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Abstract

Spectral methods using Fast Fourier Transform (FFT) algorithms have recently

seen a surge in interest in the mechanics of materials community. The present con-

tribution addresses the critical question of determining accurate local mechanical

fields using FFT methods without artificial fluctuations arising from materials and

defects induced discontinuities. Precisely, the present work introduces a numerical

approach based on intrinsic discrete Fourier transforms for the simultaneous treat-

ment of material discontinuities arising from the presence of dislocations and from

elastic stiffness heterogeneities. To this end, the elasto-static equations of the field

dislocation mechanics theory for periodic heterogeneous materials are numerically

solved with FFT in the case of dislocations in proximity of inclusions of varying stiff-

ness. An optimal intrinsic discrete Fourier transform method is sought based on two

distinct schemes. A centered finite difference scheme for differential rules are used for
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numerically solving the Poisson-type equation in the Fourier space, while centered

finite differences on a rotated grid is chosen for the computation of the modified

Fourier-Green’s operator associated with the Lippmann-Schwinger-type equation.

By comparing different methods with analytical solutions for an edge dislocation

in a composite material, it is found that the present spectral method is accurate,

devoid of any numerical oscillation, and efficient even for an infinite phase elastic

contrast like a hole embedded in a matrix containing a dislocation. The present FFT

method is then used to simulate physical cases such as the elastic fields of dislocation

dipoles located near the matrix/inclusion interface in a 2D composite material and

the ones due to dislocation loop distributions surrounding cubic inclusions in 3D

composite material. In these configurations, the spectral method allows investigat-

ing accurately the elastic interactions and image stresses due to dislocation fields in

the presence of elastic inhomogeneities.

Keywords: dislocation mechanics; heterogeneous media; elastic fields; spectral

method; FFT; numerical algorithms

1 Introduction

The elastic theory of continuously distributed dislocations initiated by Kröner [1]

and others [2,3,4] uses the Nye’s dislocation density tensor [5] and provides a rigor-

ous basis for the description of the incompatibility of the elastic strain due to the

presence of dislocations in crystalline media. This theory was recently revisited by

Acharya and co-workers through the so-called Field Dislocation Mechanics (FDM)

model [6]. The finite element formulation of the FDM theory and its phenomeno-

logical mesoscopic implementation (called “PMFDM”) were presented in [7] and [8],

respectively. One of the key features of the FDM model in contrast with classic

1 Corresponding author.
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micromechanical methods based on eigenstrain fields [9,10] is the Stokes-Helmholtz

decomposition of the elastic distortion into incompatible and compatible parts. The

incompatible part is related to the presence of a non-zero dislocation density within

the body, while the compatible part is needed to ensure balance of the stress field and

boundary conditions. Such a decomposition allows determining a unique solution for

the elastic fields associated with a prescribed dislocation density [6,7].

Due to computational efficiency as compared to the usual finite element method,

spectral methods taking advantage of the Fast Fourier Transform algorithm (see

e.g. [11]) were recently developed to numerically solve the static FDM theory [12,13]

and to solve the dislocation density transport equation [14]. For single dislocations,

the results reported by Berbenni et al. [13] were successively compared to analytical

solutions and finite element simulations in terms of accuracy of elastic fields near the

dislocation core in linear homogeneous and isotropic elasticity. The equations for the

incompatible elastic distortions and for the balance of linear momentum are solved in

the Fourier space, while the resulting elastic fields are obtained in the real space by

using the inverse Fourier transform. An extension of this spectral approach to field

dislocation and generalized disclination mechanics was also proposed in [13]. To our

knowledge, the numerical resolution by FFT of the elasto-static equations of FDM

within a general heterogeneous linear elastic framework has not yet been explored

so far, except for particular microstructures like infinite bicrystals [12] for which

the analytical piecewise uniform solution fields in each crystal can be obtained, see

e.g. [15,16]. For more complex microstructures involving dislocation/inhomogeneity

interactions, the difficulty lies in the numerical resolution of the balance of linear

momentum (discarding body force and inertial effects), which requires solving an

implicit Lippmann-Schwinger integral equation with incompatible elastic fields aris-

ing from the presence of polar dislocation densities. Another way is to make use of

FFT within a phase field micro-elasticity approach with inhomogeneities solved by

an iterative-perturbation scheme [?]. One notes that alternate methods, also relying
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on the use of FFT, have been proposed to quantify the stress fields associated with

the presence of dislocations. For example, the phase-field methods for dislocations

[17,18,19,?] or Discrete Dislocation Dynamics methods [20,21], where dislocations

are described as eigenstrain fields [9,10].

The Lippmann-Schwinger integral equation for periodic heterogeneous elastic or

elasto-plastic media was solved through computationally efficient schemes based on

the Fast Fourier Transform (FFT) technique to determine the effective and local

fields in polycrystals and composite materials [22,23,24,25,26,27,28,29,30,31,32,33].

Indeed, the FFT numerical scheme allows solving the implicit Lippmann-Schwinger

integral equation of the periodic boundary-value problems, by the means of Green’s

function of a well-chosen reference medium, using different iterative schemes in the

Fourier space, while the resulting elastic fields are obtained in the real space by

the inverse Fourier transform. Well-known and pioneering iterative schemes are the

“basic scheme" and the “accelerated scheme" as reported in [24,25,27,29]. The con-

vergence of these two schemes is based on fulfillment of stress equilibrium in the

Fourier space [24,27] and strongly depends on the elasticity moduli contrast and on

the choice of the homogeneous reference medium. It was observed that the “basic

scheme" and the “accelerated scheme" generally fail to converge when the material

contains voids or too rigid inclusions. Therefore, in order to overcome this difficulty,

Michel et al. [28] introduced an iterative method based on “augmented Lagrangians"

that is more efficient when the composite exhibits a strong mechanical contrast be-

tween phases. More recently, new schemes like the “conjugate gradient” method

[34,35] or the “polarization-based scheme" [36] were proposed to solve the linear

elastic heterogeneous problem. Some comparisons between the “accelerated", “aug-

mented Lagrangians" and “polarization-based” schemes were provided in [37] with

a discussion on the different convergence criteria to use for each scheme. It it was

shown that the “accelerated" and the “augmented Lagrangians" schemes are partic-

ular cases of the “polarization-based” scheme. The conjugate gradient method was
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later adapted to non-linear elastic behavior using the Newton-Raphson algorithm

[38]. Efficient fixed-point and Newton-Krylov solvers for FFT-based homogenization

of elasticity at finite strains (hyperelasticity) were recently developed by Kabel and

co-workers [39,40]. Furthermore, the Lippmann-Schwinger formulation for arbitrary

mixed boundary conditions solved by FFT-based homogenization at finite strains

were also reported [40].

Another important issue inherent to Fourier-based numerical methods is to predict

accurate local fields near materials discontinuities like phase/grain boundaries, in-

clusion corners, or materials defects by preventing from the emergence of spurious

oscillations. To control and remove this numerical artifact inherent to spectral meth-

ods, different non-classical methods for the computation of partial spatial derivatives

of first and second orders have been proposed. For example, “intrinsic" discrete

Fourier transforms (DFT) approximation, based on 9-pixel centered finite difference

formulas, were used to compute partial derivatives in the Fourier space to solve the

elasto-static field equations of linear heterogeneous solids [23,26]. Later, this method

was successfully used to solve the elasto-static fields of FDM in a linear homoge-

neous isotropic elastic medium with incompatibilities [13], in a couple stress medium

with generalized disclinations [41], and, in the elasto-viscoplastic FFT algorithm for

polycrystals with non local plasticity [42] or with a couple stress elasto-viscoplastic

formulation [43]. It was observed that this “intrinsic” DFT technique allows avoiding

spurious oscillations that occur with the use of the classic FFT approximation ini-

tially proposed in [22,24], especially when narrow defect cores, possibly assigned on a

single pixel, are considered [41]. Other “intrinsic” discrete Fourier transforms (DFT)

schemes based on forward and backward finite differences were first introduced by

Willot and Pellegrini [44] for elastic-perfectly plastic porous media, and, modified

discrete Green operators for heterogeneous conductivity problems were reported in

[45]. A recent scheme for the computation of partial derivatives, based on centered

finite differences on a rotated grid, was proposed by Willot [46] to compute the
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modified discrete Green operator. Such a scheme, referred to as “rotated scheme”,

was shown to be efficient to give accurate local fields, devoid of spurious oscillations

when computing the local stress/strain fields in very crude situations, such as cubic

inclusions or voids embedded in a matrix phase. Another very recent finite difference

discretization scheme performed on a staggered grid was developed by Schneider and

co-workers [47]. This refined scheme combined with DFT was also efficiently used

for three dimensional porous materials to give solutions devoid of oscillations com-

pared with the solutions obtained from the classic Moulinec-Suquet’s discretization.

Furthermore, a new discretization method based on linear hexaedral finite elements

on Cartesian grids adapted for the basic scheme and the conjugate gradient method

was reported [48]. Interestingly, an equivalence has been demonstrated between the

“rotated scheme” and the use of hexahedral finite elements with reduced integration.

The present contribution addresses the critical question of determining accurate lo-

cal mechanical fields using FFT methods without artificial fluctuations arising from

materials and defects induced discontinuities like dislocations interacting with elas-

tic heterogeneities such as inclusions or pores. Precisely, the present work introduces

a numerical approach based on intrinsic discrete Fourier transforms for the simulta-

neous treatment of material discontinuities arising from the presence of dislocations

and from elastic stiffness heterogeneities. Motivated by the accuracy and efficiency

of the existing FFT-based iterative schemes for heterogeneous elastic materials, we

propose in this paper to study the interactions between dislocations and elastic het-

erogeneities. A special attention will be paid to the control of spurious oscillations

inherent to numerical spectral methods regarding local field solutions by comparing

different discrete Fourier transforms (DFT) schemes for the approximation of spatial

derivatives in the field equations. In particular, we will adopt a DFT scheme, based

on 9-pixel centered finite differences for the resolution of the incompatible elastic

distortion, and based on the “rotated scheme” for the resolution of the Lippmann-

Schwinger equation with polar dislocation densities to determine the compatible
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elastic strain.

The paper is organized as follows. Notations are introduced in section 2. The elasto-

static field equations of continuum dislocation mechanics (static FDM equations)

in small strains are introduced in Section 3 as well as the Lippmann-Schwinger

integral equation with incompatibilities. For convenience, the complete set of field

equations of the FDM theory including the time evolutions of dislocation density

and plastic distortion tensors is recalled in Appendix A. In Section 4, the static

field equations are solved using the FFT algorithm with prescribed macroscopic

uniform stress over the periodic unit cell. More specifically, general three-dimensional

solutions for incompatible and compatible elastic fields in the presence of dislocations

and elastic heterogeneities are derived to compute strain/stress fields. The FFT-

based numerical algorithm is also introduced for the resolution of the Poisson-type

equation and of the Lippmann-Schwinger integral equation with incompatibilities.

In Section 4, the different numerical approximations for the treatment of partial

spatial derivatives in the Fourier space are introduced using DFT in the case of

general three-dimensional problems. Section 5 is dedicated to the comparison of the

different approaches to determine the ideal combination of DFT schemes leading to

the best accuracy near material discontinuities. Some comparisons will be performed

with analytical solutions to simulate the interaction between an edge dislocation and

a circular inhomogeneity [49,50]. In section 5, the chosen numerical approach is also

applied to simulate different physical cases such as dislocation dipoles located near

the matrix/inclusion interface or dislocation loop distributions surrounding cubic

inclusions in a 3D two-phase composite material.
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2 Notations

A bold symbol denotes a tensor or a vector. The symmetric part of tensor A is

denoted Asym. Its skew-symmetric part is Askew and its transpose is denoted by At.

The tensor A·B, with rectangular Cartesian components AikBkj, results from the dot

product of tensors A and B, and A⊗B is their tensorial product, with components

AijBkl. The vector A ·V, with rectangular Cartesian components AijVj, results from

the dot product of tensor A and vector V. A symbol “:” represents the trace inner

product of the two second order tensors A : B = AijBji, in rectangular Cartesian

components, or the product of a higher order tensor with a second order tensor,

e.g., A : B = AijklBlk. The div and curl operations for second order tensors are

defined row by row, in analogy with the vectorial case. For any base vector ei of the

reference frame:

(div A)t · ei = div(At · ei),

(curl A)t · ei = curl(At · ei).

In rectangular Cartesian components, the cross product “×” of a second-order tensor

A and a vector V, the div and curl of A are given by:

(A×V)ij = ejklAikVl,

(divA)i =Aij,j,

(curl A)ij = ejklAil,k,

where ejkl is a component of the third-order alternating Levi-Civita tensor X and

the spatial derivative with respect to a Cartesian coordinate is indicated by a comma

followed by the component index.
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3 Static Fied Dislocation Mechanics (FDM) for periodic media

3.1 Dislocation density tensor and incompatibility

The theory is developed in the small strain framework (i.e. linear kinematics). Let

us assume that the elastic distortion tensor Ue is a periodic field within a unit

cell V . Let us define a closed circuit C delimiting a surface S of unit normal n so

that dislocation lines cross the surface S. In the case where the resulting Burgers

vector of all threading dislocation lines is non-zero, there is lattice incompatibility,

in the sense that the displacement field becomes multi-valued. A measure of this

incompatibility is precisely the net Burgers vector b, which can be measured by

integrating the elastic distortion along the circuit C:

b =
∫
C

Ue · dr. (1)

The above equation is a point-wise measure of lattice incompatibility. The continuous

density that is associated with incompatible elastic distortion is the Nye’s dislocation

tensor α, also referred to as “geometrically necessary”, “polar” or “excess” dislocation

density tensor in the literature. In a Cartesian reference frame (e1, e2, e3), its com-

ponent αij = bi tj provides the net Burgers vector in direction ei per unit surface of

S, bi, and the line direction along ej, tj. With this definition, the net Burgers vector

can be expressed as:

b =
∫
S
α · ndS , (2)

where n is the normal to the surface S delimited by the circuit C. Applying now

the Stokes’s theorem to Eq. (1) and comparing with Eq. (2) yields the well-known

incompatibility equation [1]:
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curlUe = α. (3)

The above equation means that the presence a dislocation density is associated with

an incompatible (non-gradient) part of the elastic distortion, whose curl is non-zero.

From Eq. (3), there follows immediately a conservation law:

div α = 0. (4)

This equation means that dislocation lines cannot terminate within the body. Here,

let us now assume that the dislocation density α is a periodic field over the unit cell

V . In this case, the field equations were introduced in [12,13]. The aim of this paper

is to determine the elastic fields arising from the presence of dislocation density α

coupled with elastic heterogeneities in periodic media.

3.2 Poisson-type equation for incompatible elastic distortion

The elastic distortion tensor can be decomposed according to the Stokes-Helmholtz

orthogonal decomposition. Indeed, there exists a unique periodic tensor field χ (up

to a constant second order tensor) and a unique periodic vector field w (up to a

constant vector) such that Ue could be written as the sum of the rotational of χ

and the gradient of w:

Ue = Ue,⊥ + Ue,‖ = curl χ+ grad w, (5)

where, Ue,⊥ = curl χ and Ue,‖ = grad w represent respectively the incompatible

and compatible parts of Ue. By applying this decomposition, since curl grad w = 0,

Eq. (3) yields:

α = curl Ue,⊥, (6)
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and since div curl χ = 0:

div Ue,⊥ = 0. (7)

Invoking now the identity: curl curl Ue,⊥= grad div Ue,⊥ − div grad Ue,⊥, and

using Eq. (7), the incompatible elastic distortion is solution of the following Poisson-

type equation:

div grad Ue,⊥ = MMMUe,⊥ = −curl α. (8)

In component form, Eq. (8) reads

U e,⊥
ij,kk = −ejklαil,k. (9)

Eq. (8) will be transformed in the Fourier space in section 4 and numerically solved

using discrete Fourier transforms together with the FFT algorithm in section 5. Note

that if the incompatible elastic distortion Ue,⊥ is strictly related to a given distri-

bution of the dislocation density α within the periodic unit cell V , the compatible

elastic distortion Ue,‖ is not involved in this incompatibility problem. As shown be-

low, the compatible part serves to satisfy the balance of the stress field as well as

periodic boundary conditions, in the presence of dislocation densities.

3.3 Lippmann-Schwinger equation for compatible elastic strain

In the absence of body force and inertia effects, an overall uniform stress T is applied

as traction boundary conditions. This corresponds to the spatial average of stress

〈T〉 over the unit cell V using spatial average theorem. For any periodic stress field

T, the stress equilibrium equation reads:

div T = 0 in V . (10)
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In the following, we adopt a linear elastic constitutive law (Hooke’s law) of the form:

T = C : Ue,sym = C : εe, (11)

where C is the fourth order tensor of spatially heterogeneous elastic moduli (with

classic symmetries for components: Cijkl = Cjikl = Cijlk = Cklij) and εe is the elastic

strain tensor, i.e. the symmetric part of the elastic distortion tensor Ue.

Using Eqs. (5) and (11), the balance of linear momentum (Eq. (10)) can be rewritten

in the form of a heterogeneous Navier-type equation in V :

div C : εe,‖ + f⊥ = 0, (12)

where Ue,‖ = grad w, and the fictitious body force density f⊥ = div C : εe,⊥

reflects the incompatibility arising from the presence of dislocations. Assuming a

homogeneous reference medium with linear elastic moduli C0, such that C(x) =

C0 + δC(x) (x being a position vector in the unit cell), and using Ue,‖ = grad w,

Eq. (12) yields, in component form:

C0
ijklwl,kj + τij,j = 0, (13)

where the stress polarization tensor τ is defined as follows:

τ = C : εe,⊥ + δC : grad w, (14)

where the first term is T⊥ = C : εe,⊥ and represents the stress due to incompatible

elastic strains obtained from the resolution of the incompatibility problem only,

see Eq. (8) or Eq. (9). Since τ contains the unknown compatible elastic strain εe,‖

through the term δC : grad w, Eq. (13) is to be solved through an integral equation

as described now. Introducing the Green’s function technique, Eq. (13) can be solved
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in the form of an integral Lippmann-Schwinger equation for the unknown compatible

elastic strain εe,‖, with the additional presence of an incompatible term due to polar

dislocation densities:

εe,‖(x) = 〈εe,‖〉 −
(
Γ0 ? τ

)
(x), (15)

where ? denotes spatial convolution product and Γ0 is the modified Green tensor

associated with the homogeneous reference elastic medium C0. 〈εe,‖〉 represents the

spatial average of εe,‖ over the unit cell V . As shown in Appendix B, 〈εe,‖〉 can also be

written as 〈εe,‖〉 = C0−1 :
(
T− 〈τ 〉

)
where 〈τ 〉 is the averaged stress polarization

over the unit cell V . Let us note that Eq. (15) is consistent with the Lippmann-

Schwinger formulation recently derived by Kabel et al. [40] with mixed boundary

conditions in the case where only traction boundary conditions are prescribed. Then,

the field solution of Eq. (15) is given by series expansion [12] as:

εe,‖(x) =
+∞∑
n=0

[(
−Γ0 ? δC

)
(x)

]n
:
[
〈εe,‖〉 −

(
Γ0 ?T⊥

)
(x)

]
. (16)

The integral equation (Eq. (15)) and the traction boundary conditions set an elas-

ticity problem for the unknown field εe,‖ = (grad w)sym. This equation is similar to

the classic integral Lippmann-Schwinger equation for elastic composites. The latter

was generally solved through a computationally efficient numerical method based on

the Fast Fourier Transform (FFT) using different possible iterative schemes. In our

work, we will use in the next section a fixed-point algorithm (the so-called “basic

scheme") as in the pioneering work by Moulinec and Suquet [22] to solve Eq. (16)

except for the boundary conditions expressed in terms of tractions. Two novelties are

highlighted: first, the Poisson-type equation (Eq. (8)) for Ue,⊥ is solved by FFT from

a prescribed dislocation density tensor α. This makes the numerical scheme different

from thermoelastic-like and eigenstrain-like problems as solved by Vinogradov and

Milton [29] and Anglin et al. [33], respectively. Second, the series expansion (Eq.

(16)) contains an extra term which is a convolution product between the modified
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Green tensor Γ0 and T⊥. Therefore, the numerical FFT algorithm proposed in the

next section needs two different procedures which are the calculation of Ue,⊥ and

the iterative resolution of εe,‖, respectively.

4 Spectral approach and numerical algorithm

4.1 Fourier transform-based method

The Poisson-type equation (Eqs. (8), (9)) and the series expansion (Eq. (16)) will

be solved in the following by using the Fourier Transform method. Indeed, as shown

below, the incompatible field Ue,⊥ and the compatible one εe,‖ can be solved in the

Fourier space and the obtained elastic fields are finally computed in the real space

by using the inverse Fourier Transform.

In the Fourier space, let ξ be the Fourier vector of magnitude ξ =
√
ξ · ξ and with

components ξi in Cartesian coordinates. The complex imaginary number is denoted

by i and defined as i =
√
−1. Let α̃(ξ), Ũe,⊥(ξ), be the Fourier transforms of α(x)

and Ue,⊥(x). Then, the Poisson-type equation is solved using the differentiation

theorem in Fourier space. Using component notations, Eq. (9) writes in the Fourier

space [12,13]:

Ũ e,⊥
ij (ξ) = i

ξk
ξ2
ejklα̃il(ξ) ∀ξ 6= 0,

Ũ e,⊥
ij (0) = 0.

(17)

Let ε̃e,‖(ξ) and Γ̃0(ξ) be, respectively, the continuous Fourier transform of εe,‖(x)

and Γ0(x). The Fourier transform of the integral Lippmann-Schwinger-type equation

(Eq. (15)) yields:

ε̃e,‖(ξ) = −Γ̃0(ξ) : τ̃ (ξ) ∀ξ 6= 0,

ε̃e,‖(0) = 〈εe,‖〉.
(18)
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The Fourier Transform of the modified Green operator Γ0 can be calculated in

Fourier space for anisotropic materials [10]. In the particular case of isotropic elas-

ticity, the components of Γ̃0(ξ) are given in [24]:

Γ̃0
ijkl(ξ) =

1

4µ0ξ2
(δikξjξl + δilξjξk + δjkξiξl + δjlξiξk)

− (λ0 + µ0)

µ0 (λ0 + 2µ0)

ξiξjξkξl
ξ4

.

(19)

4.2 FFT algorithm

The direct and the inverse Fourier transforms are computed by using the Fast Fourier

Transform (FFT) algorithm. The unit cell V is assumed to have spatial dimensions

T1, T2 and T3 in the x1, x2 and x3 directions, respectively, and is discretized by

a regular rectangular grid with N1 × N2 × N3 voxels with position vector x =

(i1δ1, i2δ2, i3δ3), where i1 = 0→ N1−1, i2 = 0→ N2−1, i3 = 0→ N3−1 and δ1, δ2,

δ3 are the voxel sizes in the x1, x2 and x3 directions. The total number of FFT grid

points is Ntot = N1 ×N2 ×N3 and δ = δ1 = δ2 = δ3. The discrete Fourier transform

(DFT) of a given spatial function f is f̃ = FFT (f). Its inverse Fourier transform is

f = FFT−1
(
f̃
)
.

The numerical algorithm used to solve the balanced elastic fields associated with

any dislocation density distribution within periodic media is reported in the present

section. It is constituted of two major procedures: (i) the initialization of the iterative

scheme corresponds to the initialization of εe,‖ for a macroscopic imposed stress T

and the computation of the incompatible elastic distortion through the resolution of

the Poisson-type equation using Eq. (17) in the Fourier space, and, (ii) the global

iterative procedure based on the basic scheme (fixed-point algorithm) to solve Eq.

(16), where εe,‖ is calculated after convergence is reached.

Hence, the algorithm (see Algorithm 1) works as follows: Once, the dislocation den-
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sity α(x) is prescribed in the real space, the initialization procedure begins with the

computation of α̃(ξ) in the Fourier space by using direct FFT (step 1). Then, Eq.

(17) is used to obtain Ũe,⊥(ξ) in the Fourier space (step 2), and, Ue,⊥(x) in real

space by the use of the inverse FFT (step 3). The initial compatible elastic strain εe,‖0

is taken as the homogeneous elastic solution C0−1 : T (step 4). The initialization

procedure is concluded by the computation of the initial stress field T0(x) set to

C(x) :
(
ε
e,‖
0 + εe,⊥(x)

)
(step 5), where εe,⊥ is the symmetric part of Ue,⊥.

In the global iterative loop at iteration (n+1), the stress field known from iteration

(n) denoted Tn(x), is cast in the Fourier space by direct FFT to obtain T̃n(ξ) (step

6), and is used to test the convergence criterion based on stress equilibrium in the

Fourier space (step 7). If the convergence is reached then the iterative procedure is

stopped, else the polarization stress tensor τ̃n(ξ) is computed in the Fourier space

by calculating the FFT of C0 : εe,‖n , and subtracting it from T̃n(ξ) (step 8). The

compatible elastic strain is computed in the Fourier space at step 9 using Eq. (18) to

obtain ε̃e,‖n+1(ξ) (∀ξ 6= 0) and ε̃e,‖n+1(0) is taken as 〈εe,‖〉 from iteration (n) considering

traction boundary conditions (see also Appendix B). Then, the compatible elastic

strain is given in the real space from inverse FFT (step 10). The latter is used to

update the stress field in the real space (step 11). The iterative loop starts again with

the updated compatible elastic strain and stress fields until convergence is reached

(see Eq. (20)).
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Algorithm 1. FFT-based algorithm for elasto-static FDM equations
Initialization: (α(x) being known)
1: α̃(ξ)←FFT(α)
2: Solve Poisson equation (Eq.(17)) to obtain Ũe,⊥(ξ) :

Ũ e,⊥
ij (ξ) = i

ξk
ξ2
ejklα̃il(ξ) ∀ξ 6= 0 and

Ũ e,⊥
ij (0) = 0

3: Ue,⊥(x)←FFT−1(Ũe,⊥)

4: εe,‖0 ← 〈εe,‖〉0 = C0−1 : T

5: T0(x)← C(x) :
(
ε
e,‖
0 + εe,⊥(x)

)
Iterate : n+ 1 (εe,‖n (x) and Tn(x) being known)
6: T̃n(ξ) =FFT(Tn)
7: Convergence test based on Eq. (20)

8: τ̃n(ξ)← T̃n(ξ)− C̃0 : ε
e,‖
n (ξ)

9: ε̃e,‖n+1(ξ)← −Γ̃0(ξ) : τ̃n(ξ) ∀ξ 6= 0 and ε̃
e,‖
n+1(0)← 〈εe,‖〉n

10: εe,‖n+1(x)←FFT−1(ε̃e,‖n+1(ξ))

11: Tn+1(x)← C(x) :
(
ε
e,‖
n+1(x) + εe,⊥(x)

)

The stress equilibrium convergence criterion used at step 7 reads:

en =
‖div(Tn)‖2
|〈Tn〉|

=
‖ξ.T̃n(ξ)‖2
|T̃n(0)|

≤ ε, (20)

where ‖.‖2 denotes the L2 norm, |.| is the Euclidian norm of a second order tensor

and en is the error at iteration n. The convergence is reached when the error is

smaller than a given precision ε (typically 10−6 − 10−8 in our simulations). Then,

the elastic strain (incompatible and compatible parts) and stress fields are obtained

in the real space.
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4.3 Different approximations for differentiation rules

4.3.1 Classic approximation

According to [22,24], the classic approximation of the partial derivative of first order

is defined as:

iξj = i
2πmj

Tj
, (21)

where the mj with j = 1→ 3 are arranged in Fourier space as follows:

mj =
((
−Nj

2
+ 1

)
,
(
−Nj

2
+ 2

)
, ...,−1, 0, 1, ...,

(
Nj

2
− 1

)
,
(
Nj

2

))
, (22)

if Nj is even, and

mj =
((
−Nj − 1

2

)
, ...,−1, 0, 1, ...,

(
Nj − 1

2

))
, (23)

if Nj is odd.

In this paper, the classic approximation (Eq. (21)) will be used to compute partial

derivatives of first and second orders. It will be applied to study the elastic fields

near material discontinuities. This method will be denoted by P and LS for solving

the Poisson-type equation and Lippmann-Schwinger equation with incompatibilities,

respectively.

4.3.2 Centered finite difference approximation

The differentiation rules for first and second order partial derivatives onto a discrete

grid are based on a 9-pixel approximation of partial derivatives using centered differ-

ences. Using this approximation, the corresponding multipliers in the Fourier space

between continuous and discrete Fourier transforms for partial derivatives are the
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following (see [13]):

iξjC =
i
δ
sin

(
2πmj

Nj

)
, (24)

−(ξj)
2C =

2

δ2

(
cos

(
2πmj

Nj

)
− 1

)
, (25)

−ξjξlC =
1

2δ2

[
cos

(
2π

(
mj

Nj

+
ml

Nl

))
− cos

(
2π

(
mj

Nj

− ml

Nl

))]
, (26)

where, mj and ml are defined with Eq. (22) or Eq. (23), j = 1→ 3 and l = 1→ 3.

In the following, the accuracy of such centered finite difference approximation will be

tested in comparison with the classic approximation (Eq. (21)) regarding the numer-

ical resolution of the Poisson-type equation. This centered finite difference method

applied to the Poisson-type equation will be denoted by PC . In this abbreviation,

the subscript C means “centered finite difference”.

4.3.3 Centered finite difference approximation on a rotated grid: “rotated scheme”

The first order partial derivative operator in the Fourier space of the “rotated scheme”

is obtained as follows. The details of the method are given in the original paper by

Willot [46]. Here, let us briefly summarize this procedure. First, the displacement

field is expressed in the Fourier space at the four corners of a voxel in a 45◦-rotated

basis with respect to the original Cartesian basis. The corresponding stress/strain

fields are obtained in the center of the voxel in the 45◦-rotated basis using the cen-

tered finite difference approximation. Such stress and strain fields are expressed back

in the original Cartesian basis, and then cast in the real space through the inverse

DFT. Hence, the corresponding multiplier in the Fourier space between continuous

and discrete Fourier transform for partial derivatives of first order is given by:
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iξRj =
i

4δ
tan

(
πmj

Nj

)(
1 + exp

(
i
2πm1

N1

))(
1 + exp

(
i
2πm2

N2

))(
1 + exp

(
i
2πm3

N3

))
,

(27)

where mj is defined with Eq. (22) or Eq. (23).

In the following, the accuracy of such centered finite difference approximation on

a rotated grid will be tested in comparison with the classic approximation (Eq.

(21)) to solve the Lippmann-Schwinger equation with incompatibilities. This “ro-

tated scheme” applied to the Lippmann-Schwinger equation will be denoted by LSR.

In this abbreviation, the subscript R means “rotated scheme”.

In section 5, the three different approximations will be studied and discussed to solve

the Poisson-type equation with P or PC approximations and the integral Lippmann-

Schwinger equation with incompatibilities through the basic iterative FFT algorithm

decsribed in section 4.2 together with the LS or LSR approximations. First, the

comparison of the three combinations, P − LS, PC − LS and PC − LSR will be

conducted in the case of a pure edge dislocation density restricted to a single pixel,

and interacting with a circular inclusion embedded in a 2D infinite matrix. Second,

the PC−LSR method will be applied to physical problems such as dislocation dipoles

located near the matrix/inclusion interface, or 3D dislocation loop distributions

surrounding cubic inclusions in a two-phase composite material.

5 Numerical results

5.1 Dislocation densities and materials parameters

In the forthcoming numerical simulations with 2D and 3D unit cells, different spatial

distributions of polar dislocation densities will be assigned within two-phase com-
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posite materials constituted of inclusions (denoted I) and a matrix phase (denoted

M). For numerical simulations, the Burgers vector magnitude b of the dislocation

density is set to 4.05× 10−10m. The dislocations will be located either in the inclu-

sion or outside the inclusion (i.e. within the matrix). Dislocation dipoles and loops

constrained at the interfaces between inclusion and matrix will be also studied.

The linear elastic behavior of the matrix phase is isotropic with Young’s modulus

EM = 62780 MPa and Poisson ratio νM = 0.3647. The Young’s modulus and Pois-

son ratio of the inclusion phase are EI and νI , respectively. These ones will be set

up from the definition of the mechanical contrast k = EI/EM = µI/µM assuming

νI = νM with µI and µM denoting the shear moduli of inclusion and matrix phases.

With such elastic constants, Michel et al. [28] suggested that an optimal value for

the Young’s modulus of the reference medium for the iterative basic scheme should

be E0 = β(EM + EI) with β = 0.5. However, our numerical simulations (see sub-

section 5.2.2) have demonstrated that choosing a slightly higher value for β such as

β = 0.505 improves the convergence of the FFT algorithm reported in section 4.2

with the PC − LSR approximation for k ranging from k = 10−10 to k = 103. This

improvement is also consistent with the convergence study by Willot [46] who found

numerically optimized values of β in the range 0.5003 ≤ β ≤ 0.509 for simulations

with the iterative basic scheme together with a pure LSR procedure.

5.2 Internal stresses of edge dislocation interacting with circular inclusion (2D

cases)

For these simulations, a large unit cell with dimension 900b × 900b has been dis-

cretized using a 2D FFT grid constituted of 2048 × 2048 pixels, with a pixel size

δ ' 0.44b. A circular inclusion I is located in the center of the unit cell with a radius

R = 80δ. First, it is assumed that the composite material contains a single edge

dislocation represented by a Burgers vector b = be1 and unit line vector t = e3.
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The corresponding dislocation density is restricted to a single pixel with magnitude

α13 = b/δ2. The dislocation density is defined such that Eq. (2) is satisfied. These

studied cases correspond to 〈α〉 6= 0, which means that the non periodic part of Ue

can not be obtained [12]. Different cases such as dislocation density located either in

inclusion center or in the matrix phase will be considered. The internal stresses due

to mechanical interactions between the circular inclusion and the single edge dislo-

cation density will be computed to compare the accuracy of stress fields generated

by the P −LS, PC−LS and PC−LSR procedures with analytical solutions reported

in [49] and [50]. In order to avoid a null denominator in the stress-based convergence

criterion, see Eq. (20), a slight non zero macroscopic stress T 11 =1MPa is imposed

as traction boundary conditions without any consequence on the reported values for

internal stress profiles. An admissible error ε = 10−6 was seen to be sufficient to

get accurate results in comparison with the analytical solutions. Therefore, a strain-

based convergence criterion [39] was not used for the present numerical applications.

5.2.1 Edge dislocation in the center of the inclusion: comparisons between the P −

LS, PC − LS and PC − LSR procedures

Here, the dislocation density α13 is restricted to a single pixel in the center of the

circular inclusion I. For this case, the stress profiles T11 and T12 normalized by µM

obtained with the numerical iterative FFT scheme are compared to the analytical

solutions given by Dundurs and Sendeckyj [50]. The results for a mechanical contrast

k = 0.01 are first reported in Fig. 1. Fig. 1(a) reports the results obtained from the

present FFT scheme using the classic P − LS procedure. Spurious oscillations are

observed with the P −LS procedure especially for T11 which demonstrates that this

procedure is not able to capture the strong variations of stress field in an accurate

fashion at discontinuity interfaces and near the defect core. In contrast, the results

obtained from the PC − LSR and the PC − LS procedures reported in Fig. 1(b) do
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not exhibit oscillations at the same resolution scale and match well the analytical

solution.

The results for a mechanical contrast k = 100 are reported in Fig. 2. First, Fig. 2(a)

shows the results obtained with the P − LS procedure. Like in Fig. 1(a), spurious

oscillations are also observed with the P − LS procedure for T11 due to strong

material discontinuity inside the inclusion and at the matrix/inclusion interfaces.

In contrast, the results obtained from the PC − LSR and the PC − LS procedures

reported in Fig. 2(b) dot not exhibit oscillations at the same resolution scale and

match the analytical solution well.

From these first results, it appears that the P −LS procedure leads to non accurate

stress fields for this problem due to large oscillations near discontinuities reported

for the T11 component. Therefore, this procedure is not efficient and will not be

considered in the rest of the paper. In contrast, the PC − LS and PC − LSR pro-

cedures appear to give more accurate results even inside the inclusion and near the

dislocation core region, as compared to the analytical solutions. However, careful

comparisons using a zoom on the T11 profile in Fig. 3 reveals the occurrence of little

oscillations for both contrasts (Fig. 3(a) and Fig. 3(c)) in the case of the PC − LS

approximation. The PC − LSR solution is the only one able to reproduce the ana-

lytical solution with accuracy and without any oscillation (Fig. 3(b) and Fig. 3(d))

. These observations reinforce and extend the conclusions stressed in [13], where

the DFT based on 9-pixel centered difference approximation was efficiently used to

solve incompatible elastic distortions (PC procedure) in a linear elastic homogeneous

isotropic Navier-type equation without any spurious oscillation, especially when the

dislocation density is restricted to a single pixel (see figure 18 in [13]). On the other

hand, the use of the “rotated scheme” to compute the modified Green operator in the

Lippmann-Schwinger equation through the LSR procedure allows to give solutions

devoid of any numerical oscillations, which is consistent with the results already
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(a)

(b)

Figure 1. Stress profiles T11 and T12 normalized by µM obtained in the case of an edge
dislocation density α13 located on a single pixel in the center of a circular inclusion of
radius R = 80δ. For the simulation, a 2D FFT grid of 2048 × 2048 pixels is adopted and
µI = 2.3001 × 102 MPa, νI = 0.3647 with µI/µM = 0.01, νM = νI . The simulations are
performed with a precision ε = 10−6. (a): P −LS solution (green solid lines) vs. analytical
solutions AS (dashed lines). (b): PC−LSR solution (blue solid lines) and PC−LS solution
(red solid lines) vs. analytical solutions denoted AS (dashed lines). The locations of the
inclusion-matrix interfaces are represented by pink dotted lines.24



(a)

(b)

Figure 2. Stress profiles T11 and T12 normalized by µM obtained in the case of an edge
dislocation density α13 located on a single pixel in the center of a circular inclusion of
radius R = 80δ. For the simulation, a 2D FFT grid of 2048 × 2048 pixels is adopted and
µI = 2.3001 × 106 MPa, νI = 0.3647 with µI/µM = 100, νM = νI . The simulations are
performed with a precision ε = 10−6. (a): P −LS solution (green solid lines) vs. analytical
solutions (dashed lines). (b): PC − LSR solution (blue solid lines) and PC − LS solution
(red solid lines) vs. analytical solutions denoted AS (dashed lines). The locations of the
inclusion-matrix interfaces are represented by pink dotted lines.25



reported in [46] for elastic heterogeneous materials.

As an example of accurate 2D maps of stress fields arising from the interaction

between the edge dislocation (located in the center of the inclusion) and the inclusion

itself, Fig. 4 shows the components T11 and T12 (normalized by µM) as a function of

x1 and x2 (normalized by b) obtained with the PC−LSR procedure for three different

contrasts k = 0.1 (Figs. 4(a)(b)), k = 10 (Figs. 4(c)(d)) and k = 1 (Figs. 4(e)(f))

(i.e. homogeneous matrix phase, no inclusion). These figures show the influence

of the inclusion stiffness (for k = 0.1 and k = 10 compared to the homogeneous

case k = 1) on the shape of the stress field due to the dislocation, which reflects

different image stresses in the composite due to different elastic moduli contrasts.

Furthermore, traction continuity or discontinuity at inclusion/matrix interfaces is

well reproduced.
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(a) (b)

(c) (d)

Figure 3. Zoom of stress T11 normalized by µM in the inclusion reporting little oscillations
with the PC − LS solution (red solid lines) in contrast with the PC − LSR solution (blue
solid lines). (a): PC − LS solution with µI/µM = 0.01, (b): PC − LSR solution with
µI/µM = 0.01, (c): PC −LS solution with µI/µM = 100, and (d): PC −LSR solution with
µI/µM = 100. The locations of the inclusion-matrix interfaces are represented by pink
dotted lines.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. 2D maps of stresses T11 and T12 (normalized by µM ) obtained with the PC−LSR

procedure for an edge dislocation density α13 located on a single pixel in the center of a
circular inclusion of radius R = 80δ (2D FFT grid of 2048 × 2048 pixels). (a) and (b):
µI/µM = 0.1, (c) and (d): µI/µM = 10, (e) and (f): µI/µM = 1.
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5.2.2 Edge dislocation in the matrix: comparison of convergence of the PC − LS

and PC − LSR procedures

Here, we compare the convergence efficiency of the PC − LS and PC − LSR in

terms of the number of iterations needed for the numerical algorithm to converge

for different possible mechanical contrasts and for the same homogeneous elastic

reference medium as before (i.e. β = 0.505) and for an edge dislocation located in

the matrix phase. The edge dislocation density is restricted to a single pixel in the

matrix at a distance of 120δ to the right from the center of the circular inclusion

along the x1 axis. The explored values of mechanical contrast range from k = 10−10

and k = 103 with a precision ε = 10−6 and a slight non zero macroscopic stress

T 11=1MPa. In Fig. 5, it is seen that the PC − LSR is able to converge even for an

inclusion akin to a void (i.e. k = 10−10) for a number of iterations (Niter) of 404,

which is not the case for the PC−LS procedure for which the convergence study was

stopped at k = 10−3 with Niter=788. Therefore, in addition to a very good accuracy

on stress fields in the presence of strong material discontinuities, the convergence of

the PC −LSR procedure is faster than that of the PC −LS for k < 1. Interestingly,

the PC − LSR can also treat the interactions between dislocations and holes.

Now, for an inclusion with k = 103, both PC − LSR and PC − LS procedures give

similar number of iterations (in the order of 5000 iterations, i.e. Niter=4729 for PC−

LSR and Niter=5710 for PC −LS). This trend for low and high values of k was also

observed by [46] for heterogeneous elastic composites. The advantage of the PC−LSR

is the possible treatment with a reasonable number of iterations of the interaction

between a hole (then possibly pore or crack distributions) and a dislocation without

making use of a more refined iterative scheme than the basic fixed-point algorithm.

As an example, the stresses T11 and T12 (normalized by µM) obtained with the PC−

LSR procedure are plotted in Fig. 6 and Fig. 7 for the edge dislocation interacting

with a circular hole (k = 10−10). Both figures highlight the mechanical interaction of
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the polarized dislocation density with the circular hole, with large stress gradients

between the hole (at zero stress) and the dislocation. Furthermore, the T11 and T12

stress profiles (normalized by µM) obtained near the center of the circular hole are

successfully compared to the analytical solutions provided by Dundurs and Mura

[49].

Figure 5. Comparisons of the number of iterations needed by the PC−LS and the PC−LSR

procedures to converge, according to different mechanical contrasts k in the case of a
circular inclusion interacting with an edge dislocation located in the matrix phase of a
composite material. The simulations are performed with a precision ε = 10−6 and a slight
non zero macroscopic stress T 11 =1MPa.

30



(a) (b)

Figure 6. 2D maps of stresses T11 and T12 (normalized by µM ) obtained in the case of an
edge dislocation density α13 located on a single pixel at a distance of 120δ to the right from
the center of circular void of radius R = 80δ, embedded in matrix (µM = 2.3001×104 MPa,
νM = 0.3647) discretized with a 2D FFT grid of 2048 × 2048 pixels. The simulations are
performed with a precision ε = 10−6 and a slight non zero macroscopic stress T 11 =1MPa.

Figure 7. Stress profiles T11 and T12 (normalized by µM ) obtained in the case of an edge
dislocation density α13 located on a single pixel at a distance of 120δ to the right from the
center of circular hole of radius R = 80δ, embedded in matrix (µM = 2.3001 × 104 MPa,
νM = 0.3647) discretized with a 2D FFT grid of 2048 × 2048 pixels. PC − LSR solution
(blue solid lines) vs. analytical solutions denoted AS (dashed lines). The simulations are
performed with a precision ε = 10−6 and a slight non zero macroscopic stress T 11 =1MPa.
The locations of the internal surfaces of the hole are represented by pink dotted lines.
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5.3 Dislocation dipoles located in the inclusion near the matrix/inclusion interface

(2D case)

The present FFT method with the PC − LSR procedure is now applied to a physi-

cal case often encountered in crystalline materials, such as a dipole of dislocations

located in the inclusion and constrained at the matrix/inclusion interface of a com-

posite material. A 2D dislocation dipole is a plane representation of a dislocation

loop constrained at the inclusion/matrix interface in a real three-dimensional con-

figuration. The edge dislocation densities α13 that compose the dipole are restricted

to a single pixel and are assigned with opposite signs. This situation means that

〈α〉 = 0 then a periodic elastic distortion solution can be found [12]. For this phys-

ical case, we set k to 0.1. For these calculations, the precision in the convergence

criterion is set to ε = 10−8. Fig. 8 shows the resulting stress profiles (blue solid lines).

These profiles are compared to those obtained in the same case without dislocation

dipole (pure heterogeneous elasticity problem), as given by the LSR procedure only

(red solid lines). Fig. 8(a) shows the T11 stress component obtained with a non zero

macroscopic stress T 11 = 0.01EM and Fig. 8(b) shows the T12 stress component ob-

tained with non zero macroscopic stresses T 12 = T 21 = 0.01EM . These comparisons

reveal that for both loading cases, the presence of the dislocation dipole remarkably

modifies the stress field at the inclusion/matrix interface and inside the inclusion,

with large stress variations from the center of the inclusion to the interface. Indeed,

the solution given by the LSR leads to a uniform stress inside the circular inclu-

sion which is consistent with the classic Eshelby equivalent inclusion method [9,10].

In contrast, the stresses are similar at some distance from the inclusion for both

solutions with or without dipoles, which shows a screening effect. The stresses of

opposite dislocations cancel each other at long-range distances of single dislocations

so that the stresses due to heterogeneous elasticity only are recovered.
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(a) (b)

Figure 8. Stress profiles T11 and T12 (normalized by µM ) obtained in the case of edge
dislocation density dipole located in the inclusion, near the matrix/inclusion interface of a
composite material. A circular inclusion of radius R = 80δ with µI = 2.3001 × 103 MPa,
νI = 0.3647 is embedded in a matrix phase with µI/µM = 0.1, νM = νI . A 2D FFT grid
of 2048× 2048 pixels is considered. For these calculations, the precision is set to ε = 10−8.
(a): Stress component T11 obtained with a non zero macroscopic stress T 11 = 0.01EM . (b):
Stress component T12 obtained with non zero macroscopic stresses T 12 = T 21 = 0.01EM .
PC −LSR solution (blue solid lines) vs. pure heterogeneous solution obtained with a LSR

procedure only without dislocation dipoles (red solid lines).

5.4 Single dislocation loop around a cubic inclusion (3D case)

As a first three-dimensional configuration to apply the PC −LSR procedure, a rect-

angular shear dislocation loop around a cubic inclusion embedded in the matrix

phase is considered. The cubic inclusion is ten times stiffer than the matrix phase

(k = 10) with size C = 20δ. The dimension of the unit cell is 900b×900b×900b and

is discretized using a 3D FFT grid of 128× 128× 128 voxels. The dislocation loop is

defined by dislocation line and Burgers vectors given by t and b, respectively. The

Burgers vector of the loop is in the e1 direction. The loop is successively constituted

of a positive screw segment with line direction along e1, a positive edge segment

with line direction along e2, a negative screw segment with line direction along e1

and a negative edge segment with line direction along e2 as shown in Fig. 9. Hence,
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the screw and edge dislocation density components α11 and α12 take the value of

±b/δ2 on each corresponding segment. The corners have both edge and screw den-

sities with a value of ±
√
2
2
b/δ2, in order to have a uniform norm of the dislocation

density tensor everywhere on the loop.

The 3D composite material is subjected to non zero macroscopic stresses T 12 =

T 21 = 0.01EM . Convergence is reached after 60 iterations for a precision of ε = 10−8.

The results obtained with the PC−LSR procedure are shown to be accurate, devoid

of any numerical oscillation and the stress components T11, T12 and T13 (normalized

by µM) are reported in Fig. 10. The stress field generated by the edge segments can

be observed through the T11 component in Fig. 10(a) in the (e1,e3) plane. The T12

and T13 components are shown in the (e2,e3) plane in Fig. 10(b) and Fig. 10(c),

respectively. These ones show the stress fields enhanced by the screw segments.

Figure 9. Schematic illustration of a rectangular dislocation loop surrounding a cubic in-
clusion with size C = 20δ embedded in a matrix phase of a 3D composite material. The
dislocation loop is defined by dislocation line and Burgers vectors given by t and b, respec-
tively. The loop is successively composed of a positive screw segment with line direction
along e1, a positive edge segment with line direction along e2, a negative screw segment
with line direction along e1 and a negative edge segment with line direction along e2.
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(a) (b)

(c)

Figure 10. Stress maps for T11, T12 and T13 (normalized by µM ) obtained in the case
of a rectangular dislocation loop constrained by a cubic inclusion of side C = 20δ in
a 3D unit cell (see Fig. 9). The elastic properties of the cubic inclusion are given by:
µI = 2.3001 × 105 MPa, νI = 0.3647. The inclusion is embedded in a matrix phase with
µI/µM = 10, νM = νI . A 3D FFT grid of 128×128×128 voxels is used. The simulations are
performed with a precision ε = 10−8. The results are obtained with non zero macroscopic
stresses T 12 = T 21 = 0.01EM . The stress components T11 is shown in the (e1,e3) plane
(a), and the components T12 and T13 are shown in the (e2,e3) plane, (b), (c) respectively.

5.5 Dislocation loop distributions around cubic inclusions in a two-phase composite

material: study of different mechanical contrasts (3D cases)

In these last three-dimensional simulations, the numerical scheme is applied to a

more realistic two-phase microstructure with dislocation loop distributions located

around cubic-shaped precipitates embedded in a matrix phase. As shown in Fig. 11,

the unit cell is constituted of a 3D FFT grid of 128×128×128 = 2097152 voxels with

a voxel size of 10−9m. The unit cell contains 8 × 8 × 8 = 512 cuboidal inclusions.

The elastic constants of the matrix phase are µM = 124.2GPa and νM=0.3. The

elastic constants of the precipitates (inclusions) are parametrized as before in this

section, i.e. with k the mechanical contrast between both phases and with νI = νM .

The size of the cuboidal inclusions is 8 ± 3 × 10−9m and the volume fraction of
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precipitates in the unit cell V is fI = VI/V = 0.15. Each inclusion is then surrounded

by 3 ± 1 prismatic dislocation loops with Burgers vector magnitude as set before

(b=4.05×10−10m) but now directed along the e3 direction. The dislocation loops are

introduced as in the previous 3D simulation (dislocation density on single voxels) to

study the efficiency of the PC −LSR procedure in order to accurately compute local

fields near dislocations and cuboidal inclusions with sharp corners. A slight non zero

macroscopic stress T 33 = 1MPa is imposed such that the obtained elastic fields will

be equivalent to the internal fields due to this complex dislocation loop distribution.

The loops are made of densities α31 (dislocation line along the e1 direction) and α32

(dislocation line along the e2 direction). Five contrasts k are performed, namely k =

0.9, k = 0.1, k = 10, k = 0.01 and k = 100. The stress-based criterion for numerical

convergence is set to a precision of ε = 10−6 and the iteration numbers at convergence

are 5, 30, 35, 156 and 283 for the five contrasts, respectively. Figs.11(b),(c), (d), (e),

(f) show the predicted internal stress field T33 normalized by µM for the five contrasts,

respectively. No numerical oscillations are observed although strong stress gradients

are observed for the highest contrast k = 100. Due to the polarity of prismatic

dislocation loops, the cubic precipitates are in a compression stress state. As it

can be observed in these figures, the numerical scheme allows capturing the strong

dependence of the internal stress profile on the mechanical contrast for more complex

distributions of dislocations with low computational costs in terms of iterations.
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Figure 11. Calculation of the internal stress field in a matrix containing cuboidal inclu-
sions surrounded by prismatic dislocation loops. (a) the unit cell is constituted of a 3D
FFT grid of 128 × 128 × 128 = 2097152 voxels with a voxel size of 10−9m containing
8× 8× 8 = 512 cuboidal inclusions (green colored). The inclusion volume fraction is 0.15.
The inclusions are surrounded by prismatic dislocation loops (gray colored) with Burgers
vector along the e3 direction. The size of the cuboidal inclusions is 8±3×10−9m and each
inclusion is surrounded by 3±1 prismatic dislocation loops with Burgers vector magnitude
b=4.05 × 10−10m along the e3 direction. Internal stress field T33 normalized by µM for
different mechanical contasts k: 0.9 (b), 0.1 (c), 10 (d), 0.01 (e) and 100 (f), respectively.
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6 Conclusions and perspectives

A spectral method based on the Fast Fourier Transform (FFT) algorithm is de-

veloped to solve in a fast and accurate fashion the elasto-static equations of Field

Dislocation Mechanics for linear heterogeneous elastic periodic media. The elastic

fields due to elastic heterogeneities and to the presence of dislocation density are

derived from the resolution of Poisson-type and Lippmann-Schwinger equation with

incompatibilities solved in the Fourier space with an iterative basic algorithm.

Three different procedures are used to compute partial derivatives of first and sec-

ond orders. Namely, the P − LS procedure resulting from the use of the classic

approximation to solve both Poisson-type and Lippmann-Schwinger equations, the

PC−LS procedure resulting from the use of DFT with centered finite differences for

the resolution of the Poisson-type equation and the classic approximation to solve

the Lippmann-Schwinger equation, and the PC −LSR procedure resulting from the

use of DFT with centered finite differences for the resolution of the Poisson-type

equation and the discrete rotated scheme (based on centered finite differences on a

45◦-rotated grid) to solve the Lippmann-Schwinger equation.

Comparisons with analytical solutions in the case of an edge dislocation located on

a single pixel in the center of a 2D circular inclusion embedded in a matrix phase

revealed that the PC−LSR procedure is more accurate and stable than the PC−LS

procedure. In addition, it was shown that the P − LS procedure enhances strong

oscillations and is not suited for this problem. The efficiency and the accuracy of the

PC−LSR procedure was confirmed in a more extreme case such as an edge dislocation

density near a 2D circular hole by successful comparisons with analytical solutions.

Furthermore, the comparison of the number of iterations between the PC − LSR

and the PC −LS procedures, for various mechanical contrasts, has revealed a faster

convergence of the PC − LSR procedure for k < 1 (see Fig. 5).
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The PC −LSR procedure allows capturing accurately stress fields for physical cases

in crystalline materials such as an edge dislocation dipole located in the inclusion

and constrained at the matrix/inclusion interface of a 2D composite material. Fur-

thermore, the present approach can be easily extended to 3D simulations, as shown

in the case of a cubic inclusion stiffer than the matrix phase and surrounded by a

rectangular dislocation loop with edge/screw segments.

Further studies will be focused on the extension of the present numerical method-

ology for dislocation mechanics to other more refined FFT schemes than the basic

fixed-point algorithm like the conjugate gradient scheme. Optimal choices for rigid

inclusions will be considered in a future work using the refined discretization pro-

cedure using staggered grid [47] together with a dual scheme already developed for

heterogeneous media [51]. Furthermore, a FFT crystal plasticity spectral framework

for the complete elastoviscoplastic Phenomenological Mesoscopic Field Dislocation

Mechanics (PMFDM) theory [8] is intended to large polycrystalline aggregates by

coupling the present numerical approach to the recent FFT resolution of the dislo-

cation density transport equation by Djaka et al. [14].
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Appendix

A Field Dislocation Mechanics (FDM) equations

The main Field Dislocation Mechanics equations are presented in the infinitesimal

deformation assumption:

U = Ue + Up,

Ue = Ue,⊥ + grad w,

curl Ue,⊥ = α,

grad w = Ue,‖,

T = C : Ue,sym = C : εe,

div T = 0,

U̇p = α×V,

V = f (T,α, ...) ,

α̇ = −curl U̇p.

(A.1)

The FDM theory uses the continuum description of dislocation densities based on

Nye’s dislocation tensor α (see section 3.1). The total distortion U is compatible and

can be decomposed in a small deformation theory as Ue +Up, where Ue, Up are the

elastic and the plastic distortion tensors, respectively. The elastic distortion Ue is

not a gradient because of the displacement discontinuity due to the presence of dis-

locations. Therefore, the elastic distortion can be decomposed into incompatible and

compatible parts denoted respectively Ue,⊥ and Ue,‖, invoking the Stokes-Helmholtz

decomposition (see Eq. (5)). The incompatible part Ue,⊥ is the solution of the in-

compatibility equation curl Ue,⊥ = α, which can be transformed to a Poisson-type

equation (see Eq. (8)). The compatible part Ue,‖ first introduced in section 3.2 is the

gradient of an unknown vector field w, which is solved in the present paper using
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a spectral approach and starting from the Lippmann-Schwinger equation described

in section 3.3. The Cauchy stress tensor T and Ue,‖ are obtained when solving the

balance of linear momentum without body forces and inertia effects, i.e. div T = 0,

together with the Hooke’s law T = C : εe. Similarly, the plastic distortion Up is not a

gradient either, and its incompatible part Up,⊥ is defined as the opposite of Ue,⊥. The

total plastic distortion rate U̇p results from the mobility of polarized dislocations,

with velocity vector V, constitutively depending on T, α. Completed by boundary

conditions on traction and displacement vectors, Eq. (A.1) forms a complete set of

partial differential equations with a propagative (i.e. hyperbolic) character for the

evolution of dislocation densities α̇ = −curl (α×V). The last equation of Eq.

(A.1) was recently numerically solved with a filtered spectral approach by Djaka et

al. [14]. The definitions of the div, curl operators and the cross-product in Eq. (A.1)

for a rectangular Cartesian basis were introduced in section 2.

B Averaged compatible elastic strain over the unit cell

The stress tensor T is constitutively defined from the Hooke’s law (Eq. (11)) and

using Eq. (5) as follows:

T = C :
(
εe,‖ + εe,⊥

)
. (B.1)

Using the definition of the stress polarization tensor τ (see Eq. (14)):

T = C0 : εe,‖ + τ . (B.2)

Therefore, using Eq. (B.2) and traction boundary conditions with macroscopic stress

T, the average stress over the unit cell V denoted 〈T〉 yields:

〈T〉 = T = C0 : 〈εe,‖〉+ 〈τ 〉, (B.3)
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and finally, 〈εe,‖〉 can be identified as:

〈εe,‖〉 = C0−1 :
(
T− 〈τ 〉

)
. (B.4)

Then, using Eq. (B.4), the integral Lippmann-Schwinger equation for the unknown

compatible elastic strain εe,‖ (see Eq. (15)) with traction boundary conditions (see

section 3.3) also writes:

εe,‖(x) = C0−1 :
(
T− 〈τ 〉

)
−
(
Γ0 ? τ

)
(x). (B.5)
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