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Abstract

Given the complex geometries usually found in practical applications, the Lattice Boltzmann (LB) method
is becoming increasingly attractive for flow simulations. In addition to the simple treatment of intricate
geometrical configurations, LB solvers can be implemented on very large parallel clusters with excellent
scalability. However, reacting flows lead to additional challenges and have seldom been studied by LB meth-
ods. In this study, an in-house low Mach number Lattice Boltzmann solver, ALBORZ, has been extended
to take into account multiple chemical components and reactions. For this purpose, the temperature and
species each mass fraction field are modeled through separate distribution functions. The flow distribution
function is assumed to be independent of temperature and species mass fractions, which is valid in the
limit of weak density variations. In order to compute reaction terms as well as variable thermodynamic
and transport properties, the LB code has been coupled to another library of our group, REGATH. In this
manner, LB simulations with detailed chemical kinetics and thermo-chemical models become possible. Since
the code is currently limited to weak density variation, its performance has been checked for a laminar pre-
mixed as well as non-premixed counter-flow Ozone/Air reacting flow, describing kinetics with 4 species and
18 elementary reactions. Comparisons of the obtained reacting flow structures with results from classical
finite-difference simulations show excellent agreement.

Keywords: Lattice Boltzmann, Reacting flows, Multiple distribution function, Complex chemistry
2010 MSC: 00-01, 99-00

1. Introduction

Under practical conditions, reacting flows take place in systems with a complex geometry (gas turbine,
burner, furnace...) and involve a large number of chemical species. In combustion for example, many con-
secutive and competing reactions between stable species and radicals occur. It is often of crucial importance
to include detailed chemistry. However, due to limited computational resources, conventional numerical5

methods soon become impractical, since they lead to unacceptably long computational times. In the last
decade, the Lattice Boltzmann (LB) Method has emerged as a promising alternative for simulating a variety
of complex flows. Contrary to classical continuum-based formulations, probability distribution functions in
a discretized phase-space are transported in physical space for LB. Though historically originating from the
Lattice Gas Automata (LGA) [1], the Lattice Boltzmann equations have been later shown to be discretized10

forms of the Boltzmann transport equation [2, 3, 4]. A typical LGA model consists of identical particles
colliding and propagating on either a two-dimensional hexagonal, or a four-dimensional, face-centered hy-
percube lattice, with either 0 or 1 particle per phase and physical space point [1, 5]. Lattice Boltzmann
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models on the other hand, deal with the collision and propagation of non-boolean distribution functions.
Assuming the distribution function to be close to equilibrium, Higuera and Jimenez [6] linearized the col-15

lision operator in the LB transport equation. The use of the Bhatnagar-Gross-Krook (BGK) operator [7]
was then suggested by several authors [8, 9], opening the door for many successful flow simulations based
on LB [10, 11].

However, reacting flows lead to additional challenges and have seldom been implemented in LB codes
[12], though the BGK-LB scheme has been shown to be in principle appropriate for modeling flows with20

reactions. Kang et al. [13] developed a LB model to simulate coupled flow and chemical dissolution for
a system involving only two species. They then generalized the model to take into account precipitation
[14, 15]. Yamamoto et al. [16] used a model based on the double distribution function formulation developed
by He et al. [17] to simulate a one-dimensional propane flame, assuming a single reaction and constant
density and thermo-physical properties. A number of other researchers have used the weakly compressible25

LB formulation for reacting flows to model combustion systems [18, 19].
As an alternative to a self-contained LB solver, Filippova and Hänel [20] have developed a hybrid finite

difference/Lattice Boltzmann scheme to model dilatable combustion systems. Here, the fluid flow field was
modeled through the classical, weakly compressible LB solver, while the temperature and species fields were
handled using a standard finite-difference solver. Although this solution appears to be straightforward, it30

leads to complex coupling issues between two independent codes with very different structures, and can
severely limit parallel scalability. An approach purely based on Lattice Boltzmann models would be more
efficient, if it can take into account simultaneously thermal dilatation effects, complex multi-species kinetics
and accurate thermochemical models as well as molecular diffusion.

A first attempt has been described in [21], relying on a modified equilibrium distribution function to35

incorporate an equation of state and a so-called particle characteristic temperature. This approach leads to
variable lattice sound speed and hence – even in the case of fixed grid spacing – variable time step. Although
dilatation effects can be taken into account with this technique, it does not handle detailed chemistry, nor
variable thermodynamic and transport properties. These aspects are essential for an accurate description of
combustion processes. Recently, Xu et al. [22] have proposed a compressible and dilatable lattice Boltzmann40

model for the flow and temperature fields. This model is based on another class of lattice Boltzmann
formulations called multi-speed [23, 24, 25]. Such multi-velocity formulations – thanks to the larger number
of velocities available – conserve the second-order moment of the distribution function and can therefore
model density variations without needing any additional source term. Therefore when density, velocity and
temperature fields are modeled through a single probability distribution function all of the macroscopic45

properties relax at a common rate. Xu et al. [22] overcame this issue by using a multiple relaxation time
approach to model the effects of combustion on the flow and temperature fields; however, this is known to
reduce noticeably computational efficiency. In [22], only the flow and temperature fields are investigated.
Even more recently, Lin et al. [26] used the same multi-speed model, with a single relaxation time collision
operator, to simulate a flow with two components. In their formulation, the chemical reaction was modeled50

through an additional BGK collision operator, and effects of heat production from an exothermic reaction
on flow field were incorporated using Maxwell-Boltzmann’s full equilibrium distribution function and the
equipartition theorem. Although this approach has the advantage of modeling non-equilibrium effects, the
use of the full Maxwell-Boltzmann equilibrium distribution function and multiple relaxation time collision
operator along with the large number of discrete velocities negatively impacts computational efficiency.55

None of the previously cited works took into account the variations of physicochemical properties due
to temperature and chemical composition. However, changes of thermodynamic parameters and transport
coefficients in space and time are of the utmost importance for many applications, such as combustion.
In an effort toward describing such combustion systems with the LB method, the present article describes
methods and numerical solutions that allow LB simulations of multi-species reacting flows with complex60

kinetics. At the same time, accurate models are used to describe varying thermodynamic and transport
properties. All modifications are implemented in the in-house code ALBORZ [27], which already allows an
efficient description of heat transfer processes [28] and can be used to solve flows in complex geometries [29].
The remaining challenge concerns the efficient description of mixing and reaction in a complex multi-species
flow, as described in what follows. The present work, contrary to previous LB simulations involving multiple65
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Nomenclature

α Lattice direction index

c̄p Mixture-averaged specific heat capacity
at constant pressure

W̄ Mixture average molar mass

∆H0
i Enthalpy change for reaction i

∆S0
i Entropy change for reaction i

δt Time-step

δx Lattice spacing

ω̇ Heat release rate per unit volume

ω̇k Molar production rate per unit volume of
the kth species

λ Thermal conductivity

ν Fluid kinematic viscosity

ρ Fluid density

τ Relaxation constant

τk Relaxation constant of kth species mass
fraction field

τT Temperature field relaxation constant

~u Fluid macroscopic velocity vector

~Vk Diffusion velocity of the kth species

~x Position vector in space

c Lattice advection velocity

cs Lattice sound speed

Dk Diffusion coefficient of the kth species

Fα Temperature field distribution function

fα Flow field distribution function

F
(eq)
α Temperature field equilibrium distribu-

tion function

f
(eq)
α Flow field equilibrium distribution func-

tion

gα,k Mass fraction field distribution function
of the kth species

g
(eq)
α,k Mass fraction field equilibrium distribu-

tion function of the kth species

g∗α,k Mass fraction field post-collision distribu-

tion function of the kth species

hk Total enthalpy of the kth species

k, k
′

Chemical species index

p Thermodynamic pressure

sk Enthropy of the kth species

T Temperature

t Time

Wk Molar mass of the kth species

Xk Mole fraction of the kth species

Yk Mass fraction of kth species

species, implements variable viscosity, heat conductivity and species diffusion coefficients. This is necessary
for a proper simulation of reacting flows and flames, since these properties vary strongly near reaction zones.
In the context of the multiple distribution formulation, a distribution function is defined for each chemical
species, for the temperature, and for the flow field. Modeling each of these variables with a different PDF
allows for non-constant values of Prandtl, Lewis, and Schmidt numbers, while still considering a single70

relaxation time per equation. The evolution of all distribution functions – and hence their moments – is
solved by the Lattice Boltzmann solver. All terms describing chemical kinetics (in particular production
terms) as well as thermodynamic and transport properties are computed by coupling ALBORZ to a specific
library, REGATH [30, 31, 32]. This library treats multi-species chemical reactions, variable thermodynamic
and multi-component transport properties.75

2. Lattice Boltzmann equations

In the context of the present study a weakly compressible 2-D square lattice BGK model has been used
(D2Q9, [33]). The same grid structure and spacing is used for temperature and species fields.
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2.1. Flow field

The flow field evolution is governed by the following equation:

fα(~x+ ~cαδt,~cα, t+ δt)− fα(~x,~cα, t) = −1

τ
(fα(~x,~cα, t)− feqα (~x,~cα, t)) , (1)

where fα(~x + ~cαδt,~cα, t + δt) is the discretized distribution function in a given direction α at a given time
t and location ~x, feqα (~x,~cα, t) is the equilibrium distribution function in the same direction and time, τ is
the non-dimensional relaxation time and δt is the time-step. The distribution functions evolve in a square
lattice structure with 9 discrete velocity vectors defined as:

~cα = (0, 0) for α = 0, (2)

~cα =

(
cos

[
α− 1

2
π

]
, sin

[
α− 1

2
π

])
.c for α = 1 . . . 4, (3)

~cα =

(
cos

[
(α− 5)π

2
+
π

4

]
, sin

[
(α− 5)π

2
+
π

4

])
.
√

2c for α = 5 . . . 8, (4)

where c = δx/δt is known as the lattice advection velocity. The equilibrium distribution function is given
by:

feqα (~x,~cα, t) = wαρ

[
1 +

1

c2s
~eα.~u+

1

2c4s
(~eα.~u)

2 − 1

2c2s
~u.~u

]
, (5)

with ~eα the unit vector in direction α defined by ~eα = ~cα/cs, where cs is known as the lattice sound speed
and defined by cs = c/

√
3. The quantity wα is the weight associated to the direction α, with:

wα = 1/4 for α = 0, (6)

wα = 1/9 for α = 1 . . . 4, (7)

wα = 1/36 for α = 5 . . . 8. (8)

The variable ρ is the weakly varying local fluid density. The density and macroscopic velocity ~u, being
zeroth- and first-order moments of the distribution function, are computed as:

ρ =

8∑
α=0

fα, (9)

ρ~u =

8∑
α=0

fα~cα. (10)

In this context, the non-dimensional relaxation time τ of Eq. (1) can be defined through a Chapman-Enskog
expansion as:

ν =
2τ − 1

2
c2sδt. (11)

Although ALBORZ has both SRT and MRT solvers for the flow field, only the SRT model has been used in80

the context of the present study to minimize computation times given the small Reynolds numbers of the
studied test-cases.

2.2. Temperature and species fields

Following the double distribution formulation of He et al. [17], the temperature and species fields are
modeled through separate distribution functions (F and gk) evolving as [34]:

Fα(~x+ ~cαδt,~cα, t+ δt)− Fα(~x,~cα, t) = − 1

τT
(Fα(~x,~cα, t)− F eqα (~x,~cα, t)) + wα

ω̇δt
c̄pρTref

, (12)
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gk,α(~x+ ~cαδt,~cα, t+ δt)− gk,α(~x,~cα, t) = − 1

τk

(
gk,α(~x,~cα, t)− geqk,α(~x,~cα, t)

)
+ wα

ω̇kWkδt
ρ

, (13)

with k = 1, ..., Nsp, considering a total number of Nsp species in the mixture. The last term appearing on
the RHS, in both equations, is the chemical production rate per time step. The quantity ω̇ represents the
production rate due to heat release per unit volume, ω̇k and Wk respectively correspond to the kth species
molar production rate per unit volume and molar mass. The equilibrium distribution functions are defined
as:

F eqα (~x,~cα, t) = wαT

[
1 +

1

c2s
~eα.~u

]
, (14)

geqk,α (~x,~cα, t) = wαYk

[
1 +

1

c2s
~eα.~u

]
. (15)

Being limited to the first two terms of the Taylor expansion of the equilibrium distribution function, these
are sometimes referred to as ”linear” equilibrium distribution functions [34]. The relaxation coefficients can
be related to macroscopic properties through a Chapman-Enskog analysis [35]:

λ

ρc̄p
=

2τT − 1

2
c2sδt, (16)

Dk =
2τk − 1

2
c2sδt. (17)

where both Dk and λ are respectively the kth species diffusion coefficient and the mixture thermal conduc-
tivity. As with the flow field, macroscopic properties such as species mass fractions and temperature are
then computed as:

T =

8∑
α=0

Fα, (18)

Yk =

8∑
α=0

gk,α. (19)

Summing up over all populations and using the Chapman-Enskog analysis, the following equation is recovered
for the zeroth moment of the temperature distribution function:(

∂

∂t
+ ~∇.~u

)
T − ~∇.

(
λ

ρc̄p
~∇T
)
− 1

c2s
~∇.
(
λ

ρc̄p

∂(~uT )

∂t

)
=
ω̇δt
c̄pρ

. (20)

Developing the second term on the LHS, one gets:(
∂

∂t
+ ~∇.~u

)
T − 1

ρc̄p
~∇.
(
λ~∇T

)
− ~∇

(
1

ρc̄p

)
.
(
λ~∇T

)
− 1

c2s
~∇.
(
λ

ρc̄p

∂(~uT )

∂t

)
=
ω̇δt
c̄pρ

. (21)

In the case of the species equations, a Chapman-Enskog development leads to the following macroscopic
equation: (

∂

∂t
+ ~∇.~u

)
Yk − ~∇.

(
Dk

~∇Yk
)
− 1

c2s
~∇.
(
Dk

∂(~uYk)

∂t

)
=
ω̇kWkδt

ρ
. (22)

The second term on the LHS of Eq. (22) does not exactly correspond to the diffusion term appearing in
the non-conservative form of the species transport equation. In order to get the correct form the following
relation is used:

~∇.
(
Dk

~∇Yk
)

=

~∇.
(
ρDk

~∇Yk
)

ρ
−
(
Dk

~∇Yk
)
.
~∇ρ
ρ
. (23)
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The final form of the equation recovered by this model is:

(
∂

∂t
+ ~∇.~u

)
Yk −

~∇.
(
ρDk

~∇Yk
)

ρ
+
(
Dk

~∇Yk
) ~∇ρ
ρ
− 1

c2s
~∇.
(
Dk

∂~uYk
∂t

)
=
ω̇kWkδt

ρ
. (24)

In the limit of weak variations in density, the error due to the third and fourth terms on the LHS of Eq. (24)
can be neglected. The fourth term can also be eliminated through the use of an additional force term defined
as [36]:

Fα =

(
1− 1

2τk

)
wα
c2s
~eα.

∂(Yk~u)

∂t
(25)

The time derivative can be evaluated through a simple finite-difference approximation; a first-order approx-
imation is sufficient to recover second-order overall accuracy. The resulting equation corresponds to the85

macroscopic species transport equation with the Fick approximation for second-order accuracy in space.
Owing to the deficiencies of the Fick approximation the scheme only conserves overall mass if all species
have the same local diffusion coefficient, otherwise an additional correction term has to be included. A
detailed Chapman-Enskog development of the passive scalar approach used in the context of this work is
presented in Appendix A.90

3. Multi-component thermodynamic and transport properties

3.1. Transport properties

For the transport of the kth species in the mixture, the species conservation equations are expressed as
follows:

∂(ρYk)

∂t
+ ~∇.

[
ρ(~u+ ~Vk)Yk

]
= ω̇kWk. (26)

Here, Yk is the local mass fraction of the kth species, while ~Vk is the diffusion velocity, with:

Nsp∑
k=1

Yk ~Vk = 0. (27)

Total mass conservation imposes:
Nsp∑
k=1

ω̇kWk = 0. (28)

Retaining only one term in the Sonin polynomial expansion [37], the diffusion velocities are defined through
the following system of equations [38] known as the Stephan-Maxwell diffusion equations:

~∇Xk =

Nsp∑
k′=1

XkXk′

Dpk′
( ~Vk′ − ~Vk) + (Yk −Xk)

~∇p
p

+
ρ

p

Nsp∑
k′=1

YkYk′ (fk − fk′ ), for k = 1 . . . Nsp, (29)

in which the Soret effect has been neglected and Dk′k = Dkk′ is the binary diffusion coefficient of the kth

species into species k
′
, p is the thermodynamic pressure, and Xk is the local mole fraction of the kth species

defined as:

Xk =
YkW̄

Wk
(30)

where the mixture molar mass W̄ is computed as:

W̄ =
∑
k

XkWk (31)
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The resolution of Eq. (29) to obtain ~Vk being very complex and time-consuming, simplified models are
generally used instead. Supposing pressure gradient and external forces are negligible and retaining only
first-order terms in the solution [37], ~Vk can be approximated with the formulation of Hirschfelder and
Curtis, or alternatively with that of Fick, defined respectively as:

~VkXk = −Dk
~∇Xk with Dk =

1− Yk∑
k′ 6=kXk′/Dk′k

, (32)

or ~VkYk = −Dk
~∇Yk with Dk =

1−Xk∑
k′ 6=kXk′/Dk′k

. (33)

In the context of the present study, the local thermal conductivity is evaluated using a combination of
averaging formula proposed by Burgoyne and Weinberg [39, 40]:

λ =
1

2

Nsp∑
k=1

Xkλk +

Nsp∑
k=1

Xk

λk

−1

, (34)

where λk is the kth species thermal conductivity. The mixture viscosity is computed using Wilke’s semi-
empirical formula [41], later modified by Bird et al. [42], and expressed as:

µ =

Nsp∑
k=1

Xkµk∑Nsp

k′=1
XpΦkk′

, (35)

with

Φk′k =
1√
8

(
1 +

Wk

Wk′

)− 1
2

(
1 +

(
µk
µk′

) 1
2
(
Wk′

Wk

) 1
4

)2

, (36)

where µk is the viscosity of the kth species and µ represents the mixture viscosity.

3.2. Thermo-chemical properties

To get the thermo-chemical and transport properties, REGATH subroutines extract properties such
as heat capacity using the NASA Chemical Equilibrium with Application (CEA) database as polynomial
functions of order N of temperature:

Cpk
R

=

N∑
n=1

ankT
(n−1). (37)

Here, R is the ideal gas constant. The specific heat capacity at constant pressure of the kth species, and the
mixture, are then expressed as follows:

cpk =
Cpk
Wk

, (38)

c̄p =

Nsp∑
k=1

cpkYk. (39)

The species production rate is one of the key components for reacting flow simulations with detailed chem-
istry. Considering a detailed chemical scheme involving Nsp species in I elementary reactions represented
in the form:

Nsp∑
k=1

ν
′

kiχk ⇀↽

Nsp∑
k=1

ν
′′

kiχk, for i = 1 . . . I, (40)

7



with ν
′

ki and ν
′′

ki being balance coefficients, the production rate of the kth species ω̇k is computed as:

ω̇k =

I∑
i=1

νkiqi, (41)

with:
νki = ν

′′

ki − ν
′

ki. (42)

The progress rate of reaction i, written qi, reads:

qi = kfi

Nsp∏
k=1

[Xk]
ν
′
ki − kri

Nsp∏
k=1

[Xk]
ν
′′
ki , (43)

and involves the molar concentration of species k, written [Xk]. Finally, the reaction rate constants kfi and
kri are all expressed by an Arrhenius-type function. The forward rate is computed as:

kfi = AiT
βi exp

(
−Ei
RT

)
, (44)

with Ai the pre-exponential factor, βi the temperature exponent and Ei the activation energy of reaction i.
The reverse reaction rate kri is calculated from the equilibrium constant as:

kri =
kfi
keqi

(45)

The equilibrium constant keqi can be defined as [43]:

keqi =
( p0

RT

)∑k=1
Nsp

νki

exp

(
∆S0

i

R
− ∆H0

i

RT

)
(46)

where p0 =1 ba, ∆H0
i and ∆S0

i are the enthalpy and entropy changes for reaction i:

∆H0
i =

Nsp∑
k=1

νkiWkhk(T ) (47)

∆S0
i =

Nsp∑
k=1

νkiWksk(T ) (48)

where sk and hk are the entropy and total enthalpy (accounting for sensible and chemical contributions) of95

the kth species.

4. Code structure and algorithm

The new code is composed of two main computational tools: the main one is the Lattice Boltzmann solver
ALBORZ, while all kinetic, thermodynamic and transport terms are computed with REGATH library. The
Lattice Boltzmann solver can model the evolution of all distribution functions, but the system of equations100

is not closed: the relaxation coefficients and source terms need closure. REGATH provides these closures
using an ensemble of subroutines, knowing all relevant local macroscopic properties such as density, velocity,
mass fractions and temperature from LB solver. The structure of the resulting code is illustrated in Fig. 1.
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Population
initialization

Moments computation

REGATH
ν, Dk, λ/(ρc̄p), ω̇, ω̇k

f (eq) = f (eq)(~un, ρn) g
(eq)
k = g

(eq)
k (~un, Y nk )F (eq) = F (eq)(~un, Tn)

f tn+1 =
f(f (eq),tn , νtn)

gtn+1
k =

gk(g
(eq),tn
k , Dtn

k , ω̇
tn
k )

F tn+1 =
F (F (eq),tn , λ

ρc̄p

tn
, ω̇tn)

tn + +

tn < tend
NO YES

Figure 1: Coupled code structure between ALBORZ and REGATH

In a single time iteration, the distribution functions in the Lattice Boltzmann solver evolve using the
thermodynamic and transport properties computed at the end of the previous iteration by REGATH. Look-105

ing back at Eqs. (1), (5) and (12–17), the mesoscopic fields rely on a number of parameters to evolve from a
given time-step n to n+ 1. In order to model temperature and species convection, the macroscopic velocity
from the flow field is needed. Similar to classical explicitly-coupled numerical methods the velocity is taken
from the flow field at time step n. Diffusion terms in all fields (flow, temperature, and species) are controlled
by their respective relaxation coefficients. The relaxation times –related to local viscosity, thermal conduc-110

tivity, heat capacity and species diffusion coefficients– are computed using Eqs. (32–39). Similar to the
velocity field, these parameters are explicitly coupled since they are computed using macrosopic values from
time-step n. The source terms appearing in the PDF evolution equations are also evaluated based on macro-
scopic properties at time step n. Once the distribution functions have ”collided and propagated”, the new
moments are computed, delivering density, velocity, temperature and mass fractions from their respective115

mesoscopic fields (Probability Distribution Functions) using Eqs. (9, 10,18) and (19). The mesoscopic fields
are therefore all explicitly coupled through convection velocity, relaxation rates, and source terms. As previ-
ously mentioned, the flow field modifies the temperature and species field through convection as a first-order
velocity term appearing in their equilibrium distribution function. The temperature PDF is affected by the
species fields through two different channels: (1) The source term (heat production or consumption from120

chemical reactions) appearing in the mesoscopic evolution equation, and (2) mixture-averaged relaxation
coefficient, which is a function of the mixture-averaged thermal conductivity. The species PDFs are affected
by each other and the temperature field through the same two mechanisms. In the current model, the flow
field PDF is only affected by the other fields through its relaxation time, related to mixture viscosity.

5. Computational setup: ozone/air reacting flow125

In order to check the numerical procedure, two configurations involving ozone oxidation in air are con-
sidered: 1) a laminar premixed case, and 2) a counter-flow diffusion case. Both have been computed using
the ALBORZ-REGATH coupled code described in the previous section. For comparison, a reference solu-
tion is obtained with a classical finite-difference solver, which is included as well in the REGATH package
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(REGATH-1D). The details about the formulation of this solver are given in Appendix B –for the pre-130

mixed case– and in Appendix C –for the counter-flow case. This means that the reference solution, based
on the standard conservation equations for the continuum, is obtained using REGATH-1D as standalone
code; while the LB solution is obtained by ALBORZ coupled with the corresponding REGATH libraries for
kinetics, thermodynamics and transport.

All simulations with both codes rely on a detailed kinetic scheme taking into account 4 species (O, O2,135

O3 and N2) and 18 elementary reaction steps, described by Ombrello et al. [44] and listed in Appendix D.

5.1. Properties of ozone/air reacting flow

As mentioned previously, the coupled code in its current state does not take into account any effect of
compression or thermal dilatation. As a consequence, an ozone reacting flow has been retained, for which
these effects are negligible. Indeed, the reference solution from REGATH-1D shows that temperature and140

density variations are very small. As shown in Fig. 2, the variations of temperature and density for a typical
configuration amount to 0.9 K and 10−3 kg.m−3 respectively, which means in both cases a relative difference
below 0.2%. Both effects can therefore be neglected.
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Figure 2: Reference (a) temperature and (b) density solution for ozone/air reacting flow, density and temperature obtained
with REGATH-1D (note that the vertical scales are very small)

5.2. Geometrical configuration

Since laminar conditions are considered, one-dimensional simulations are sufficient for the premixed145

reacting flow.

10



Zero gradient or chemical equi-
librium at infinity

Constant temperature

Constant flow rate Periodic

Figure 3: Geometrical configuration and boundary conditions for the first test-case (ozone/air premixed reacting jet)

The geometrical configuration and boundary conditions of this test-case are represented in Fig. 3. Since
the lattice structure used in the code is at least 2-D, periodic boundary conditions were applied to the
y−boundaries in order to model a 1-D configuration. The fresh gas entering the simulation domain at
the left is assumed to be at a constant temperature of 500 K, with a constant macroscopic velocity. Its150

composition, corresponding to the term on the RHS of Eqs.(49) and (B.4), is given in Table 1.

species O O2 O3 N2

Yk,0 0.000 0.228 0.020 0.752

Table 1: Imposed chemical composition of the fresh gas

Preliminary studies using the finite difference solver have shown that the flow reaches chemical equilib-
rium at a distance of approximately 7m from the inlet while displaying high gradients near the inlet. In
order to capture both scales while keeping acceptable computational cost, the simulation was performed
using variable-size grids. The grids were dilated in the horizontal direction through an off-lattice propaga-155

tion strategy proposed by Luo et al. All details can be found in [45]. A typical grid generated through this
approach and used in the context of the present study is illustrated in Fig. 4.

Figure 4: Grid generated in the context of the off-lattice propagation approach

In order to keep the spatial order of accuracy of the method, and to limit numerical diffusion, quadratic
functions were used for the interpolation step.

The second test-case (counter-flow non-premixed configuration) consists of two inflows in opposite direc-160

tion facing each other, and two constant-pressure outlet boundaries. The geometrical configuration along
with boundary conditions are shown in Fig. 5.
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p = p0, ∂T
∂x = 0 and ∂Yk

∂x = 0

Constant flow rate, T and Yk

Constant flow rate, T and Yk

Figure 5: Geometrical configuration and boundary conditions for the second test-case (counter-flow non-premixed ozone reacting
flow)

The simulation domain consists of a 4 mm by 4mm square rectangular area. At both inlets constant
velocity, constant temperature and composition boundary conditions were applied while the outlets are
modeled using constant pressure and zero-gradient temperature and mass fraction conditions. Corresponding165

values are listed in Table 2.

parameter YO YO2
YO3

YN2
T [K] u0 [m/s]

Inlet 1 0.000 0.233 0.000 0.767 300 0.3(0.5)
Inlet 2 0.000 0.000 0.233 0.767 300 0.3(0.5)

Table 2: Counter-flow configuration inlet composition and temperatures

Just as for the premixed configuration, 2 different inlet velocities (0.3 and 0.5 m/s) have been considered.

5.3. Boundary and initial conditions

Standard LB boundary conditions have been applied to the flow fields: In the case of the premixed
reacting flow Constant density and velocity at the entrance (left) using Zou and He’s formulation [46],
zero-gradient at the outlet, and periodic along the horizontal boundaries. Equations based on the half-way
anti-bounce-back model, have been used to impose a constant temperature at the inlet. For the species
mass fractions, a modified version of the previously mentioned boundary condition has been developed
and applied, replacing the pure Dirichlet boundary condition (imposed value) by a Robin-type boundary
condition in order to model burner-stabilized cases (see Eq. (B.4)). For this purpose, the constant species
flux at the inlet is expressed through the following equation:(

−Dk
~u

|~u|
.~∇Yk + ~uYk

)∣∣∣∣
inlet

= ~uYk,0, (49)

where Yk is the local mass fraction of the kth species, while Yk,0 is the fresh gas mass fraction of the same
species from Table 1. The quantity W̄ is the molar mass of the local mixture. In a 1-D configuration,
Eq. (49) can be approximated in discrete form as:

Yk,1 =
uYk,0 +

DkYk,2

δx
Dk

δx
+ u

, (50)

in which Yk,1 and Yk,2 are the mass fractions at the first (inlet boundary) and second grid points. This value
was enforced at the boundary through a simple half-way anti-bounce-back formulation[47]:

gk,α = (wα + wᾱ)Yk,1 − g∗k,ᾱ (51)
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where g∗k,ᾱ is the post-collision distribution function in the opposite direction of α. For the counter-flow
configuration, Zou and He’s formulation was used in order to impose the constant inlet velocity and constant170

pressure at the outlet, as for the first test-case. Constant temperature and flow composition at the inlets
were applied using the anti-bounce-back approach. The simulations were initialized with constant density
and temperature, and zero velocity everywhere. At initialization, the simulation domain only contains the
non-reacting nitrogen species, N2. The PDFs were initialized using the Equilibrium Distribution Functions
corresponding to the previously mentioned macroscopic values.175

6. Results and Discussion

In order to account for characteristic times of ozone chemistry, time steps of the order of 10 µs are needed
(which is indeed relatively long for most combustion applications). LB simulations usually fail to converge
for relaxation constants τ too close to 0.5 [48] and larger values tend the introduce additional numerical
diffusion in the system. The non-dimensional velocity must also be kept small –usually below 0.1– in order180

to minimize the so-called compressibility error in the flow field. Taking these factors into consideration and
keeping in mind the characteristic scales of the flow, the minimum –near the inlet– and maximum –near the
outlet– cell lengths in the domain were set respectively to 5× 10−5 m and 5× 10−2 m in the premixed case.
For the counter-flow configuration, the simulations were performed on a uniform grid of size 1× 10−5 m.

6.1. Premixed reacting flow185

In order to show the general applicability of the developed computational procedure, the impact of the
inflow velocity on the obtained flame structure has been checked for three different cases in a realistic range:
u = 0.141, 0.707 and 1.41 cm/s. The obtained results are displayed in Figs. 6 – 8.
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Figure 6: O radical mass fraction profile for three inlet velocities: (a) u = 0.1414 cm.s−1, (b) u = 0.707 cm.s−1 and (c)
u = 1.414 cm.s−1

As the inlet velocity goes up from u = 0.1414 cm.s−1 to u = 1.414 cm.s−1, YO increases at inlet while
the flame length increases. This effect is illustrated in Fig. 6.190
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Figure 7: O2 mass fraction profile for three inlet velocities: (a) u = 0.1414 cm.s−1, (b) u = 0.707 cm.s−1 and (c) u =
1.414 cm.s−1

According to Fig. 8 the chemical time-scale being much smaller than the flow time-scale at the inlet, O3

dissociates into O and O2. As the inlet velocity increases, the flow time-scale decreases pushing the inlet
mass fractions closer to the fresh gas composition. For example, at u = 0.1414 cm.s−1, Y inletO2

= 0.2437 while

as mentioned in Table 1, Y freshO2
= 0.228. At higher inlet velocity, it goes down and reaches Y freshO2

= 0.2324.
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Figure 8: O3 mass fraction profile for three inlet velocities: (a) u = 0.1414 cm.s−1, (b) u = 0.707 cm.s−1 and (c) u =
1.414 cm.s−1

As obvious from Figs. 6 to 8 the developed LB procedure reproduces accurately the reference results for195

all three inflow velocities.

6.2. Counter-current reacting flow

The simulations presented in this section were performed on a 400 × 400 grid. The overall structure of
the velocity field along with the velocity profile on the vertical centerline are represented in Fig 9.
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Figure 9: (a) Velocity profile along the vertical centerline and (b) overall flow structure for the counter-flow case with inlet
velocity of 0.3 m/s and mixture temperature of 300 K

The velocity profile obtained using the LB solver agrees very well with the one-dimensional reference200

solution from REGATH. This good agreement is observed for both inlet velocities considered in the study.
It should be noted that the REGATH code uses a self-similarity approximation and gives only the solution
in the vicinity of the jet axis.
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Figure 10: Mass fraction profiles of (a) O, (b) O2 and O3 along the vertical centerline for u0=0.3 m/s and T=300 K

As shown in Fig. 10, a small portion of O3 dissociates into O and O2 immediately after the inlet. The
mixture rapidly reaches chemical equilibrium as YO increases to a threshold value of 1.2× 10−12. A similar205

behavior is observed for the cases with an inlet velocity of 0.5 m/s. The results of this configuration are
illustrated in Fig. 11.
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Figure 11: Mass fraction profiles of (a) O, (b) O2 and O3 on the vertical centerline for u0=0.5 m/s and T=300 K

In both cases, the LB solver is able to accurately reproduces the steady-state reference solution of
REGATH.

6.3. Computational performance210

A low computational time is one of the major advantages of LB solvers. In the present case, it is
impossible to compare the overall computational times, since the reference, finite-difference solver REGATH
only computes the steady-state solution, while LB inherently delivers the time-dependent solution. Still,
the computational time needed for each iteration can be compared for both codes, using the same number
of grid points. The results listed in Table 3 have been obtained on a single core of an i7 processor clocked215

at 2.3GHz. For the same number of grid points, the Lattice Boltzmann solver is approximately 6 times

LB reference (finite-difference)
computational time per iteration 0.165 s 1.0 s

Table 3: Comparison of computational time per iteration for 9000 grid points in space

faster per iteration than the finite-difference code, REGATH-1D. Considering additionally that LB solvers
are known to scale much better in parallel (both for CPU and GPU), the motivation for developing Lattice
Boltzmann models for complex applications involving reacting flows is clear.

7. Conclusions220

A Lattice Boltzmann code, capable of handling an arbitrary number of species and reactions and taking
into account multicomponent thermodynamic and transport properties has been successfully developed.
The LB solver is based on the multiple distribution formulation, a passive scalar approach and uses a single
relaxation time BGK collision operator. As such, it is able to handle variable Prandtl, Schmidt and Lewis
numbers using the same collision operator and without much complication, at the difference of multi-velocity225

models.
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An ozone/air reacting flow involving four species and 18 reactions has been computed with the resulting
solver. After implementing a variable-sized grid in the solver, the LB results show excellent agreement
compared to a classical reference solution obtained by finite differences, with a computational time per
iteration about 6 times shorter.230

In order to be able to model a broader range of exothermic reaction processes, the diffusion velocity
correction and thermal dilatation must now be taken into account. For this purpose, an equation of state
must be enforced through the use of a source term in the Lattice Boltzmann formulation. This is the subject
of our current work and would open the door for LB simulations of combustion systems, and in particular
of unsteady flames in complex geometries.235
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Appendix A. Chapman-Enskog Analysis of the D2Q9 Passive Scalar Transport scheme340

An asymptotic analysis of the following evolution equation is to be made:

φα(~x+ ~cα,~cα, t+ 1)− φα(~x,~cα, t) = −1

τ

(
φα(~x,~cα, t)− φ(eq)

α (~x,~cα, t)
)

(A.1)

where φα is the distribution function corresponding to the passive scalar being transported. For the passive
scalar transport approach, only zeroth-order moments need to be conserved. Therefore, we define the
equilibrium distribution function as:

φeqα (~x,~cα, t) = wαΞ

[
1 +

1

c2s
~eα.~u

]
, (A.2)

where Ξ is the passive scalar being transported and ~u is the macroscopic velocity computed as the first
moment of the flow field distribution function. To recover the macroscopic transport equation, the following
multi-scale expansions need to be made:

φα = φ(0)
α + εφ(1)

α + ε2φ(2)
α +O(ε3) (A.3)

∂t = ε∂t(1) + ε2∂t(2) +O(ε3) (A.4)

~∇ = ε~∇(1) + ε2~∇(2) +O(ε3) (A.5)

with the following properties: ∑
α

φ(0)
α = Ξ (A.6)

∑
α

φ(i)
α = 0 for i 6= 0 (A.7)

Notice that the corresponding assumptions for the first moment of the distribution function have been
dropped. This is due to the fact that we are only conserving zeroth-order moments and therefore can not
impose these conditions on the first-order moment. Applying the Taylor expansion to the LHS of the LB
equation up to second order, we get:

φα(~x+ ~cα,~cα, t+ 1)− φα(~x,~cα, t) = ∂tφα + ~cα.~∇φα +
1

2

(
∂t + ~cα.~∇

)2

φα (A.8)

Putting these multi-scale expansions into Eq. (A.1) we get:(
ε∂t(1) + ε2∂t(2) + ε~cα.~∇(1) + ε2~cα.~∇(2)

)(
φ(0)
α + εφ(1)

α + ε2φ(2)
α

)
+

1

2

(
ε∂t(1) + ε2∂t(2) + ε~cα.~∇(1) + ε2~cα.~∇(2)

)2 (
φ(0)
α + εφ(1)

α + ε2φ(2)
α

)
= −1

τ

(
εφ(1)
α + ε2φ(2)

α

)
(A.9)

Separating terms of different order in ε into different equations, for the first- and second-order equations we
get: (

∂t(1) + ~cα.~∇(1)
)
φ(0)
α = −φ

(1)
α

τ
(A.10)

(
∂t(1) + ~cα.~∇(1)

)
φ(1)
α +

(
∂t(2) + ~cα.~∇(2)

)
φ(0)
α +

1

2

(
∂t(1) + ~cα.~∇(1)

)2

φ(0)
α = −φ

(2)
α

τ
(A.11)

Computing the zeroth moment of Eq. (A.10):(
∂t(1) + ~∇(1).~u

)
Ξ = 0 (A.12)
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Doing the same for Eq. (A.11):(
∂t(2) + ~∇(2).~u

)
Ξ +

(
∂t(1) + ~cα.~∇(1)

)∑
α

φ(1)
α +

1

2

(
∂t(1) + ~cα.~∇(1)

)2∑
α

φ(0)
α = 0 (A.13)

The last term on the LHS can be eliminated multiplying Eq. (A.10) by
(
∂t(1) + ~cα.~∇(1)

)
. The resulting

equation is: (
∂t(2) + ~∇(2).~u

)
Ξ + ~∇(1)

(
1− 1

2τ

)∑
α

~cαφ
(1)
α = 0 (A.14)

The last term appearing on the LHS is the first order moment of φ
(1)
α , which is not known. It can be

evaluated by taking the first-order moment of Eq. (A.10):

∑
α

~cαφ
(1)
α = −τ∂t(1)

(∑
α

~cαφ
(0)
α

)
− τ ~∇(1).

(∑
α

~cα ⊗ ~cαφ(0)
α

)
(A.15)

Putting back Eq. (A.15) into Eq. (A.13):(
∂t(2) + ~∇(2)~u

)
Ξ + ~∇(1).

[(
1

2
− τ
)
∂t(1)(~uΞ) + c2s

(
1

2
− τ
)
~∇(1).

(
Ξ¯̄I
)]

= 0 (A.16)

Now defining τ as:

τ =
κ

c2sδt
+ 0.5 (A.17)

where κ is a generic physical parameter to be defined later, and adding up Eqs. (A.16) and (A.12) we get:(
∂t+ ~∇.~u

)
Ξ− ~∇.

(
κ~∇.

(
Ξ¯̄I
))
− 1

c2s
~∇.
(
κ∂t(1)~uΞ

)
= 0 (A.18)

It is worth mentioning that keeping the two last terms in the fluid equilibrium distribution function would
have resulted in additional spurious terms:

~∇(1)
∑
α

~cα ⊗ ~cαφ(0)
α = c2s

[
∂xΞ
∂yΞ

]
+

[
∂xΞu2

x + ∂yΞuxuy
∂xΞuxuy + ∂yΞu2

y

]
(A.19)

which would have eventually introduced the following error in the final equation:

E = ∂x
(
κ∂xΞu2

x + κ∂yΞuxuy
)

+ ∂y
(
κ∂xΞuxuy + κ∂yΞu2

y

)
(A.20)

In the case of heat transport, the macroscopic scalar being transported is the temperature. Replacing the
generic passive scalar Ξ with T , and the generic physical parameter κ by λ

ρc̄p
, the following equation is

recovered at the macroscopic level:(
∂t+ ~∇.~u

)
T − ~∇.

(
λ

ρc̄p
~∇.
(
T ¯̄I
))
− 1

c2s
~∇.
(
λ

ρc̄p
∂t(1)~uT

)
= 0 (A.21)

the second term on the LHS does not quite correspond to the macroscopic heat transfer equation as 1
ρc̄p

is

now inside the gradient operator. Therefore, in addition to the last term on the LHS of Eq. (A.21), there is
an error of the form:

E = −
(
λ~∇T

)
.

(
~∇ 1

ρc̄p

)
(A.22)

For the species transport equation, assuming that we transport the mass fraction of species k, the passive
scalar approach results in: (

∂t+ ~∇.~u
)
Yk − ~∇.

(
Dk

~∇Yk
)

= 0 (A.23)
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which is equivalent to the species transport equation resulting from Fick’s approximation. Two points
however should be taken into account: (1) A velocity correction is needed, since both approximations from
Fick or Hirschfelder and Curtiss lead to non-zero total diffusion velocity, (2) the density does not appear in
the equation recovered by LB. The velocity correction term for the Fick approximation is:

~V c =
∑
k

Dk
~∇Yk (A.24)

Assuming the last term on the LHS of Eq. (A.18) can be neglected, two correction terms must be added in
order to recover the exact species conservation equations:

(
∂t+ ~∇.~u

)
Yk − ~∇.

(
Dk

~∇Yk
)

+ ~∇.

Yk∑
k′

Dk′
~∇Yk′

−Dk
~∇Yk.

(
~∇ρ
ρ

)
︸ ︷︷ ︸

correction

= 0 (A.25)

In the limit of weakly compressible flows with similar Lewis number Le for all species, these two last terms
vanish. The extension of this demonstration to cases with a production term is straightforward.
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Appendix B. REGATH-1D burner-stabilized formulation

The 1-D numerical approach of the REGATH package using a finite-difference solver is employed to
study the structure of burner-stabilized ozone/air reacting flow. The governing equations describing the 1-D
multi-species reactive flow are:

ρu = ṁ, (B.1)

ṁ
∂Yk
∂x

= −∂(ρYkVk)

∂x
+Wkω̇k, (B.2)

ṁcp
∂T

∂x
=

∂

∂x

(
λ
∂T

∂x

)
−
Nsp∑
k=1

ρYkVkcpk
∂T

∂x
+

Nsp∑
k=1

Wkω̇khk, (B.3)

where ρ is the density, u the velocity component in x direction, and ṁ is a constant flow rate, ṁ = ρ0u0,
where the subscript 0 refers to fresh gas. Yk represents the kth species mass fraction. The diffusion velocity345

of the kth species, Vk, is computed assuming complex transport phenomena. Wk is the kth species molar
mass and ω̇k represents the chemistry source term of the kth species due to detailed combustion chemistry.
T is the temperature, λ the mixture conductivity, cp the mixture specific heat capacity, cpk the kthspecies
specific heat capacity, and hk the kth species enthalpy.

The presence of a burner is simulated by imposing the following boundary conditions at x = 0 for kth

species mass fraction and temperature :

Yk(x=0)
+

1

ṁ

(
ρYkVk

)
(x=0)

= Yk0 , (B.4)

T(x=0) = T0. (B.5)

The boundary conditions at x = Lf for kth species mass fraction and temperature are:

∂2Yk
∂x2

= 0, (B.6)

∂2T

∂x2
= 0. (B.7)

350
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Appendix C. REGATH-1D counter-flow formulation

The 1-D formulation used in the standalone REGATH-1D solver for the counter-flow configuration as-
sumes constant pressure by neglecting spatial pressure gradient. A cylindrical coordinate (y, r) is considered
here. In addition, self-similarity assumption is used where only one-dimensional solution in the vicinity of
the jet axis is formulated by assuming u = U(y).r, ρv = V (y) and Yk = Yk(y). In these conditions, the
pressure term becomes[49, 50]:

J = −1

r

∂p

∂r
= constant (C.1)

and:
∂J

∂y
= 0. (C.2)

This model is based on the following system of equations:

∂ρ

∂t
+ (1 + j)ρU +

(∂ρv)

∂y
= 0 (C.3)

∂(ρU)

∂t
+ ρU2 + ρv

∂U

∂y
− J − ∂

∂y

(
µ
∂U

∂y

)
= 0 (C.4)

ρ
∂Yk
∂t

+ ρv
∂Yk
∂y

+
∂

∂y
(ρYkVk)− ω̇kWk = 0. (C.5)

The corresponding boundary conditions at y=0 and y=L are:

U = 0 (C.6)

ρv = ρ0v0 (C.7)

Yk = Yk,0 (C.8)

T = T0 (C.9)

Where ρ0, v0, Yk,0 and T0 represent the values to be imposed at each boundary. Further details on the
derivation and validation of this model can be found in [50, 51, 52, 53].
The solver used in REGATH-1D is a steady-state finite-difference solver. The system of equation is solved
using the Newton-Raphson method.355
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Appendix D. Detailed kinetic scheme for an ozone/air reacting flow (from [44])

k = AT βe−
E
RT A β E

for reaction:
1 2O + M↔ O2 + M 1.200000E+17 -1.000000E+00 0.000000E+00
2 O3 + O2 → O2 + O + O2 1.540000E+14 0.000000E+00 2.305850E+04
3 O3 + O→ O2 + O + O 2.480000E+15 0.000000E+00 2.272160E+04
4 O3 + O3 → O2 + O + O3 4.400000E+14 0.000000E+00 2.305850E+04
5 O3 + N2 → O2 + O + N2 4.000000E+14 0.000000E+00 2.266190E+04
6 O2 + O + O2 → O3 + O2 3.260000E+19 -2.100000E+00 0.000000E+00
7 O2 + O + N2 → O3 + N2 1.600000E+14 -4.000000E-01 -1.390700E+03
8 O2 + O + O→ O3 + O 2.280000E+15 -5.000000E-01 -1.390700E+03
9 O2 + O + O3 → O3 + O3 1.670000E+15 -5.000000E-01 -1.390700E+03
10 O2 + O2 → O + O + O2 9.800000E+24 -2.500000E+00 1.180382E+05
11 O2 + O→ O + O + O 3.500000E+25 -2.500000E+00 1.180382E+05
12 O2 + O3 → O + O + O3 1.200000E+19 -1.000000E+00 1.180382E+05
13 O + O + O2 → O2 + O2 1.500000E+16 -4.000000E-01 0.000000E+00
14 O + O + N2 → O2 + N2 6.000000E+13 0.000000E+00 -1.789700E+03
15 O + O + O→ O2 + O 5.340000E+16 -4.000000E-01 0.000000E+00
16 O + O + O3 → O2 + O3 1.300000E+14 0.000000E+00 -1.789700E+03
17 O2 + O2 → O3 + O 1.200000E+13 0.000000E+00 1.003871E+05
18 O3 + O→ O2 + O2 4.820000E+12 0.000000E+00 4.095600E+03

The units of A, β and T are all based on moles, calories and seconds. M is used to represent an arbitrary
third-body for the reaction.
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