EACL 2014 Workshop on Type Theory and Natural Language Semantics (TTNLS),
pp. 72–79.
Coq 2007 (2007), The Coq Proof Assistant Reference Manual (Version 8.1), INRIA,
The Coq Development Team.
Christiane Fellbaum (1998), WordNet: An Electronic Lexical Database, MIT
press.
Bruno Gaume, Karine Duvignau, and Martine Vanhove (2007), Semantic
associations and confluences in paradigmatic networks, in Martine Vanhove,
editor, Typologie des rapprochements sémantiques, p. (on line), John Benjamins
Publishing Company.
Peter Geach (1962), Reference and Generality: An examination of some Medieval
and Modern Theories, Cornell University Press.

[269]

Stergios Chatzikyriakidis et al.

Jean-Yves Girard (1971), Une extension de l’interpretation fonctionelle de
Gödel à l’analyse et son application à l’élimination des coupures dans et la
thèorie des types, in proceedings of the 2nd Scandinavian Logic Symposium.
North-Holland, Amsterdam, pp. 63–92.
Mathieu Lafourcade (2007a), Making people play for Lexical Acquisition., in
SNLP 2007, 7th Symposium on Natural Language Processing. Pattaya, Thailande,
13-15 December 2007.
Mathieu Lafourcade (2007b), Making people play for Lexical Acquisition
with the JeuxDeMots prototype, in SNLP’07: 7th international symposium on
natural language processing, p. 7.
Mathieu Lafourcade, Alain Joubert, and Nathalie. Le Brun (2015), Games
with a Purpose (GWAPS), Focus Series in Cognitive Science and Knowledge
Management, Wiley, ISBN 9781848218031.
Henry Lieberman, Dustin Smith, and Alea Teeters (2007), Common
Consensus: a web-based game for collecting commonsense goals., in Workshop
on Common Sense for Intelligent Interfaces, ACM Conferences for Intelligent User
Interfaces (IUI 2007), Honolulu.
Zhaohui Luo (1994), Computation and Reasoning: A Type Theory for Computer
Science, Oxford University Press.
Zhaohui Luo (1999), Coercive subtyping, Journal of Logic and Computation,
9(1):105–130.
Zhaohui Luo (2010), Type-Theoretical Semantics with Coercive Subtyping,
Semantics and Linguistic Theory 20 (SALT20), Vancouver.
Zhaohui Luo (2011), Contextual analysis of word meanings in type-theoretical
semantics, Logical Aspects of Computational Linguistics (LACL’2011). LNAI 6736.
Zhaohui Luo (2012), Common Nouns as Types, in LACL’2012, LNCS 7351.
Zhaohui Luo, Sergei Soloviev, and Tao Xue (2012), Coercive subtyping:
theory and implementation, Information and Computation, 223:18–42.
Andrea Marchetti, Maurizio Tesconi, Francesco Ronzano, Marco
Rosella, and Salvatore Minutoli (2007), SemKey: A Semantic Collaborative
Tagging System, in Tagging and Metadata for Social Information Organization
Workshop, WWW07.
Per Martin-Löf (1975), An Intuitionistic Theory of Types: predicative part, in
H.Rose and J.C.Shepherdson, editors, Logic Colloquium’73.
Per Martin-Löf (1984), Intuitionistic Type Theory, Bibliopolis.
Igor Mel’cuk and Andrei Zholkovsky (1988), The Explanatory
Combinatorial Dictionary, in Martha Walton Evens, editor, Relational Models of
the Lexicon: Representing Knowledge in Semantic Networks, pp. 41–74, Cambridge
University Press, Cambridge.

[270]

Serious Games as the basis for Multi-Sorted Typed Systems

Rada Mihalcea and Timothy Chklovski (2003), Building sense tagged
corpora with volunteer contributions over the Web, in RANLP, volume 260 of
Current Issues in Linguistic Theory (CILT), pp. 357–366, John Benjamins,
Amsterdam/Philadelphia.
George A. Miller (1995), WordNet: A Lexical Database for English, Commun.
ACM, 38(11):39–41.
Koji Mineshima, Yusuke Miyao, and Daisuke Bekki (), Higher-order logical
inference with compositional semantics, in Proceedings of EMNLP15,
pp. 2055–2061.
Richard Montague (1974), Formal Philosophy, Yale University Press, collected
papers edited by R. Thomason.
Alain Polguère (2003), Collocations et fonctions lexicales : pour un modèle
d’apprentissage., Revue Française de Linguistique Appliquée, E(1):117––133.
Alain Polguère (2014), From Writing Dictionaries to Weaving Lexical
Networks, International Journal of Lexicography, 27(4):396––418.
James Pustejovsky (1995), The Generative Lexicon, MIT.
Aarne Ranta (1994), Type-Theoretical Grammar, Oxford University Press.
Christian Retoré (2014), The Montagovian Generative Lexicon Lambda Ty: a
Type Theoretical Framework for Natural Language Semantics, in Ralph
Matthes and Aleksy Schubert, editors, 19th International Conference on
Types for Proofs and Programs (TYPES 2013), volume 26 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 202–229, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, ISBN
978-3-939897-72-9, ISSN 1868-8969,
doi:http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.202,
http://drops.dagstuhl.de/opus/volltexte/2014/4633.
Franck Sajous, Emmanuel Navarro, Bruno Gaume, Laurent Prévot, and
Yannick Chudy (2013), Semi-automatic enrichment of crowdsourced
synonymy networks: the WISIGOTH system applied to Wiktionary, Language
Resources and Evaluation, 47(1):63–96.
Katharina Siorpaes and Martin Hepp (2008), Games with a Purpose for the
Semantic Web, 23:50–60, ISSN 1541-1672, doi:10.1109/MIS.2008.45,
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4525142.
John Sowa and John Zachman (1992), Extending and Formalizing the
Framework for Information Systems Architecture, IBM Systems Journal,
31(3):590–616.
Luis von Ahn and Laura Dabbish (2004), Labeling Images with a Computer
Game, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’04, pp. 319–326, ACM, New York, NY, USA.

[271]

http://drops.dagstuhl.de/opus/volltexte/2014/4633
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4525142

Stergios Chatzikyriakidis et al.

Luis von Ahn and Laura Dabbish (2008), Designing games with a purpose,
Commun. ACM, 51(8):58–67.
Luis von Ahn, Mihir Kedia, and Manuel Blum (2006), Verbosity: a game for
collecting common-sense facts, in CHI, pp. 75–78, ACM.
Manel Zarrouk (2015), Endogeneous Consolidation of Lexical Semantic
Networks, Theses, Université de Montpellier.
Naomi Zeichner, Jonathan Berant, and Ido Dagan (2012), Crowdsourcing
inference-rule evaluation, in Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Short Papers-Volume 2, pp. 156–160,
Association for Computational Linguistics.
Michael Zock and Slaven Bilac (2004), Word lookup on the basis of
associations: from an idea to a roadmap., in Proceedings of the Workshop on
Enhancing and Using Electronic Dictionaries, Association for Computational
Linguistics., pp. 29–35.
Michael Zock and Didier Schwab (2008), Lexical Access Based on
Underspecified Input, in Proceedings of the Workshop on Cognitive Aspects of the
Lexicon, COGALEX ’08, pp. 9–17, Association for Computational Linguistics,
Stroudsburg, PA, USA.

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/

[272]

http://creativecommons.org/licenses/by/3.0/

	Introduction
	Building a Lexical Network
	GWAPs
	Direct crowdsourcing
	Inside the JDM Lexical Network
	Refinements
	Negative relations
	Aggregate nodes
	Some figures

	Inferring and Annotating Relation
	Inference
	Deductive scheme
	Induction scheme

	Relation annotations
	Annotation values

	From JDM to MTTs
	A gentle and brief intro to MTT semantics
	Common nouns as types and subtyping
	-types, -types and universes

	Getting MTT typings from JDM
	Base types and instances of base types
	Predicates and world knowledge information
	Polysemy

	JDM, MTTs and Reasoning Using Proof-Assistants
	Reasoning with missing premises: enthymematic reasoning

	Conclusion

