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Abstract
Given a noisy sample of points lying around some shape M, with possibly

outliers or clutter noise, we focus on the question of recovering M, or at least
geometric and topological information about M. Often, such inference is based on
the sublevel sets of distance-like functions such as the function distance to M, the
distance-to-measure (DTM) or the k-witnessed distance. In this paper, we firstly
widespread the concept of trimmed log-likelihood to probability distributions. This
trimmed log-likelihood can be considered as a generalisation of the DTM.

A sparse approximation of the DTM, the m-power distance-to-measure (m-
PDTM), has been introduced and studied by Brécheteau and Levrard in 2017. Its
sublevel sets are unions of m balls, with m possibly much smaller than the sample
size. By miming the construction of the m-PDTM from the DTM, we propose an
approximation of the trimmed log-likelihood associated to the family of Gaussian
distributions on Rd. This approximation is sparse is the sense that its sublevel sets
are unions of m ellipsoids.

We provide a Lloyd-type algorithm to compute the centers and covariance
matrices associated to the ellipsoids. We improve our algorithm by allowing an
additional noise parameter to wipe out some points, just as the trimmed m-means
algorithm of Cuesta-Albertos et al. [9]. Our algorithm comes together with a
heuristic to select this parameter. Some illustrations on different examples enhance
that our algorithm is efficient in wiping out clutter noise, recovering the shape
and recovering the homology of M; this requiring a storage of only m points and
covariance matrices.

1 Introduction
LetM be an unknown subset of Rd, for instance a submanifold or a crossing manifold.
A main objective in Topological Data Analysis (TDA) consists in infering geometric
or topological information aboutM from a sample X of n points generated according
to some distribution P , around M. Originally, such information was recovered from
the sub-level sets of dX, the distance to the compact set X, which are unions of n balls.
In [10], Edelsbrunner et al. introduced a theory to investigate the persistence of the
homology of unions of growing balls. Later on, other distance-like functions have been
used to infer topological information aboutM; see [14, 16, 6]. The distance-to-measure
function (DTM) [14] have been used to face the presence of outliers in X. Indeed, a
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single outlier might cause the function dX to be drastically different from dM, whereas
the DTM remains close to dM. The sublevel sets of the DTM are unions of

(
n
k

)
balls

for k, the number of nearest neighbours considered in the computation of the DTM.
The sublevel sets of the k-witnessed distance, an approximation of the DTM introduced
in [16], are unions of n balls. This number of balls was reduced to m in [6] with the
m-PDTM function, which is more satisfactory for large datasets. Indeed taking m much
smaller than n might reduce significantly the computational time of topological tools
such as the persistent homology.

Bregman divergences [7] are alternatives to the Euclidean metric, more adapted in
certain contexts, e.g. for data generated according to mixtures of Poisson, Gamma,
binomial distributions, etc. Such situations are frequent in text mining or for daily water
falls datasets, just to name a few. In this context, the upper-level sets of the density of
P are unions of Bregman balls. Topological tools initially developped for the Euclidean
metric have been adapted to Bregman divergences; from the Bregman-Voronoï tesselation
in [4] to the tools for persistent homology in [11]. Anyway, such methods do not allow
to take into account the variations of the data within different directions. For instance,
approximating a polygonal line (made of m segments) with a union of ε-balls would
require around 1

ε balls. In this paper, we propose to face this issue by approximatingM
with a union of m ellipsoids, from noisy data generated aroundM and in presence of
outliers.

The m-PDTM [6] is a function x 7→ mini∈[[1,m]] ‖x−µ∗i ‖2 +ω∗i that approximates the
DTM from above. The optimal centers (µ∗i )i∈[[1,m]] are solutions of a Bregman clustering
algorithm, for some data-dependent Bregman divergence that is function of the DTM. In
order to deal with outliers, the authors used the robust Bregman clustering method of
[5] with the DTM-based Bregman divergence. In this paper, we introduce the function
trimmed log-likelihood-to-measure (TLM), a generalisation of the DTM that coincides
with the trimmed log-likelihood for discrete distributions P . We introduce the m-PLM,
an approximation of the TLM, by miming the construction of the m-PDTM from the
DTM. The m-PLM is a function of m centers (µ∗i )i∈[[1,m]] and m covariance matrices
(Σ∗i )i∈[[1,m]]. Just like the m-PDTM, the optima (µ∗i ,Σ∗i ) can be approximated with an
algorithm derived from the m-means algorithm [20] (also known as Lloyd’s algorithm
[19]). Note that a faster algorithm to approximate the optimal means for the m-means
problem is available for large datasets [23]. It might be a challenge to adapt this type of
algorithm to approximate the m-PLM. In order to make our method robust to outliers,
we add a trimming step just as the trimmed m-means method of Cuesta-Albertos et al.
in [9] and [5].

m-PDTM [6] Trimmed m-means [9]

Figure 1: Methods to approximateM with a set of m centers.

In order to approximateM with a set of m points, it is possible to use the method of
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m-means [20]. Optimal centers for the m-means problem correspond to the support of
the best discrete measure approximating the distribution P , in terms of the Wasserstein
metric. In this case, the optimal m is of order n

d
2(d+2) [17]. In presence of outliers in X,

the robust version of m-means for clustering tasks in the trimmed m-means algorithm [9].
Nonetheless, if this method is perfectly well-suited to make m clusters from data naturally
divided in m clusters, it fails in approximating general shapes M. The m-PDTM is
efficient for this task, see Figure 1. In this context, the optimal parameter m holds for the
m-PDTM is also of order n

d′
2(d′+2) , with d′ the intrinsic dimension ofM. In this paper,

we aim at recovering centers together with covariance matrices. The algorithm tclust
[15] performs in clustering data from mixtures of Gaussian distributions, in presence
of clutter noise. Nonetheless, just as trimmed m-means, tclust fails in approximating
M. The algorithm we propose in this paper is efficient for this task, see Figure 2. Our
method can be considered as a robust version of the m-flats algorithm [17]. In TDA, it
is primordial to wipe outliers out, see e.g. [8] and [1]. Our method performs well in a
situation for which the method of [8] fails.

m-PLM t-clust algorithm [15]

Figure 2: Methods to approximateM with a set of m centers and covariance matrices.

In this paper, we introduce a continuous version of the trimmed likelihood as a
generalization of the DTM, the trimmed likelihood to measure (TLM), in Section 2. In
Section 3, we introduce an approximation of the TLM, the m-PLM, a function of type
LmP,h : x 7→ maxi∈[[1,m]] log(pi(x)) + ωi. The function pi is the density of the Gaussian
distribution N (mh(µ∗i ,Σ∗i ),Σ∗i ) and ωi is a constant ωh(µ∗i ,Σ∗i ) that depend on some
optimal parameters µ∗i and Σ∗i . Morally, mh(µ∗i ,Σ∗i ) corresponds to the mean of the
measure P̃(µ∗

i
,Σ∗

i
),h defined as the restriction of P to the Σ∗i -Mahalanobis ball centered

at µ∗i of P -mass h. The constant 2ωh(µ∗i ,Σ∗i ) is a variance term, it corresponds to the
expectation of the Σ∗i -Mahalanobis distance to µ∗i for P̃(µ∗

i
,Σ∗

i
),h. We determine the

optimal parameters µ∗ and Σ∗ when P is Gaussian or uniform on a polygonal line. In
Section 4, we develop a Lloyd-type algorithm to compute local optima (µi,Σi) for the
TLM approximation problem. We adapt this algorithm to data corrupted by clutter
noise by adding a trimming step, just as Cuesta-Albertos et al. in [9]. We propose a
heuristic to select the optimal trimming parameter. Finally, in Section 5, we illustrate
our method on two different examples that enhance that we perform in recoveringM
from the m-PLM and in getting rid of outliers.

2 The trimmed log-likelihood
In this section, we consider a family of distributions on Rd, F = {Pθ | θ ∈ Θ} for
some parameter space Θ. In this paper, we mainly work with the family of Gaussian
distributions FN = {P(µ,Σ) = N (µ,Σ) | (µ,Σ) ∈ Θ = Rd × Ξ}. Here, Ξ denotes the set

3



of all covariance matrices on Rd, that is the set of all symmetrical positive matrices on
Rd. We recall that the density of N (µ,Σ) at any point x ∈ Rd is given by:

pµ,Σ(x) = 1√
(2π)d det(Σ)

exp
(
−1

2‖x− µ‖Σ
)
.

Here, ‖.‖Σ denotes the squared Mahalanobis norm, that is defined for every y ∈ Rd by
‖y‖Σ = yTΣ−1y, with yT the transpose of the vector y and Σ−1 the inverse of Σ.

2.1 The discrete version
Let P be a probability distribution on Rd, X = {X1, X2, . . . , Xn} a n-sample from P
and Pn the uniform distribution on X. When P ∈ F (that is P = Pθ∗ for some θ∗ ∈ Θ),
the notion of likelihood has been introduced by Fisher in 1922 [13, Section 6] to infer
θ∗ from X. This function in defined on Θ by ln : θ 7→

∏n
i=1 pθ(Xi), with pθ the density

of Pθ. An estimator of θ∗ from the likelihood is given by the maximum likelihood
estimator, θ̂MLE = arg maxθ∈Θ ln(θ). This estimator is also the maximiser of the log-
likelihood θ 7→

∑n
i=1 log(pθ(Xi)). We prefer to consider the normalised version Ln of

the log-likelihood, defined for θ ∈ Θ by Ln(θ) = 1
n

∑n
i=1 log(pθ(Xi)). The maximum

likelihood estimator is not robust to noise and outliers. To face this problem, the
trimmed log-likelihood has been introduced by Neykov and Neytchev 1990 [22]. It has
been extensively investigated since then [18, 2, 21]. The trimmed log-likelihood depends
on some parameter k and requires to store the elements of X as (X(i))i∈[[1,n]] so that:
∀i ≤ j, log

(
pθ
(
X(i))) ≥ log

(
pθ
(
X(j))). It is defined by

Ln,k : θ 7→ 1
k

k∑
i=1

log
(
pθ

(
X(i)

))
. (1)

Trimming the log-likelihood makes the estimation of θ∗ more robust when there are more
than k signal points in X. By signal points, we mean points generated according to Pθ∗ .
In this case, the (at most n− k) outliers are no longer involved in the computation of
the trimmed log-likelihood, at least when θ is close to θ∗. Then, the minimizer of Ln,k is
more likely to be close to θ∗ than θ̂MLE .

In this paper, our target θ∗ will not be approximated with the minimiser of the
function Ln,k. Instead, we propose to approximate the function Ln,k with a function
Lθ. And our target will be estimated by the parameter θ for which Lθ is the best
approximation of Ln,k in some sense, cf. Section 3.

2.2 The continuous version and its relation with the distance-
to-measure

ForQ a probability distribution and f a function, we denote byQf(.), the expectation of f
with respect to Q. With this notation, the log-likelihood rewrites as Ln(θ) = Pn log(pθ(.)).
This log-likelihood naturally extends to any probability P by LP (θ) = P log(pθ(.)).

As well, it is possible to extend the notion of trimmed log-likelihood, using the notion
of sub-measure. A sub-measure Q of P is a positive measure such that Q(A) ≤ P (A)
for every Borel set A. We use the notation Q 4 P . The uniform distribution on
X(1), X(2), . . . , X(k), P̃n,θ,k, satisfies: k

n P̃n,θ,k 4 Pn. Then, the trimmed likelihood
defined in (1) rewrites as

Ln,k(θ) = P̃n,θ,k log(pθ(.)) = sup
{
P̃ log(pθ(.)) | P̃ probability such that k

n
P̃ 4 Pn

}
.
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For h in [0, 1], we define the trimmed log-likelihood to a measure P as an extension of
the trimmed likelihood, by

LP,h : θ 7→ sup
{
P̃ log(pθ(.)) | P̃ probability such that hP̃ 4 P

}
. (2)

A probability P̃ reaches the supremum if and only if hP̃ 4 P , P and hP̃ coincide
on the upper-level set of Pθ of P -mass h, and P̃ is supported on the closure of this
upper-level set. We denote by P̃θ,h any such distribution.

When we consider the family of Gaussian distributions, the assertion P̃θ′,h log(pθ′(.)) =
supθ∈Θ P̃θ,h log(pθ′(.)) extends in the following way.
Lemma 1.
If F = FN is the family of Gaussian distributions, then for every Σ ∈ Ξ and probability
Q on Rd with expectation Q., we have

P̃(Q.,Σ),h

∫
log(p(u,Σ)(.))dQ(u) = sup

θ∈Θ
P̃θ,h

∫
log(p(u,Σ)(.))dQ(u).

Proof. We may write for x ∈ Rd,∫
log(p(u,Σ)(x))dQ(u) =

(
−1

2

∫
‖Q.− u‖ΣdQ(u)

)
+ log(p(Q.,Σ)(x)).

Moreover, since for every θ ∈ Θ, P̃θ,h is the restriction of P to the upper-level set of the
function x 7→ log(pθ(x)) with P -mass h, it comes that

P̃(Q.,Σ),h log(p(Q.,Σ)(.)) = sup
θ∈Θ

P̃θ,h log(p(Q.,Σ)(.)).

We consider the family of Gaussian distributions with covariance matrix Id the iden-
tity matrix on Rd, F =

{
N (θ, Id) | θ ∈ Rd

}
. In this context, the trimmed log-likelihood

relates to the notion of distance-to-measure (DTM) [14]. The DTM with parameter h, dP,h
is a function defined on Rd by d2

P,h(θ) = inf
{
P̃‖.− θ‖2 | P̃ probability such that hP̃ 4 P

}
.

The upper-level sets of the density of N (θ, Id) are balls centered at θ. So, the distribu-
tions P̃ involved in the computation of the DTM coincide with the ones involved in the
computation of the TLM. Moreover, for every θ ∈ Θ, LP,h(θ) = −d2 log(2π)− 1

2d2
P,h(θ).

When P is a distribution uniform on some manifoldM, Chazal et al. proved in [14]
that the DTM was a good approximation of dM, the distance toM, even in presence
of outliers. It follows on that the upper-level sets of LP,h approximate M well. We
denote by dP,h,m, the m-PDTM [6]. Then, Lm : θ 7→ d

2 log(2π) − 1
2dP,h,m(θ) is the

best approximation of LP,h from below for the criterion P |LP,h(.) − f(.)| among all
functions f ∈ G. The family G contains all functions f not larger than LP,h, of type
f : θ 7→ − 1

2 mini∈[[1,m]]
(
‖θ − ci‖2 + ωi

)
with ci ∈ Rd and ωi ∈ R. The upper-level sets of

Lm are unions of m balls.
Inferring topological information from a set of m << n balls requires very few

memory and computational time. Nonetheless, unlessM is a set of m points or balls,
approximatingM with a union of m balls may require m to be very large. For instance,
an ε-Hausdorff approximation of the segment M = [0, 1] × {0} with a union of balls
requires at least m = 1

ε balls. In this case, approximatingM with a single ellipse would
be more satisfactory in terms of storage memory.

In the following, we develop a method to approximate M from X as a union of
ellipsoids. To this aim, we enrich the model {N (θ, Id) | θ ∈ Rd} with covariance matrices
and consider LP,h the trimmed log-likelihood associated to the family FN = {P(µ,Σ) =
N (µ,Σ) | (µ,Σ) ∈ Θ = Rd × Ξ}, the mass parameter h and the probability P .
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3 Approximation of the Trimmed log-likelihood
In this section, we adapt the construction of the m-PDTM to the trimmed log-likelihood-
to-measure LP,h associated to the family FN . A first remark is that LP,h is no longer a
function defined on Rd. Indeed, it is defined on Θ = Rd × Ξ. Thus, it makes no sense
to approximate LP,h globally on Θ. Instead, we will find the best set of covariance
matrices (Σ∗i )i∈[[1,m]] and the best decomposition of Rd as a union of non-intersecting
cells Rd =

⋃
i∈[[1,m]] C∗i such that LP,h can be well approximated on

⋃
i∈[[1,m]] C∗i × {Σ∗i }.

3.1 The method
The trimmed log-likelihood-to-measure defined by Equation (2) expresses as

LP,h(θ) = P̃θ,h log(pθ(.)) = sup
θ′∈Θ

P̃θ′,h log(pθ(.)).

We consider Θm, the set of all families of m pairs of centres and covariance matrices,
or codebooks θ = (θi)i∈[[1,m]] = ((µi,Σi))i∈[[1,m]]. The method we develop and investigate
in this paper consists in approximating the TLM, LP,h with a function Lθ

P,h : θ 7→
maxi∈[[1,m]] P̃θi,h log(pθ(.)).

Such functions satisfy Lθ
P,h(θ) ≤ LP,h(θ) for every θ ∈ Θ. Our approximation Lθ∗

P,h

of LP,h if defined as the function Lθ
P,h whose expectation according to some well-chosen

distribution is maximal. The optimal codebook θ∗ is defined as follows.

Definition 2.
The optimal codebook θ∗ = (θ∗i )i∈[[1,m]] = ((µ∗i ,Σ∗i ))i∈[[1,m]] is defined as a maximizer of

θ 7→
∫
u∈Rd

(
max
i∈[[1,m]]

P̃θi,h log(p(u,Σi)(.))
)

dP (u).

Equivalently, if Σ(x) is defined for every x ∈ Rd as the matrix Σi for i such that
P̃θi,h log(p(x,Σi)(.)) is maximal, then

θ∗ ∈ arg max
{∫

u∈Rd

Lθ
P,h ((u,Σ(u))) dP (u) | θ ∈ Θm

}
.

According to the following theorem, it is optimal to choose the same Σi in the
measure P̃θi,h = P̃(µi,Σi),h and in the likelihood p(u,Σi). Meaning that it is optimal to
make x 7→ Σ(x) take values in {Σ1,Σ2, . . . ,Σm}.

Theorem 3.
The codebook θ∗ is such that

θ∗ ∈ arg max
{

max
(Σ′

i
)i∈[[1,m]]∈Ξm

∫
u∈Rd

(
max
i∈[[1,m]]

P̃θi,h log(p(u,Σ′
i
)(.))

)
dP (u) | θ ∈ Θm

}
.

Proof. For Σ′ = (Σ′i)i∈[[1,m]] ∈ Ξm, setRΣ′ : θ 7→
∫
u∈Rd

(
maxi∈[[1,m]] P̃θi,h log(p(u,Σ′

i
)(.))

)
dP (u).

We aim at proving that maxθ∈Θm maxΣ′∈Ξm RΣ′(θ) = maxµ∈(Rd)m maxΣ′∈Ξm RΣ′((µ,Σ′)).
We decompose Rd in cells Ci such that:

x ∈ Ci ⇔ ∀j ∈ [[1,m]], P̃(µi,Σi),h log(p(u,Σ′
i
)(x)) ≥ P̃(µj ,Σj),h log(p(u,Σ′

j
)(x)) (3)
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Then, one may express P as
∑m
i=1 Pi with Pi a positive measure supported on Ci.

According to Lemma 1, it comes that:

RΣ′
(

((µi,Σi))i∈[[1,m]]

)
=

m∑
i=1

Pi(Rd)
∫
P̃(µi,Σi),h log(p(u,Σ′

i
)(.))

1
Pi(Rd)

dPi(u)

≤
m∑
i=1

Pi(Rd)
∫
P̃(

Pi.

Pi(Rd)
,Σ′i
)
,h

log(p(u,Σ′
i
)(.))

1
Pi(Rd)

dPi(u)

≤ RΣ′

(((
Pi.

Pi(Rd)
,Σ′i

))
i∈[[1,m]]

)
.

Our approximation of the trimmed log-likelihood is defined from θ∗ as follows.

Definition 4.
The m power log-likelihood to the measure P (m-PLM), LmP,h is defined by:

LmP,h : θ ∈ Θ 7→ Lθ∗

P,h(θ) = max
i∈[[1,m]]

P̃θ∗
i
,h log(pθ(.)).

With a slight abuse of notation, we define its restriction to Rd by

LmP,h : x ∈ Rd 7→ max
i∈[[1,m]]

P̃θ∗
i
,h log(p(x,Σ∗

i
)(.)).

3.2 Interpretation
The definition of the m-PLM suggests a decomposition of the space Rd into m cells
(C∗i )i∈[[1,m]]. Each cell C∗i is associated to a pair (µ∗i ,Σ∗i ) accordingly to (3). Morally,
x ∈ C∗i for a i such that the expectation of the logarithm of the density N (x,Σ∗i ) at
X ∼ P̃θ∗

i
,h is minimized. By symmetry, it is also the expectation (relatively to X) of the

logarithm of the density N (X,Σ∗i ) at x. Recall that P̃(µi,Σi),h is the restriction of P to
the ‖ · ‖Σi

-ball centered at µi, with P -mass h.
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Figure 3: Illustration of the assignment phase

In Figure 3, we illustrate the procedure of decomposition of Rd into cells, when P
is a uniform distribution on a set of n = 220 points. We consider two couples (µ1,Σ1)
and (µ2,Σ2). The center µ1 is represented by a black disk and the center µ2 by a black
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triangle. We set the parameter h = k
n to 0.25, so that k = 55. On the left Figure, we

have represented E1, the (µ1,Σ1)-ellipse (sub-level set of x 7→ ‖x− µ1‖Σ1) that contains
k points of the sample. The uniform distribution on this set of k points is P̃n (µ1,Σ1),h.
On the left figure, we have represented E2, the (µ2,Σ2)-ellipse that contains k points.

Now, we consider some point x in R2, represented by a diamond. The point x is
assigned to the cell C∗i for which P̃n θ∗

i
,h log(p(x,Σ∗

i
)(.)) is maximal. On the left Figure, we

have colored all points y ∈ X according to the value of the opposite of their log-likelihood
to the distribution N (x,Σ1), − log(p(x,Σ1)(y)). We are interested in the mean of this
value for the k points in the ellipse. The mean is 16.9. We do the same for the figure
on the right, for the density N (x,Σ2). The mean is 5.0. Since 5.0 < 16.9, the point x
is assigned to the cell C∗2 . We define a cost at x by C(x) = 5.0. Almost all points are
orange in E1 whereas they are almost all red in E2. Thus, it was clear that x was to be
assigned to C∗2 .

Once all of the points x ∈ X are assigned to a cluster, the total cost for θ =
(µi,Σi)i∈[[1,m]] is given by Cθ = 1

|X|
∑
x∈X C(x). The optimal codebook θ∗ = (µ∗i ,Σ∗i )i∈[[1,m]]

is the minimizer of θ 7→ Cθ.

An additional interpretation of the m-PLM follows on from the expression:

P̃θi,h log(p(x,Σi)(.)) = log
(

1√
(2π)d det (Σi)

exp
(
−‖x−m(P̃θi,h)‖Σi

+ v(P̃θi,h)
2

))
(4)

with m(P̃θi,h) = P̃θi,h., the expectation of P̃θi,h and v(P̃θi,h) = P̃θi,h‖.−m(P̃θi,h)‖Σi
its

“variance” within the direction given by Σi.
According to Equation (4), −Ci : x 7→ Pθi,h(log(p(x,Σi)(.))) coincides with the

logarithm of the density of N (m(P̃θi,h),Σi) minus a term vi = 1
2v(P̃θi,h). The term vi is

large when the points in P̃θi,h are far from its mean m(P̃θi,h), in terms of the Mahalanobis
metric ‖ · ‖Σi

. As a consequence, any point x ∈ Rd will be assigned to a cluster i when
the density of N (m(P̃θi,h),Σi) at x is large, and P̃θi,h has a small ‖ · ‖Σi

-variance.

3.3 Some theoretical results – or performance of the method
In this section, we investigate the ability of the m-PLM to recover the sampling distri-
bution P , on some examples. According to Lemma 1, the mean of P can be properly
recovered from LmP,h. The following examples are evidences that the m-PLM allows to
recover the right covariance matrice, up to a normalization factor. As a consequence,
our method may be of interest to recover tangent spaces. We begin with the case of
Gaussian distributions.

Theorem 5.
When m = 1, if P = N (µ0,Σ0) with Σ0 positive definite, the optimal parameters are
given by µ∗ = µ0 and Σ∗ =

d+d2
N(0,Id),h(0)

d Σ0.

Proof. The proof of Theorem 5 is to be found in Section A.

The following example of a uniform distribution on the segment
[
− 1

2 ,
1
2
]
× {0} of R2

provides a situation for which the optimal matrix Σ∗ is degenerate (with determinant

0). The optimal matrix rewrites as Σ∗ =
(
σ∗2 0
0 0

)
, with σ∗2 the optimal σ2 for the

m-PLM associated to the uniform distribution on
[
− 1

2 ,
1
2
]
, on R and some α ∈ R.
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Example 6. When m = 1, if P is uniform on the segment
[
− 1

2 ,
1
2
]
× {0}, then the

optimal parameter θ∗ = (µ∗,Σ∗) is given by µ∗ = 0 and Σ∗ =
(
h2+1

12 0
0 0

)
.

Moreover, the value L1
P,h((x,Σ∗)) = P̃θ∗,h log(p(x,Σ∗)(.)) taken by the m-PLM at a

point x = (x1, x2) in R2 is −∞ when x2 6= 0 and +∞ when x2 = 0. Consequently, all of
the upper-level sets of the function x 7→ L1

P,h((x,Σ∗)) coincide with the line R× {0}.

Proof. The proof of Example 6 is to be found in Section B.

Example 6 Example of Theorem 5, for N (0, 1)

Figure 4: Optimal density N (µ∗,Σ∗) with the m-PLM method.

As a consequence, our method allows to recover polygonal lines.

Theorem 7.
Let M be a union of c segments (Si)i∈[[1,c]]. For every i ∈ [[1, c]], Si is the segment
centered at µi ∈ Rd with length Li > 0 and directed by a vector vi ∈ Rd with ‖vi‖ = 1.
That is, Si =

{
µi + tLivi | t ∈

[
− 1

2 ,
1
2
]}
. Set L =

∑m
i=1 Li. We assume that the vectors

vi are not collinear. If P is uniform on M and h ≤ mini∈[[1,m]] Li, then the optimal

parameters for the m-PLM are given by µ∗i = µi and Σ∗i = Pi

(
L2 h

2+
(

Li
L

)2

12 0
0 0

)
PTi

where Pi =
[
vi, v

⊥
i

]
for v⊥i , a vector with norm 1 orthogonal to vi.

The m-PLM x 7→ maxi∈[[1,m]] P̃θ∗i ,h log(p(x,Σ∗
i
)(.)) is equal to +∞ when x is in the

union of lines directed by the segments Si and to −∞ otherwise.

Proof. The proof of Theorem 7 is to be found in Section C.

When dealing with a polygonal line M, according to Theorem 7, the centers and
directions are recovered by our method. Nonetheless, the upper-level sets of the m-PLM
are unions of lines. Thus, approximating the set M with an upper-level set of the
function m-PLM would be terrible in terms of the Hausdorff metric. Nonetheless, when
M is a polygonal line, it is possible to recoverM from the Σ∗i s and the µ∗i s. Indeed, if
σ denotes the non-zero eigenvalue of Σ∗i , the eigenvector associated to σ is vi (or −vi).
Moreover, the P -mass of the cell C∗i associated to (µ∗i ,Σ∗i ) is Li

L , and L can be recovered

from σ∗ which is equal to L2 h
2+
(

Li
L

)2

12 . Thus, the segment Si can be recovered. See
Figure 5 for an illustration of this assertion on the example of Buchet et al. [8].
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Figure 5: Illustration of the reconstruction method for a 1000-sample (left), with
additionnal 100 points of clutter noise (right)

4 Algorithms
4.1 Algorithm to compute the m-PLM
The definition of the m-PLM is based on the computation of optimal centers µ∗ =
(µ∗1, µ∗2, . . . , µ∗m) in Rd (with a set of optimal covariance matrices Σ∗). In this sense, we can
relate it to the k-means problem [20], that consists in finding minimizers (c∗1, c∗2, . . . , c∗m)
of the k-means loss (c1, c2, . . . , cm) 7→ P mini∈[[1,m]] ‖.− ci‖2. As for k-means, computing
the optimal centers (i.e. computing the m-PLM) is not possible in practice, but it is
possible to approximate it with a Lloyd-type algorithm. Such algorithms are made of
mainly two steps. We consider m centers c1, c2, . . . , cm in the space Rd. The first step
consists in splitting the space Rd into m cells C1, C2, . . . , Cm according to the m centers.
A point is assigned to a cell Ci if it is closer to the center ci that to any other center, for
some metric or distortion. The second step consists in replacing, for every i, the center
ci by the barycentre of the points in the cell Ci.

When considering the Euclidean metric, we recover the initial Lloyd’s algorithm
[19]. This algorithm was designed to compute a local minimum for the k-means loss.
In our case, we consider a distortion of type ‖.‖Σi + ωi, where the matrix Σi for the
Mahalanobis metric ‖.‖Σi

depends on the center ci. The covariance matrix Σi is regularly
updated, accordingly to Lemma 8. The measure Q and Q′ in question correspond to the
uniform measure on the ellipsoid centered at ci in the direction Σi (i.e. the sublevel set of
x 7→ ‖x− ci‖Σi

) that contains k = nh points of X and the uniform measure on the points
in Ci ∩ X. The new covariance matrix is a kind of mean of the covariance of the points
in the ellipsoid and the covariance of the points in the cell. Moreover, the coefficient ωi
brings robustness. It plays a role of a variance term for the points in the ellipsoid, in the
direction Σi. It will be large if the initial Σi has either a large determinant or is not well
adapted to describe the points in the ellipsoid, see Section 3.2.

Lemma 8.
For every probability distributions Q and Q′ on Rd, a maximizer of

ψ : Σ 7→
∫ ∫

log(p(u,Σ)(v))dQ(u)dQ′(v)

is given by:

Σ =
[∫ ∫

(vi − ui)(vj − uj)dQ(u)dQ′(v)
]
i,j∈[[1,d]]

,

where u = (u1, u2, . . . , ud) and v = (v1, v2, . . . , vd) are vectors in Rd.

Proof. The proof of Lemma 8 is to be bound in Section D.
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The algorithm we propose to approximate µ∗ and Σ∗ is the following.

Algorithm 1: Algorithm
Input : S = (X_1,X_2 , . . . , X_n) an n−sample from P; k and m;

# Initialization
h = k/n ;
Sample mu_1, mu_2 , . . . ,mu_m from S without replacement ;
for i in 1 . .m:

Sigma_i = I_d ;
theta_i = (mu_i , Sigma_i ) ;

while the (mu_i , Sigma_i ) s vary make the f o l l ow i ng two s t ep s :
# Decomposition in cells.
for i in 1 . .m:

C_i = [ ] ;
c_i = P_{n , theta_i , h} . ;
x_i = P_{n , theta_i , h} sqnorm(.− c_i , Sigma ) ;
d_i = log ( det ( Sigma_i ) ) ;
w_i = x_i + d_i

for j in 1 . . n :
Add X_j to the C_i ( for i as smal l as p o s s i b l e ) s a t i s f y i n g

for a l l l in 1 . .m
sqnorm (X−c_i , Sigma_i ) + w_i <= sqnorm (X−c_l , Sigma_l ) + w_l ;

# Computation of the new centres and covariance matrices.
for i in 1 . .m:

mu_i = (1/ |C_i | )sum(X , X in C_i ) ;
theta2_i = (mu_i , Sigma_i ) ;
for t , l in 1 . . d :

for X=(X^1 ,X^ 2 , . . . ,X^d) in C_i :
cov (X, i , t , l ) = P_{n , theta2_i , h} (X^t−.^ t ) (X^ l −.^ l ) ;
[ Sigma_i ]_{t , l } = 1/ |C_i | sum( cov (X, i , t , l ) , X in C_i ) ;

theta_i = (mu_i , Sigma_i ) ;

Output : (mu_i)_{ i in 1 . .m} , ( Sigma_i )_{ i in 1 . .m} ,
(C_i)_{ i in 1 . .m}

In Algorithm 1, we use the notation and functions I_d for the identity matrix on Rd,
sqnorm(x,Sigma) the Sigma-Mahalanobis squared norm of x defined by sqnorm(x,Σ)
= ‖x‖Σ = xTΣ−1x. Also, P_{n,theta’_i,h}f(.) corresponds to the expectation of
f with respect to the distribution P̃n θ′

i
,h. In particular, P_{n,theta’_i,h} . stands

for the expectation of P̃n θ′
i
,h. Moreover, sum( f(X) , X in C_i) represents the sum∑

X∈Ci
f(X). And the i-th coordinate of any vector X in Rd is denoted by Xˆi.

Algorithm 1 allows to approximate the m-PLM, according to the following theorem.

Theorem 9.
Algorithm 1 converges to a local maximum of

(µ,Σ) ∈ (Rd × Ξ)m 7→ 1
n

n∑
j=1

max
i∈[[1,m]]

P̃n (µi,Σi),h log(p(Xj ,Σi)(.)).

Proof. The proof of Theorem 9 is to be found in Section E. Its proof follows on from
Lemma 8 and Lemma 1.
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4.2 Additional trimming step to wipe outliers out
We add some denoising parameter q, as an additional input for Algorithm 1, accordingly
to [9, 5]. Just before the step # Computation of the new centres and covariance
matrices., we add the following step :

Algorithm 2: Trimming step
# Trimming step
for j in 1 . . n :

l (X_j) = min( sqnorm (X_j − c_i , Sigma_i ) + w_i | i in 1 . .m) ;
Sort [ l (X_1) , l (X_2 ) , . . . , l (X_n) ] in a non−i n c r e a s i n g order ;
The sorted vec to r i s [ l (X__1) , l (X__2) , . . . l (X__n) ] ;
C_0 = [ ] ;
for i in 1 . . q :

Set j the index such that X__i i s in C_j ;
Remove X__i from C_j ;
Add X__i to C_0;

We aim at finding the best parameter q among a family of parameters vect_q. To
this aim, we may apply Algorithm 1 together with the trimming step in Algorithm 2
many times for the different parameters q in vect_q. The term Algorithm 2 stands for
the Algorithm 1 with the additional trimming step. Moreover, the function l is defined
in Algorithm 2.

Algorithm 3: Heuristic for the selection of q
Input : S = (X_1,X_2 , . . . , X_n) ; k , m, vect_q , Ntimes

best_cost = [ ]

for q in vect_q :
co s t = [ ]
for ntimes in 1 . . Ntimes :

Apply Algorithm 2 to the input (S , k , m, q )
co s t [ ntimes ] = sum( l (X_j) | X_j not in C_0)

best_cost [ q ] = min( co s t )

Plot best_cost as a func t i on o f q

Output : parameter q at which there i s a s l ope f a i l u r e
in the curve q −> best_cost ( q ) .

5 Some illustrations of the method
5.1 Recovering the shape M and its homology.
We have sampled 200 points from the uniform measure on a sideways with radii

√
2 and√

9
8 , convolved with a Gaussian N (0, σ2) with σ = 0.15. We have also added 100 points

of clutter noise. We have launched our algorithm with the parameters m = 30 centers,
k = 20 nearest neighbours (that is h = 0.067) and q = 200 points to be considered as
signal. In Figure 6 we have plotted the sub-level sets of the opposite of the function DTM
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of [14] (with h = 0.067), the opposite of the m-PDTM of [6] (with m = 30, h = 0.067
and q = 200) and our m-PLM. Just like for the DTM, the two holes of the m-PLM
are visible, and deep. An advantage of our method is thatM can be recovered as an
upper-level set of the m-PLM. Indeed, the top of the m-PLM is smooth, whereas the top
of the DTM is more dented. Moreover, just as the m-PDTM, the m-PLM representation
require the storage of only m centers (plus m covariance matrices), whereas the DTM
requires to store around

(
n
k

)
centers.

- DTM - m-PDTM m-PLM

Figure 6: Some distance functions for the sideways.

Persistent homology is a widespread tool in TDA to read the topological components
of a shape, it was introduced by Edelsbrunner et al. in 2002, [10]. A persistence
diagram associated to some function f stores the evolution of the homology (connected
components, holes, voids...) of its sub-level sets. We used the R package TDA [12] to
compute the persistent diagrams associated with the three distance functions in Figure
7: the DTM, the m-PDTM and minus the m-PLM. The connected components are
represented by black points and the holes by red triangles. For each point, the absciss
corresponds to the parameter b for which the component appears in f−1((−∞, b]) and
its ordinate, the parameter d for which the component disappears in f−1((−∞, d]).
The Figure 7 confirms that both methods perform in recovering the two holes of the
sideways (the two red triangles further from the diagonal) and the fact that the sideways
is connected (the single black point with ordinate +∞). We may note that for the
m-PLM, the red triangles are further from the diagonal than for other distance functions.
Moreover, their birth time is smaller. It confirms that the true homology ofM can be
recover from an upper-level set of the m-PLM.

DTM m-PDTM m-PLM

Figure 7: Persistent homology of three distance functions for the sideways.
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5.2 The degenerated case
In this section, we consider the example of Buchet et al. in [8]. We sample 1000 points
uniformly on a polygonal lineM made of 14 segments disrupted with Gaussian noise
N (0, σ2), for σ = 0.005. We add 633 points of clutter noise, cf Figure 8. We launch our
algorithm for the parameters m = 14, k = 50 and q = 1000. In Figure 8, we have colored
the points of the sample that were considered as outliers by our algorithm in grey. We
have also plotted some sublevel set of the m-PLM. Note that most of the outliers were
indeed considered as outliers by the algorithm, except from some points that lie on the
lines directed by the segments ofM. Thus our method allows to recover the true signal
for this example for which the method of Buchet et al. was inefficient. Their method is
free of parameter. Our is not, but it is possible to select the amount of points to keep q,
according to the slope heuristic in Algorithm 3. According to this heuristic in Figure
8, the choice q = 1000 is the best one, which corresponds to the true number of signal
points.

Sample of points Upper-level sets of the
m-PLM

−12

−10

−8

−6

400 800 1200 1600
noise_parameter

co
st

Slope heuristic

Figure 8: Sample of 1000 points of signal with additional 633 points of cluter noise.

The fact that clutter noise lying on the lines directed by the segments of M are
considered as signal points is a consequence of Theorem 7. Indeed, according to this
theorem, the upper-level sets of the m-PLM are unions of lines. This property is
illustrated by Figure 9, where we compared the m-PLM to the DTM and the m-PDTM.

- DTM - m-PDTM m-PLM

Figure 9: Sub-level sets for the example in [8]
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6 Conclusion and perspectives
In this paper, we have developed tools to approximate structuresM with a union of m
ellipsoids, from a n-sample (n possibly much larger than m) generated aroundM, in
presence of clutter noise and outliers. It raises the question of the persistence methods
for unions of ellipsoids; is it possible to adapt the TDA methods of Edelsbrunner et al.
in [11] to this non-Bregman context? Moreover, we hope that this paper will motivate
applications for (crossing)-manifold reconstruction tasks, extending for instance the work
of Boissonnat et al. in [3]. Such reconstruction method would be adapted to noisy
datasets, just like [1], but with the further advantage of small manifold storage cost.
Moreover, we think that dealing with ellipsoids instead of balls would help dealing with
intersection points for crossing manifolds.

On the other hand, we may note that for a uniform distribution on a polygonal line
M, our method turns out to be degenerated, accordingly to Theorem 7 and Figure 8. In
this context, the upper-level sets of the m-PLM are unions of lines, which is a terrible
approximation ofM in terms of the Hausdorff metric. In future work, we propose to
adapt this method to automatically select directions, so that this method perform well
for large dimension d but low intrinsic dimension for the support of P . Such a method
might face the remaining problem of the failure of our algorithm to automatically detect
some outliers in Figure 8; the ones located on the line extending the segments of the
original polygonal line.
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A Proof of Theorem 5
The proof of Theorem 5 is based on the following Lemma.
Lemma 10.
For all h ∈ [0, 1], the distance to the measure N (0, Id) at 0 for the metric ‖.‖Σ,
dN (0,1),h,‖.‖Σ is minimal for Σ = Id among all symmetric positive definite matrices
Σ with determinant 1. The matrix Id is the only minimizer when h ∈ (0, 1).

Proof. First recall that d2
N (0,1),h,‖.‖Σ(0) = 1

h

∫ h
l=0 δ

2
N (0,1),l,‖.‖Σ(0)dl with δN (0,1),l,‖.‖Σ(0)

the radius of the ‖ · ‖Σ-ball centered at 0 with mass l for N (0, 1). In order to prove
Lemma 10, it suffices to prove that for every l > 0, δN (0,1),l,‖.‖Σ(0) ≥ δN (0,1),l,‖.‖(0)
where ‖.‖ denotes the Euclidean norm. Thus, it suffices to prove that:

∀δ > 0, P
(

n∑
i=1

λiX
2
i < δ

)
≤ P

(
n∑
i=1

X2
i < δ

)
(5)

when
∏n
i=1 λi = 1 and the λis are positive, where the probability P is computed according

to X1, X2,. . . , Xn iid from N (0, 1). Indeed, the matrix Σ−1 can be diagonalised in an
orthogonal basis, and the λis correspond to its eigenvalues.

Equation (5) can be proved as follows. Set Bλ(δ) =
{
x1, x2, . . . , xn ∈ R |

∑n
i=1 λix

2
i < δ

}
,

and B(δ) =
{
x1, x2, . . . , xn ∈ R |

∑n
i=1 x

2
i < δ

}
. Since

∏n
i=1 λi = 1, after an integration

by substitution, it follows that Leb(Bλ(δ)) = Leb(B(δ)), where Leb denotes the Lebesgue
measure on Rd. Then, for all δ > 0, if f(δ) denotes the density of P = N (0, Id) at any
point x = (x1, x2, . . . , xn) such that

∑n
i=1 x

2
i = δ, it holds:

P (Bλ(δ)\B(δ)) ≥ f(δ)Leb(Bλ(δ)\B(δ))
= f(δ)Leb(B(δ)\Bλ(δ))
≥ P (B(δ)\Bλ(δ)),

which concludes.

The fact that µ∗ = µ0 is optimal is a direct consequence of Lemma 1.
For Σ = AAT ∈ Ξ positive definite, we may write∫

P̃(µ0,Σ),h log(p(u,Σ)(.))dP (u)

= −
∫
P̃(µ0,Σ),h

1
2‖u− .‖ΣdP (u)− 1

2 log(det(2πΣ))

= −P̃(µ0,Σ),h

(∫ 1
2‖µ0 − u‖ΣdP (u)− 1

2‖µ0 − .‖Σ
)
− 1

2 log(det(2πΣ))

= −1
2Tr(Σ

−1Σ0)− 1
2 P̃(µ0,Σ),h‖µ0 − .‖Σ −

1
2 log(det(2πΣ))

where

P̃(µ0,Σ),h‖µ0 − .‖Σ = d2
P,h,‖.‖Σ(µ0)

= d2
N (0,Id),h,‖.‖((A−1A0)T (A−1A0))−1

(0),
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since for every µ ∈ Rd,

dN (µ0,Σ0),h,‖.‖Σ(µ) = dN (0,Id),h,‖.‖((A−1A0)T (A−1A0)−1)−1 (A−1
0 (µ− µ0)). (6)

Set Σ̃ =
(
(A−1A0)T (A−1A0)

)−1, and Σ′ = Σ̃
det(Σ̃)

1
d
. Then it remains to minimise

Tr(Σ′−1)
det(Σ̃) 1

d

+ d2
N (0,Id),h,‖.‖Σ̃(0) + log(det(Σ))

= Tr(Σ′−1)
det(Σ̃) 1

d

+
d2
N (0,Id),h,‖.‖Σ′

(0)
det(Σ̃) 1

d

+ d log(det(Σ̃) 1
d ) + log(det(Σ0)).

Then the minimum is attained for det(Σ̃) 1
d =

Tr(Σ′−1)+d2
N(0,Id),h,‖.‖Σ′

(0)
d and according to

Lemma 10, d2
N (0,Id),h,‖.‖Σ′

(0) is minimal at Σ′ = Id. Moreover Tr(Σ′−1) is also minimal
for Σ′ = Id, according to the inequality of arithmetic and geometric means for the
eigenvalues of Σ′, which product equals to 1. Thus the minimum is unique and satisfies
Σ∗ =

d+d2
N(0,Id),h,‖.‖(0)

d Σ0.

B Proof of Example 6
Again, the fact that µ∗ = 0 is optimal is a direct consequence of Lemma 1. Now we aim
at finding the matrix Σ = Σ∗ that minimizes

L(Σ) =
∫
P̃(0,Σ),h‖u− .‖ΣdP (u) + log(det(2πΣ)).

Since 0 is the expectation of P , we may write

L(Σ) =
∫
‖u‖ΣdP (u) + P̃(0,Σ),h‖.‖Σ + log(det(2πΣ)).

We denote by σ the (1, 1)-coefficient of the matrix Σ−1. Then,
∫
‖u‖ΣdP (u) = σ

12
and

P̃(0,Σ),h‖.‖Σ = 1
h

∫ h
2

u=−h
2

σu2du

= σ
h2

12 .

It remains to minimize the function

Σ 7→ σ

12
(
h2 + 1

)
+ log(det(Σ)).

Denote by λ1 and λ2 the eigenvalues of Σ. We can write Σ = PDPT for some
orthogonal matrix P and D the diagonal matrix with coefficients λ1 and λ2. Then, σ is
the top-left coefficient of the matrix PD−1PT . As a consequence, σ = 1

λ1
p2

1,1 + 1
λ2
p2

1,2.
With p2

1,1 + p2
1,2 = 1 since P is orthogonal. Thus, the problem boils down to maximize

the function C
(

1
λ1
α+ 1

λ2
(1− α)

)
+ log(λ1) + log(λ2) in α ∈ [0, 1] and non negative λ1

and λ2, with C = 1
12
(
h2 + 1

)
.

When λ1 and λ2 are different, then optimal α is 0 if λ1 < λ2 and 1 otherwise.
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The optimum is attained for α = 1, λ2 → 0 and λ1 = C, with a total cost going to

−∞. Then, Σ =
(
C 0
0 λ2

)
, with λ2 that goes to 0.

Now we can compute the value L1
P,h((x,Σ∗)) taken by the m-PLM at a point

x = (x1, x2) in R2:

L1
P,h((x,Σ∗)) = P̃θ∗,h log(p(x,Σ∗)(.))

= −1
2
(
‖x‖Σ∗ + P̃θ∗,h‖.‖Σ∗ + log(det(2πΣ∗))

)
= lim
λ2→0

−1
2

(
12x2

1
1 + h2 + x2

2
λ2

+ h2

1 + h2 + 2 log(2π) + log
(

1 + h2

12

)
+ log(λ2)

)
.

As a consequence, L1
P,h((x,Σ∗)) = −∞ when x2 6= 0 and L1

P,h((x,Σ∗)) = +∞ when
x2 = 0. Thus, all of the upper-level sets of the function x 7→ L1

P,h((x,Σ∗)) coincide with
the line R× {0}.

C Proof of Theorem 7
For simplicity, we assume that L =

∑k
i=1 Li = 1.

We may write for θi = (µi,Σi) with Σi any covariance matrix and µi the mean of
the segment Si,

−2
∫
u∈Rd

m∑
i=1

1Si
(u)P̃θi,h log(p(u,Σi)(.))dP (u)

=
m∑
i=1

Li

∫ 1
2

t=− 1
2

log(det(2πΣi)) + P̃θi,h‖ · −µi − tLivi‖Σi
dt

=
m∑
i=1

Li

∫ 1
2

t=− 1
2

(
log(det(2πΣi)) +

∫ 1
2

u=− 1
2

‖uhvi − tLivi‖Σi
du
)

dt

=
m∑
i=1

Li

(
log(det(2πΣi)) + h2‖vi‖Σi

12 + L2
i ‖vi‖Σi

12

)

We optimize in Σi just as for the proof of Example 6, and get that Σ∗i = Pi

(
h2+L2

i

12 0
0 0

)
PTi

with Pi the matrix with first column vi and second column, a vector v⊥i with norm 1,
orthogonal to vi.

Just as for Example 6, we get that P̃(µi,Σ∗i ),h log(p(x,Σ∗
i
)(.)) is +∞ when x lies in the

line directed by segment Si, and −∞ when it is not. Then, the partition of Rd made of
the lines directed by the segments Si is optimal. Indeed, if we consider another partition,
then some cluster will be made of elements from two segments, S1 and S2 for instance.
Then, the optimal Σ will have a finite determinant. Consequently, P̃(µ,Σ),h log(p(x,Σ)(.))
will be finite for every x in the cluster, thus less than +∞, and not optimal.

When each cluster is a segment Si, then, the optimal mean is µi, the mean of P
restricted to Si (accordingly to Lemma 1), and the optimal Σi is Σ∗i . Moreover, we get
that

−2
∫
u∈Rd

max
i∈[[1,m]]

P̃θ∗
i
,h log(p(u,Σ∗

i
)(.))dP (u)

= −2
∫
u∈Rd

m∑
i=1

1Si
(u)P̃θ∗

i
,h log(p(u,Σ∗

i
)(.))dP (u) = +∞.
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D Proof of Lemma 8
We consider the function ψ defined by

ψ(Σ) =
∫ ∫

log(p(u,Σ)(v))dQ(u)dQ′(v)

=
∫ ∫ 1

2 (−‖v − u‖Σ − log(det(2πΣ))) dQ(u)dQ′(v).

The matrix Σ is symmetric with coefficients in R, thus diagonalisable in an orthogonal
basis. Thus, we can write Σ = PDP−1 = PDPT for some diagonal matrix D with
coefficients λi on the diagonal. We use the notation P = [pi,j ]i,j . Then,

−ψ(Σ) =
∫ ∫ 1

2
(
(v − u)TPD−1PT (v − u) + log((2π)d det(PDP−1))

)
dQ(u)dQ′(v)

= 1
2

∫ ∫ log(2π)d +
d∑

i,j=1
(vi − ui)(vj − uj)

(
d∑
k=1

pj,kpi,kλ
−1
k

)
+

d∑
k=1

log(λk)

 dQ(u)dQ′(v)

= 1
2

log(2π)d +
d∑
k=1

λ−1
k

∫ ∫ d∑
i,j=1

(vi − ui)(vj − uj)pj,kpi,kdQ(u)dQ′(v)

+ log(λk)


Thus, ψ(Σ) is maximal when λk = λ∗k, where:

λ∗k =
∫ ∫ d∑

i,j=1
(vi − ui)(vj − uj)pj,kpi,kdQ(u)dQ′(v) = [PTAP ]k,k,

where A is defined by:

A =
[∫ ∫

(vi − ui)(vj − uj)dQ(u)dQ′(v)
]
i,j

.

Thus, it remains to minimise the function

ψ̃ : P 7→ Tr(log(PTAP )) =
d∑
k=1

log

 d∑
i,j=1

[∫ ∫
(vi − ui)(vj − uj)dQ(u)dQ′(v)

]
pj,kpi,k

 .

Again, we can diagonalise A in an orthonormal basis: A = P0D0P
T
0 = P0D0P

−1
0 . By

setting P̃ = PTP0, we get

ψ̃(P0P̃
−1) = Tr log(P̃D0P̃

T )

=
d∑
l=1

log(
d∑
k=1

p̃2
l,kλ

0
k)

≥
d∑
l=1

d∑
k=1

p̃2
l,k log(λ0

k)

=
d∑
k=1

log(λ0
k)

d∑
l=1

p̃2
l,k

= Tr log[IdD0I
T
d ].

We used concavity of the function log, and the fact that P̃ is orthogonal, thus,
∑d
l=1 p̃

2
l,k =∑d

k=1 p̃
2
l,k = 1. Thus, we can choose P̃ = Id, that is, P = P0. Moreover, λ∗k =

[PT0 AP0]k,k = λ0
k. Thus, Σ = P0D0P

T
0 = A is a minimizer of ψ.
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E Proof of Theorem 9
For every µ = (µ1, µ2, . . . µk) ∈

(
Rd
)m and Σ = (Σ1,Σ2, . . .Σm) ∈ Ξm, we note θi =

(µi,Σi), Ci = C(θi) the set of elementsX ∈ X such that for every j, P̃n θi,h log(p(X,Σi)(.)) ≥
P̃n θj ,h log(p(X,Σj)(.)). Moreover, we set θ′i =

(
1
|Ci|
∑
X∈Ci

X,Σi
)
,

Σ′i ∈ arg max
{

1
|Ci|

∑
X∈Ci

P̃n θ′
i
,h log(p(X,Σ)(.)) | Σ ∈ X

}
,

an expression for Σ′i is given by Lemma 8 and θ′′i =
(

1
|Ci|
∑
X∈Ci

X,Σ′i
)
.Then,

1
n

∑
X∈X

max
i∈[[1,m]]

P̃n θi,h log(p(X,Σi)(.))

≤ 1
n

m∑
i=1

∑
X∈Ci

P̃n θ′i,h log(p(X,Σi)(.))

≤ 1
n

m∑
i=1

∑
X∈Ci

P̃n θ′i,h log(p(X,Σ′i)(.))

≤ 1
n

m∑
i=1

∑
X∈Ci

P̃n θ′′i,h log(p(X,Σ′i)(.))

≤ 1
n

∑
X∈X

max
i∈[[1,m]]

P̃n θ′′i,h log(p(X,Σ′i)(.)).

We used Lemma 1.
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