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Abstract

A complete micromechanics-based model is here proposed using the concepts

of continuum kinematics and thermodynamics. A new constitutive framework is

proposed to describe stress-induced “shear-coupled” grain boundary (GB) migra-

tion. Like non diffusive phase-transformations, shear-coupled GB migration can be

considered on the thermodynamics point of view of conservative nature until high

temperature with respect to melting point (i.e. diffusionless but thermally acti-

vated). The micromechanics-based continuum model can include intra-crystalline

slip, GB sliding and shear-coupled GB migration as additive dissipative mecha-

nisms. To illustrate the present theory, the model is applied to shear-coupled GB
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migration in the case of three “flat” Cu bi-crystals [001] with symmetric tilt GB

(STGB): Σ17(410) (θ=28.07◦), Σ5(210) (θ=53.13◦), Σ41(540) (θ=77.32◦). Molecu-

lar dynamics (MD) simulations under simple shear loading are first performed to

identify the active shear coupling modes, the stick-slip behaviour at 0K and 500K

and the bicrystal finite size dependence on the shear stress responses. The results of

the micromechanical model are discussed in comparison with MD simulations. The

effects of anisotropic vs. isotropic elastic properties on effective elastic shear moduli,

overall shear stress drop magnitudes and dissipated energy during GB migration are

analyzed for these STGB.

Keywords: Grain boundary motion; Constitutive behaviour; Micromechanics;

Molecular dynamics; Copper

1 Introduction

Interfacial or grain boundary (GB) constitutive behaviour that takes into account

possible GB migration and grain size/shape changes at different temperatures is

today seen relevant to understand the complex mechanisms in grain boundary en-

gineering and nanocrystalline (NC) materials (Sutton and Balluffi, 1995; Cahn and

Taylor, 2004; Cahn et al., 2006a,b; Gianola et al., 2006, 2008; Mompiou et al., 2009,

2010, 2011; Farkas et al., 2006; Tucker et al., 2010, 2011; Tucker and McDowell,

2011). Furthermore, bridging methods between atomistic phenomena at GB and

continuum mechanics should be developed for the design of new engineering materi-

als that involve multiple plasticity mechanisms and various length scales (McDowell,

2008, 2010). The inelastic deformation accommodation mechanisms associated to GB
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significantly affect the mechanical behaviour of polycrystals.

Among these mechanisms, “shear-coupled” GB migration is now seen to compete or

interplay with other intra-granular GB mechanisms in a wide range of temperatures

(Cahn et al., 2006a,b). In NC metals, it now becomes challenging to understand

stress-induced GB migration because this is thought to enhance grain growth at

low temperatures, which is important for making stable structural materials for

engineering applications (Jin et al., 2004; Zhang et al., 2005). In these materials,

the interplay of GB migration with other possible GB deformation mechanisms like

GB sliding (Warner et al., 2006), grain rotation, diffusional creep, partial or perfect

dislocation nucleation and absorption at GB (Bobylev et al., 2010) becomes very

complex due to the high GB volume fraction. For instance, GB migration and pure

sliding can be considered as additive mechanisms which may both be present at

high temperature (Yoshida et al., 2002). In real polycrystalline metals, GB mobility

is also very difficult to capture because of different GB characters (Gottstein and

Shvindlerman, 2010).

Stress-induced GB migration was first discovered experimentally in the 1950’s (Li

et al., 1953) for low-angle grain boundaries (LAGB). For LAGB, stress-induced GB

migration was interpreted in terms of collective motion of single dislocations (Read

and Shockley, 1950; Read, 1953). In addition, high-angle GB (HAGB) were also

seen to move under applied stress (Biscondi and Goux, 1968). More recently, many

experimental data (Winning et al., 2001, 2002; Molodov et al., 2007; Gorkaya et al.,

2009; Molodov et al., 2011) confirmed this stress-induced GB mechanism for high-

purity planar Al bi-crystals with both [001] tilt LAGB and HAGB (from 0 to 90◦

misorientations). By performing mechanical tests on Al bi-crystals on a wide range

of temperature (from 280◦C to 400◦C), Gorkaya et al. (2009) showed that GB mi-

gration is a thermally activated process and there is a misorientation dependence of
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activation parameters like activation enthalpy and mobility pre-exponential factor.

The mechanism of stress-induced shear-coupled GB migration at room temperature

is today well identified by a shear deformation accompanying GB migration for sym-

metric (coincident) tilt GB (here denoted STGB) but less for general non symmetric

GB. This new deformation mechanism is different from strain-induced GB migration

studied for recrystallization phenomena. The latter essentially comes from spatially

heterogeneous intra-crystalline dislocation densities in the vicinity of GB (Busso,

1998).

In the same time, theoretical studies (Read and Shockley, 1950; Read, 1953; Cahn

and Taylor, 2004) as well as molecular dynamics (MD) simulations using the EAM

potential for Cu bicrystals with STGB (Cahn et al., 2006a,b; Zhang et al., 2008)

show that stress-induced GB migration is characterized by a shear “coupling factor”

(or shear deformation usually denoted β) which is defined by the ratio of the shear

displacement parallel to the GB plane to the GB propagation normal to its plane.

This coupling factor is purely geometric and depends on the tilt GB misorientation.

“Shear-coupled” GB migration was recently analyzed by Cahn et al. (2006a,b) using

the “Frank-Bilby” equation (Frank, 1950; Bilby, 1955; Bullough and Bilby, 1956).

By performing in situ TEM observations of different grains with curved GB in

stressed nano-polycrystalline Al films, Legros et al. (2008) found that GB motion

essentially occurs near stress concentration regions like cracks with very large veloc-

ities (30 nm.s−1-200 nm.s−1). This would indicate that stress-induced GB migration

is a new relaxation mechanism different from long-range diffusion processes at GB.

For that reason, it is very similar to stress induced twin boundary migration, which

was very recently finely examined through MD simulations (Tucker et al., 2011;

Wang et al., 2011). Mompiou et al. (2009) also experimentally confirmed in ultra-

fine grained Al with random GB the minor role of diffusion in ultra-fine grained Al
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with random GB during the GB migration process and the absence of GB dislocation

emission. They showed a coupling factor exists between shear and migration, and

their measurement for HAGB was close to the theoretical value derived by Cahn et al.

(2006a,b). Later, the same group (Mompiou et al., 2010, 2011) developed a purely

geometric approach, called “SMIG model”, for GB not having necessarily specific

orientation relationships. For general GB, shear-coupled GB migration involves the

glide motion of more generalized defects than dislocations called “disconnections”

(Hirth and Pond, 1996; Hirth et al., 2007; Pond et al., 2008).

Due to the complexity of atomistic mechanisms in the case of general GB, we will

limit the present study to the constitutive behaviour of Cu STGB undergoing shear-

coupled migration. For Cu [001] STGB, two shear deformation modes associated

to <110> and <100> crystallographic directions linked to two coupling factors

(resp. negative and positive) were observed using MD simulations and confirmed

experimentally by Molodov et al. (2007, 2011). In particular, a dual temperature

dependent behaviour for certain misorientations (around 53◦) may be observed at

finite temperatures. According to Cahn et al. (2006a), a transition exists above 800K

where the shear-coupled GB migration may be interrupted by occasional sliding

events. Between these sliding events, the GB plane continues to move accompanied

by shear. This suggests that pure GB sliding occurs through atomistic mechanisms

that preserve GB character. At medium and low temperatures, shear-coupled GB

migration has a stick slip stress versus time characteristic response which can be

retrieved by atomistic simulations (Mishin et al., 2007; Ivanov and Mishin, 2008).

The objectives of the present paper are the following. A complete micromechanics-

based constitutive model is here proposed using the concepts of continuum ther-

momechanics to describe shear-coupled GB migration in bicrystals. Kinematics and

thermodynamics associated with different additive dissipative mechanisms (intra-
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crystalline slip, GB sliding and shear-coupled GB migration) will be introduced in

section 2. In this paper, shear-coupled GB migration will be considered as a shear

process in the local coordinates associated to grain boundary plane that can be

described in linearized kinematics by an eigenstrain (or plastic strain jump at the

discontinuity GB interface) similarly to deformation twinning (Christian and Maha-

jan, 1995; Fischer et al., 2003). To illustrate the present theory, section 3 will focus

on planar bicrystals and pure shear-coupled situations without sliding in addition to

intra-crystalline slip. It will be derived that the shear “coupling factor” β is related

to plastic strain jump at the GB through an “orientation tensor” characterized by

GB interfacial Burgers vector and slip plane. In section 4, numerical examples and

MD simulations will be restricted to the shear responses of three Cu STGB exhibit-

ing shear-coupled GB migration with absence of bulk plasticity (crystal sizes will

be lower or equal to 10nm). In these situations, atomic scale deformation mecha-

nisms are well identified using the concept of “displacement shift complete” (DSC)

dislocations (Rae and Smith, 1980; Sutton and Balluffi, 1995; Cahn et al., 2006a) or

“disconnections” (Hirth and Pond, 1996; Hirth et al., 2007; Pond et al., 2008). These

interfacial defects will be introduced in the constitutive framework and a discussion

about the role of stress-induced GB migration coupled with anisotropic elasticity

on stress-strain characteristics is provided in the light of the micromechanics-based

model. Section 5 concludes and sketch some perspectives for the applicability of the

present bi-crystal constitutive framework in mean field polycrystalline modelling

involving NC materials and/or deformation twinning.

Throughout the paper, a “,” indicates a spatial differentiation, a superposed dot a

particle time derivative (or rate). “[A]” denotes the jump of a bulk field “A” at a

discontinuity surface such that [A] = AII − AI to be consistent with Fig. 1 where I

and II are both crystals forming a bicrystal (crystal II being the consumed crystal

during interface motion). “〈A〉” denotes the average of a bulk field A across the
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interface defined by 〈A〉 = 1
2

(
AII+AI

)
. The Einstein summation convention is also

used throughout the paper.

2 Continuum thermo-micromechanical model

2.1 Kinematics

Following Abeyaratne and Knowles (1990), Cermelli and Gurtin (1994), Simha and

Bhattacharya (1998), Fischer et al. (1998), the particle velocity vector jump at the

discontinuity interface (GB) denoted hereafter S can be decomposed as follows (Fig.

1)

[vi] = [vi]
(1) + [vi]

(2) (1)

where

[vi]
(1) = − [ui,j]njωN (2)

is the particle velocity jump due to normal GB propagation assuming linearized

kinematics (Hadamard, 1903; Abeyaratne and Knowles, 1990) and [vi]
(2) is the part

of particle velocity jump at the interface due to tangential GB sliding. In Eq. 2, [ui,j ]

represents the jump of displacement gradient or total distortion at the discontinuity

interface S. ωN is the GB normal velocity and ni is the unit normal vector to the GB

plane oriented from I towards II (Fig. 1). According to Fig. 1, the particle velocity

jump contains a tangential part v‖ and a normal one v⊥ as follows

[vi] = v‖ti + v⊥ni (3)

where v‖ reads

v‖ = βωN + vs (4)

In Eq. 4, vs = [vi]
(2) ti is the tangential velocity due to GB sliding. This one has

to be specified by a constitutive law depending on a driving force. The constitutive
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law for tangential GB sliding is not considered because only pure shear-coupled GB

migration configurations will be presented in the rest of the paper from Section 3.

Using Eq. 2, β can be identified as a function of the interfacial jump of displacement

gradient through the following expression

β = − [ui,j ]njti (5)

β is a purely geometric parameter due to interfacial kinematics that can be identified

as the “coupling factor” following the terminology used by Cahn and Taylor (2004).

This section shows it does not depend on any constitutive law.

Figure 1. Schematic representation of grain boundary (GB) migration and sliding (kine-

matics). [vi] = vi
II − vi

I denotes the jump of vi at the interface (GB plane) oriented by

unit normal vector ni from crystal I to crystal II.

In the case of a perfect interface (without GB sliding), the jump of displacement

gradient reads

[ui,j ] = λinj (6)

where λi is an arbitrary vector measuring the magnitude and direction of displace-

ment gradient jump at the interface (this one can be obtained from the so-called

Christoffel matrix). It is noteworthy that Eq. 4 was postulated by Cahn and Taylor

(2004) without any direct link to continuum-based kinematics like in the present

contribution. Eq. 5 may serve to link the “coupling factor” β to the shear deforma-

tion component as revealed by Tucker et al. (2011) using atomistic simulations and

associated deformation metrics. Their Fig. 4c shows a typical shear-coupled GB mi-

gration process for a Σ3 (111) coherent twin boundary in f.c.c. materials. According
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to Eq. 5, this leads to a “coupling factor” close to 1/
√
2 which is consistent with

twinning shear deformation in f.c.c. materials (Christian and Mahajan, 1995; Fischer

et al., 2003).

2.2 Thermodynamics

The mechanical dissipation D in the body V is defined as the difference between

the power of the applied forces denoted Pext and the rate of change of the stored

energy Φ̇ (time derivative of the Helmholtz free energy), which corresponds under

isothermal and quasi-static evolutions to the time derivative of the elastic energy

(Coleman and Gurtin, 1967; Maugin, 1992; Maugin and Muschik, 1994; Maugin,

2011)

D = Pext − Φ̇ (7)

Neglecting the excess interfacial energy effects at GB in Eq. 7, Φ is given by

Φ =
∫

V

1

2
σijε

e
ijdV (8)

where σij and εeij are respectively the Cauchy stresses and the elastic strains. The

power of external forces is defined as

Pext =
∫

∂V

σijnjvidV (9)

where nj is the unit outward normal vector at a point of the external boundary of

V denoted ∂V and vi is the material velocity at this point. As described in the

kinematics part (Subsection 2.1), the strains and stresses are discontinuous across

the moving interface. Consequently, the elastic energy density φ = 1
2
σijε

e
ij present in

Eq. 8 is also discontinuous through the moving interface S. Applying the transport

theorem for growing discontinuity interface S to Eq. 8, Φ̇ is given by (see also
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Cherkaoui et al. (1998, 2000); Langlois and Berveiller (2003))

Φ̇ =
∫

V

φ̇dV −
∫

S

[φ]ωNdS (10)

In Eq. 10, the first volume term containing φ̇ can be easily computed using εij =

εeij + εpij as follows
∫

V

φ̇dV =
∫

V

σij
(
ε̇ij − ε̇pij

)
dV (11)

The second term of Eq. 10 which contains [φ] is defined as

[φ] =
1

2

(
σII
ij

(
εIIij − εpIIij

)
− σI

ij

(
εIij − εpIij

))
(12)

This expression is much simplified in the case of linear homogeneous elastic proper-

ties and using the usual symmetries of the homogeneous elastic stiffness tensor Cijkl

as follows

[φ] =
〈
σij
〉 [
εij − εpij

]
(13)

Thus, the expression for Φ̇ is obtained using Eqs. 10-12

Φ̇ =
∫

V

σij
(
ε̇ij − ε̇pij

)
dV −

∫

S

[φ]ωNdS (14)

The expression of external power Pext can be simplified using the divergence theorem

starting from Eq. 9 as follows

Pext =
∫

V

(σijvi),jdV+
∫

S

[σijvi]njdV =

∫

V

(σij,jvi + σij ε̇ij) dV +
∫

S

(〈σijnj〉 [vi] + [σijnj] 〈vi〉) dS
(15)

Because of the identity [σijvi] = 〈σij〉 [vi]+[σij] 〈vi〉 (Abeyaratne and Knowles, 1990),

static stress equilibrium without body forces in the bulk (σij,j = 0) and traction

vector continuity across S (i.e. [σijnj] = 0) applied to Eq. 15 yields

Pext =
∫

V

σij ε̇ijdV +
∫

S

〈σijnj〉 [vi] dS (16)
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Introducing Eqs. 1 and 2 in Eq. 16, it comes

Pext =
∫

V

σij ε̇ijdV −
∫

S

〈σijnj〉 [ui,k]nkωNdS +
∫

S

〈σijnj〉 [vi](2) dS (17)

From Eq. 6, the following identity holds 〈σijnj〉 [ui,k]nk = 〈σijnj〉λinknk = 〈σij〉λinj =

〈σij〉 [ui,j ] = 〈σij〉 [εij]. Thus, Eq. 17 simplifies into

Pext =
∫

V

σij ε̇ijdV −
∫

S

〈σij〉 [εij]ωNdS +
∫

S

〈σijnj〉 [vi](2) dS (18)

By comparing Eq. 14 and Eq. 18, the total dissipation D of the system is positive

and reads according to Eq. 7

D =
∫

V

σij ε̇
p
ijdV −

∫

S

(〈σij〉 [εij]− [φ])ωNdS +
∫

S

〈σijnj〉 [vi](2) dS (19)

For homogeneous elastic properties, Eq. 13 can be applied so that Eq. 19 simplifies

into

D =
∫

V

σij ε̇
p
ijdV −

∫

S

〈σij〉
[
εpij
]
ωNdS +

∫

S

〈σijnj〉 [vi](2) dS (20)

The first term in Eq. 19 is the classic bulk dissipation due to crystallographic slip

evolution in crystals without discontinuity interface. The second term in Eq. 19

is due to the propagation of interface discontinuities and can be related to shear-

coupled GB migration. The associated driving force on the interface S is given by

[φ]−〈σij〉 [εij] for heterogeneous elastic solids and simplifies into −〈σij〉
[
εpij
]
for ho-

mogeneous elastic ones. This driving force can be related to the energy-momentum

tensor Plj = φδlj−σijui,l introduced by Eshelby (1951, 1970) through the jump rela-

tionship [Plj]nj = ([φ]− 〈σij〉 [εij])nl for heterogeneous elastic solids. The last term

in Eq. 19 or Eq. 20 is due to a possible incoherent interface authorizing tangential

GB sliding (see Eq. 4.). In the following, we first highlight the application of the con-

tinuum kinematics and thermodynamics frameworks to stress-induced shear-coupled

GB migration. From the continuum mechanics viewpoint, GB is here considered as a

continuously distributed dislocation (in the sense of collective dislocations) for both
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LAGB and HAGB. In section 3, the transport of GB dislocations is fully examined

considering a bicrystal with planar GB and average mechanical fields in each crystal.

3 Bicrystals with planar grain boundaries and perfect shear-coupled mi-

gration

3.1 Transport equations and average fields

In this part and in the rest of the paper, interfacial sliding will be disregarded, and

we only focus on stress-induced motion of discontinuity interfaces like GB, assuming

they are coherent interfaces. This means that only the first two terms of Eq. 19 are

considered. This situation corresponds to “perfect shear-coupling” GB migration as

defined in Cahn and Taylor (2004). Thus, for a bicrystals with planar GB, such as

the one represented in Fig. 2, Eq. 19 yields the dissipation per unit volume

D

V
= fσI

ij ε̇
pI
ij + (1− f)σII

ij ε̇
pII
ij + ([φ]− 〈σij〉 [εij]) ḟ (21)

where f is the current volume fraction of crystal I. If crystal I moves into crystal II,

ḟ describes the rate of growth of the thickness of crystal I due to normal motion.

In the particular case of homogeneous elasticity, [φ] − 〈σij〉 [εij] should be replaced

by −〈σij〉
[
εpij
]
in Eq. 21. Furthermore, the overall strain (resp. stress) evolutions

are given by the following transport equations (see also Petryk (1998)) involving the

strain (resp. stress) jump
[
εij
]
(resp.

[
σij
]
) for the plane discontinuity interface S

Ėij =
1

V

∫

V

ε̇ijdV − 1

V

∫

S

[
εij
]
ωNdS = f ε̇Iij + (1− f)ε̇IIij −

[
εij
]
ḟ (22)

Σ̇ij =
1

V

∫

V

σ̇ijdV − 1

V

∫

S

[
σij
]
ωNdS = fσ̇I

ij + (1− f)σ̇II
ij −

[
σij
]
ḟ (23)
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Figure 2. Bicrystal configuration for shear-coupled GB migration with infinite planar in-

terface (GB plane). Here, the consumed grain (crystal II) is chosen as the reference lattice.

From Eq. 22 and assuming homogeneous elasticity, the overall plastic strain rate

reads

Ėp
ij =

1

V

∫

V

ε̇pijdV − 1

V

∫

S

[
εpij
]
ωNdS = f ε̇pIij + (1− f)ε̇pIIij −

[
εpij
]
ḟ (24)

For an infinite plane GB and considering heterogeneous elasticity, the strain concen-

tration equations (given applied homogeneous strains) are detailed in Appendix A

through Eq. A.3. The calculations give the following general expressions for εIij and

εIIij

εIij = AI
ijklEkl − (1− f)Gijkl [σ

p
kl]

εIIij = AII
ijklEkl + fGijkl [σ

p
kl]

(25)

where Eij are the overall homogeneous strains, AI
ijkl, A

II
ijkl are respectively the strain

concentration tensors for crystals I and II, Gijkl is a strain influence tensor which

depends on the anisotropic elastic constants in crystals I and II. In Eq. 25,
[
σp
ij

]
is

defined by
[
σp
ij

]
= CII

ijklε
pII
kl − CI

ijklε
pI
kl (26)

AI
ijkl, A

II
ijkl,

[
σp
ij

]
and Gijkl are given in Appendix A through Eqs. A.4 and A.5.

The strain jump [εij] can be easily derived from Eq. 25. In addition, the effective

(overall) elastic moduli Ceff
ijkl of the bicrystal can be computed using Eq. 25 together
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with
[
σp
ij

]
= 0 and the static averaging rules. The complete expressions of the

effective elastic moduli Ceff
ijkl are given in Appendix A through Eqs. A.6 and Eq.

A.7. Conversely, the effective (overall) elastic compliances are also given in Appendix

A (Eqs. A.11 and A.12). For an infinite planar GB, and assuming heterogeneous

elasticity, the analytical expressions (the so-called stress concentration equations)

for σI
ij and σII

ij are derived in Appendix A through Eq. A.8 and take the general

form of

σI
ij = BI

ijklΣkl + (1− f)Fijkl [ε
p
kl]

σII
ij = BII

ijklΣkl − fFijkl [ε
p
kl]

(27)

where Σij are the overall stresses, B
I
ijkl, B

II
ijkl are respectively the stress concentration

tensors for crystals I and II, Fijkl is a stress influence tensor which depends on the

anisotropic elastic constants in crystals I and II (see also the works of Stupkiewicz

and Petryk (2002); Franciosi and Berbenni (2007, 2008); Richeton and Berbenni

(2013)). The complete analytical expressions for BI
ijkl, B

II
ijkl and Fijkl are given in

Appendix A through Eqs. A.9 and A.10. The interfacial stress jump and average

directly follow from Eq. 27. Stress concentration equations for the particular case of

isotropic elasticity can be easily obtained from Appendix A or can be found in Rey

and Zaoui (1980).

3.2 Intra-crystalline slip

Assuming k is a crystallographic slip system where lattice dislocation motion may

occur within both crystals I and II, then for each crystal, the plastic strain rates

present in Eq. 21 yield

ε̇pij =
∑

k

Rk
ij γ̇

k (28)

where Rk
ij =

1
2

(
mk

i n
k
j +mk

jn
k
i

)
is the classic Schmid (or orientation) tensor for crys-

tallographic glide, and the summation is over k (where k=1 to 12 for f.c.c. crystals
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like Cu crystals). Therefore, the dissipation density due to bulk crystallographic

glide is

σij ε̇
p
ij =

∑

k

τ kγ̇k (29)

where τ k = Rk
ijσij are the resolved shear stresses, i.e. the driving forces for crystal-

lographic slip along the active slip systems k.

In Eq. 21, let us now express the term ([φ]− 〈σij〉 [εij]) ḟ (general case) or−〈σij〉
[
εpij
]
ḟ

(for homogeneous elasticity). These terms characterize the intrinsic dissipation per

unit volume due the shear-coupled GB migration mechanism. In the following, the

link between continuum-based GB dislocation density and the coupling factor β is

detailed using the continuum dislocation density tensor introduced by Nye (1953).

3.3 Link between GB dislocation content and coupling factor

In the continuum dislocation theory (Nye, 1953; Kröner, 1958, 1981; Mura, 1963;

Willis, 1967; Acharya, 2001), the dislocation density tensor αhi is defined as the

Curl of the incompatible elastic distortion βe
ji (i.e. the elastic incompatible part of

the displacement gradient ui,j = βji = βe
ji + βp

ji in the linearized theory) as follows

αhi = ∈hljβ
e
ji,l (30)

where ∈hlj is the permutation tensor. According to the Frank-Bilby theory of sur-

face dislocations (Frank, 1950; Bilby, 1955; Bullough and Bilby, 1956; Bullough,

1965), the plastic distortion jump (or eigendistortion) due to the GB dislocations

(which is a continuum description of discrete GB defects present at the atomic scale

and responsible for GB migration) can be obtained from the expression of surface

dislocation densities (Bullough and Bilby, 1956; Mura, 1987) defined as follows

αS
hi = ∈hlj

[
βe
ji

]
nl = ∈hlj

(
βeII
ji − βeI

ji

)
nl (31)

Applying the 1st order Hadamard compatibility relation (Hadamard, 1903) at the
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discontinuity interface (i.e. ∈hlj

[
βji
]
nl = ∈hlj

(
βII
ji − βI

ji

)
nl = 0) , Eq. 31 yields

αS
ij = −∈jkl [β

p
li]nk (32)

Assuming tl a given unit vector in the boundary plane (of unit normal nm ) in Fig.

3 and wj a unit vector such as wj = ∈jmnnmtn, then the resultant Burgers vector of

dislocation lines cut by tl is Bi = αS
ijwj . Using Eq. 32, ∈jkl∈jmn = δkmδln − δknδlm

and nntn = 0, it comes

Bi = − [βp
li] tl (33)

The plastic distortion jump [βp
li] results from plastic accommodation due the motion

of gliding surface dislocation embodied by αS
ij . This formalism was first applied to

martensitic transformations by Bullough and Bilby (1956) and later by Cahn et al.

(2006b) for ”shear-coupled” GB migration. If crystal II is consumed during the

motion of crystal I into crystal II then crystal II will be considered as the reference

lattice. This is similar to a parent phase in martensitic transformations as described

in Bullough and Bilby (1956). Thus,

[βp
li] = −βligl (34)

where li and gl are unit vectors defined with respect to the reference crystal (see Fig.

3) so that the interface dislocations can be considered for LAGB as discrete distri-

butions of straight dislocations parallel to a unit vector. For HAGB, the interfacial

dislocations are described here as general Frank-Bilby surface dislocations (Frank,

1950; Bilby, 1955; Bullough and Bilby, 1956; Bullough, 1965). Eq. 34 characterizes

a simple shear of magnitude β defined as the “coupling factor” by Cahn and Tay-

lor (2004) during perfect shear-coupled GB migration (i.e. without sliding). This β

factor was already identified in Subsection 2.1 without making any reference to the

Frank-Bilby surface dislocation concept like in the present section.

Here, li gives the direction of the Burgers vector content Bi such that Bi = Bli
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Figure 3. Definition of surface dislocation Burgers vector Bi with respect to reference

crystal II. li is a unit vector in the direction of the Burgers vector, and gi represents the

unit normal to the gliding plane of the surface dislocation.

where B is its magnitude, and gi represents the unit normal to the gliding plane of

the GB dislocations, such as Eq. 33 and Eq. 34 give

Bi = βligltl = Bli (35)

From the last equation, the relationship between B and β is found

β =
B

gltl
(36)

In the case of STGB with a tilt axis direction given by the unit vector pj =

∈jmnlmgn = ∈jmntmnn , simple geometric considerations using Fig. 3 gives the ex-

pression of the coupling factor

β =
B

llnl

(37)

This relationship is consistent with Cahn et al. (2006a)’s work through their Eq.

(21). In this section, the most important is the expression of
[
εpij
]
, the symmetric

part of
[
βp
ji

]
, which reads from Eq. 34

[
εpij
]
= −R̃ijβ (38)

with

R̃ij =
1

2
(ligj + gilj) (39)

R̃ij is defined as the “orientation tensor” associated to the shear deformation (or

slip) of magnitude β coupled to GB migration. From the previous definitions of li
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and gj in Fig. 3, R̃ij and
[
εpij
]
are traceless (i.e. R̃kk=0) so that the induced plastic

strain due to shear-coupled GB migration is incompressible.

3.4 Driving forces

From Eq. 21, the total dissipation per unit volume can be rewritten in the following

general form

D

V
= Fi (Ekl,Σkl, Xj) Ẋi (40)

where Fi are the driving forces associated to internal variablesXi. These ones depend

on the overall strains Eij or stresses Σij and on the three internal variables Xj

(i.e. εpIij , ε
pII
ij , f). In this problem, the three driving forces FεpI , FεpII , Ff associated

respectively to εpIij , ε
pII
ij , f (describing three independent inelastic processes) are listed

below using Eq. 21

FεpI = fσI
ij

FεpII = (1− f) σII
ij

Ff = [φ]− 〈σij〉 [εij]

(41)

where σI
ij , σ

II
ij , 〈σij〉 , [φ] and [εij] can be computed using Eq. 25 or Eq. 27. In the

case of homogeneous elasticity without intra-crystalline slip, Ff simply becomes

Ff = −〈σij〉
[
εpij
]
= 〈σij〉 R̃ijβ = τ̃β following Subsection 3.3 where τ̃ is the driving

resolved shear stress on the surface dislocation gliding plane associated to
[
εpij
]
, R̃ij

is the orientation tensor previously defined in Subsection 3.3 and β is the shear

coupling factor. In the thermo-mechanics of plasticity (Rice, 1975; Maugin, 1992;

Maugin and Muschik, 1994; Maugin, 2011), the critical forces (corresponding to

“threshold stresses” for the previous irreversible processes) are needed to complete

the theory. The considered constitutive expressions for the critical forces and the

kinetics law must be chosen with respect to a positive dissipation per unit volume
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in Eq. 40.

3.5 Critical forces for GB motion and constitutive equations

If the critical forces for intra-crystalline slip, here denoted FC
εpI , F

C
εpII in both crystals

I and II, are higher than their respective corresponding driving forces and only the

critical force for shear-coupled GB migration denoted FC
f is reached by Ff then

FεpI < FC
εpI

FεpII < FC
εpII

Ff = FC
f

(42)

In the case of homogeneous elasticity, the last equation in Eq. 42 reduces to τ̃ = τ̃C

for a given shear coupling factor β where τ̃C is the critical shear stress resolved on

the surface dislocation gliding plane. When Ff reaches FC
f (or when τ̃ reaches τ̃C in

the case of homogeneous elasticity) in Eq. 42, the GB migration flux is given by the

expression of ḟ for an infinite GB plane as follows

ḟ =
1

V

∫

S

ωNdS =
ωNS

V
=
ωN

L
(43)

where L is the total length of the deformed bicrystal in the normal direction to the

GB.

The overall Hooke’s law (see Appendix A, Eq. A.6) together with Eqs. 22, 23, 43 give

the following constitutive relationship between the overall stress and strain rates

Σ̇ij = Ceff
ijkl

(
Ėkl +

ωN

L

(
[εkl]− Seff

klmn [σmn]
))

(44)

where [εij] and [σij ] are respectively provided by Eq. 25 or Eq. 27 depending on

homogeneous strain or stress conditions prescribed on the boundary of the bicrystal.
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Thus, for heterogeneous elastic bicrystals, Eq. 44 also writes

Σ̇ij = Ceff
ijkl

(
Ėkl − Ėpeff

kl

)
(45)

where Ėpeff
ij is the effective (overall) plastic strain rate due to shear-coupled GB

migration defined as

Ėpeff
ij = −ωN

L

(
[εij]− Seff

ijkl [σkl]
)

(46)

Finally, the explicit constitutive macroscopic law is

Σ̇ij = Ceff
ijklĖkl + Ceff

ijkl [εkl]
ωN

L
− [σij]

ωN

L
(47)

If homogeneous elasticity is assumed, the last constitutive law simplifies into

Σ̇ij = Cijkl

(
Ėkl + [εpkl]

ωN

L

)
(48)

which gives, using Eq. 38 in the case where crystal II is consumed,

Σ̇ij = Cijkl

(
Ėkl − R̃klβ

ωN

L

)
(49)

ωN is dependent on the driving force through a mobility function which may depend

on many variables such as GB misorientation, temperature, composition, etc. Follow-

ing recent experimental data (Gorkaya et al., 2009), stress-driven shear-coupled GB

migration exhibits a temperature dependence indicating that a thermally-activated

process is at the origin of the shear-coupled GB migration. It is noteworthy that

recent efforts were made to capture the kinetics law for the GB migration process at

finite temperatures and strain rates by Mishin et al. (2007). Because of the limited

time scale of classic MD, they used accelerated MD simulations like the parallel-

replica dynamics method for a particular Cu flat Σ13 (320) [001] (θ = 67.4◦) STGB

to cover a wide GB velocity range comparable to experimental ones at a fixed tem-

perature (T=500K). Through a one-dimensional analysis, they concluded that the

kinetics law for stress induced-GB migration is of stick-slip nature in a large veloc-

ity range at this finite temperature. They reported the following expression for the
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tangential velocity v‖ during stick-slip dynamics

v‖ =
τ 0c
η

(
1− τc

τ 0c

) 1

2

exp


−

∆G0
(
1− τc

τ0c

) 3

2

kT


 (50)

where τc is the critical shear stress (or peak stress) at finite temperature T (τ 0c is the

critical shear stress at 0K), η is an effective friction coefficient, ∆G0 is the stress-free

activation energy barrier and k is the Boltzmann constant. Eq. 50 was found to

work in a large range of velocities v‖ from 5×10−4 to 5 m/s (Mishin et al., 2007).

Thus, the GB migration flux at finite temperature in the model could be determined

from Eq. 50. However, the accurate determination of the kinetics parameters for the

three investigated Cu STGB will need specific simulation methods (parallel-replica

dynamics, nudged elastic band methods) which are out of the scope of the present

study.

Eq. 47 shows that once GB migration is active for a given normal velocity ωN

(which also depends on the applied velocity to the bicrystal), the instantaneous stress

decrease due to induced plastic strain is dependent on the effective elastic moduli

Ceff
ijkl (or Cijkl in the case of homogeneous elasticity), the GB character (through

R̃ij and β) and the bicrystal finite size L. The calculation of ḟ (or equivalently

the volume fraction increment dictated by the stepwise normal GB motion at each

GB migration event) will be specified and discussed in Section 4 (for 0K and 500K

temperatures) with application to particular [001] Cu STGB. For the latter, the

atomistic mechanisms and collective steps when GB migrates are known following

appropriate vectors of the DSC lattice (Rae and Smith, 1980; Cahn et al., 2006a).
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4 Application to Cu [001] STGB

4.1 Shear coupling modes

Following Cahn et al. (2006a,b); Mishin et al. (2007); Zhang et al. (2008), we consid-

ered [001] STGB in cubic metals like Cu (f.c.c. metal). GB are generally characterized

by five angles. Four angles are set up by choosing the tilt axis and the GB plane is a

particular mirror plane of the bicrystal containing the tilt axis. The misorientation

angle θ is defined as the tilt angle between the [100] directions of both crystals in the

counterclockwise direction, with 0 <θ< π/2 due to the four-fold symmetry around

the tilt axis. Hence, the GB plane lies along the bisector between the [100] directions

like in Fig. 4.

Figure 4. Definition of the misorientation angle θ for [001]-type tilt boundaries. Two Burg-

ers vectors Bi with directions given by unit vectors li are possible which correspond to two

different mappings for Burgers circuit. The normal directions to the slip planes are given

by unit vectors gi. Angles θ and ϕ are linked each other by ϕ=π/2-θ.

Following Cahn et al. (2006b), two mappings for the Burgers circuit allows two pos-

sible Bi and two associated “coupling modes” to be defined. The first “coupling

mode” called the <100> mode (or “mode I”) is such that li is parallel to the cube

direction [010] of the reference lattice (crystal II) and the Frank-Bilby dislocation
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slip planes are (100) (Cahn et al., 2006b). The slip plane is represented to the left

of the GB normal in Fig. 4. For small θ (LAGB), the expressions for Bi and the

associated dislocation density can be resolved by a discrete distribution of single

lattice dislocations of Burgers vectors bi =aL [010] where aL is the lattice parameter

(Bullough, 1965). For LAGB, the critical stress is proportional to the glide compo-

nent of the Peach-Koehler force required to initiate the collective glide of the arrays

of GB dislocations (Molodov et al., 2007). There are two kinds of LAGB: either for

small θ or for θ close to π/2 (i.e. ϕ= π/2 - θ near 0). The latter corresponds to the

GB “mode II” migration (<110> mode) where li is parallel to the direction [11̄0]

of the reference lattice (crystal I) and the associated resolved single dislocations are

of type bi=aL/2[11̄0]. In this case, the Frank-Bilby surface dislocation glides along

(110) planes, which is represented to the right of the GB normal in Fig. 4.

For HAGB, the discrete distributions of single dislocations can not be resolved any-

more (Li, 1961) and the Frank-Bilby equation (Eq. 32) is here used for these STGB.

Disclination models would be possible to describe HAGB (Li, 1972; Clayton et al.,

2006; Upadhyay et al., 2011). These approaches are based on different kinematics

and couple-stress fields which are not discussed in the present paper. As established

by Cahn et al. (2006b), the Frank-Bilby equation (FBE) introduced in Subsection 3.3

provides two feasible solutions for [001] STGB and their continuous GB dislocation

density. These two solutions (as functions of θ) correspond to Burgers vectors either

parallel to [010] (denoted as Bi <100> for “mode I”) or parallel to [11̄0] (denoted

as as Bi <110> for “mode II”). Here, [010] and [11̄0] are crystallographic directions

respectively defined in the crystal II and crystal I. For GB “mode I” migration, the

consumed grain is crystal II (reference lattice) such as ḟ ≥ 0, whereas for “mode II”

migration, crystal I (reference lattice) is consumed with ḟ ≤ 0. Under simple shear

loading, these two coupling modes compete with each other, and the transition from

one mode to the other occurs at a critical misorientation angle θ which depends on
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temperature (see Fig 8 in Cahn et al. (2006a)). Note that as the temperature drops,

the θ range of “mode II” expands and it may be the only active coupling mode

for all values of θ at T=0K. The invoked reason is that the activation of “mode I”

requires the breaking of the mirror symmetry due to equivalent row translations by

lattice vectors 1/2[001] and 1/2[001̄]. This symmetry can only be broken at finite

temperatures where ledges and other defects may form easily. This issue was also

checked using the gamma-surfaces associated to both modes at 0K by Cahn et al.

(2006a).

Thus, due to the complexity of atomistic mechanisms in the case of general GB,

we here limit atomistic investigations to study the constitutive behaviour associ-

ated with the STGB shear-coupled migration. For this case, MD simulations are

conducted for three Cu [001] STGB with misorientation angles θ=77.32◦, 53.13◦,

28.07◦ which show the well-identified temperature dependent shear-coupling <100>

and <110> modes linked to two characteristic coupling factors β (resp. positive and

negative). According to Cahn et al. (2006a), the coupling factor β depends on θ and

on the “coupling modes” as follows

β<100> = 2 tan

(
θ

2

)

β<110> = −2 tan
(
ϕ

2

) (51)

where ϕ = π
2
−θ. MD simulations shown in Subection 4.2 will first provide the shear

stress response, the temperature dependent shear coupling mode as a function of the

GB character, the critical shear stresses (or “peak stresses”), the stress accommo-

dation due to shear (shear stress drop during GB migration) and the saw-tooth be-

haviour (stick slip character). Second, the results of the developed micromechanics-

based model regarding effective elastic moduli, shear stress drops and dissipated

energy will be discussed in Subection 4.3. The roles of GB character, bicrystal size

and anisotropic elasticity will be studied in Subection 4.3.
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4.2 Molecular dynamics simulations

4.2.1 Computational methodology

In this section, a few “flat” Cu [001] STGB, namely Σ41(540) (θ=77.32◦), Σ5(210)

(θ=53.13◦), Σ17(410) (θ=28.07◦), were studied at 0K and at 500K temperatures

using the EAM interatomic potential provided by Mishin et al. (2001) for Cu. Note

that in the work of Cahn et al. (2006a) where MD simulations were performed under

simple shear loading at 800K, the first two STGB display “mode II” migration, and

the last one displays the “mode I” (see table 1 in Cahn et al. (2006a)). However, all

of them display the “mode II” (<110> mode) at 0K as can be inferred from the plots

in their Fig 8. Here, each bicrystal with [001] STGB is created using the coincident

site lattice (CSL) model by placing the first crystal on the top of the other using

the following procedure (Fig. 5).

The tilt axis (x3-axis) is along [001] direction. The horizontal plane (x1,x3) corre-

sponds to the GB plane, and [100] directions for crystals I and II makes an angle

θ. Several initial configurations are also tested by shifting the upper grain with re-

spect to the lower along the (x1) direction so as to obtain the lowest energy state of

a GB configuration after atomic relaxation. The energy minimization is performed

with the LAMMPS simulator 2 using a conjugate gradient method. The methodol-

ogy used to construct the bicrystal in a relaxed configuration (Fig. 6) is similar to

what has been done before by several authors (Cahn et al., 2006a; Spearot et al.,

2008). The methodology adequately accounts for in-plane shifts and result in a re-

laxed configuration with GB structural units same as those obtained by previous

authors. Similarly, interfacial energy values are also in excellent agreement with

previously published results given in Spearot et al. (2008). Each Cu crystal for sim-

2 LAMMPS Molecular Dynamics Simulator; http///lammps.sandia.gov/.
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Figure 5. Schematic figure of the computational atomistic unit cell box with coordinate

axes and periodic boundary conditions. L is the total length in the normal direction (as

defined in the text) to the GB plane for dynamic atoms subjected to shear.

ulations is approximately cubic shaped, and the simulation block for the bicrystal

contains between 30000 - 45000 atoms with periodicity in the (x1) and the (x3)

directions. System dimensions chosen were adequate for the problem considered and

with number of atoms very similar to those reported by Cahn et al. (2006a). Pe-

riodic dimensions in the (x1) and the (x3) directions are listed as follows: 4.7 ×

4.7 nm for Σ41(540) (θ=77.32◦), 3.3 × 3.3 nm for Σ5(210) (θ=53.13◦), and, 6 ×

5.8 nm for Σ17(410) (θ=28.07◦). After molecular static simulation to obtain op-

timized structure, the system was further equilibrated using Molecular Dynamics

(MD) simulations for 40 ps at 0.001 ps under isothermal-isobaric NPT ensemble.

Temperature was increased in increments and for every 100K temperature increase

(i.e. 100K, 200K, 300K, 400K and 500K), the system was further equilibrated for

40ps each with 1fs time step. MD simulations for shear loading were performed in
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the canonical NVT ensemble with Nose-Hoover thermostat under a fixed volume.

The structure is subjected to constant shear strain rate loading as follows.

Figure 6. Structure of the Cu bicrystal showing the STGB Structural units from left to

right: Σ5(210) (θ=53.13◦), Σ17(410) (θ=28.07◦), Σ41(540) (θ=77.32◦). Crystallographic

orientation of the lower crystal are shown at the bottom.

The simulation block (Fig. 5) is sandwiched between the top and the bottom layer

(along the (x2) axis) of thickness about 2 times the potential cut-off distance. These

two layers do not participate in computing data from the simulations and serve only

to impose simple shear loading. The bottom block is held fixed and the constant

shear velocity v0 = v‖ = ĖL is applied to the top part of the block in the (x1)

direction, where Ė is the constant shear strain rate (Ė = 108s−1) and L is the

simulation block length containing unconstrained atoms. Here, two different values

were chosen to keep initial crystal characteristic sizes lower or equal to 10nm to

mimic nanocrystals, namely L=12.2 nm and L= 20 nm. The time step is 1fs. These

simulations are conducted at 0.001K and at 500K, and the overall stress tensor was

computed using the standard virial expression averaged over all dynamic atoms.

The GB position was also tracked from the common neighbour analysis (CNA)

computation. The CNA value for atoms in f.c.c. lattice is 1 and for atoms forming
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GB structural units it is 5 (Faken and Jonsson, 1994; Tsuzuki et al., 2007). For

higher temperature (500K) CNA values averaged over 100 time steps (and centered

around the time step they were averaged) were computed due to thermal fluctuation.

Therefore, a threshold value of 4.9 was used to locate the position of the grain

boundary at 500K. For 0.001 K, threshold value of 5 was used to locate the GB

position.

4.2.2 Stick-slip behaviours at 0K and 500K

As shown by the MD simulation results (Fig. 7) performed at 0.001K (∼ 0K i.e.

very close to the static case), the stress induced shear-coupled GB migration for

these Cu STGB is of stick-slip nature. The saw-tooth shape of the shear stress re-

sponses reported on Fig. 7 characterizes this stick-slip behaviour. This behaviour

is similar to serrated plastification due to collective motion of bulk dislocations in

different alloys which is characterized by intermittent bursts (Chihab et al., 1987;

Kubin et al., 2002). Here, the stick slip behaviour due to GB migration is due to

intermittent collective motion of GB dislocations as described in Subsection 4.1.

These shear stress – shear strain curves represent the typical behaviour at T=0K.

The most important features are the GB character-dependent effective elastic shear

moduli for bicrystals, the critical shear stresses for GB migration identified as the

peak shear stresses in Fig. 7 and the shear stress drops (or the lower stresses after

peak stresses). All these parameters are (quasi)-identically repeated during shear

deformation. In this paper, these features will be analyzed in Subsection 4.3 in the

light of the developed micromechanics-based approach.
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Figure 7. Shear stress vs. strain curves at 0K for Cu Σ17(410), Σ5(210), Σ41(540) [001]

STGB.

Fig. 8a shows the shear stress vs. strain curves for Cu Σ5(210) at both 0K and 500K

temperatures. The critical shear stress is lowered when the temperature increases

and important stress fluctuations at 500K are due to atomic thermal vibrations.

However, the bicrystal responses in terms of elastic shear moduli and shear stress

drop amplitude are not really sensitive to temperature change. It is noteworthy that

the obtained shear stress drop is consistent with Cahn et al. (2006a)’s work (see their

Fig 9 ) even though the simulation bicrystal size L may be different. Fig. 8b reports

the evolution of GB position during the mechanical test as a function of applied

shear strain. At each discrete migration event, a jump of GB position is clearly seen

at both temperatures. Furthermore, the negative motion direction with respect to

the (x2) axis means that for this STGB, the shear-coupled GB motion always follows

the same “mode II” (< 110> mode).

Fig. 9a shows the shear stress vs strain curves for Cu Σ41(540) at both 0K and

500K temperatures. Fig. 9b reports the evolution of GB position as a function of

applied shear strain. GB position jumps along the negative (x2) direction are clearly

seen at both temperatures. Again the shear stress drop magnitude at each GB mi-
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Figure 8. Shear stress vs. shear strain curves for Cu Σ5 (210) [001] STGB at 0K and 500K

temperatures (a), Simultaneous record of GB position (in Angström) as a function of shear

strain at 0K and 500K (b).

gration event does not seem to be affected by finite temperature in strong contrast

with the peak stress at migration activation. Note that for both temperatures, only

the <110> mode is present at both temperatures. These results are consistent with

Cahn et al. (2006a)’s work.
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Figure 9. Shear stress vs. shear strain curves for Cu Σ41(540) [001] STGB at 0K and 500K

temperatures (a), simultaneous record of GB position (in Angström) as a function of shear

strain at 0K and 500K (b).
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4.2.3 Bicrystal size effect on stress drop

We considered Cu [001] Σ5(210), Σ17(410) and Σ41(540) STGB at 0K to study the

effect of the size of bicrystal on their shear stress response. It is first observed that

the peak stress and the elastic shear moduli are not really sensitive to the size L of

the deformed bicrystal in the direction normal to the GB plane (Fig. 10). In contrast,

the shear stress drop is very sensitive to L. This trend was also reported by Ivanov

and Mishin (2008) for Al [112] Σ21(241) STGB at finite temperature (T=300K). To

our knowledge, we did not find anymore STGB examples in the literature treating

these size effect on the shear stress drop. More specifically, it is seen that the shear

stress drop magnitude scales approximately with the inverse of L. This trend will

be further analyzed in Subsection 4.3 as an application of the micromechanics-based

model. Lastly, it is observed that the shear coupling “mode II” migration is always

active at 0K and does not depend on L.

4.2.4 Dual temperature dependent behaviour

Fig. 11 shows the plots of GB position vs. shear strain for Cu Σ17(410) at 0K and

at 500 K temperatures. Note that at 0K temperature, shear-coupled GB migration

exhibits the <110> mode (with negative β coupling factor) whereas at 500 K, it

now exhibits the <100> mode (with positive β coupling factor). This result is seen

at 0K in Fig. 11a by a negative GB motion along (x2) with respect to a positive

applied shear at the top of the bicrystal along (x1). At 500K, Fig. 11b reports a

positive GB motion along (x2) for same positive shear along (x1). In Fig. 11c, it is

first observed at 500K that GB migration occurs earlier compared to 0K. Hence, the

same trend as the two other STGB is observed (see Figs. 8b and 9b). In addition,
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Figure 10. Shear stress vs. shear strain curves at 0K with two bicrystal size L= 12.2 nm

and 20 nm for Cu Σ5(210) (a), Σ17(410) (b) and Σ41(540) (c).

the GB steps follow opposite directions and different magnitudes between two sub-

sequent GB migration events which reveal the presence of different GB slip modes.
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Figure 11. Snapshots of shear-coupled GB migration for Cu Σ17(410) STGB: at 0K from

0 to 0.11 shear strain (a), at 500K from 0 to 0.099 shear strain (b), STGB position (in

Angström) vs. shear strain at 0 K and 500 K (c).

4.3 Model results and comparisons with atomistic simulations

The micromechanics-based approach is applied to the three previously investigated

Cu bi-crystals with [001] STGB. The motivation to study Cu bicrystals lies in the

fact that they exhibit a strongly anisotropic elastic behaviour characterized by the

following anisotropic coefficient (Hirth and Lothe, 1982): a = 2C44

C11−C12

= 3.26. The

cubic elastic moduli for Cu are taken as C11=170 GPa, C12=122.5 GPa and C44=76

GPa. These elastic constants are given by Mishin et al. (2001) and were used by these
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authors to validate the EAM potential for Cu. In this paper, the application of the

micromechanics-based theory is mainly focused on the effect of elastic anisotropy

on the shear stress-strain curves before and at the first shear-coupled GB migration

event (Fig. 12).

In the recent contribution of Luque et al. (2010), these authors did not consider the

effective elastic properties of the bicrystal in the computation of the macroscopic

plastic strain induced by shear-coupling GB migration (see their Eq. (2)). Further-

more, the so called “orientation factor” in the same equation is not defined as it is

here through Eq. 39. In the following, we show that this strong elastic anisotropy

results in elastic shear moduli (before migration events), shear stress drops and dis-

sipated energy that are very sensitive to the GB character. The results obtained by

atomistic simulations performed at 0K obtained in subsection 4.2 serve as bench-

marks for the predictions of the micromechanical formulation.

The explicit formulas obtained by the micromechanical scheme are developed for

general heterogeneous elasticity (see Appendix A) and can be applied to isotropic

elasticity and to anisotropic elasticity for [001] STGB (see Appendix B). The dis-

crepancies between both elastically isotropic and heterogeneous formulations on the

effective elastic moduli, the shear stress drops and the dissipated energy when shear-

coupled migration occurs are highlighted in comparison with the MD results. The

values of shear stress drop magnitudes for different bicrystal sizes are also reported

and discussed.

4.3.1 On effective elastic shear moduli

For homogeneous isotropic elastic properties, the isotropic elastic coefficients for Cu
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Figure 12. Schematic representation of the shear stress vs. shear strain curve and the

quantitative values predicted by the micromechanical model: effective elastic shear moduli,

shear stress drop, dissipated energy. The critical shear stress (also called “peak stress”) is

obtained by MD simulations.

are obtained using the classic Voigt-Reuss-Hill average model (Voigt, 1928; Reuss,

1929; Hill, 1952). This model gives µ=47.8 GPa (isotropic elastic shear modulus)

and ν=0.345 (Poisson ratio). The isotropic shear modulus is reported on Table 1

for comparisons with the effective elastic shear moduli derived for general elastic

anisotropy. The application of Appendix B gives the numerical values for elastic

moduli in both crystals using the cubic symmetry for Σ41(540) (θ=77.32◦), Σ5(210)

(θ=53.13◦), Σ17(410) (θ=28.07◦) that can be used to derive the effective elastic

moduli (Eq. A.7 in Appendix A) for the three investigated bicrystals. We find for

f=1-f (initial effective elastic shear moduli) that the effective elastic shear moduli

(Table 1) are in good agreement with the atomistic simulations at 0K and at 500K.

In contrast, we remark that the classic isotropic assumption obtained from Voigt-

Reuss-Hill average is sometimes far from the atomistic results for the studied Cu
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[001] STGB, which means that the simple elastic isotropic assumption is not real-

istic for Cu bicrystals. It is noteworthy that after a few GB migration events (e.g.

four events like the ones present in Fig. 7), the effective elastic shear moduli repeat

quasi-identically. This is due to the fact that the total GB displacement after four

events is very small compared to L. This trend can be explained by the model since f

still remains close to 1-f in Eq. A.7. Conversely, when one of both crystals is totally

consumed by the other (the study was not investigated due to large CPU times for

atomistic simulations), the micromechanical model is able to predict a change in the

effective elastic moduli when f or 1-f tends to zero in Eq. A.7, depending on the

shear coupling mode.

Effective elastic shear moduli (GPa) Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations 25.4 35.6 57.4

Present model (anisotropic) 25.7 39.5 61.8

Voigt-Reuss-Hill average (isotropic) 47.8 47.8 47.8

Table 1

Elastic shear moduli obtained by the MD results and by the present micromechanical

model accounting for anisotropic elasticity for Σ41(540), Σ5(210), Σ17(410) [001] STGB.

The isotropic Voigt-Reuss-Hill average is also given for comparisons.

4.3.2 On overall shear stress drops and dissipated energy due to shear-coupled GB

migration

The mechanical responses given by the micromechanical model can be enriched by

the critical forces FC
f or the critical resolved shear stresses on the GB slip plane τ̃C
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in Eq. 42 directly obtained from the peak stresses (or critical shear stresses τC) of

the atomistic results (see Subsection 4.2). These peak stresses resulted from simple

shear performed at an applied material velocity v‖ parallel to the GB plane (see

Figs. 5 and 7).

In this part, we focus on the analysis of shear stress drops and dissipated energy in

the light of the micromechanical approach when the first GB migration event occurs.

Hence, we set f=1-f in the constitutive model assuming either isotropic elasticity or

fully anisotropic elasticity in both crystals. We start by the analysis of first shear

stress drops when the “mode II” (<110> mode) is activated at 0K for the three GBs

and at 500K for Σ41(540) and Σ5(210). Then, the model is applied to the case when

the “mode I” (<100> mode) is activated at 500K for Σ17(410). Lastly, the model

is applied to understand the origin of bicrystal size effects on stress drops at 0K for

the three STGBs.

As seen from atomistic simulations, “mode II” is a dominating shear mode especially

at 0K for the three GBs. According to Fig. 4, li and gi are defined so that the <110>

mode (“mode II”) is characterized by lini = giti = − cos
(
ϕ
2

)
= − cos

(
π
4
− θ

2

)
which

gives li =
(
sin

(
π
4
− θ

2

)
,− cos

(
π
4
− θ

2

)
, 0
)
, gi =

(
− cos

(
π
4
− θ

2

)
,− sin

(
π
4
− θ

2

)
, 0
)
and

R̃ij from Eq. 39. Since crystal I is the parent grain, only crystal II undergoes plastic

deformation, thus
[
εpij
]
= εpIIij = −R̃ijβ. When the critical shear stress is reached,

shear-coupled GB migration is active. Then, time integration of Eq. 47 during the

first shear-coupled GB migration event yields

Σ̇ijδt = Ceff
ijklĖklδt+

hN
L

(
Ceff

ijkl [εkl]− [σij ]
)

(52)

From atomistic results, the time step δt for each single shear-coupled GB migration

event is a few ps. This time scale is out of the scope of continuum mechanics for

which GB migration is seen as instantaneous. In Eq. 52, the strain and stress jumps
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(resp. [εij] and [σij ]) can be computed using the expressions for strains and stresses

given in Appendix A for homogeneous stress or strain boundary conditions. These

jumps depend on the elastic properties of both crystals as given in Appendix B and

depend on R̃ij and β. In Eq. 52, hN denotes the normal step height during stepwise

GB motion (at the first GB migration event) which corresponds to the characteristic

step height due to GB disconnection loop nucleation (Hirth and Pond, 1996; Hirth

et al., 2007; Pond et al., 2008; Wang et al., 2011). This mechanism is supposed to

be present for the investigated STGB which are all considered as HAGB (since their

misorientation is higher than 10 ◦) (Cahn et al., 2006a). In the case of “mode II”, the

GB plane moves down (negative motion with respect to the (x2) axis in Fig. A.1) to

a new position when τC is reached for which the activation energy for GB migration

is overcome. The stored energy released at each increment of the GB motion is

immediately dissipated and the temperature returns to initial temperature so that

an isotherm assumption can be justified (this would not be the case for materials

problem with slow energy dissipation). In the present formulation, the second term

in Eq. 52, that contains the strain and stress jumps, hN and the effective elastic

moduli, is responsible for shear stress drop when migration is active. Without trying

to determine the complete activation energy profile for the three studied STGB

(like Eq. 50), the transition from an unstable state to a metastable state associated

with the dissipative GB migration event is then described by a normal step height

hN . This characteristic distance hN is also linked to the DSC lattice vector for

coincident (CSL) GB. The DSC lattice is the largest lattice including all the sites of

the lattices of both crystals. According to Rae and Smith (1980), King and Smith

(1980), Cahn et al. (2006a), the disconnection step height hN is linked to the DSC

lattice spacing. Thus, the expression of the disconnection step height hN depends

on the GB character (through θ) and on the lattice parameter aL. For the <110>
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mode, hN is negative and is given by (Cahn et al., 2006a)

hN
<110> = − aL√

2
cos

(
ϕ

2

)
(53)

where aL= 0.3615 nm for Cu. The numerical values obtained for hN from MD sim-

ulations are computed by averaging the different GB position steps in Figs. 7b and

8b. The comparisons between these values and the theoretical ones given by Eq. 53

are provided in Table 2 and show a very good agreement.

hN (nm) for <110> mode Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations (average values) -0.255 -0.248 -0.220

Theory -0.254 -0.242 -0.219

Table 2

Normal step height hN average values obtained by Eq. 53 (theory) compared to MD results

for Cu Σ41(540), Σ5(210), Σ17(410) [001] STGB.

Here, the shear-coupled GB migration event is assumed instantaneous at the contin-

uum mechanics time scale so that during the stepwise GB motion ∆Eij = Ėijδt = 0

in Eq. 52, thus

∆Σij =
hN
L

(
Ceff

ijkl [εkl]− [σij]
)

(54)

Assuming linear isotropic homogeneous elasticity, Eq. 54 simplifies into

∆Σij = −2µ
hN
L
R̃ijβ (55)

since R̃kk = 0 (see Subsection 3.3).

In the following, the tensor to matrix convention introduced in Appendix A is used.

The pairs of subscripts ij and kl are converted to single subscripts as follows: 11→ 1,

22→ 2, 33→ 3, 23 and 32→ 4, 13 and 31→ 5, 12 and 21→ 6. For simple shear
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parallel to GB plane in the (x1) direction as performed in the MD simulations,

and assuming a pure shear stress state over the bicrystal, the overall shear stress

increment is obtained from Eq. 54 as follows

∆Σ6 =
hN
L

(
Ceff

62 [ε2] + Ceff
64 [ε4] + Ceff

66 [ε6]
)

(56)

since [σ6] = 0 (see Eq. A.2 in Appendix A). Here, the strain concentration equations

(Eq. A.3 in Appendix A) are applied (shear strain-controlled problem). For isotropic

elasticity, Eq. 55 simply yields

∆Σ6 = −µhN
L
R̃6β (57)

with R̃6 = cos
(
π
2
− θ

)
. The overall effective plastic strain increment is obtained

from Eq. 46 (using [σA] = 0) and computed as follows

∆Epeff
6 = ∆Ep

6 = −hN
L

(
[ε6]− Seff

61 [σ1]− Seff
63 [σ3]− Seff

65 [σ5]
)

(58)

For isotropic elasticity, Eq. 57 yields the overall plastic strain increment

∆Ep
6 =

hN
L
R̃6β (59)

The present micromechanics-based model is able to describe the shear stress drop

magnitude in the stick-slip behaviour (Fig. 11). The shear stress drop magnitude

can be defined as the absolute value of the shear stress increment |∆Σ6| obtained

from Eq. 56 or Eq. 57. The stick-slip behaviour is dependent on the grain boundary

character (through θ), the effective elastic properties of the bicrystal, the lattice

parameter (through hN) and the bicrystal finite size L. The numerical values re-

garding shear stress drop magnitudes for Σ41(540) (θ=77.32◦), Σ5(210) (θ=53.13◦),

Σ17(410) (θ=28.07◦) are reported in Table 3 both from atomistic results and from

the micromechanical approach (either Eq. 56 for anisotropic elasticity or Eq. 57 for

isotropic elasticity). The β<110> coupling factors are respectively -0.222, -0.667, -

1.200 for Σ41(540), Σ5(210), Σ17(410). The quantitative comparisons reported in
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Table 3 give reasonable agreement with the atomistic results in the case of anisotropic

elasticity for the three investigated STGB. The relative errors with respect to MD

results on overall shear stress stress drops are respectively ∼ 27 %, ∼ 44 %, ∼ 5

% for Σ41(540), Σ5(210), Σ17(410). Conversely, the isotropic elasticity assumption

give sometimes unrealistic results which are far from the MD results especially for

Σ41(540) STGB where the relative error reaches 116 %. The results show that the

isotropic elastic assumption may only be relevant for the particular case of Σ5(210)

STGB.

Another example where the micromechanical approach can be applied is the spe-

|∆Σ6| (MPa) for L=12.2nm Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations 100 (0K,500K) 417 (0K,500K) 1080 (0K)

Micromechanical model (anisotropic) 127 603 1024

Micromechanical model (isotropic) 216 506 485

Table 3

Shear stress drop magnitudes (in MPa) obtained by the MD results and by the mi-

cromechanical model with anisotropic and isotropic elastic formulations for Cu Σ41(540),

Σ5(210), Σ17(410) [001] STGB with L=12.2nm.

cific Cu Σ13 (320) (θ = 67.4◦) STGB investigated by Mishin et al. (2007) for which

β=-0.4. In this case, the shear stress drop magnitude obtained by the authors us-

ing atomistic simulations at 0K with L=6 nm was found to be ∼ 450MPa (Mishin

et al., 2007). Taking into account anisotropic elasticity (Eq. 56) and the fact that

the “mode II” is active at 0K (Eq. 53), the present model gives |∆Σ6|=573MPa,

which represents a relative error of ∼ 27%, while isotropic elasticity would give

|∆Σ6|=736MPa (relative error of ∼ 63%).

For Cu Σ17 (410) STGB, “mode I” occurs at 500K according to Fig. 11c. In
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this <100> mode, Bi (or li) forms an angle θ/2 counterclockwise with respect

to ni (Fig. 4) such that lini = giti = cos
(
θ
2

)
, li =

(
− sin

(
θ
2

)
, cos

(
θ
2

)
, 0
)
,gi =

(
cos

(
θ
2

)
, sin

(
θ
2

)
, 0
)
. Here, crystal II is the parent grain and only crystal I under-

goes plastic deformation, thus
[
εpij
]
= −εpIij = −R̃ijβ where R̃ij is given by Eq. 39.

In this case, the first shear stress drop obtaind by MD simulations is ∼ 300MPa.

The micromechanical model can also be applied in the same way to the “mode I”

observed at T=500 K. In this case, the theoretical hN value is now positive and is

given by (Cahn et al., 2006a)

hN
<100> =

aL
2

cos

(
θ

2

)
(60)

Using Eq. 56 (elastic anisotropy), we obtain |∆Σ6|=322MPa, which represents a

relative error less than 8%.

The continuum-based model is also able to describe the dissipated energy during

shear-coupled GB migration (Fig. 12). The methodology to compute the dissipated

energy during the first GB migration event is described by the grey area in Fig. 13

and is applied to the three STGB in comparison with MD simulations performed

at 0K for L=12.2nm. From the knowledge of the critical shear stress denoted Σc
6

in Fig. 13 (left) which is obtained from MD simulations, the grey area (dissipated

energy) is computed with the model by the product Σ⋆
6∆E

p
6 (see Fig. 13 (right))

with Σ⋆
6 = Σc

6 + ∆Σ6/2. ∆Ep
6 and ∆Σ6 are respectively obtained from Eqs. 58

and 56 in the case of anisotropic elasticity and from Eqs. 59 and 57 in the case

of isotropic elasticity. The quantitative comparisons between the dissipated energy

using the previous methodology and the grey area directly obtained under the stress-

strain curve given by MD simulations at 0K (see Fig. 7) are reported in Table 4.

These results confirm a reasonable agreement with the atomistic results in the case

of anisotropic elasticity for the three investigated STGB. In this case, the relative

errors with respect to MD results on dissipated energy are respectively ∼ 14 %, ∼
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23 %, ∼ 6 % for Σ41(540), Σ5(210), Σ17(410).

Figure 13. Schematic representation of the dissipated energy during first shear-coupled GB

migration event (left), method to compute the dissipated energy with the micromechanical

model and the knowledge of Σc
6 (right).
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Dissipated energy (MJ/m3) for L=12.2nm Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations (0K) 5.31 12.70 39.90

Micromechanical model (anisotropic) 6.04 15.60 37.55

Micromechanical model (isotropic) 10.26 15.08 18.59

Table 4

Dissipated energy (in MJ/m3) obtained by the MD results and by the micromechani-

cal model with anisotropic and isotropic elastic formulations for Cu Σ41(540), Σ5(210),

Σ17(410) [001] STGB with L=12.2nm at 0K.

4.3.3 Prediction of bicrystal size effects on shear stress drop

Regarding the bicrystal size effect investigated in Subsection 4.2 for Σ41(540), Σ5(210),

Σ17(410) on shear stress drop magnitude, the results of the micromechanical model

for L=20nm are given in Table 4 (for both isotropic and anisotropic formulations).

Overall, the bicrystal size effect is well reproduced for both STGB in the case where

anisotropic elasticity is accounted for, especially for Σ41(540) and Σ17(410). Even

though the micromechanical approach supposes mean strain and stress fields in both

crystals (no intracrystalline shear stress fluctuations along the normal axis (x2) to

the GB plane, see Eq. A.2), it is found that the bicrystal size effect (characterized

by the internal length scale L) on the shear stress drop magnitude scales with hN

L
.

Here, hN is fixed for a given STGB because it is linked to the lattice parameter aL in

Eq. 53. Following Eq. 56 and the fact that the terms Ceff
62 [ε2] +Ceff

64 [ε4] +Ceff
66 [ε6]

are not length scale dependent (see Appendix A), the stress drop magnitude ratio

|∆Σ6|L=12.2nm

|∆Σ6|L=20nm

= 20
12.2

∼ 1.64 is in good agreement with the one obtained by atomistic

simulations for Σ41(540), Σ5(210) and Σ17(410) which are respectively 1.67, 1.71

and 1.68 from Tables 3 and 5.
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|∆Σ6| (MPa) for L=20nm Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations (0K) 60 244 641

Micromechanical model (anisotropic) 78 368 624

Micromechanical model (isotropic) 132 309 296

Table 5

Shear stress drop magnitudes (in MPa) obtained by the MD results and by the mi-

cromechanical model with anisotropic and isotropic elastic formulations for Cu Σ41(540),

Σ5(210), Σ17(410) [001] STGB with L=20nm at 0K.

4.4 Discussion

It looks clear that the large discrepancies sometimes observed between the atomistic

results and the micromechanical model with the isotropic elastic assumption are

mainly due to a poor estimate of the effective elastic shear modulus and the strains

in both crystals. The predictions of shear stress drops and dissipated energy during

first shear-coupling GB migration are in reasonable agreement with MD results

when anisotropic elasticity is considered in the formulation. Furthermore, it has been

checked that atomistic simulations give approximately same averaged shear stresses

in crystals I and II which is here consistent with the continuum stress equilibrium

requirement (see Eq. A.2). In the continuum model, a small strain formulation is used

with only linear elastic effects. No normal applied stress is considered for boundary

conditions. It is assumed that the overall stresses of the bicrystal are in pure shear

stress under controlled shear strain for the calculations of stresses and strains in each

crystal during shear-coupled GB migration. According to Fig. 14, MD simulations

show the presence of overall normal stress (i.e. the averaged stress over all dynamic
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atoms along the normal direction to the GB plane) in addition to overall shear stress.

This normal stress nonlinearly increases with applied shear and the normal stress

variation at the occurrence of shear-coupled GB migration reaches 130MPa. These

second order non linear effects (with respect to first order linear anisotropic elasticity

effects) might contribute to the differences observed between the continuum-based

model and MD results. Geometrical and material nonlinearities (see e.g Wu (2005))

are not considered in the present micromechanical model and are left for further

studies.

Figure 14. Overall shear stress (solid line) and normal stress (dotted line) computed by

MD simulations for Σ5(210) at 0K (L=12.2nm) during applied simple shear deformation.

The results of the present study show that as grains grow due to shear-coupled GB

migration, it is seen that both GB character and elastic anisotropy will produce

elastic and plastic incompatibilities under shear deformation which can affect the

kinetics and morphology of grains during plastic deformation. In real polycrystalline

metals, GB mobility is very difficult to capture because of the presence of different

GB characters. An arbitrary mixed GB boundary with tilt and twist components

or asymmetric GB (Zhang et al., 2008) could also be considered by the present
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continuum-based approach. Inspecting the general expression for the driving force

Ff for normal GB motion in Eq. 41, it is found that for elastically anisotropic crys-

tals (like Cu), the shear stress can create a volume driving force due to the difference

between the elastic strain energy densities in the grains. Conversely, shear-coupled

GB migration may also be forbidden for specific situations which cancel Ff . In poly-

crystals, GBs have generally no pure tilt or pure twist characters. However, it was

recently observed (Morawiec, 2009) for polycrystals with cubic symmetry that more

than 80% of random GB are near tilt GB and less than 5% are near twist ones. The

mechanical framework developed in this paper holds for both low angle and high

angle GBs. It is also thought that extended kinematics for shear-coupled GB migra-

tion (Mompiou et al., 2010, 2011) could also be incorporated in this framework and

merits further studies. Twin boundaries are special cases where the present model

can also be applied (twinning does not involve diffusion) by considering the charac-

teristic twinning shear as input of the model. In this particular case, the continuum

model can also be applied without preliminary atomistic studies to identify shear

modes and integrated in recent polycrystalline models (Shiekhelsouk et al., 2009). As

another application of the present constitutive model, stress-induced GB migration

can produce grain shape changes during plastic deformation of nanocryscrystalline

materials. Today, it is important to well handle in-use mechanical properties of

nanocrystalline materials by a good compromise between yield strength and ductil-

ity. These materials exhibit a strong yield stress (due to the Hall-Petch’s behavior

even though this one is seen to be reversed at very fine grain sizes) but for most of

them ductility appears to be poor (Dao et al., 2007). Shear-coupled GB migration

is another deformation mechanism in competition to diffusional creep, dislocation

nucleation and slip, which is characterized by a different grain-size and temperature

dependencies of the strain rate. This mechanism should be especially important in

the study of the deformation behaviour of nanocrystalline materials where grain size
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distribution (Berbenni et al., 2007; Nicaise et al., 2011) and GB mechanisms (Barai

and Weng, 2009; Schillebeeckx et al., 2011) play a key role on their overall behaviour.

Due to the high resolved shear stresses required to move STGB, it is expected that

GB migration would play a key role in the understanding of inverse Hall-Petch ef-

fect in addition to GB sliding or GB dislocation nucleation-propagation-absorption.

Furthermore, it is important to well model the inelastic accommodation mechanisms

at grain boundaries and junctions in order to understand the initiation of cracks in

these materials (Bobylev et al., 2010).

5 Conclusions

A new micromechanics-based model was investigated to describe shear-coupled GB

migration in bicrystals. Both MD simulations (at 0K and 500K) and a microme-

chanical model assuming Frank-Bilby GB dislocations were applied to three Cu [001]

symmetric tilt GBs: Σ41(540) (θ=77.32◦), Σ5(210) (θ=53.13◦), Σ17(410)(θ=28.07◦).

The critical shear stresses (or peak stresses) for shear-coupled GB migration have

been obtained by MD simulations under fixed temperatures. The role of copper elas-

tic anisotropy on the stick-slip features of shear-coupled migration has been observed

on the shear stress-strain curves. These ones have been analyzed in the light of the

micromechanical model.

The β geometric parameter (the so-called shear coupling factor) used in materials

science) is derived from the Hadamard’s kinematics relation for particle velocity

jump at the interface. This is also consistent with the kinematics of GB migra-

tion studied at the atomistic level (Tucker et al., 2011). This shows the efficiency

of the continuum-based approach even at the nanoscale. The driving forces for

shear-coupled migration can be developed using either isotropic elasticity or cubic
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(anisotropic) elasticity. The formulation is consistent with the concept of configu-

rational forces and the Eshelby energy-momentum based thermo-micromechanics.

The effective elastic moduli of the bicrystals computed with anisotropic elasticity

well match the atomistic results using the EAM potential for copper from Mishin

et al. (2001). The jumps of plastic strains and plastic distortions at the interface

(eigenstrains and eigendistortions) are derived and depend on the β geometric pa-

rameter and an orientation tensor for GB dislocation slip. The effective plastic strain

rate of the bicrystal during a GB migration event is computed and depends on the

strain and stress jumps at the interface. This formula which is based on transport

equations is quite general and can be applied to other GB without any difficulty.

It is found that the predictions of shear stress drops and dissipated energy during

first shear-coupling GB migration event at fixed temperatures are well described by

the micromechanical approach especially when anisotropic elasticity is considered in

the formulation. The model may also be extended to various strain rates and tem-

peratures assuming the shear-coupling modes can be easily identified by atomistic

simulations. Interestingly, for very low velocities up to 5m/s, the shear stress drop is

not very sensitive to shear rates (Mishin et al., 2007). Advanced atomistic methods

dedicated to obtain the kinetics parameters of shear-coupled GB migration should

be developed to improve the constitutive kinetics law and to obtain the GB mo-

bilities at finite temperatures. Real experimental data for Cu STGB would be also

ideal to validate the model in addition to atomistic simulations. Nevertheless, ex-

periments to observe the stick-slip behavior should consider not too large grain size

(i.e. preferably in the nanoscale range) which needs in situ high-resolution electron

microscopy.

As some perspective to polycrystal modeling and applications, the present work

developed for bicrystals with shear-coupled GB migration can be applied to study
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stress-induced twin boundary migration and nanocrystalline materials as discussed

previously. The constitutive framework will be imported in polycrystalline models

like the ones recently developed by the authors (Berbenni et al., 2007; Shiekhelsouk

et al., 2009; Nicaise et al., 2011) by considering GB character dependent behaviour

in addition to crystals behaviours.

Acknowledgements

SB and MC are grateful for the support of the french “Agence Nationale de la

Recherche” under contract “Nanocrystals” (ANR-07-BLAN-0186).

51



Appendix

A Stress and strain concentration equations, effective elastic behaviour

for planar GB with general heterogeneous elasticity

Here, a “representative” volume V as the one represented in Fig. 2 is considered

where crystal I occupies a volume fraction f=VI/V and crystal II occupies a

volume fraction 1-f. In order to find the “effective” elastic moduli of the bicrystal

with planar grain boundaries, different techniques can be applied like the one

described in Stupkiewicz and Petryk (2002),using in-plane and out-of-plane

components for stresses and strains, or the one described in Franciosi and Berbenni

(2007, 2008) using the “Transformation Field Analysis” (TFA) for two-phase

material introduced in the nineties by Dvorak (1990). In this paper, we will avoid

the calculations of the TFA influence tensors from the elastic concentration

tensors, and we will apply the framework given in Stupkiewicz and Petryk (2002)

to a general elastic anisotropic bicrystals constituted of crystals I and II (Fig A.1).

Here, we give the explicit expressions for general anisotropic elasticity in both

crystals after setting the strain (resp. stress) concentration equations and the

effective elastic moduli (resp. compliances). It is noteworthy that only the stress

concentration equations were reported in Stupkiewicz and Petryk (2002) (not the

strain concentration equations as detailed and applied in the present paper). The

linear elastic behaviour of a crystal with plastic strains (or eigenstrains) denoted

εpij is governed by the elastic Hooke’s law in the form σij = Cijkl (εkl − εpkl) or its

inverse relationship εij = Sijklσkl + εpij, where Cijkland Sijkl are respectively the

components of the elastic moduli and compliance tensors. Here, we adopt the

following tensor to matrix convention (Nye, 1957) in which pairs of subscripts ij

and kl are converted to single subscripts: 11→ 1, 22→ 2, 33→ 3, 23 and 32→ 4, 13
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and 31→ 5, 12 and 21→ 6. Thus, each of the tensor components is associated with

a matrix component as follows




σ11 σ12 σ13

σ22 σ23

σ33




→




σ1 σ6 σ5

σ2 σ4

σ3







ε11 ε12 ε13

ε22 ε23

ε33




→




ε1
1
2
ε6

1
2
ε5

ε2
1
2
ε4

ε3




Cijkl → Cmn

Sijkl →





Smn if m, n = 1,2,3

Smn

2
if either m or n = 4,5,6

Smn

4
if both m and n = 4,5,6

(A.1)

The Hooke’s law writes σm = Cmn (εn − εpn) and εm = Smnσn + εpm for

m,n=1,2,. . . 6 where Cmn, Smn are respectively the 6×6 square matrix forms of

elastic moduli and compliances. Considering the bicrystal’s configuration in Fig.

A.1, the in-plane matrix components are denoted P=1, 3, 5, and the out of plane

(or anti-plane) components are denoted A=2,4,6. The application of both traction

vector continuity and tangential strain continuity (Hadamard, 1903) yields

[σA] = 0 ⇔ σI
A = σII

A = ΣA

[εP ] = 0 ⇔ εIP = εIIP = EP

(A.2)

53



where the averaging rules Σij = fσI
ij + (1− f) σII

ij and Eij = fεIij + (1− f) εIIij

apply.

Figure A.1. Schematic representation of the bicrystal with the coordinate axes used to

derive the tensor or matrix components throughout the paper.

After some algebraic manipulations, we find the strain concentration equations for

the out of plane strain components as follows (with summations over repeated

indices A=2,4,6 and P=1,3,5)

εIA = AI
AAEA + AI

APEP − (1− f)GAA [σp
A]

εIIA = AII
AAEA + AII

APEP + fGAA [σp
A]

(A.3)
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where AI
AA, A

II
AA, A

I
AP , A

II
AP (elastic strain concentration components), GAA and

[σp
A] are given as follows

AI
AA = (C∗

AA)
−1CII

AA

AI
AP = (1− f) (C∗

AA)
−1 [CAP ]

AII
AA = (C∗

AA)
−1CI

AA

AII
AP = −f(C∗

AA)
−1 [CAP ]

GAA = (C∗
AA)

−1

[σp
A] = CII

AAε
pII
A + CII

AP ε
pII
P − CI

AAε
pI
A − CI

AP ε
pI
P

(A.4)

with C∗
AA = (1− f)CI

AA + fCII
AA. According to Eqs. A.2 (second equation) and

A.3, the elastic strain concentration tensors AI
ijkl,A

II
ijkl and Gijkl can be recast as

AI,II
ijkl ≡




AI,II
AA AI,II

AP

0 I




Gijkl ≡




GAA 0

0 0




(A.5)

By setting [σp
A] = 0 (no plastic strain) in Eq. A.3 and using the static averaging

rules, we find the effective elastic moduli Ceff
ijkl as follows




ΣA

ΣP




=




Ceff
AA Ceff

AP

Ceff
PA Ceff

PP







EA

EP




→ Ceff
ijkl ≡




Ceff
AA Ceff

AP

Ceff
PA Ceff

PP




(A.6)

From Eq. A.6, the expressions of Ceff
AA , Ceff

AP , Ceff
PA , Ceff

PP are obtained after

algebraic manipulations using the elastic Hooke’s laws for crystals I and II and
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Eqs. A.2-A.5

Ceff
AA = fCI

AA(C
∗
AA)

−1CII
AA + (1− f)CII

AA(C
∗
AA)

−1CI
AA

Ceff
PA = fCI

PA(C
∗
AA)

−1CII
AA + (1− f)CII

PA(C
∗
AA)

−1CI
AA

Ceff
PP = fCI

PP + (1− f)CII
PP − f(1− f)

(
CII

PA − CI
PA

)
(C∗

AA)
−1
(
CII

AP − CI
AP

)

Ceff
AP = fCI

AP + (1− f)CII
AP − f(1− f)

(
CII

AA − CI
AA

)
(C∗

AA)
−1
(
CII

AP − CI
AP

)

(A.7)

The relations in Eq. A.7 are consistent with the expressions given in Stupkiewicz

and Petryk (2002) (note that Ceff
AA and Ceff

PA are here written in a simpler form).

Let us now focus on stress concentration equations. In addition to Eq. A.2 (first

equation), we can directly follow the same authors to obtain the in plane stresses

in both crystals

σI
P = BI

PPΣP + BI
PAΣA + (1− f)FPP [εpP ]

σII
P = BII

PPΣP + BII
PAΣA − fFPP [εpP ]

(A.8)

where BI
PP , B

II
PP , B

I
PA, B

II
PA (elastic stress concentration components), FPP and

[εpP ] are given by

BI
PP = (S∗

PP )
−1SII

PP

BI
PA = (1− f) (S∗

PP )
−1 [SPA]

BII
PP = (S∗

PP )
−1SI

PP

BII
PA = −f(S∗

PP )
−1 [SPA]

FPP = (S∗
PP )

−1

[εpP ] = εpIIP − εpIP

(A.9)
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with S∗
PP = (1− f)SI

PP + fSII
PP . Following Eq. A.2 (first equation) and Eq. A.8,

the elastic stress concentration tensors BI
ijkl, B

II
ijkl and Fijkl can recast as

BI,II
ijkl ≡




I 0

BI,II
PA BI,II

PP




Fijkl ≡




0 0

0 FPP




(A.10)

By setting [εpP ] = 0 (no plastic strain) in Eq. A.8 and using the averaging rules, we

find the effective elastic compliances Seff
ijkl as follows




EA

EP




=




Seff
AA Seff

AP

Seff
PA Seff

PP







ΣA

ΣP




→ Seff
ijkl ≡




Seff
AA Seff

AP

Seff
PA Seff

PP




(A.11)

From Eq. A.11, the expressions of Seff
PP , S

eff
AP , Seff

PA , Seff
AA are obtained after

algebraic manipulations using the elastic Hooke’s laws for crystals I and II and

Eqs. A.2, A.8-A.10

Seff
PP = fSI

PP (S
∗
PP )

−1SII
PP + (1− f)SII

PP (S
∗
PP )

−1SI
PP

Seff
AP = fSI

AP (S
∗
PP )

−1SII
PP + (1− f)SII

AP (S
∗
PP )

−1SI
PP

Seff
AA = fSI

AA + (1− f)SII
AA − f(1− f)

(
SII
AP − SI

AP

)
(S∗

PP )
−1
(
SII
PA − SI

PA

)

Seff
PA = fSI

PA + (1− f)SII
PA − f(1− f)

(
SII
PP − SI

PP

)
(S∗

PP )
−1
(
SII
PA − SI

PA

)

(A.12)

The relations in Eq. A.12 are also consistent with the expressions given in

Stupkiewicz and Petryk (2002). In order to determine AI
ijkl, A

II
ijkl, Gijkl,C

eff
ijkl , B

I
ijkl,

BII
ijkl, Fijkl, S

eff
ijkl in Eqs. A.4-A.12, the different matrix forms and are detailed in

the particular configuration of Fig. A.1 as follows (the formulas remain valid for
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any other configuration with different axes using indices permutation)

CI,II
AA =




CI,II
22 CI,II

24 CI,II
26

CI,II
42 CI,II

44 CI,II
46

CI,II
62 CI,II

64 CI,II
66




;CI,II
AP =




CI,II
21 CI,II

23 CI,II
25

CI,II
41 CI,II

43 CI,II
45

CI,II
61 CI,II

63 CI,II
65




CI,II
PA =




CI,II
12 CI,II

14 CI,II
16

CI,II
32 CI,II

34 CI,II
36

CI,II
52 CI,II

54 CI,II
56




;CI,II
PP =




CI,II
11 CI,II

13 CI,II
15

CI,II
31 CI,II

33 CI,II
35

CI,II
51 CI,II

53 CI,II
55




(A.13)

C∗
AA =




C∗
22 C

∗
24 C

∗
26

C∗
42 C

∗
44 C

∗
46

C∗
62 C

∗
64 C

∗
66




→ GAA = (C∗
AA)

−1 (A.14)

SI,II
AA =




SI,II
22 SI,II

24 SI,II
26

SI,II
42 SI,II

44 SI,II
46

SI,II
62 SI,II

64 SI,II
66




;SI,II
AP =




SI,II
21 SI,II

23 SI,II
25

SI,II
41 SI,II

43 SI,II
45

SI,II
61 SI,II

63 SI,II
65




SI,II
PA =




SI,II
12 SI,II

14 SI,II
16

SI,II
32 SI,II

34 SI,II
36

SI,II
52 SI,II

54 SI,II
56




;SI,II
PP =




SI,II
11 SI,II

13 SI,II
15

SI,II
31 SI,II

33 SI,II
35

SI,II
51 SI,II

53 SI,II
55




(A.15)
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S∗
PP =




S∗
11 S

∗
13 S

∗
15

S∗
31 S

∗
33 S

∗
35

S∗
51 S

∗
53 S

∗
55




→ FPP = (S∗
PP )

−1 (A.16)

For a given volume fraction f of crystal I, the strain and stress jumps [εij], [σij ]

and stress average 〈σij〉 are easily obtained from Eqs. A.3 and A.8.

B Application to cubic elasticity and bicrystals with [001] STGB

In the reference cubic crystal with the cubic axes, there are only three independent

elastic constants, namely C11, C12, C44 such as in this frame

Ciiii = C11, Ciijj = C12, Cijij = C44 with i 6= j (no summation over repeated

indices). Then, for cubic symmetry, the elastic anisotropic constants in an

arbitrary coordinate system are obtained by the following transformation rules

(Dederichs and Leibfried, 1969; Gemperlova et al., 1989)

Cijkl = C12δijδkl + C44 (δikδjl + δilδjk) + C0

3∑

s=1

e
(s)
i e

(s)
j e

(s)
k e

(s)
l

Sijkl = S12δijδkl +
1

4
S44 (δikδjl + δilδjk) + S0

3∑

s=1

e
(s)
i e

(s)
j e

(s)
k e

(s)
l

(B.1)

where e
(1)
i , e

(2)
i , e

(3)
i are the unit vectors of the cubic lattice system ([100], [010],

[001]), C0 = C11 − C12 − 2C44 and S0 = S11 − S12 − 1
2
S44 . The elastic compliances

and moduli are linked by

S11 = (C11 + C12)/ {(C11 − C12)(C11 + 2C12)}

S12 = − C12/ {(C11 − C12)(C11 + 2C12)}

S44 = 1/C44

(B.2)

For bicrystals with [001] STGB, the cubic unit vector [001] is parallel to the (x1)

axis (tilt axis) (Fig. A.1). If we denote ψ the rotation angle around the tilt axis of
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the cubit unit vector [100] with respect to the (x2) axis normal to the GB plane,

then ψI = − θ
2
and ψII = θ

2
such that θ = ψII − ψI is the misorientation angle. In

this configuration, the unit vectors of the cubic lattice system read

e
(1)
i =




cosψ

sinψ

0




, e
(2)
i =




− sinψ

cosψ

0




, e
(3)
i =




0

0

1




(B.3)

Thus, Eqs. A.12-A.16 can be computed using Eqs. B.1-B.3.
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