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Introduction

Under practical conditions, reacting flows take place in systems with a complex geometry (gas turbine, burner, furnace...) and involve a large number of chemical species. In combustion for example, many consecutive and competing reactions between stable species and radicals occur. It is often of crucial importance to include detailed chemistry. However, due to limited computational resources, conventional numerical 5 methods soon become impractical, since they lead to unacceptably long computational times. In the last decade, the Lattice Boltzmann (LB) Method has emerged as a promising alternative for simulating a variety of complex flows. Contrary to classical continuum-based formulations, probability distribution functions in a discretized phase-space are transported in physical space for LB. Though historically originating from the Lattice Gas Automata (LGA) [START_REF] Frisch | Lattice-gas automata for the Navier-Stokes equation[END_REF], the Lattice Boltzmann equations have been later shown to be discretized 10 forms of the Boltzmann transport equation [START_REF] He | A priori derivation of the Lattice Boltzmann equation[END_REF][START_REF] He | Theory of the Lattice Boltzmann method: From the Boltzmann equation to the Lattice Boltzmann equation[END_REF][START_REF] Abe | Derivation of the Lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation[END_REF]. A typical LGA model consists of identical particles colliding and propagating on either a two-dimensional hexagonal, or a four-dimensional, face-centered hypercube lattice, with either 0 or 1 particle per phase and physical space point [START_REF] Frisch | Lattice-gas automata for the Navier-Stokes equation[END_REF][START_REF] Frisch | Lattice gas hydrodynamics in two and three dimensions[END_REF]. Lattice Boltzmann models on the other hand, deal with the collision and propagation of non-boolean distribution functions. Assuming the distribution function to be close to equilibrium, Higuera and Jimenez [START_REF] Higuera | Boltzmann approach to Lattice gas simulations[END_REF] linearized the collision operator in the LB transport equation. The use of the Bhatnagar-Gross-Krook (BGK) operator [START_REF] Bhatnagar | A model for collision processes in gases. I: Small amplitude processes in charged and neutral one-component systems[END_REF] was then suggested by several authors [START_REF] Chen | Lattice Boltzmann model for simulation of magnetohydrodynamics[END_REF][START_REF] Qian | Lattice gas and Lattice kinetic theory applied to the Navier-Stokes equations[END_REF], opening the door for many successful flow simulations based on LB [START_REF] Kim | On the Lattice Boltzmann method for multiphase flows with large density ratios[END_REF][START_REF] Liu | Lattice Boltzmann method for the age concentration equation in shallow water[END_REF].

However, reacting flows lead to additional challenges and have seldom been implemented in LB codes [START_REF] Ayodele | Lattice Boltzmann study of pattern formation in reaction-diffusion systems[END_REF], though the BGK-LB scheme has been shown to be in principle appropriate for modeling flows with reactions. Kang et al. [START_REF] Kang | Lattice Boltzmann simulation of chemical dissolution in porous media[END_REF] developed a LB model to simulate coupled flow and chemical dissolution for a system involving only two species. They then generalized the model to take into account precipitation [START_REF] Kang | Simulation of dissolution and precipitation in porous media[END_REF][START_REF] Kang | An improved Lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale[END_REF]. Yamamoto et al. [START_REF] Yamamoto | Simulation of combustion field with Lattice Boltzmann method[END_REF] used a model based on the double distribution function formulation developed by He et al. [START_REF] He | A novel thermal model for the Lattice Boltzmann method in incompressible limit[END_REF] to simulate a one-dimensional propane flame, assuming a single reaction and constant density and thermo-physical properties. A number of other researchers have used the weakly compressible LB formulation for reacting flows to model combustion systems [START_REF] Yu | Scalar mixing and chemical reaction simulations using Lattice Boltzmann method[END_REF][START_REF] Chiavazzo | Combustion simulation via Lattice Boltzmann and reduced chemical kinetics[END_REF].

As an alternative to a self-contained LB solver, Filippova and Hänel [START_REF] Filippova | A novel Lattice BGK approach for low mach number combustion[END_REF] have developed a hybrid finite difference/Lattice Boltzmann scheme to model dilatable combustion systems. Here, the fluid flow field was modeled through the classical, weakly compressible LB solver, while the temperature and species fields were handled using a standard finite-difference solver. Although this solution appears to be straightforward, it leads to complex coupling issues between two independent codes with very different structures, and can severely limit parallel scalability. An approach purely based on Lattice Boltzmann models would be more efficient, if it can take into account simultaneously thermal dilatation effects, complex multi-species kinetics and accurate thermochemical models as well as molecular diffusion.

A first attempt has been described in [START_REF] Chen | A novel coupled Lattice Boltzmann model for low Mach number combustion simulation[END_REF], relying on a modified equilibrium distribution function to incorporate an equation of state and a so-called particle characteristic temperature. This approach leads to variable lattice sound speed and hence -even in the case of fixed grid spacing -variable time step. Although dilatation effects can be taken into account with this technique, it does not handle detailed chemistry, nor variable thermodynamic and transport properties. These aspects are essential for an accurate description of combustion processes. Recently, Xu et al. [START_REF] Xu | Multiple-relaxation-time Lattice Boltzmann kinetic model for combustion[END_REF] have proposed a compressible and dilatable lattice Boltzmann model for the flow and temperature fields. This model is based on another class of lattice Boltzmann formulations called multi-speed [START_REF] Alexander | Lattice Boltzmann thermohydrodynamics[END_REF][START_REF] Mcnamara | Stabilization of thermal Lattice Boltzmann models[END_REF][START_REF] Chen | Heat transfer in Lattice BGK modeled fluid[END_REF]. Such multi-velocity formulations -thanks to the larger number of velocities available -conserve the second-order moment of the distribution function and can therefore model density variations without needing any additional source term. Therefore when density, velocity and temperature fields are modeled through a single probability distribution function all of the macroscopic properties relax at a common rate. Xu et al. [START_REF] Xu | Multiple-relaxation-time Lattice Boltzmann kinetic model for combustion[END_REF] overcame this issue by using a multiple relaxation time approach to model the effects of combustion on the flow and temperature fields; however, this is known to reduce noticeably computational efficiency. In [START_REF] Xu | Multiple-relaxation-time Lattice Boltzmann kinetic model for combustion[END_REF], only the flow and temperature fields are investigated. Even more recently, Lin et al. [START_REF] Lin | Double-distribution-function discrete Boltzmann model for combustion[END_REF] used the same multi-speed model, with a single relaxation time collision operator, to simulate a flow with two components. In their formulation, the chemical reaction was modeled through an additional BGK collision operator, and effects of heat production from an exothermic reaction on flow field were incorporated using Maxwell-Boltzmann's full equilibrium distribution function and the equipartition theorem. Although this approach has the advantage of modeling non-equilibrium effects, the use of the full Maxwell-Boltzmann equilibrium distribution function and multiple relaxation time collision operator along with the large number of discrete velocities negatively impacts computational efficiency.

None of the previously cited works took into account the variations of physicochemical properties due to temperature and chemical composition. However, changes of thermodynamic parameters and transport coefficients in space and time are of the utmost importance for many applications, such as combustion. In an effort toward describing such combustion systems with the LB method, the present article describes methods and numerical solutions that allow LB simulations of multi-species reacting flows with complex kinetics. At the same time, accurate models are used to describe varying thermodynamic and transport properties. All modifications are implemented in the in-house code ALBORZ [START_REF] Eshghinejadfard | Direct-forcing immersed boundary Lattice Boltzmann simulation of particle/fluid interactions for spherical and non-spherical particles[END_REF], which already allows an efficient description of heat transfer processes [START_REF] Eshghinejadfard | Numerical simulation of heat transfer in particulate flows using a thermal immersed boundary Lattice Boltzmann method[END_REF] and can be used to solve flows in complex geometries [START_REF] Eshghinejadfard | Calculation of the permeability in porous media using the Lattice Boltzmann method[END_REF]. The remaining challenge concerns the efficient description of mixing and reaction in a complex multi-species flow, as described in what follows. relaxation time per equation. The evolution of all distribution functions -and hence their moments -is solved by the Lattice Boltzmann solver. All terms describing chemical kinetics (in particular production terms) as well as thermodynamic and transport properties are computed by coupling ALBORZ to a specific library, REGATH [START_REF] Darabiha | REGATH: Thermodynamic, chemical and transport properties computation code[END_REF][START_REF] Franzelli | A tabulated chemistry method for spray combustion[END_REF][START_REF] Candel | Progress in transcritical combustion: experimentation, modeling and simulation[END_REF]. This library treats multi-species chemical reactions, variable thermodynamic and multi-component transport properties. 

Lattice Boltzmann equations

In the context of the present study a weakly compressible 2-D square lattice BGK model has been used (D2Q9, [START_REF] He | Lattice Boltzmann model for the incompressible Navier-Stokes equation[END_REF]). The same grid structure and spacing is used for temperature and species fields.

Flow field

The flow field evolution is governed by the following equation:

f α ( x + c α δ t , c α , t + δ t ) -f α ( x, c α , t) = - 1 τ (f α ( x, c α , t) -f eq α ( x, c α , t)) , (1) 
where f α ( x + c α δ t , c α , t + δ t ) is the discretized distribution function in a given direction α at a given time t and location x, f eq α ( x, c α , t) is the equilibrium distribution function in the same direction and time, τ is the non-dimensional relaxation time and δ t is the time-step. The distribution functions evolve in a square lattice structure with 9 discrete velocity vectors defined as:

c α = (0, 0) for α = 0, (2) 
c α = cos α -1 2 π , sin α -1 2 π .c for α = 1 . . . 4, (3) 
c α = cos (α -5)π 2 + π 4 , sin (α -5)π 2 + π 4 . √ 2c for α = 5 . . . 8, (4) 
where c = δ x /δ t is known as the lattice advection velocity. The equilibrium distribution function is given by:

f eq α ( x, c α , t) = w α ρ 1 + 1 c 2 s e α . u + 1 2c 4 s ( e α . u) 2 - 1 2c 2 s u. u , (5) 
with e α the unit vector in direction α defined by e α = c α /c s , where c s is known as the lattice sound speed and defined by c s = c/ √ 3. The quantity w α is the weight associated to the direction α, with:

w α = 1/4 for α = 0, (6) 
w α = 1/9 for α = 1 . . . 4, (7) 
w α = 1/36 for α = 5 . . . 8. ( 8 
)
The variable ρ is the weakly varying local fluid density. The density and macroscopic velocity u, being zeroth-and first-order moments of the distribution function, are computed as:

ρ = 8 α=0 f α , (9) 
ρ u = 8 α=0 f α c α . (10) 
In this context, the non-dimensional relaxation time τ of Eq. ( 1) can be defined through a Chapman-Enskog expansion as:

ν = 2τ -1 2 c 2 s δ t . (11) 
Although ALBORZ has both SRT and MRT solvers for the flow field, only the SRT model has been used in 80 the context of the present study to minimize computation times given the small Reynolds numbers of the studied test-cases.

Temperature and species fields

Following the double distribution formulation of He et al. [START_REF] He | A novel thermal model for the Lattice Boltzmann method in incompressible limit[END_REF], the temperature and species fields are modeled through separate distribution functions (F and g k ) evolving as [START_REF] Li | Lattice boltzmann model for a class of convection-diffusion equations with variable coefficients[END_REF]:

F α ( x + c α δ t , c α , t + δ t ) -F α ( x, c α , t) = - 1 τ T (F α ( x, c α , t) -F eq α ( x, c α , t)) + w α ωδ t cp ρT ref , (12) 
g k,α ( x + c α δ t , c α , t + δ t ) -g k,α ( x, c α , t) = - 1 τ k g k,α ( x, c α , t) -g eq k,α ( x, c α , t) + w α ωk W k δ t ρ , (13) 
with k = 1, ..., N sp , considering a total number of N sp species in the mixture. The last term appearing on the RHS, in both equations, is the chemical production rate per time step. The quantity ω represents the production rate due to heat release per unit volume, ωk and W k respectively correspond to the k th species molar production rate per unit volume and molar mass. The equilibrium distribution functions are defined as:

F eq α ( x, c α , t) = w α T 1 + 1 c 2 s e α . u , (14) 
g eq k,α ( x, c α , t) = w α Y k 1 + 1 c 2 s e α . u . ( 15 
)
Being limited to the first two terms of the Taylor expansion of the equilibrium distribution function, these are sometimes referred to as "linear" equilibrium distribution functions [START_REF] Li | Lattice boltzmann model for a class of convection-diffusion equations with variable coefficients[END_REF]. The relaxation coefficients can be related to macroscopic properties through a Chapman-Enskog analysis [START_REF] Shi | Lattice boltzmann simulation of some nonlinear convection-diffusion equations[END_REF]:

λ ρ cp = 2τ T -1 2 c 2 s δ t , (16) 
D k = 2τ k -1 2 c 2 s δ t . (17) 
where both D k and λ are respectively the k th species diffusion coefficient and the mixture thermal conductivity. As with the flow field, macroscopic properties such as species mass fractions and temperature are then computed as:

T = 8 α=0 F α , (18) 
Y k = 8 α=0 g k,α . (19) 
Summing up over all populations and using the Chapman-Enskog analysis, the following equation is recovered for the zeroth moment of the temperature distribution function:

∂ ∂t + ∇. u T -∇. λ ρc p ∇T - 1 c 2 s ∇. λ ρc p ∂( uT ) ∂t = ωδ t cp ρ . (20) 
Developing the second term on the LHS, one gets:

∂ ∂t + ∇. u T - 1 ρc p ∇. λ ∇T -∇ 1 ρc p . λ ∇T - 1 c 2 s ∇. λ ρc p ∂( uT ) ∂t = ωδ t cp ρ . ( 21 
)
In the case of the species equations, a Chapman-Enskog development leads to the following macroscopic equation:

∂ ∂t + ∇. u Y k -∇. D k ∇Y k - 1 c 2 s ∇. D k ∂( uY k ) ∂t = ωk W k δ t ρ . ( 22 
)
The second term on the LHS of Eq. ( 22) does not exactly correspond to the diffusion term appearing in the non-conservative form of the species transport equation. In order to get the correct form the following relation is used:

∇. D k ∇Y k = ∇. ρD k ∇Y k ρ -D k ∇Y k . ∇ρ ρ . ( 23 
)
The final form of the equation recovered by this model is:

∂ ∂t + ∇. u Y k - ∇. ρD k ∇Y k ρ + D k ∇Y k ∇ρ ρ - 1 c 2 s ∇. D k ∂ uY k ∂t = ωk W k δ t ρ . (24) 
In the limit of weak variations in density, the error due to the third and fourth terms on the LHS of Eq. ( 24) can be neglected. The fourth term can also be eliminated through the use of an additional force term defined as [START_REF] Chopard | The lattice boltzmann advection-diffusion model revisited[END_REF]:

F α = 1 - 1 2τ k w α c 2 s e α . ∂(Y k u) ∂t (25) 
The time derivative can be evaluated through a simple finite-difference approximation; a first-order approximation is sufficient to recover second-order overall accuracy. The resulting equation corresponds to the macroscopic species transport equation with the Fick approximation for second-order accuracy in space.

Owing to the deficiencies of the Fick approximation the scheme only conserves overall mass if all species have the same local diffusion coefficient, otherwise an additional correction term has to be included. A detailed Chapman-Enskog development of the passive scalar approach used in the context of this work is presented in Appendix A. For the transport of the k th species in the mixture, the species conservation equations are expressed as follows:

∂(ρY k ) ∂t + ∇. ρ( u + V k )Y k = ωk W k . (26) 
Here, Y k is the local mass fraction of the k th species, while V k is the diffusion velocity, with:

Nsp k=1 Y k V k = 0. ( 27 
)
Total mass conservation imposes:

Nsp k=1 ωk W k = 0. ( 28 
)
Retaining only one term in the Sonin polynomial expansion [START_REF] Giovangigli | Convergent iterative methods for multicomponent diffusion[END_REF], the diffusion velocities are defined through the following system of equations [START_REF] Poinsot | Theoretical and numerical combustion[END_REF] known as the Stephan-Maxwell diffusion equations:

∇X k = Nsp k =1 X k X k D pk ( V k -V k ) + (Y k -X k ) ∇p p + ρ p Nsp k =1 Y k Y k (f k -f k ), for k = 1 . . . N sp , (29) 
in which the Soret effect has been neglected and D k k = D kk is the binary diffusion coefficient of the k th species into species k , p is the thermodynamic pressure, and X k is the local mole fraction of the k th species defined as:

X k = Y k W W k ( 30 
)
where the mixture molar mass W is computed as:

W = k X k W k (31) 
The resolution of Eq. ( 29) to obtain V k being very complex and time-consuming, simplified models are generally used instead. Supposing pressure gradient and external forces are negligible and retaining only first-order terms in the solution [START_REF] Giovangigli | Convergent iterative methods for multicomponent diffusion[END_REF], V k can be approximated with the formulation of Hirschfelder and Curtis, or alternatively with that of Fick, defined respectively as:

V k X k = -D k ∇X k with D k = 1 -Y k k =k X k /D k k , (32) 
or

V k Y k = -D k ∇Y k with D k = 1 -X k k =k X k /D k k . ( 33 
)
In the context of the present study, the local thermal conductivity is evaluated using a combination of averaging formula proposed by Burgoyne and Weinberg [START_REF] Mathur | Thermal conductivity of binary, ternary and quaternary mixtures of rare gases[END_REF][START_REF] Burgoyne | A method of analysis of a plane combustion wave[END_REF]:

λ = 1 2 Nsp k=1 X k λ k +   Nsp k=1 X k λ k   -1 , (34) 
where λ k is the k th species thermal conductivity. The mixture viscosity is computed using Wilke's semiempirical formula [START_REF] Wilke | A viscosity equation for gas mixtures[END_REF], later modified by Bird et al. [START_REF] Bird | Transport Phenomena[END_REF], and expressed as:

µ = Nsp k=1 X k µ k Nsp k =1 X p Φ kk , (35) 
with

Φ k k = 1 √ 8 1 + W k W k -1 2 1 + µ k µ k 1 2 W k W k 1 4 2 , (36) 
where µ k is the viscosity of the k th species and µ represents the mixture viscosity.

Thermo-chemical properties

To get the thermo-chemical and transport properties, REGATH subroutines extract properties such as heat capacity using the NASA Chemical Equilibrium with Application (CEA) database as polynomial functions of order N of temperature:

C pk R = N n=1 a nk T (n-1) . (37) 
Here, R is the ideal gas constant. The specific heat capacity at constant pressure of the k th species, and the mixture, are then expressed as follows:

c pk = C pk W k , (38) cp 
= Nsp k=1 c pk Y k . ( 39 
)
The species production rate is one of the key components for reacting flow simulations with detailed chemistry. Considering a detailed chemical scheme involving N sp species in I elementary reactions represented in the form:

Nsp k=1 ν ki χ k Nsp k=1 ν ki χ k , for i = 1 . . . I, (40) 
with ν ki and ν ki being balance coefficients, the production rate of the k th species ωk is computed as:

ωk = I i=1 ν ki q i , (41) 
with:

ν ki = ν ki -ν ki . (42) 
The progress rate of reaction i, written q i , reads:

q i = k f i Nsp k=1 [X k ] ν ki -k ri Nsp k=1 [X k ] ν ki , (43) 
and involves the molar concentration of species k, written [X k ]. Finally, the reaction rate constants k f i and k ri are all expressed by an Arrhenius-type function. The forward rate is computed as:

k f i = A i T βi exp -E i RT , (44) 
with A i the pre-exponential factor, β i the temperature exponent and E i the activation energy of reaction i.

The reverse reaction rate k ri is calculated from the equilibrium constant as:

k ri = k f i k eq i (45) 
The equilibrium constant k eq i can be defined as [START_REF] Kuo | Principles of combustion[END_REF]:

k eq i = p 0 RT k=1 Nsp ν ki exp ∆S 0 i R - ∆H 0 i RT (46) 
where p 0 =1 ba, ∆H 0 i and ∆S 0 i are the enthalpy and entropy changes for reaction i:

∆H 0 i = Nsp k=1 ν ki W k h k (T ) (47) 
∆S 0 i = Nsp k=1 ν ki W k s k (T ) (48) 
where s k and h k are the entropy and total enthalpy (accounting for sensible and chemical contributions) of 95 the k th species.

Code structure and algorithm

The new code is composed of two main computational tools: the main one is the Lattice Boltzmann solver ALBORZ, while all kinetic, thermodynamic and transport terms are computed with REGATH library. The Lattice Boltzmann solver can model the evolution of all distribution functions, but the system of equations 100 is not closed: the relaxation coefficients and source terms need closure. REGATH provides these closures using an ensemble of subroutines, knowing all relevant local macroscopic properties such as density, velocity, mass fractions and temperature from LB solver. The structure of the resulting code is illustrated in Fig. 1.

Population initialization

Moments computation REGATH ν, D k , λ/(ρc p ), ω, ωk

f (eq) = f (eq) ( u n , ρ n ) g (eq) k = g (eq) k ( u n , Y n k ) F (eq) = F (eq) ( u n , T n ) f tn+1 = f (f (eq),tn , ν tn ) g tn+1 k = g k (g (eq),tn k , D tn k , ωtn k )
F tn+1 = F (F (eq),tn , λ ρcp tn , ωtn ) In a single time iteration, the distribution functions in the Lattice Boltzmann solver evolve using the thermodynamic and transport properties computed at the end of the previous iteration by REGATH. Looking back at Eqs. ( 1), ( 5) and [START_REF] Ayodele | Lattice Boltzmann study of pattern formation in reaction-diffusion systems[END_REF][START_REF] Kang | Lattice Boltzmann simulation of chemical dissolution in porous media[END_REF][START_REF] Kang | Simulation of dissolution and precipitation in porous media[END_REF][START_REF] Kang | An improved Lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale[END_REF][START_REF] Yamamoto | Simulation of combustion field with Lattice Boltzmann method[END_REF][START_REF] He | A novel thermal model for the Lattice Boltzmann method in incompressible limit[END_REF], the mesoscopic fields rely on a number of parameters to evolve from a given time-step n to n + 1. In order to model temperature and species convection, the macroscopic velocity from the flow field is needed. Similar to classical explicitly-coupled numerical methods the velocity is taken from the flow field at time step n. Diffusion terms in all fields (flow, temperature, and species) are controlled by their respective relaxation coefficients. The relaxation times -related to local viscosity, thermal conductivity, heat capacity and species diffusion coefficients-are computed using Eqs. [START_REF] Candel | Progress in transcritical combustion: experimentation, modeling and simulation[END_REF][START_REF] He | Lattice Boltzmann model for the incompressible Navier-Stokes equation[END_REF][START_REF] Li | Lattice boltzmann model for a class of convection-diffusion equations with variable coefficients[END_REF][START_REF] Shi | Lattice boltzmann simulation of some nonlinear convection-diffusion equations[END_REF][START_REF] Chopard | The lattice boltzmann advection-diffusion model revisited[END_REF][START_REF] Giovangigli | Convergent iterative methods for multicomponent diffusion[END_REF][START_REF] Poinsot | Theoretical and numerical combustion[END_REF][START_REF] Mathur | Thermal conductivity of binary, ternary and quaternary mixtures of rare gases[END_REF]. Similar to the velocity field, these parameters are explicitly coupled since they are computed using macrosopic values from time-step n. The source terms appearing in the PDF evolution equations are also evaluated based on macroscopic properties at time step n. Once the distribution functions have "collided and propagated", the new moments are computed, delivering density, velocity, temperature and mass fractions from their respective mesoscopic fields (Probability Distribution Functions) using Eqs. [START_REF] Qian | Lattice gas and Lattice kinetic theory applied to the Navier-Stokes equations[END_REF][START_REF] Kim | On the Lattice Boltzmann method for multiphase flows with large density ratios[END_REF][START_REF] Yu | Scalar mixing and chemical reaction simulations using Lattice Boltzmann method[END_REF] and [START_REF] Chiavazzo | Combustion simulation via Lattice Boltzmann and reduced chemical kinetics[END_REF]. The mesoscopic fields are therefore all explicitly coupled through convection velocity, relaxation rates, and source terms. As previously mentioned, the flow field modifies the temperature and species field through convection as a first-order velocity term appearing in their equilibrium distribution function. The temperature PDF is affected by the species fields through two different channels: (1) The source term (heat production or consumption from chemical reactions) appearing in the mesoscopic evolution equation, and (2) mixture-averaged relaxation coefficient, which is a function of the mixture-averaged thermal conductivity. The species PDFs are affected by each other and the temperature field through the same two mechanisms. In the current model, the flow field PDF is only affected by the other fields through its relaxation time, related to mixture viscosity.

t n + + t n < t end NO YES

Computational setup: ozone/air reacting flow

In order to check the numerical procedure, two configurations involving ozone oxidation in air are considered: 1) a laminar premixed case, and 2) a counter-flow diffusion case. Both have been computed using the ALBORZ-REGATH coupled code described in the previous section. For comparison, a reference solution is obtained with a classical finite-difference solver, which is included as well in the REGATH package (REGATH-1D). The details about the formulation of this solver are given in Appendix B -for the premixed case-and in Appendix C -for the counter-flow case. This means that the reference solution, based on the standard conservation equations for the continuum, is obtained using REGATH-1D as standalone code; while the LB solution is obtained by ALBORZ coupled with the corresponding REGATH libraries for kinetics, thermodynamics and transport.

All simulations with both codes rely on a detailed kinetic scheme taking into account 4 species (O, O 2 , O 3 and N 2 ) and 18 elementary reaction steps, described by Ombrello et al. [START_REF] Ombrello | Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O 3[END_REF] and listed in Appendix D.

Properties of ozone/air reacting flow

As mentioned previously, the coupled code in its current state does not take into account any effect of compression or thermal dilatation. As a consequence, an ozone reacting flow has been retained, for which these effects are negligible. Indeed, the reference solution from REGATH-1D shows that temperature and density variations are very small. As shown in Fig. 2, the variations of temperature and density for a typical configuration amount to 0.9 K and 10 -3 kg.m -3 respectively, which means in both cases a relative difference below 0.2%. Both effects can therefore be neglected. 

Geometrical configuration

Since laminar conditions are considered, one-dimensional simulations are sufficient for the premixed reacting flow.

Zero gradient or chemical equilibrium at infinity Constant temperature The geometrical configuration and boundary conditions of this test-case are represented in Fig. 3. Since the lattice structure used in the code is at least 2-D, periodic boundary conditions were applied to the y-boundaries in order to model a 1-D configuration. The fresh gas entering the simulation domain at the left is assumed to be at a constant temperature of 500 K, with a constant macroscopic velocity. Its composition, corresponding to the term on the RHS of Eqs.( 49) and (B.4), is given in Table 1.

Constant flow rate Periodic

species O O 2 O 3 N 2 Y k,0
0.000 0.228 0.020 0.752 Preliminary studies using the finite difference solver have shown that the flow reaches chemical equilibrium at a distance of approximately 7m from the inlet while displaying high gradients near the inlet. In order to capture both scales while keeping acceptable computational cost, the simulation was performed using variable-size grids. The grids were dilated in the horizontal direction through an off-lattice propagation strategy proposed by Luo et al. All details can be found in [START_REF] He | Some progress in Lattice Boltzmann method. part i. nonuniform mesh grids[END_REF]. A typical grid generated through this approach and used in the context of the present study is illustrated in Fig. 4. In order to keep the spatial order of accuracy of the method, and to limit numerical diffusion, quadratic functions were used for the interpolation step.

The second test-case (counter-flow non-premixed configuration) consists of two inflows in opposite direction facing each other, and two constant-pressure outlet boundaries. The geometrical configuration along with boundary conditions are shown in Fig. 5. The simulation domain consists of a 4 mm by 4mm square rectangular area. At both inlets constant velocity, constant temperature and composition boundary conditions were applied while the outlets are modeled using constant pressure and zero-gradient temperature and mass fraction conditions. Corresponding 165 values are listed in Table 2.

parameter Y O Y O2 Y O3 Y N2 T [K] u 0 [m/s] Inlet 1
0.000 0.233 0.000 0.767 300 0.3(0.5) Inlet 2 0.000 0.000 0.233 0.767 300 0.3(0.5) Just as for the premixed configuration, 2 different inlet velocities (0.3 and 0.5 m/s) have been considered.

Boundary and initial conditions

Standard LB boundary conditions have been applied to the flow fields: In the case of the premixed reacting flow Constant density and velocity at the entrance (left) using Zou and He's formulation [START_REF] Zou | On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model[END_REF], zero-gradient at the outlet, and periodic along the horizontal boundaries. Equations based on the half-way anti-bounce-back model, have been used to impose a constant temperature at the inlet. For the species mass fractions, a modified version of the previously mentioned boundary condition has been developed and applied, replacing the pure Dirichlet boundary condition (imposed value) by a Robin-type boundary condition in order to model burner-stabilized cases (see Eq. (B.4)). For this purpose, the constant species flux at the inlet is expressed through the following equation:

-D k u | u| . ∇Y k + uY k inlet = uY k,0 , (49) 
where Y k is the local mass fraction of the k th species, while Y k,0 is the fresh gas mass fraction of the same species from Table 1. The quantity W is the molar mass of the local mixture. In a 1-D configuration, Eq. ( 49) can be approximated in discrete form as:

Y k,1 = uY k,0 + D k Y k,2 δx D k δx + u , (50) 
in which Y k,1 and Y k,2 are the mass fractions at the first (inlet boundary) and second grid points. This value was enforced at the boundary through a simple half-way anti-bounce-back formulation [START_REF] Zhang | General bounce-back scheme for concentration boundary condition in the lattice-boltzmann method[END_REF]:

g k,α = (w α + w ᾱ)Y k,1 -g * k, ᾱ (51) 
where g * k, ᾱ is the post-collision distribution function in the opposite direction of α. For the counter-flow configuration, Zou and He's formulation was used in order to impose the constant inlet velocity and constant pressure at the outlet, as for the first test-case. Constant temperature and flow composition at the inlets were applied using the anti-bounce-back approach. The simulations were initialized with constant density and temperature, and zero velocity everywhere. At initialization, the simulation domain only contains the non-reacting nitrogen species, N 2 . The PDFs were initialized using the Equilibrium Distribution Functions corresponding to the previously mentioned macroscopic values.

Results and Discussion

In order to account for characteristic times of ozone chemistry, time steps of the order of 10 µs are needed (which is indeed relatively long for most combustion applications). LB simulations usually fail to converge for relaxation constants τ too close to 0.5 [START_REF] Qian | Lattice BGK models for Navier-Stokes equation[END_REF] and larger values tend the introduce additional numerical diffusion in the system. The non-dimensional velocity must also be kept small -usually below 0.1-in order to minimize the so-called compressibility error in the flow field. Taking these factors into consideration and keeping in mind the characteristic scales of the flow, the minimum -near the inlet-and maximum -near the outlet-cell lengths in the domain were set respectively to 5 × 10 -5 m and 5 × 10 -2 m in the premixed case. For the counter-flow configuration, the simulations were performed on a uniform grid of size 1 × 10 -5 m.

Premixed reacting flow

In order to show the general applicability of the developed computational procedure, the impact of the inflow velocity on the obtained flame structure has been checked for three different cases in a realistic range: u = 0.141, 0.707 and 1.41 cm/s. The obtained results are displayed in Figs. 678. As the inlet velocity goes up from u = 0.1414 cm.s -1 to u = 1.414 cm.s -1 , Y O increases at inlet while the flame length increases. This effect is illustrated in Fig. 6. As obvious from Figs. 6 to 8 the developed LB procedure reproduces accurately the reference results for 195 all three inflow velocities.

Counter-current reacting flow

The simulations presented in this section were performed on a 400 × 400 grid. The overall structure of the velocity field along with the velocity profile on the vertical centerline are represented in Fig 9. In both cases, the LB solver is able to accurately reproduces the steady-state reference solution of REGATH.

Computational performance

A low computational time is one of the major advantages of LB solvers. In the present case, it is impossible to compare the overall computational times, since the reference, finite-difference solver REGATH only computes the steady-state solution, while LB inherently delivers the time-dependent solution. Still, the computational time needed for each iteration can be compared for both codes, using the same number of grid points. The results listed in Table 3 have been obtained on a single core of an i7 processor clocked at 2.3GHz. For the same number of grid points, the Lattice Boltzmann solver is approximately 6 times LB reference (finite-difference) computational time per iteration 0.165 s 1.0 s faster per iteration than the finite-difference code, REGATH-1D. Considering additionally that LB solvers are known to scale much better in parallel (both for CPU and GPU), the motivation for developing Lattice Boltzmann models for complex applications involving reacting flows is clear.

Conclusions

A Lattice Boltzmann code, capable of handling an arbitrary number of species and reactions and taking into account multicomponent thermodynamic and transport properties has been successfully developed. The LB solver is based on the multiple distribution formulation, a passive scalar approach and uses a single relaxation time BGK collision operator. As such, it is able to handle variable Prandtl, Schmidt and Lewis numbers using the same collision operator and without much complication, at the difference of multi-velocity models.

An ozone/air reacting flow involving four species and 18 reactions has been computed with the resulting solver. After implementing a variable-sized grid in the solver, the LB results show excellent agreement compared to a classical reference solution obtained by finite differences, with a computational time per iteration about 6 times shorter.
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In order to be able to model a broader range of exothermic reaction processes, the diffusion velocity correction and thermal dilatation must now be taken into account. For this purpose, an equation of state must be enforced through the use of a source term in the Lattice Boltzmann formulation. This is the subject of our current work and would open the door for LB simulations of combustion systems, and in particular of unsteady flames in complex geometries. which is equivalent to the species transport equation resulting from Fick's approximation. Two points however should be taken into account: (1) A velocity correction is needed, since both approximations from Fick or Hirschfelder and Curtiss lead to non-zero total diffusion velocity, (2) the density does not appear in the equation recovered by LB. The velocity correction term for the Fick approximation is:

V c = k D k ∇Y k (A.24)
Assuming the last term on the LHS of Eq. (A.18) can be neglected, two correction terms must be added in order to recover the exact species conservation equations:

∂t + ∇. u Y k -∇. D k ∇Y k + ∇.   Y k k D k ∇Y k   -D k ∇Y k .
∇ρ ρ correction = 0 (A. [START_REF] Chen | Heat transfer in Lattice BGK modeled fluid[END_REF] In the limit of weakly compressible flows with similar Lewis number Le for all species, these two last terms vanish. The extension of this demonstration to cases with a production term is straightforward.

of the k th species, V k , is computed assuming complex transport phenomena. W k is the k th species molar mass and ωk represents the chemistry source term of the k th species due to detailed combustion chemistry.

T is the temperature, λ the mixture conductivity, c p the mixture specific heat capacity, c p k the k th species specific heat capacity, and h k the k th species enthalpy. The presence of a burner is simulated by imposing the following boundary conditions at x = 0 for k th species mass fraction and temperature :

Y k (x=0) + 1 ṁ ρY k V k (x=0) 
= Y k0 , (B.4)

T (x=0) = T 0 . (B.5)
The boundary conditions at x = L f for k th species mass fraction and temperature are: 

∂ 2 Y k ∂x 2 =
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 6 Figure 6: O radical mass fraction profile for three inlet velocities: (a) u = 0.1414 cm.s -1 , (b) u = 0.707 cm.s -1 and (c) u = 1.414 cm.s -1
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 8 Figure 8: O 3 mass fraction profile for three inlet velocities: (a) u = 0.1414 cm.s -1 , (b) u = 0.707 cm.s -1 and (c) u = 1.414 cm.s -1

Figure 9 : 2 × 10 - 13 4 × 10 - 13 6 × 10 - 13 8 × 10 - 13 1 × 10 - 12 1. 2 × 10 - 12 1. 4 × 10 - 12 1. 6 × 10

 92101310131013101310122101241012610 Figure 9: (a) Velocity profile along the vertical centerline and (b) overall flow structure for the counter-flow case with inlet velocity of 0.3 m/s and mixture temperature of 300 K

Figure 10 :

 10 Figure 10: Mass fraction profiles of (a) O, (b) O 2 and O 3 along the vertical centerline for u 0 =0.3 m/s and T=300 K

Figure 11 :
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An asymptotic analysis of the following evolution equation is to be made:

where φ α is the distribution function corresponding to the passive scalar being transported. For the passive scalar transport approach, only zeroth-order moments need to be conserved. Therefore, we define the equilibrium distribution function as:

where Ξ is the passive scalar being transported and u is the macroscopic velocity computed as the first moment of the flow field distribution function. To recover the macroscopic transport equation, the following multi-scale expansions need to be made:

with the following properties:

Notice that the corresponding assumptions for the first moment of the distribution function have been dropped. This is due to the fact that we are only conserving zeroth-order moments and therefore can not impose these conditions on the first-order moment. Applying the Taylor expansion to the LHS of the LB equation up to second order, we get:

Putting these multi-scale expansions into Eq. (A.1) we get:

Separating terms of different order in into different equations, for the first-and second-order equations we get:

∂t (1) + c α . ∇ (1) φ (1) α + ∂t (2) 

Computing the zeroth moment of Eq. (A.10):

∂t (1) + ∇ (1) . u Ξ = 0 (A.12) Doing the same for Eq. (A.11):

∂t (2) + ∇ (2) . u Ξ + ∂t (1) 

The last term on the LHS can be eliminated multiplying Eq. (A.10) by ∂t (1) + c α . ∇ (1) . The resulting equation is:

The last term appearing on the LHS is the first order moment of φ

α , which is not known. It can be evaluated by taking the first-order moment of Eq. (A.10):

Putting back Eq. (A.15) into Eq. (A.13): 1) . Ξ Ī = 0 (A.16)

Now defining τ as:

where κ is a generic physical parameter to be defined later, and adding up Eqs. (A. [START_REF] Yamamoto | Simulation of combustion field with Lattice Boltzmann method[END_REF]) and (A.12) we get:

It is worth mentioning that keeping the two last terms in the fluid equilibrium distribution function would have resulted in additional spurious terms: [START_REF] Chiavazzo | Combustion simulation via Lattice Boltzmann and reduced chemical kinetics[END_REF] which would have eventually introduced the following error in the final equation:

In the case of heat transport, the macroscopic scalar being transported is the temperature. Replacing the generic passive scalar Ξ with T , and the generic physical parameter κ by λ ρcp , the following equation is recovered at the macroscopic level:

the second term on the LHS does not quite correspond to the macroscopic heat transfer equation as 1 ρcp is now inside the gradient operator. Therefore, in addition to the last term on the LHS of Eq. (A.21), there is an error of the form:

For the species transport equation, assuming that we transport the mass fraction of species k, the passive scalar approach results in:

Appendix B. REGATH-1D burner-stabilized formulation

The 1-D numerical approach of the REGATH package using a finite-difference solver is employed to study the structure of burner-stabilized ozone/air reacting flow. The governing equations describing the 1-D multi-species reactive flow are:

where ρ is the density, u the velocity component in x direction, and ṁ is a constant flow rate, ṁ = ρ 0 u 0 , where the subscript 0 refers to fresh gas. Y k represents the k th species mass fraction. The diffusion velocity

Appendix C. REGATH-1D counter-flow formulation

The 1-D formulation used in the standalone REGATH-1D solver for the counter-flow configuration assumes constant pressure by neglecting spatial pressure gradient. A cylindrical coordinate (y, r) is considered here. In addition, self-similarity assumption is used where only one-dimensional solution in the vicinity of the jet axis is formulated by assuming u = U (y).r, ρv = V (y) and Y k = Y k (y). In these conditions, the pressure term becomes [START_REF] Grcar | A hybrid newton/time-integration procedure for the solution of steady, laminar, one-dimensional, premixed flames[END_REF][START_REF] Smooke | Computational and experimental study of a laminar axisymmetric methane-air diffusion flame[END_REF]:

and:

This model is based on the following system of equations:

The corresponding boundary conditions at y=0 and y=L are:

Where ρ 0 , v 0 , Y k,0 and T 0 represent the values to be imposed at each boundary. Further details on the derivation and validation of this model can be found in [START_REF] Smooke | Computational and experimental study of a laminar axisymmetric methane-air diffusion flame[END_REF][START_REF] Darabiha | The influence of the temperature on extinction and ignition limits of strained hydrogen-air diffusion flames[END_REF][START_REF] Darabiha | Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry[END_REF][START_REF] Fiorina | Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation[END_REF]. The solver used in REGATH-1D is a steady-state finite-difference solver. The system of equation is solved using the Newton-Raphson method.

Appendix D. Detailed kinetic scheme for an ozone/air reacting flow (from [START_REF] Ombrello | Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O 3[END_REF]) The units of A, β and T are all based on moles, calories and seconds. M is used to represent an arbitrary third-body for the reaction.