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Geometry and topology of the space of Kähler

metrics on singular varieties

Eleonora Di Nezza and Vincent Guedj

Abstract

Let Y be a compact Kähler normal space and α ∈ H1,1
BC(Y ) a Kähler class. We study

metric properties of the space Hα of Kähler metrics in α using Mabuchi geodesics.
We extend several results by Calabi, Chen and Darvas previously established when
the underlying space is smooth. As an application we analytically characterize the
existence of Kähler-Einstein metrics on Q-Fano varieties, generalizing a result of Tian,
and illustrate these concepts in the case of toric varieties.

Introduction

Let Y be a compact Kähler normal space and αY ∈ H1,1
BC(Y ) a Kähler class, where H1,1

BC(Y )
denotes the Bott-Chern cohomology space. The space HαY of Kähler metrics ωY in αY can be
seen as an infinite dimensional riemannian manifold whose tangent spaces TωYHαY can all be
identified with C∞(Y,R). When Y is smooth, Mabuchi has introduced in [Mab87] an L2-metric
on HαY , by setting

〈f, g〉ωY :=

∫
Y
f g

ωY
n

VαY
,

where n = dimC Y and VαY =
∫
Y ωY

n = αnY denotes the volume of αY .

Mabuchi studied the corresponding geometry of HαY , showing in particular that it can
formally be seen as a locally symmetric space of non positive curvature. Semmes [Sem92] re-
interpreted the geodesic equation as a complex homogeneous equation, while Donaldson [Don99]
strongly motivated the search for smooth geodesics through its connection with the uniqueness
of constant scalar curvature Kähler metrics.

In a series of remarkable works [Chen00, CC02, CT08, Chen09, CS12] X.X.Chen and his
collaborators have studied the metric and geometric properties of the space HαY when Y is
smooth, showing in particular that it is a path metric space (a non trivial assertion in this
infinite dimensional setting) of non-positive curvature in the sense of Alexandrov. A key step from

[Chen00] has been to produce C1,1-geodesics which turn out to minimize the intrinsic distance d. It
follows from the work of Lempert-Vivas [LV13], Darvas-Lempert [DL12] and Ross-Witt-Nyström
[RWN15] that one can not expect better regularity, but for the toric setting (see Section 6).

The metric study of the space (HαY , d) has been recently pushed further by Darvas in [Dar13,
Dar14, Dar15]. He characterizes there the metric completion of (HαY , d) and introduces several
Finsler type metrics on HαY , which turn out to be quite useful (see [DR15, BBJ15]). For p ≥ 1,
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we set

dp(φ0, φ1) := inf{`p(φ) |φ is a path joining φ0 to φ1},
where

`p(φ) :=

∫ 1

0
|φ̇t|pdt =

∫ 1

0

(∫
Y

∣∣∣φ̇t∣∣∣pMA(φt)

)1/p

dt.

The goal of this article is to extend these studies to the case when the underlying space
has singularities. We fix a base point ωY representing αY and work with the space of Kähler
potentials HωY . Our first main result extends the main results of [Chen00] and [Dar15, Theorem
1] as follows:

Theorem A.

– (HωY , dp) is a metric space;

– dp(φ0, φ1) =
(∫

Y |φ̇0|pMA(φ0)
)1/p

=
(∫

Y |φ̇1|pMA(φ1)
)1/p

.

Following [Dar14, Dar15] we then study the metric completion of the space (HαY , dp) and
establish the following generalization of [Dar15, Theorem 2]:

Theorem B. Let Y be a projective normal variety and assume ωY is a Hodge form. The metric
completion of (HωY , dp) is a geodesic metric space which is bi-Lipschitz equivalent to the finite
energy class (Ep(Y, ωY ), Ip).

Finite energy classes have been introduced in [GZ07] and further studied in [BEGZ10, BBGZ13],
we recall their definition in Section 2. The Mabuchi geodesics can be extended to finite en-
ergy geodesics which are still metric geodesics. A key technical tool here is Theorem 3.6 which
compares dp and Ip, a natural quantity which defines the ”strong topology” on Ep(Y, ωY )

The metric completion of (HαY , d) has been considered by Streets in his study of the Calabi
flow [Str16] and also plays an important role in recent works by Berman-Boucksom-Jonsson
[BBJ15] and Berman-Darvas-Lu [BDL16]. There is no doubt that the extension to the singular
setting will play a leading role in subsequent applications. We illustrate this here by generalizing
Tian’s analytic criterion [Tian97, PSSW08], using results of [BBEGZ] and an idea of [DR15]:

Theorem C. Let (Y,D) be a log Fano pair. It admits a unique Kähler-Einstein metric iff there
exists ε,M > 0 such that for all φ ∈ Hnorm,

F(φ) ≤ −εd1(0, φ) +M.

Here F is a functional whose critical points are Kähler-Einstein potentials (Section 5) and
Hnorm is the set of normalized potentials. This result has been independently obtained by
T.Darvas [Dar16] by a different approach.

Our results should also be useful in analyzing more generally cscK metrics on midly singular
varieties (see e.g. the recent construction by Arezzo and Spotti of cscK metrics on crepant
resolutions of Calabi-Yau varieties with non-orbifold singularities [AS15]).

A way to establish the above results is to consider a resolution of singularities π : X → Y
and to work with the space Hω of potentials associated to the form ω = π∗ωY . All the above
results actually hold in the more general setting when ω is merely a semi-positive and big form
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The metric space of Kähler currents

(i.e.
∫
X ω

n > 0). We approximate Hω by spaces of Kähler potentials Hω+εωX and show that the
most important metric properties of (Hω+εωX , dε) pass to the limit.

The organization of the paper is as follows. Section 1 starts by a recap on Mabuchi geodesics
and metrics. Theorem A is proved in Section 1.2, where we develop a low-regularity approach
for understanding geodesics by approximation. We introduce in Section 2 classes of finite energy
currents and compare their natural topologies with the one induced by the Mabuchi distances in
Section 3. We study finite energy geodesics in Section 4 and prove Theorem B. We finally prove
Theorem C in Section 5 and provide a detailed analysis of the toric setting in Section 6.

1. The space of Kähler currents

Let (Y, ωY ) be a compact Kähler normal space of dimension n. It follows from the definition
of H1,1

BC(Y ) (see for example [BEG, Definition 4.6.2]) that any other Kähler metric on Y in the
same Bott-Chern cohomology class of ωY can be written as

ωφ = ωY + ddcφ,

where d = ∂ + ∂ and dc = 1
2iπ (∂ − ∂). Let HωY be the space of Kähler potentials

HωY = {φ ∈ C∞(Y,R); ωφ = ω + ddcφ > 0} .

This is a convex open subset of the Fréchet vector space C∞(Y ) := C∞(Y,R), thus itself a
Fréchet manifold, which is moreover parallelizable :

THωY = HωY × C
∞(Y ).

For any φ ∈ HωY , each tangent space TφHωY is identified with C∞(Y ).

As two Kähler potentials define the same metric when (and only when) they differ by an
additive constant, we set

HαY = HωY /R
where R acts on HωY by addition. The set HαY is therefore the space of Kähler metrics on Y in
the cohomology class αY := {ωY } ∈ H1,1

BC(Y ).

In the whole article we fix π : X → Y a resolution of singularities and set ω = π∗ωY ,
α = π∗αY . Since α is no longer Kähler, we fix ωX a Kähler form on X and set

ωε := ω + εωX ,

for ε > 0. We will study the geometry and the topology of the spaces

Hα = π∗HαY and Hω = π∗HωY
by approximating them by the spaces Hαε ,Hωε , where

Hωε := {ϕ ∈ C∞(X,R) ;ωε + ddcϕ > 0} and αε := {ωε}.

All the properties that we are going to establish actually hold for cohomology classes α
that are merely semi-positive and big (not necessarily the pull-back of a Kähler class under a
desingularization).

Our analysis will focus on the ample locus of α:

Definition 1.1 The ample locus Amp (α) of α is the Zarisiki open set of those points x ∈ X
such that α can be represented by a positive closed (1, 1)-current which is a smooth positive form
near x.
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We then let Hω denote the space of potentials ϕ ∈ C∞(X,R) such that ωϕ is a Kähler form in
Amp (α). In our main case of interest, i.e. when α = π∗αY , the ample locus

Amp (α) = π−1(Y reg)

is the preimage of the set of regular points of Y .

1.1 The Riemannian structure

1.1.1 Mabuchi geodesics

Definition 1.2 [Mab87] The Mabuchi metric is the L2 Riemannian metric on Hω. It is defined
by

< ψ1, ψ2 >ϕ=

∫
X
ψ1ψ2

(ω + ddcϕ)n

Vα
where ϕ ∈ Hω, ψ1, ψ2 ∈ C∞(X) and (ω + ddcϕ)n/Vα is the volume element, normalized so that
it is a probability measure. Here Vα := αn =

∫
X ω

n.

In the sequel we shall also use the notation ωϕ := ω + ddcϕ and

MA(ϕ) := V −1
α ωnϕ.

Geodesics between two points ϕ0, ϕ1 in Hω correspond to the extremals of the Energy functional

ϕ 7→ H(ϕ) =
1

2

∫ 1

0

∫
X

(ϕ̇t)
2MA(ϕt) dt.

where ϕ = ϕt is a smooth path in Hω joining ϕ0 and ϕ1. The geodesic equation is formally
obtained by computing the Euler-Lagrange equation for this Energy functional (with fixed end
points). It is given by

ϕ̈MA(ϕ) =
n

Vα
dϕ̇ ∧ dcϕ̇ ∧ ωn−1

ϕ . (1)

We are interested in the boundary value problem for the geodesic equation: given ϕ0, ϕ1 two
distinct points in Hω, can one find a path (ϕ(t))0≤t≤1 in Hω which is a solution of (1) with end
points ϕ(0) = ϕ0 and ϕ(1) = ϕ1 ?

For each path (ϕt)t∈[0,1] in Hω, we set

ϕ (x, t+ is) = ϕt(x), x ∈ X, t+ is ∈ S = {z ∈ C : 0 < <(z) < 1};

i.e. we associate to each path (ϕt) a function ϕ on the complex manifold M = X × S, which
only depends on the real part of the stripe coordinate: we consider S as a Riemann surface
with boundary and use the complex coordinate z = t + is to parametrize the stripe S. Set
ω(x, z) := ω(x).

Semmes observed in [Sem92] that the path ϕt is a geodesic in Hω if and only if the associated
function ϕ on X × S is a ω-psh solution of the homogeneous complex Monge-Ampère equation

(ω + ddcx,zϕ)n+1 = 0. (2)

This motivates the following:

Definition 1.3 The function

ϕ = sup{u ; u ∈ PSH(M,ω) and u ≤ ϕ0,1 on ∂M}

is the Mabuchi geodesic joining ϕ0 to ϕ1.

4



The metric space of Kähler currents

Here PSH(M,ω) denotes the set of ω-psh functions on M : these are functions u : M →
R ∩ {−∞} which are locally the sum of a plurisubharmonic and a smooth function and such
that ω + ddcx,zu ≥ 0 in the sense of currents (see section 2.1.1 for more details).

Proposition 1.4 Let (ϕt)0≤t≤1 be the Mabuchi geodesic joining ϕ0 to ϕ1. Then

(i) ϕ ∈ PSH(M,ω) is uniformly bounded on M and continuous on Amp ({ω})× S̄.

(ii) |ϕ(x, z)− ϕ(x, z′)| ≤ A|<(z)−<(z′)| with A = ‖ϕ0 − ϕ1‖L∞(X).

(iii) ϕ|{<(z)=0} = ϕ0, ϕ|{<(z)=1} = ϕ1 and (ω + ddcx,zϕ)n+1 = 0.

It is moreover the unique bounded ω-psh solution to this Dirichlet problem.

We thank Hoang Chinh Lu for sharing his ideas on the continuity of ϕ.

Proof. The proof follows from a classical balayage technique, together with a barrier argument
as noted by Berndtsson [Bern15]. Set A = ‖ϕ1 − ϕ0‖L∞(X).

Observe that the function ϕ0 − At, with t = <(z), is ω-psh on M and ϕ0 − At|∂M ≤ ϕ0,1.
Hence it belongs to the family F defining the upper envelope ϕ, so ϕ0 −At ≤ ϕt.

Similarly ϕ0 + At is a ω-psh function on M and ϕ0 + At|∂M ≥ ϕ0,1. Since (ω + ddcx,z(ϕ0 +
At))n+1 = 0, it follows from the maximum principle that u ≤ ϕ0 + At, for any u ∈ F in the
family. Therefore

ϕ0 −At ≤ ϕt ≤ ϕ0 +At.

Similar arguments show that

ϕ1 +A(t− 1) ≤ ϕt ≤ ϕ1 −A(t− 1).

The upper semi-continuous regularization ϕ∗ of ϕ satisfies the same estimates, showing in
particular that ϕ∗|∂M = ϕ0,1. Since ϕ∗ is ω-psh, we infer ϕ∗ ∈ F hence ϕ∗ = ϕ. Thus ϕ is ω-psh
and uniformly bounded, proving the first statement in (i). Classical balayage arguments show
that (ω + ddcx,zϕ)n+1 = 0, proving (iii).

We now prove prove (ii). Consider the function

χt(x) = max{ϕ0(x)−A log |z|, ϕ1(x) +A(log |z| − 1)}

and note that it belongs to F and has the right boundary values.

Since χ− = ϕ0(x)−At ≤ ϕ with equality at t = 0, we infer for all x,

−A =
∂χ−
∂t |t=0

≤ ϕ̇0(x).

Similarly χ+ = ϕ1(x)+A(t−1) ≤ ϕ with equality at t = 1 yields for all x, ϕ̇1(x) ≤ +A = ∂χ+

∂t |t=1
.

Since t 7→ ϕt(x) is convex (by subharmonicity in z), we infer that for a.e. t, x, −A ≤ ϕ̇0(x) ≤
ϕ̇t(x) ≤ ϕ̇1(x) ≤ +A.

It remains to show that ϕ is continuous on Amp ({ω}) × S̄. We can assume without loss of
generality that ϕ0 < ϕ1. Indeed, given any ϕ0, ϕ1 ∈ Hω, there exists C > 0 such that ϕ0 < ϕ1+C.
By Lemma 1.8, the Mabuchi geodesic joining ϕ0 and ϕ1 + C is ψt = ϕt + Ct, t ∈ [0, 1]. The
continuity of (x, t)→ ψt(x) will then imply the continuity of (x, t)→ ϕt(x).

We change notations slighlty, replacing the stripe S by the annulus D := {z = et+is ∈
C : 1 ≤ |w| ≤ e}. We are going to express the function ϕ as a global Θ-psh envelope on the
compact manifold X × P1, where we view the annulus D as a subset of the Rieman sphere,
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C ⊂ P1 = C∪ {∞}. The form Θ(x, z) = ω(x) +AωFS(z) is a semi-positive and big form on the

compact Kähler manifold M̃ := X × P1, so the viscosity approach of [EGZ16] can be applied
showing that the envelope ϕ is continuous on Amp ({ω})× S̄. Here ωFS denotes the Fubini-Study
metric on P1 and A > 0 is a constant to be chosen below.

Consider U = max(U0, U1), where U0(x, z) := ϕ0(x) and

U1(x, z) := ϕ1(x) +A(log |z|2 − log(|z|2 + 1) + log(e2 + 1)− 2).

We choose A > 0 so large that U(x, 1) ≡ ϕ0(x). Note that U(x, e) ≡ ϕ1(x) since ϕ0 < ϕ1. Both

U0 and U1 are Θ-psh on M̃ , hence so is U .

Fix ρ a local potential of AωFS in D such that ρ|∂D = 0 and let F be a continuous S1-invariant

function on M̃ such that

(a) F = ϕ0,1 on X × ∂D,

(b) F (x, z) ≥ U(x, z) ≥ ϕ0(x),

(c) F (x, z) + ρ(z) > ϕt(x) in X ×D, with t = log |z|.

We let the reader check that the function F = U in M̃ \X ×D and

F (x, z) := (1− log |z|)ϕ0(x) + (log |z|)ϕ1(x)− ρ(z) + (log |z|)(1− log |z|),

for (x, z) ∈ X ×D, does the job.

We claim that for all (x, z) ∈ X ×D,

PΘ(F )(x, z) + ρ(z) = ϕlog |z|(x)

where

PΘ(F ) := sup{v : v ∈ PSH(M̃,Θ) and v ≤ F}.
Indeed PΘ(F ) + ρ is ω-psh in X ×D and has boundary values ≤ ϕ0,1. It follows from definition
of the geodesic that PΘ(F ) + ρ ≤ ϕt. On the other hand, F + ρ ≥ U + ρ ∈ PSH(X ×D,ω) and
U = ϕ0,1 on ∂M thus PΘ(F ) +ρ = ϕ0,1 on ∂M . Condition (c) insures that M = X×D does not
meet the contact set {PΘ(F ) = F} since F + ρ > ϕt ≥ PΘ(F ) + ρ. It thus follows from [BD12]
that (Θ + ddcPΘ(F ))n+1 = 0 in M , and the maximum principle yields

PΘ(F ) + ρ = ϕt.

The continuity of ϕ on Amp ({ω}) × S̄ now follows from [EGZ16] together with the following
easy observation: the arguments in [EGZ16, Section 2.2] insures that if F is a smooth function

on M̃ , then PΘ(F ) is a Θ-psh function, continuous on Amp ({Θ}). The same result holds if F is

merely continuous. Indeed, let Fj be a sequence of smooth functions on M̃ converging uniformly
to F . Taking the envelope at both sides of the inequality Fj ≤ F + ‖Fj − F‖L∞(X) we get
PΘ(Fj) ≤ PΘ(F ) + ‖Fj − F‖L∞(X). Hence, ‖PΘ(Fj) − PΘ(F )‖L∞(X) ≤ ‖Fj − F‖L∞(X). Thus
PΘ(Fj) converges uniformly to PΘ(F ), and so PΘ(F ) is a Θ-psh function that is continuous on
Amp ({Θ}) = Amp ({ω})× S̄.

Remark 1.5 If one could choose F smooth in the proof above, it would follow from [BD12] that
ϕ ∈ C1,1̄(Amp (α)× S). This would also provide a compact proof of Chen’s regularity result.

We now observe that geodesics in Hω are projection of those in Hωε :

6



The metric space of Kähler currents

Proposition 1.6 Let ϕ denote the geodesic joining ϕ0 to ϕ1 in Hω and let ϕε denote the cor-
responding geodesic in the space Hωε. The map ε 7→ ϕε is increasing and ϕε decreases to ϕ as ε
decreases to zero. Moreover

ϕ = P (ϕε),

where P denotes the projection operator onto the space PSH(M,ω).

Recall that, for an upper semi-continuous function u : M → R, its projection P (u) is defined
by

P (u) := sup{v ∈ PSH(M,ω) ; v ≤ u}.
The function P (u) is either identically −∞ or belongs to PSH(M,ω). It is the greatest ω-psh
function on M that lies below u.

Proof. Set ψ := P (ϕε). Since ω ≤ ωε, it follows from the envelope point of view that ϕ ≤ ϕε.
Thus ϕ = P (ϕ) ≤ P (ϕε) = ψ and ψ ∈ PSH(M,ω). Now ψ ≤ ϕ since ψ ≤ ϕε = ϕ0, ϕ1 on ∂M
and ψ ∈ PSH(M,ω). Thus ψ = P (ϕε) = ϕ.

Fix ε′ ≤ ε. The inclusion PSH(M,ωε′) ⊂ PSH(M,ωε) implies similarly that ϕ ≤ ϕε
′ ≤ ϕε.

The decreasing limit v of ϕε, as ε decreases to zero, satsifies both ϕ ≤ v and v ∈ PSH(M,ω)
with boundary values ϕ0, ϕ1, thus v = ϕ.

It will also be interesting to consider subgeodesics:

Definition 1.7 A subgeodesic is a path (ϕt) of functions in Hω (or in larger classes of ω-psh
functions) such that the associated function is a ω-psh function on X × S.

We shall soon need the following simple observation:

Lemma 1.8 Fix c ∈ R, ϕ,ψ ∈ Hω and let (ϕt)0≤t≤1 denote the Mabuchi geodesic joining ϕ = ϕ0

to ϕ1 = ψ. Then ψt(x) := ϕt(x) − ct, 0 ≤ t ≤ 1, x ∈ X, is the Mabuchi geodesic joining ϕ to
ψ − c.

Proof. The proof follows from Definition 1.3 and the definition of envelopes since sup{v ; v ∈
PSH(M,ω) and v ≤ ϕ, v ≤ ψ − c on ∂M} = ϕt − ct.

1.1.2 Mabuchi and other Finsler distances When ω is Kähler, the length of a differential
path (ϕt)t∈[0,1] in Hω is defined in a standard way,

`(ϕ) :=

∫ 1

0
|ϕ̇t|dt =

∫ 1

0

√∫
X
ϕ̇2
tMA(ϕt)dt.

The distance between two points in Hω is then

d(ϕ0, ϕ1) := inf{`(ϕ) |ϕ is a smooth path joining ϕ0 to ϕ1}.

It is easy to verify that d defines a semi-distance (i.e. non-negative, symmetric and satisfying
the triangle inequality). It is however non trivial to check that d is non degenerate (see [MM05]
for a striking example).

Observe that d induces a distance on Hα (that we abusively still denote by d) compatible
with the riemannian splitting Hω = Hα ×R, by setting

d(ωϕ, ωψ) := d(ϕ,ψ)

7
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whenever the potentials ϕ,ψ of ωϕ, ωψ are normalized by E(ϕ) = E(ψ) = 0 (see section 2.2.1 for
the definition of the functional E).

It is rather easy to check that (Hα, d) is not a complete metric space. We shall describe
the metric completion (Hα, d) in section 4. Following Darvas [Dar15] we introduce a family of
distances that generalize d:

Definition 1.9 For p ≥ 1 and ω Kähler, we set

dp(ϕ0, ϕ1) := inf{`p(ϕ) |ϕ is a smooth path joining ϕ0 to ϕ1},

where `p(ϕ) :=
∫ 1

0 |ϕ̇t|pdt =
∫ 1

0

(∫
X |ϕ̇t|

pMA(ϕt)
)1/p

dt.

Note that d2 = d is the Mabuchi distance. Mabuchi geodesics have constant speed with
respect to all the Finsler structures `p, as was observed by Berndtsson [Bern09, Lemma 2.1]: for
any C1-function χ,

t 7→
∫
X
χ(ϕ̇t)MA(ϕt)

is constant along a geodesic. Indeed

d

dt

∫
X

χ(ϕ̇t)MA(ϕt) =

∫
X

χ′(ϕ̇t)ϕ̈tMA(ϕt) +
n

Vα

∫
X

χ(ϕ̇t)dd
cϕ̇t ∧ ωn−1ϕt

=

∫
X

χ′(ϕ̇t)

{
ϕ̈tMA(ϕt)−

n

Vα
dϕ̇t ∧ dcϕ̇t ∧ ωn−1ϕt

}
= 0

since ϕ̈tMA(ϕt)− n
Vα
dϕ̇t ∧ dcϕ̇t ∧ ωn−1

ϕt = 0. Applying this observation to χ(t) = tp shows that
Mabuchi geodesics have constant `p-speed.

When ω is merely semi-positive there are fewer smooth paths within Hω. It is natural to
consider smooth paths in Hωε and pass to the limit in the previous definitions :

Definition 1.10 Assume ω is semi-positive and big. Let ϕ0, ϕ1 ∈ Hω. We define the Mabuchi
distance between ϕ0 and ϕ1 as

dp(ϕ0, ϕ1) := lim inf
ε→0

dp,ε(ϕ0, ϕ1),

where dp,ε is the distance w.r.t. the Kähler form ωε := ω + εωX .

It is again easy to check that dp is a semi-distance. We will show in Theorem 1.13 that it is
a distance, which moreover does not depend on the way we approximate ω by Kähler classes.

Remark 1.11 For any smooth path ψ : [0, 1]→ Hω, we can still define

`p(ψ) :=

∫ 1

0

(
1

V

∫
X
|ψ̇t|p(ω + ddcψt)

n

)1/p

dt

when ω is merely semi-positive. Since PSH(M,ω) ⊂ PSH(M,ωε), ψt is both in Hω and Hωε.
Observe that

V −1
ε

∫
X
|ψ̇t|p(ωε + ddcψt)

n = V −1
ε

∫
X
|ψ̇t|p(ω + ddcψt + εωX)n

≤ V −1

∫
X
|ψ̇t|p(ω + ddcψt)

n +Aε,

hence

`p,ε(ψ) ≤ `p(ψ) +A′ε

8
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where `p,ε denotes the length in Hωε. We infer

dp(ϕ0, ϕ1) ≤ inf{`p(ψ) ψ smooth path joining ϕ0 and ϕ1 in Hω}.

The converse inequality is however unclear, due to the lack of positivity of ω: it is difficult to
smooth out ω-psh functions if ω is not Kähler. This partially explains Definition 1.10.

1.2 Approximation by Kähler classes

Fix ϕ0, ϕ1 ∈ Hω. We let (ϕt)0≤t≤1 denote the Mabuchi geodesic in Hω joining ϕ0 to ϕ1.

Definition 1.12 For t = 0, 1 we set

I(t) :=

∫
X
|ϕ̇t|pMA(ϕt).

Theorem 1.13 Set ωε = ω + εωX , ε > 0. Then limε→0 dp,ωε(ϕ0, ϕ1) exists and is independent
of ωX . More precisely,

dpp,ε(ϕ0, ϕ1)→ I(0) = I(1)

for almost every t ∈ (0, 1). In particular dp(ϕ0, ϕ1) = I(0)1/p = I(1)1/p defines a distance on Hω.

In the definition of I(0), I(1), the time derivatives ϕ̇0 = ϕ̇+
0 , ϕ̇1 = ϕ̇−1 denote the right and

left derivative, respectively.

Proof. Observe that ϕ0, ϕ1 ∈ Hωε and let ϕεt be the corresponding geodesic. It follows from
[Chen00] that

dpp,ε(ϕ0, ϕ1) = V −1
ε

∫
X
|ϕ̇ε0|p(ωε + ddcϕ0)n.

Now observe that

ϕ̇+
0 ≤ ϕ̇

ε
0 ≤

ϕεt − ϕ0

t
∀t ∈ (0, 1)

where the first inequality follows from the fact that ε→ ϕεt is decreasing (Proposition 1.6), while
second uses the convexity of t 7→ ϕεt . Thus

|ϕ̇ε0 − ϕ̇+
0 | ≤

∣∣∣∣ϕεt − ϕ0

t
− ϕ̇+

0

∣∣∣∣ .
Letting ε ↘ 0 and then t → 0 shows that |ϕ̇ε0 − ϕ̇

+
0 | converges pointwise to zero. Moreover,

(ωε + ddcϕ0)n = fεdV where dV is the Lebesgue measure and fε > 0 are smooth densities which
converge locally uniformly to f ≥ 0 with (ω + ddcϕ0)n = fdV . The dominated convergence
theorem thus yields

lim
ε→0

dpp,ε(ϕ0, ϕ1) = V −1

∫
X
|ϕ̇+

0 |
p(ω + ddcϕ0)n = I(0).

The argument for I(1) is similar.

This shows in particular that dp is a distance on Hω : if dp(ϕ0, ϕ1) = 0, then I(0) = I(1) = 0,
hence ϕ̇0(x) = ϕ̇1(x) = 0 for a.e. x ∈ X, which implies ϕ̇t(x) = 0 for a.e. x ∈ X, by convexity of
t 7→ ϕt(x). Thus, ϕ0(x) = ϕ1(x) for a.e. x ∈ X.

We now extend the definition of the distance dp for bounded ω-psh potentials.
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Definition 1.14 Let ϕ0, ϕ1 ∈ PSH(X,ω) ∩ L∞(X) then

dp(ϕ0, ϕ1) := lim inf
ε→0

lim inf
j,k→+∞

dp,ε(ϕ
j
0, ϕ

k
1) = lim inf

ε→0
dp,ε(ϕ0, ϕ1)

where ϕj0, ϕ
k
1 are smooth sequences of ωε-psh functions decreasing to ϕ0 and ϕ1, respectively.

Observe that dp,ωε(ϕ0, ϕ1) is well defined for potentials in Ep(X,ωε) ([Dar15]), and so in parti-
cular for bounded ωε-psh functions.

Proposition 1.15 Let ϕ0, ϕ1 ∈ PSH(X,ω)∩L∞(X). The limit of dp,ωε(ϕ0, ϕ1) as ε goes to zero
exists and it does not depend on the choice of ωX .

Proof. Let ϕj0, ϕ
k
1 be smooth sequences of ωε-psh functions decreasing to ϕ0 and ϕ1, respectively.

Fix j, k. By [Dar15, Corollary 4.14] we know that the Pythagore formula holds true, i.e.

dp,ε(ϕ
j
0, ϕ

k
1) = dp,ε(ϕ

j
0, ϕ

j
0 ∨ε ϕ

k
1) + dp,ε(ϕ

j
0 ∨ε ϕ

k
1, ϕ

k
1),

where ψ := ϕj0 ∨ε ϕk1 is the greatest ωε-psh function that lies below min (ϕj0, ϕ
k
1). Fix ε ≤ ε′. We

claim that

dp,ε(ϕ
j
0, ψ) ≤ dp,ε′(ϕj0, ψ) and dp,ε(ψ,ϕ

k
1) ≤ dp,ε′(ψ,ϕk1).

Let ψεt , ψ
ε′
t denote the ε-geodesic and the ε′-geodesic both joining ϕj0 and ψ. Since ε → ψεt is

increasing (Proposition 1.6) we have that for any t ∈ (0, 1)

ψεt − ϕ
j
0

t
≤ ψε

′
t − ϕ

j
0

t

that implies ψ̇ε0 ≤ ψ̇ε
′

0 . Moreover observe that since ϕj0(x) ≤ ψ(x) for all x ∈ X, Lemma 3.3 yields
ψ̇ε0(x) ≥ 0 for all x ∈ X. It then follows that

dpp,ε(ϕ
j
0, ψ) =

∫
X
|ψ̇ε0|p

(ωε + ddcϕj0)n

Vε
≤
∫
X
|ψ̇ε′0 |p

(ωε′ + ddcϕj0)n

Vε
= dpp,ε′(ϕ

j
0, ψ). (3)

The same type of arguments give dp,ε(ψ,ϕ
k
1) ≤ dp,ε′(ψ,ϕk1). Hence

dp,ε(ϕ
j
0, ϕ

k
1) ≤ dp,ε′(ϕj0, ϕ

j
0 ∨ε ϕ

k
1) + dp,ε′(ϕ

j
0 ∨ε ϕ

k
1, ϕ

k
1).

Using again [Dar15, Corollary 4.14] and the triangle inequality we get

dp,ε(ϕ
j
0, ϕ

k
1) ≤ dp,ε′(ϕj0, ϕ

k
1) + 2dp,ε′(ϕ

j
0 ∨ε ϕ

k
1, ϕ

j
0 ∨ε′ ϕ

k
1).

Moreover Lemma 3.3 yields dp,ε′(ϕ
j
0 ∨ε ϕk1, ϕ

j
0 ∨ε′ ϕk1) ≤ ||ϕj0 ∨ε′ ϕk1 − ϕ

j
0 ∨ε ϕk1||L∞ ≤ (ε′ − ε),

where the last inequality follows from the fact that ϕj0 ∨ε ϕk1, ϕ
j
0 ∨ε′ ϕk1 are continuos functions.

Thus letting j, k go to +∞ we infer that the function ε → dp,ωε(ϕ0, ϕ1) + ε is increasing.
Hence the limit exists. Now, let ωX , ω̃X be two Kähler metrics on X such that

ωX ≤ ω̃X ≤ CωX
for some C > 0. Assume that ϕ0, ϕ1 are smooth ωε-psh functions such that ϕ0 ≤ ϕ1. Set
ω̃ε := ω + εω̃X and observe that ωε ≤ ω̃ε ≤ ωε′ where ε′ = εC. Let ϕεt , ϕ̃

ε
t be the geodesic w.r.t.

ωε and ω̃ε, respectively and observe that ϕεt ≤ ϕ̃εt ≤ ϕε
′
t . The same arguments of above give

|ϕ̇ε0|p ≤ | ˙̃ϕε0|p ≤ |ϕ̇ε
′

0 |p

hence

dp,ωε(ϕ0, ϕ1) ≤ dp,ω̃ε(ϕ0, ϕ1) ≤ dp,ωε′ (ϕ0, ϕ1).
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The latter tells us that the limit does not depend on ωX . The general case, i.e. without the
asspumption ϕ0 ≤ ϕ1, can be treated using Pythagore formula as above.

An adaptation of the classical Perron envelope technique yields the following result due to
Berndtsson [Bern15]:

Proposition 1.16 Assume ϕ0, ϕ1 are bounded ω-psh functions. Then

ϕ(x, z) := sup{u(x, z) |u ∈ PSH(X × S, ω) with lim
t→0,1

u ≤ ϕ0,1}.

is the unique bounded ω-psh function on X × S, which is the solution of the Dirichlet problem
ϕ|X×∂S = ϕ0,1 with

(ω + ddcx,zϕ)n+1 = 0 in X × S.

Moreover ϕ(x, z) = ϕ(x, t) only depends on <(z) and |ϕ̇| ≤ ‖ϕ1 − ϕ0‖L∞(X).

The proof goes exactly as that of Proposition 1.4. The function ϕ (or rather the path ϕt ⊂
PSH(X,ω) ∩ L∞(X)) is called a bounded geodesic in [Bern15]. We use the same terminology
here, as it turns out that bounded geodesics are geodesics in the metric sense:

Proposition 1.17 Bounded geodesics are metric geodesics. More precisely, if ϕ0, ϕ1 are bounded
ω-psh functions and ϕ(x, z) = ϕt(x) is the bounded geodesic joining ϕ0 to ϕ1, then for all
t, s ∈ [0, 1],

dp(ϕt, ϕs) = |t− s| dp(ϕ0, ϕ1).

Proof. Let ϕj0, ϕ
k
1 ∈ Hωε be sequences decreasing respectively to ϕ0, ϕ1. It follows from the com-

parison principle and the uniqueness in Proposition 1.16 that ϕt,j decreases to ϕt as j increases
to +∞. From Definition 1.14, Proposition 1.15 and the fact that the identity below holds in the
Kähler setting for dε we obtain

dp (ϕt, ϕs) = lim inf
ε→0

lim inf
j,k→+∞

dp,ε(ϕt,j , ϕs,k)

= |t− s| lim inf
ε→0

lim inf
j,k→+∞

dp,ε(ϕ
j
0, ϕ

k
1) = |t− s|dp(ϕ0, ϕ1).

Remark 1.18 One can no longer expect that dp(ϕ0, ϕ1)p =
∫
X |ϕ̇t|

pMA(ϕt) for a.e. t ∈ [0, 1] as
simple examples show. One can e.g. take ϕ0 ≡ 0 and ϕ1 = max(u, 0), where u takes positive val-
ues, has isolated singularities and solves MA(u) =Dirac mass at some point: in this case MA(ϕ1)
is concentrated on the contact set (u = 0) while ϕ̇1 ≡ 0 on this set hence

∫
X |ϕ̇1|pMA(ϕ1) = 0.

We thank T.Darvas for pointing this to us.

As the above remark points out we do not have that dpp(ϕ0, ϕ1) = I(0) = I(1) when ϕ0, ϕ1 are
just bounded ω-psh functions. Nevertheless we can still recover the formula in some special cases.

We start recalling the following:

Theorem 1.19 Let f be a continuous function such that ddcf ≤ CωX on X, for some C > 0.
Then P (f) has bounded laplacian on Amp ({ω}) and

(ω + ddcPω(f))n = 1{Pω(f)=f}(ω + ddcf)n. (4)

11
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The fact that P (f) has locally bounded laplacian in Amp ({ω}) is essentially [Ber, Theorem 1.2].
We do not assume here that f is smooth but one can check that the upper bound on ddcf is the
only estimate needed in order to pursue Berman’s approach. One can then argue as in [GZ17,
Theorem 9.25] to get identity (4).

Denote

Hbd := {ϕ ∈ PSH(X,ω) ∩ L∞(X), ϕ = Pω(f) for some f ∈ C0(X) with ddcf ≤ CωX , C > 0}.

Theorem 1.20 Assume that ϕ0, ϕ1 ∈ Hbd. Let ϕt be the Mabuchi geodesic joining ϕ0 and ϕ1.
Then

dpp(ϕ0, ϕ1) =

∫
X
|ϕ̇0|p

(ω + ddcϕ0)n

V
=

∫
X
|ϕ̇1|p

(ω + ddcϕ1)n

V
. (5)

Proof. Set ϕ0,ε := Pωε(f0) and ϕ1,ε := Pωε(f1). Clearly ϕi,ε decreases pointwise to ϕi, i = 1, 2.
Combining Chen’s formula together with (4) we get

Vεd
p
p,ε(ϕ0,ε, ϕ1,ε) =

∫
X
|ϕ̇0,ε|p (ωε + ddcϕ0,ε)

n =

∫
{ϕ0,ε=f0}

|ϕ̇0,ε|p (ωε + ddcf0)n.

Denote Uε := {ϕ0 < ϕ0,ε} and note that {ϕ0,ε = f0} ⊂ {ϕ0 < ϕ0,ε} ∪ {ϕ0 = f0}. Therefore∣∣∣∣Vεdp,ε(ϕ0,ε, ϕ1,ε)−
∫
X
|ϕ̇0|pωnϕ0

∣∣∣∣ ≤
∣∣∣∣∣
∫
{ϕ0=f0}

|ϕ̇0,ε|p (ωε + ddcf0)n −
∫
{ϕ0=f0}

|ϕ̇0|p (ω + ddcf0)n

∣∣∣∣∣
+ C

∫
Uε

ωnX

where C > 0 is such that ∫
Uε

|ϕ̇0,ε|p (ωε + ddcf0)n ≤ C
∫
Uε

ωnX .

The first term can be shown to converge to zero arguing as in Theorem 1.13. The second term
goes to zero since ϕ0,ε converges pointwise to ϕ0. Hence the conclusion.

Observe that if ϕ0, ϕ1 ∈ Hω, then ϕ0∨ϕ1 ∈ Hbd. Indeed since ϕ0, ϕ1 are smooth, the functions
−ϕ0,−ϕ1 are quasi-plurisubharmonic, i.e. there exists C > 0 such that ddc(−ϕi) ≥ −CωX for
any i = 1, 2. Thus min(ϕ0, ϕ1) = −max(−ϕ0,−ϕ1) is such that

ddc min(ϕ0, ϕ1) = −ddc max(−ϕ0,−ϕ1) ≤ CωX .

In particular the equality (5) holds for dp(ϕ0, ϕ0 ∨ ϕ1) and dp(ϕ1, ϕ0 ∨ ϕ1).

2. Finite energy classes

We define in this section the set E(α) (resp. Ep(α)) of positive closed currents T = ω+ddcϕ with
full Monge-Ampère mass (resp. finite weighted energy) in α, by defining the corresponding class
E(X,ω) (resp. Ep(X,ω) ) of finite energy potentials ϕ.

2.1 The space E(α)

2.1.1 Bounded quasi-plurisubharmonic functions Recall that a function is quasi-plurisub-
harmonic if it is locally given as the sum of a smooth and a psh function. In particular quasi-psh
(qpsh for short) functions are upper semi-continuous and integrable. They are actually in Lp for

12



The metric space of Kähler currents

all p ≥ 1, and the induced topologies are all equivalent. A much stronger integrability property
actually holds: Skoda’s integrability theorem [Sko72] asserts indeed that e−εϕ ∈ L1(X) if 0 < ε is
smaller than 2/ν(ϕ), where ν(ϕ) denotes the maximal logarithmic singularity (Lelong number)
of ϕ on X.

Quasi-plurisubharmonic functions have gradient in Lr for all r < 2, but not in L2 as shown
by the local model log |z1|.

Definition 2.1 We let PSH(X,ω) denote the set of all ω-plurisubharmonic functions. These
are quasi-psh functions ϕ : X → R ∪ {−∞} such that

ω + ddcϕ ≥ 0

in the weak sense of currents.

The set PSH(X,ω) is a closed subset of L1(X), for the L1-topology.

Bedford and Taylor have observed in [BT82] that one can define the complex Monge-Ampère
operator

MA(ϕ) := Vα
−1(ω + ddcϕ)n

for all bounded ω-psh function: they showed that whenever (ϕj) is a sequence of smooth ω-psh
functions locally decreasing to ϕ, then the smooth probability measures MA(ϕj) converge, in the
weak sense of Radon measures, towards a unique probability measure that we denote by MA(ϕ).

At the heart of Bedford-Taylor’s theory lies the following maximum principle: if u, v are
bounded ω-plurisubharmonic functions, then

(MP ) 1{v<u}MA(max(u, v)) = 1{v<u}MA(u).

This equality is elementary when u is continuous, as the set {v < u} is open. When u is merely
bounded, this set is only open in the plurifine topology. Since Monge-Ampère measures of bounded
qpsh functions do not charge pluripolar sets (by the Chern-Levine-Nirenberg inequalities), and
since u is nevertheless quasi-continuous, this gives a heuristic justification for (MP ).

2.1.2 The class E(X,ω) Given ϕ ∈ PSH(X,ω), we consider

ϕj := max(ϕ,−j) ∈ PSH(X,ω) ∩ L∞(X).

It follows from the Bedford-Taylor theory that the MA(ϕj)’s are well defined probability mea-
sures. Since the ϕj ’s are decreasing, it is natural to expect that these measures converge. The
following monotonicity property holds:

Lemma 2.2 The sequence µj := 1{ϕ>−j}MA(ϕj) is increasing.

The proof is an elementary consequence of (MP ) (see [GZ07, p.445]).

Remark 2.3 Note : t 7→ max(ϕ(x),−t) is a subgeodesic (Definition 1.7).

Since the µj ’s all have total mass bounded from above by 1, we consider

µϕ := lim
j→+∞

µj ,

which is a positive Borel measure on X, with total mass ≤ 1.
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Definition 2.4 We set

E(X,ω) := {ϕ ∈ PSH(X,ω) | µϕ(X) = 1} .

For ϕ ∈ E(X,ω), we set MA(ϕ) := µϕ.

The notation is justified by the following important fact [GZ07]:

Theorem 2.5 The complex Monge-Ampère operator ϕ 7→ MA(ϕ) is well defined on the class
E(X,ω): for every decreasing sequence of bounded ω-psh functions ϕj, the measures MA(ϕj)
converge towards µϕ, if ϕ ∈ E(X,ω).

Every bounded ω-psh function clearly belongs to E(X,ω) since in this case {ϕ > −j} = X
for j large enough, hence µϕ ≡ µj = MA(ϕj) = MA(ϕ). The class E(X,ω) also contains many
ω-psh functions which are unbounded.

Example 2.6 If ϕ ∈ PSH(X,ω) is normalized so that ϕ ≤ −1, then −(−ϕ)ε belongs to E(X,ω)
whenever 0 ≤ ε < 1. The functions which belong to the class E(X,ω), although usually unbounded,
have relatively mild singularities. In particular they have zero Lelong numbers on Amp (α).

It is shown in [GZ07] that the maximum principle (MP ) continue to hold in the class E(X,ω).
The latter can be characterized as the largest class for which the complex Monge-Ampère is well
defined and the maximum principle holds. We further note that the domination principle holds:

Proposition 2.7 If ϕ,ψ ∈ E(X,ω) are such that

ϕ(x) ≤ ψ(x) for MA(ψ)− a.e. x,

then ϕ(x) ≤ ψ(x) for all x ∈ X.

It follows from the ∂∂-lemma that any positive closed current T ∈ α can be written T =
ω + ddcϕ for some function ϕ ∈ PSH(X,ω) which is unique up to an additive constant.

Definition 2.8 We let E(α) denote the set of all positive currents in α, T = ω + ddcϕ, with
ϕ ∈ E(X,ω).

The definition does not depend on the choice of ω, nor on the choice of ϕ.

2.2 The class E1(X,ω)

2.2.1 The Aubin-Mabuchi functional Each tangent space TϕH admits the following orthog-
onal decomposition

TϕH = {ψ ∈ C∞(X); βϕ(ψ) = 0} ⊕R,

where β = MA is the 1-form defined on H by

βϕ(ψ) =

∫
X
ψMA(ϕ).

It is a classical observation due to Mabuchi that the 1-form β is closed. Therefore there exists
a unique function E defined on the convex open set H, such that β = dE and E(0) = 0. It is
often called the Aubin-Mabuchi functional and can be expressed (after integration along affine
paths) by

E(ϕ) =
1

(n+ 1)Vα

n∑
j=0

∫
X
ϕ (ω + ddcϕ)j ∧ ωn−j .
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Lemma 2.9 The Aubin-Mabuchi functional E is concave along euclidean segments, increasing,
and satisfies the cocycle condition

E(ϕ)− E(ψ) =
1

(n+ 1)Vα

n∑
j=0

∫
X

(ϕ− ψ) (ω + ddcϕ)j ∧ (ω + ddcψ)n−j

It is affine along geodesics and convex along subgeodesics in H.

Proof. These properties are well-known when ω is a Kähler form.

The monotonicity property follows from the definition since the first derivative of E is dE =
β = MA ≥ 0, a probability measure: if ϕt is an arbitrary path, then

d

dt
E(ϕt) =

∫
X
ϕ̇tMA(ϕt).

It follows from Stokes theorem that

d2

dt2
E(ϕt) =

∫
X
ϕ̈tMA(ϕt) +

n

Vα

∫
X
ϕ̇t dd

cϕ̇t ∧ ωn−1
ϕ

=

∫
X

{
ϕ̈tMA(ϕt)−

n

Vα
dϕ̇t ∧ dcϕ̇t ∧ ωn−1

ϕt

}
.

Thus E is concave along euclidean segments (ϕ̈t = 0), affine along Mabuchi geodesics, and convex
along Mabuchi subgeodesics. The cocycle condition follows by differentiating E(tϕ+ (1− t)ψ).

These computations are mereley heuristic as t→ ϕt(x) is poorly regular when ϕt is a geodesic
or a subgeodesic. We can however approximate ω by ωε = ω+εωX , consider (ϕεt ) the correspond-
ing geodesic and

Eωε(ϕ
ε
t ) =

1

(n+ 1)Vε

n∑
j=0

∫
X
ϕεt (ωε + ddcϕεt ) ∧ ωn−jε .

It follows from Proposition 1.6 that ε 7→ ϕεt decreases to ϕt, hence t 7→ E(ϕt) is affine, being the
limit of the affine maps t 7→ Eωε(ϕ

ε
t ).

For subgeodesics we approximate again ω by ωε and we proceed as in the Kähler case.

Observe that E(ϕ + t) = E(ϕ) + t. Given ϕ ∈ H there exists a unique c ∈ R such that
E(ϕ+ c) = 0. The restriction of the Mabuchi metric to the fiber E−1(0) induces a Riemannian
structure on the quotient space Hα = H/R and allows to decompose H = Hα ×R as a product
of Riemannian manifolds.

Definition 2.10 For ϕ ∈ PSH(X,ω), we set

E(ϕ) := inf{E(ψ) ; ϕ ≤ ψ and ψ ∈ PSH(X,ω) ∩ L∞(X)} ∈ [−∞,+∞[

and E1(X,ω) := {ϕ ∈ PSH(X,ω) ; E(ϕ) > −∞}.

Remark 2.11 The functional E can be used to characterize the class E(X,ω). For ϕ ∈ PSH(X,ω),
we set ϕt = max(ϕ,−t). Observe that t 7→ E(ϕt) is convex since t 7→ ϕt is a subgeodesic ray and
E(ϕt) = O(t). Moreover E(ϕt) = O(1) if and only if ϕ ∈ E1(X,ω). Following Darvas [Dar13]
we now claim that ϕ ∈ E(X,ω)⇐⇒ E(ϕt) = o(t).
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We provide an alternative proof of independent interest. Observe that∫
X
ϕωj+1

ϕ ∧ ωn−j−1 =

∫
X
ϕωjϕ ∧ ωn−j +

∫
X
ϕddcϕ ∧ ωjϕ ∧ ωn−j−1

≤
∫
X
ϕωjϕ ∧ ωn−j ,

since
∫
X ϕdd

cϕ ∧ ωjϕ ∧ ωn−j−1 = −
∫
X dϕ ∧ d

cϕ ∧ ωjϕ ∧ ωn−j−1 ≤ 0. For ϕ ≤ 0, we infer∫
X ϕMA(ϕ) ≤ E(ϕ) ≤ (n + 1)−1

∫
X ϕMA(ϕ) so our claim is equivalent to showing that ϕ ∈

E(X,ω)⇐⇒ t−1
∫
X ϕtMA(ϕt)→ 0. Observe now that

t−1

∫
X
ϕtMA(ϕt) = −MA(ϕt)(ϕ ≤ −t) + t−1

∫
(ϕ>−t)

ϕdµϕ.

Since µϕ(ϕ = −∞) = 0, there exists χ : R → R, a convex increasing function such that
χ(−∞) = −∞ and χ ◦ ϕ ∈ L1(µϕ). Therefore t−1

∫
{ϕ>−t} ϕdµϕ = O(χ(−t)−1)→ 0, hence∫

X
ϕtMA(ϕt) = o(t)⇐⇒MA(ϕt)(ϕ ≤ −t) = o(1)⇐⇒ ϕ ∈ E(X,ω).

2.2.2 Strong topology on E1(α) Set

I(ϕ,ψ) =

∫
X

(ϕ− ψ) (MA(ψ)−MA(ϕ)) .

It has been shown in [BBEGZ] that I defines a complete metrizable uniform structure on
E1(α). More precisely we identify E1(α) with the set

E1
norm(X,ω) = {ϕ ∈ E1(X,ω) | sup

X
ϕ = 0}

of normalized potentials. Then

– I is symmetric and positive on E1
norm(X,ω)2 \ {diagonal};

– I satisfies a quasi-triangle inequality [BBEGZ, Theorem 1.8];

– I induces a uniform structure which is metrizable [Bourbaki];

– the metric space (E1(α), dI) is complete [BBEGZ, Proposition 2.4], where dI denotes one
of the distances induced by the uniform structure I.

Definition 2.12 The strong topology on E1(α) is the metrizable topology defined by I.

The corresponding notion of convergence is the convergence in energy previously introduced
in [BBGZ13] (see [BBEGZ, Proposition 2.3]). It is the coarsest refinement of the weak topology
such that E becomes continuous. In particular if Tj −→ T in (E1(α), dI), then

Tj −→ T weakly and Tnj −→ Tn

in the weak sense of Radon measures, while the Monge-Ampère operator is usually discontinuous
for the weak topology of currents.

Example 2.13 When dimCX = n = 1, E1(X,ω) = PSH(X,ω) ∩ W 1,2(X) is the set of ω-
subharmonic functions with square integrable gradient. The strong topology on E1(α) is the one
induced by the Sobolev norm.
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2.2.3 Yet another distance To fit in with the notations of the next section, we introduce yet
another notion of convergence in E1(X,ω). We set

I1(ϕ,ψ) :=

∫
X
|ϕ− ψ|

[
MA(ϕ) +MA(ψ)

2

]
This symmetric quantity is non-negative. It follows from the Proposition 2.7 that it only

vanishes on the diagonal of E1(X,ω)2, while Theorem 3.6 will insure that it satisfies a quasi-
triangle inequality. For C > 0, we set

E1
C(X,ω) := {ϕ ∈ E1(X,ω) ; E(ϕ) ≥ −C and ϕ ≤ C}.

It follows from Hartogs lemma, the upper-semi continuity and the concavity of E along euclidean
segments (Lemma 2.9) that this set is a compact and convex subset of PSH(X,ω), when endowed
with the L1-topology (see [BBGZ13, Lemma 2.6]).

Proposition 2.14 For all ϕ,ψ ∈ E1(X,ω), I(ϕ,ψ) ≤ 2I1(ϕ,ψ). Conversely for each C > 0,
there exists A > 0 such that for all ϕ,ψ ∈ E1

C(X,ω)

I1(ϕ,ψ) ≤
∫
X

[2 max(ϕ,ψ)− (ϕ+ ψ)]MA(0) +AI(ϕ,ψ)1/2n .

In particular the distances induced by I, I1 on E1
norm(X,ω) are equivalent.

Observe that I1 induces a distance on E1(X,ω), but I is merely defined on E1
norm(X,ω), as

I(ϕ+ c, ψ + c′) = I(ϕ,ψ), for any c, c′ ∈ R.

Proof. The first inequality is obvious, as

I(ϕ,ψ) =

∫
X

(ϕ− ψ) (MA(ψ)−MA(ϕ)) ≤
∫
X
|ϕ− ψ| (MA(ψ) +MA(ϕ)) .

It follows from Proposition 2.19 below that

I1(ϕ,ψ) = I1(ϕ,max(ϕ,ψ)) + I1(max(ϕ,ψ), ψ),

hence it suffices to establish the second inequality when ϕ ≤ ψ. In this case

I1(ϕ,ψ) ≤
∫
X

(ψ − ϕ)MA(ϕ),

by Lemma 2.18, while Cauchy-Schwarz inequality yields∫
X

(ψ − ϕ)MA(ϕ)

=

∫
X

(ψ − ϕ)MA(0) +

∫
X
d(ϕ− ψ) ∧ dcϕ ∧ Sϕ

≤
∫
X

(ψ − ϕ)MA(0) + I(ϕ, 0)1/2

(∫
X
d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ Sϕ

)1/2

,

where we have set Sϕ :=
∑n−1

j=0 ω
j
ϕ ∧ ωn−1−j . Observing that Sϕ ≤ 2n−1ωn−1

ϕ/2 , we can invoke

[BBEGZ, Lemma 1.9] to obtain∫
X

d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ Sϕ ≤ cnI(ϕ,ψ)1/2
n−1

{
I
(
ϕ,
ϕ

2

)1−1/2n−1

+ I
(
ψ,
ϕ

2

)1−1/2n−1}
.
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Now I(ϕ,ϕ/2) ≤ anI(ϕ, 0) ≤ C ′ and [BBEGZ, Theorem 1.3] yields

I(ψ,ϕ/2) ≤ bn {I(ψ, 0) + I(ϕ/2, 0)} ≤ b′n {I(ψ, 0) + I(ϕ, 0)} ≤ C ′′.

The conclusion follows.

2.3 The complete metric spaces Ep(α)

Fix p ≥ 1. Following [GZ07, BEGZ10] we consider the following finite energy classes:

Definition 2.15 We set

Ep(X,ω) :=
{
ϕ ∈ E(X,ω) / |ϕ|p ∈ L1(MA(ϕ))

}
and let Ep(α) = {T = ω + ddcϕ |ϕ ∈ Ep(X,ω)} denote the corresponding sets of finite energy
currents.

We introduce a strong topology on the class Ep(α), p ≥ 1, by setting

Ip(ϕ,ψ) :=

(∫
X
|ϕ− ψ|p

[
MA(ϕ) +MA(ψ)

2

])1/p

This quantity is well-defined by [GZ07, Proposition 3.6]. It is obviously non-negative and
symmetric. It follows from the domination principle (Proposition 2.7) that

Ip(ϕ,ψ) = 0 =⇒ ϕ = ψ.

Definition 2.16 The strong topology on Ep(α) is the one induced by Ip.

By [BEGZ10, Theorem 2.17], a decreasing sequence converges strongly. We also have good
convergence properties if we approximate by slightly larger finite energy classes Ep(X,ωε):

Proposition 2.17 Fix ωε = ω+εωX , ε > 0. If ϕ,ψ ∈ Ep(X,ω)∩L∞(X), then ϕ,ψ ∈ Ep(X,ωε)∩
L∞(X) and Ip,ωε(ϕ,ψ)→ Ip,ω(ϕ,ψ) as ε→ 0.

Moreover, if ϕ,ψ ∈ Ep(X,ω) and ϕj , ψj are sequences of smooth ωεj -psh functions decreasing
to ϕ,ψ with εj → 0, then

Ip,ωεj (ϕj , ψj)→ Ip,ω(ϕ,ψ)

as j goes to +∞.

Proof. The first assertion follows from the fact that (ωε + ddcϕ)n and (ωε + ddcψ)n converges
weakly to (ω + ddcϕ)n and (ω + ddcψ)n as ε → 0, respectively. For the second statement, we
observe that by symmetry it suffices to prove that∫

X
|ϕj − ψj |p(ωεj + ddcϕj)

n →
∫
X
|ϕ− ψ|p(ω + ddcϕ)n, as j → +∞.

Given a bounded function f on X, we set

|f |p :=

(∫
X
|f |p(ωεj + ddcϕj)

n

)1/p

.

The triangle inequality yields

|ϕj − ψj |p ≤ |ϕ− ψ|p + |(ϕj − ϕ)|+ |(ψ − ψj)|p
and similarly

|ϕj − ψj |p ≥ |ϕ− ψ|p − |(ϕj − ϕ)| − |(ψ − ψj)|p.
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Since ϕ−ψ is a quasi-continuous function on X, it follows from the continuity of the Monge-
Ampère operator along decreasing sequence [GZ07, Theorem 1.9] and [Kol05, Corollary 1.14]
that

|ϕ− ψ|pp =

∫
X
|ϕ− ψ|p(ωεj + ddcϕj)

n →
∫
X
|ϕ− ψ|p(ω + ddcϕ)n

as j → +∞. Moreover, we claim that the terms |(ϕj−ϕ)|p and |(ψ−ψj)|p goes to 0 as j → +∞.
Lemma 2.18 together with the fact that ωεj ≤ ω + ωX yields∫

X
(ϕj − ϕ)p(ωεj + ddcϕj)

n ≤
∫
X

(ϕj − ϕ)p(ω + ωX + ddcϕ)n.

Since ϕj is decreasing to ϕ, it then follows from the dominated convergence theorem that |(ϕj −
ϕ)|pp → 0 as j → +∞. Fix j0 < j. Then∫

X
(ψj − ψ)p(ωεj + ddcϕj)

n ≤
∫
X

(ψj0 − ψ)p(ω + ωX + ddcϕj)
n.

It follows again from the continuity of the Monge-Ampère operator along decreasing sequence,
[Kol05, Corollary 1.14] and the dominated convergence theorem that letting j → +∞ and then
j0 → +∞ we get ∫

X
(ψj0 − ψ)p(ω + ωX + ddcϕj)

n → 0.

Thus |(ψj − ψ)|pp → 0 as j → +∞. Hence the conclusion.

It follows from Hölder inequality that the strong topology on Ep(α) is stronger than the one
on E1(α): if a sequence (ϕj) ∈ Ep(X,ω) is a Cauchy sequence for Ip, then it is a Cauchy sequence
in (E1(X,ω), dI) since

0 ≤ I(ϕ,ψ) =

∫
X

(ϕ− ψ) [MA(ψ)−MA(ϕ)] ≤ 21/pIp(ϕ,ψ).

Since (E1(X,ω), dI) is complete, there is ϕ ∈ E1(X,ω) s.t. dI(ϕj , ϕ) → 0. Now Ip(ϕj , 0) is
bounded and MA(ϕj) converges to MA(ϕ) (by [BBGZ13, Proposition 5.6]). Thus ϕ ∈ Ep(X,ω)
by Fatou’s and Hartogs’ lemma.

One would now like to prove that Ip(ϕj , ϕ)→ 0 and conclude that the space (Ep(X,ω), Ip) is
complete, arguing as in [BBEGZ, Proposition 2.4]. There is an abuse of terminology here as we
haven’t checked that Ip induces a uniform structure. This follows from Theorem 3.6 which shows
in particular that Ip satisfies a quasi-triangle inequality (like I does, see [BBEGZ, Theorem 1.8]).
We refer the reader to Theorem 4.2 for a neat treatment.

Lemma 2.18 Let ϕ,ψ be bounded ω-psh functions and S be a positive closed current of bidi-
mension (1, 1) on X. If ϕ ≤ ψ, then∫

X
(ψ − ϕ)pωψ ∧ S ≤

∫
X

(ψ − ϕ)pωϕ ∧ S.

In particular V −1
α

∫
X(ψ − ϕ)pωjψ ∧ ω

n−j
ϕ ≤

∫
X(ψ − ϕ)pMA(ϕ).

Proof. By Stokes’ theorem,∫
X

(ψ − ϕ)pωϕ ∧ S −
∫
X

(ψ − ϕ)pωψ ∧ S = p

∫
X

(ψ − ϕ)p−1d(ϕ− ψ) ∧ dc(ϕ− ψ) ∧ S

is non-negative if (ψ − ϕ) ≥ 0.

The second assertion follows by applying the first one inductively.
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We now establish a few useful properties of Ip that will notably allow to compare Ip to dp in
the next section.

Proposition 2.19 For ϕ,ψ ∈ Ep(X,ω),

Ip(ϕ,ψ)p = Ip(ϕ,max(ϕ,ψ))p + Ip(max(ϕ,ψ), ψ)p.

Proof. Recall that the maximum principle insures that

1{ϕ<ψ}MA(max(ϕ,ψ)) = 1{ϕ<ψ}MA(ψ),

while (ϕ−max(ϕ,ψ))p = 0 on (ϕ ≥ ψ), thus

2Ip(ϕ,max(ϕ,ψ))p =

∫
{ϕ<ψ}

|ϕ− ψ|p [MA(ϕ) +MA(ψ)] .

Similarly 2Ip(ψ,max(ϕ,ψ))p =
∫
{ϕ>ψ} |ϕ− ψ|

p [MA(ϕ) +MA(ψ)] and the result follows since

Ip(ϕ,ψ)p =
1

2

∫
{ϕ 6=ψ}

|ϕ− ψ|p [MA(ϕ) +MA(ψ)] .

Corollary 2.20 For all ϕ,ψ ∈ Ep(X,ω),

Ip

(
ϕ+ ψ

2
, ψ

)
≤ Ip(ϕ,ψ).

Proof. By approximating ϕ,ψ from above by a decreasing sequences, it suffices to treat the
case when ϕ,ψ ∈ Hω. Changing ω in ωψ, we can further assume that ψ = 0. It follows from
Proposition 2.19 that

Ip (0, ϕ/2)p = Ip(0,max(0, ϕ/2))p + Ip(max(0, ϕ/2), ϕ/2)p.

It follows from Lemma 2.18 that

Ip(0,max(0, ϕ/2))p ≤
∫
X

max(0, ϕ/2)pMA(0)

= 2−p
∫
X

max(0, ϕ)pMA(0) ≤ Ip(0,max(0, ϕ))p.

We claim that for all 0 ≤ j ≤ n,∫
X

(max(0, ϕ)− ϕ)pωjϕ ∧ ωn−j ≤
∫
X

(max(0, ϕ)− ϕ)pωnϕ.

Assuming this for the moment, it follows again from Lemma 2.18 that

Ip(max(0, ϕ/2), ϕ/2)p ≤
∫
X

(max(0, ϕ/2)− ϕ/2)pMA(ϕ/2)

=
1

2n+pVα

n∑
j=0

Cjn

∫
X

(max(0, ϕ)− ϕ)pωjϕ ∧ ωn−j

≤ 1

2

∫
X

(max(0, ϕ)− ϕ)pMA(ϕ) ≤ Ip(ϕ,max(0, ϕ))p.

We infer

Ip (0, ϕ/2)p ≤ Ip(0,max(0, ϕ))p + Ip(max(0, ϕ), ϕ)p = Ip(0, ϕ)p,

by using Proposition 2.19 again.
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It remains to justify our claim. Set S = ωj−1 ∧ ωn−jϕ . It suffices, by induction, to establish
the following inequality:∫

X
(max(0, ϕ)− ϕ)pω ∧ S

=

∫
X

(max(0, ϕ)− ϕ)pωϕ ∧ S −
∫
X

(max(0, ϕ)− ϕ)pddcϕ ∧ S

≤
∫
X

(max(0, ϕ)− ϕ)pωϕ ∧ S.

This follows by observing that

−
∫
X

(max(0, ϕ)− ϕ)pddcϕ ∧ S = p

∫
X

(max(0, ϕ)− ϕ)p−1d(max(0, ϕ)− ϕ) ∧ dcϕ ∧ S

= −p
∫
{ϕ<0}

(−ϕ)p−1dϕ ∧ dcϕ ∧ S ≤ 0.

3. Comparing distances

In this section we show that Ip is equivalent to dp (Theorem 3.6). For notational convenience we
let H denote the set Hbd defined in Section 1.2.

3.1 Kiselman transform and geodesics

Let (ϕt)0≤t≤1 be the Mabuchi geodesic. For all x ∈ X, t ∈ [0, 1] 7→ ϕt(x) ∈ R is convex. It is
natural to consider its Legendre transform us(x) : s 7→ supt∈[0,1]{st − ϕt(x)}. This function is
convex in s, but the dependence in x is −ω-psh, so we rather consider −us. We finally change s
in −s to obtain a more elegant formula,

ψs(x) := inf
0≤t≤1

{st+ ϕt(x)}.

Proposition 3.1 The functions x 7→ ψs(x) are ω-plurisubharmonic. In particular x 7→ ψ0(x) =
inf0≤t≤1 ϕt(x) is ω-psh.

This is the minimum principle of Kiselman [Kis78]. For ϕ0, ϕ1 ∈ H we let ϕ0 ∨ϕ1 denote the
greatest ω-psh function that lies below ϕ0 and ϕ1. In the notations of Berman-Demailly [BD12]

ϕ0 ∨ ϕ1 = P (min(ϕ0, ϕ1)),

while ϕ0 ∨ ϕ1 is denoted by P (ϕ0, ϕ1) in [Dar14].

An important consequence of Kiselman minimum principle [Kis78] is the following observation
due to Darvas and Rubinstein [DR14]:

Proposition 3.2 The function ϕ0 ∨ϕ1 is a bounded ω-psh which has locally bounded Laplacian
on the ample locus of α = {ω} and its Monge-Ampère measure MA(ϕ0 ∨ϕ1) is supported on the
coincidence set

{x ∈ X |ϕ0 ∨ ϕ1(x) = min(ϕ0, ϕ1)(x)}.
Moreover MA(ϕ0 ∨ ϕ1) = 1{ϕ0∨ϕ1=ϕ0}MA(ϕ0) + 1{ϕ0∨ϕ1=ϕ1<ϕ0}MA(ϕ1).

Let (ϕt) be the Mabuchi geodesic joining ϕ0 and ϕ1. Then for all x ∈ X,

ϕ0 ∨ ϕ1(x) = inf
t∈[0,1]

ϕt(x).
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Proof. It follows from a classical balayage procedure that goes back to Bedford and Taylor [BT82]
that MA(ϕ0 ∨ ϕ1) is supported on the coincidence set {x ∈ X |ϕ0 ∨ ϕ1(x) = min(ϕ0, ϕ1)(x)}
This holds true more generally for the Monge-Ampère measure of any envelope, namely

1{P (h)<h}MA(P (h)) ≡ 0,

where h is a bounded lower semcontinuous function.

We have observed in Proposition 3.1 that x 7→ inft∈[0,1] ϕt(x) is a ω-psh function. Since it lies
both below ϕ0 and ϕ1, we infer

inf
t∈[0,1]

ϕt ≤ ϕ0 ∨ ϕ1.

Conversely (t, x) 7→ ϕ0∨ϕ1(x) is a subgeodesic (independent of t), hence for all t, x, ϕ0∨ϕ1(x) ≤
ϕt(x). Thus ψ := ϕ0 ∨ ϕ1 = inft∈[0,1] ϕt, hence ψ is bounded thanks to Proposition 1.4.

By Proposition 3.1, ψ is ω-psh, hence AωX -psh for some Kähler form ωX and A > 0. Thus
supX ∆ωXψ ≥ −C for some C > 0.

It follows from the work of Berman and Demailly [BD12] that for any compact subset K ⊂
Amp (α), there exists CK > 0 such that for all t ∈ [0, 1],

sup
K

∆ωXϕt < CKn.

Thus (−ϕt) is a family of CKωX -psh functions in a neighborhood of K, which are uniformly
bounded from above. Thus

−ψ = sup
0≤t≤1

(−ϕt) = − inf
0≤t≤1

ϕt

is CKωX -psh near K, in particular ∆ωXψ < CKn. This means that ψ has locally bounded
laplacian on Amp (α).

It follows then from classical arguments that the measure MA(ϕ0∨ϕ1) is absolutely continu-
ous with respect to Lebesgue measure. Since ϕ0∨ϕ1, ϕ0 (resp. ϕ0∨ϕ1, ϕ1) have locally bounded
Laplacian in Amp (α), it follows from [GT83, Lemma 7.7] that their second partial derivatives
agree on {ϕ0 ∨ ϕ1 = ϕ0} (resp. on {ϕ0 ∨ ϕ1 = ϕ1}), hence

MA(ϕ0 ∨ ϕ1) = 1{ϕ0∨ϕ1=ϕ0}MA(ϕ0) + 1{ϕ0∨ϕ1=ϕ1<ϕ0}MA(ϕ1).

We have used here the fact that none of the measures MA(ϕ0 ∨ ϕ1),MA(ϕ0), MA(ϕ1) charges
the pluripolar set X \Amp (α).

A basic observation that we shall use on several occasions is the following:

Lemma 3.3 Assume ϕ0, ϕ1 ∈ H and let (ϕt)0≤t≤1 be the Mabuchi geodesic joining ϕ0 to ϕ1.
Then:

dp(ϕ0, ϕ1) ≤ ||ϕ1 − ϕ0||L∞(X).

Moreover,

(i) If ϕ0(x) ≤ ϕ1(x) for some x ∈ X, then ϕ̇1(x) ≥ 0.

(ii) If ϕ0(x) ≤ ϕ1(x) for all x ∈ X then ϕ̇t(x) ≥ 0 for all x ∈ X and a.e t ∈ [0, 1].

By symmetry, if ϕ1(x) ≤ ϕ0(x), it follows that ϕ̇0(x) ≤ 0. Moreover, if ϕ1(x) ≤ ϕ0(x) for
all x ∈ X then ϕ̇t(x) ≤ 0 for a.e. x, t. Here and in the sequel ϕ̇0, ϕ̇1 denote the right and left
derivative, respectively while we recall that ϕ̇t(x) is well defined for a.e (x, t).
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Proof. From Theorem 1.13 we know that dpp(ϕ0, ϕ1) =
∫
X |ϕ̇0|pMA(ϕ0). Moreover, Proposition

1.4 insures that |ϕ̇0| ≤ ||ϕ1 − ϕ0||L∞(X). Hence, the first statement.

Assume ϕ̇1(x) < 0. Since t 7→ ϕt(x) is convex we infer ϕ̇t(x) ≤ ϕ̇1(x) < 0. Thus t 7→ ϕt(x) is
decreasing, hence ϕ1(x) < ϕ0(x), a contradiction. This proves (i).

Assume now that ϕ0(x) ≤ ϕ1(x) for all x ∈ X. Then

ϕ0 ≤ ϕt ≤ ϕ1.

The first of the inequalities above follows from the fact that by Proposition 1.4

ϕ = sup{u u ∈ PSH(M,ω) : u ≤ ϕ0,1 on M}

with ϕ(x, t+ is) = ϕt(x) and that ϕ0(x, t+ is) = ϕ0(x) is a subsolution (i.e. a candidate in the
envelope). The other inequality follows from the fact that ϕ1(x, t+ is) = ϕ1(x) is a supersolution
of (2) since (ω + ddcx,zϕ1)n+1 = 0 and ϕ1 ≥ ϕ0,1. The same argument shows that ϕ0 ≤ ϕs ≤ ϕt
for all 0 < s < t and x ∈ X, hence ϕ̇t(x) ≥ 0 for all x ∈ X and a.e t ∈ [0, 1] since the derivative
in time of ϕt is well defined for a.e. t.

We now establish a very useful relation established by Darvas [Dar14, Proposition 8.1] when
ω is Kähler (see also [Dar15, Corollary 4.14]).

Proposition 3.4 Assume ϕ0, ϕ1 ∈ H. Then for all p ≥ 1,

dpp(ϕ0, ϕ1) = dpp(ϕ0, ϕ0 ∨ ϕ1) + dpp(ϕ0 ∨ ϕ1, ϕ1).

Proof. We proceed by approximation, so as to reduce to the Kähler case. The identity is known
to hold for dp,ε and ϕ0 ∨ε ϕ1, where dp,ε denotes the distance associated to the Kähler form
ωε = ω + εωX and ϕ0 ∨ε ϕ1 is the greatest ωε-psh function that lies below min(ϕ0, ϕ1).

Using Theorem 1.13 and the triangle inequality, the proof boils down to check that dp,ε(ϕ0 ∨
ϕ1, ϕ0 ∨ε ϕ1)→ 0 as ε→ 0. The same arguments used in the proof of Proposition 1.15 yield

dp,ε(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1) ≤ dp,ε′(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1), ε < ε′.

We claim that dp,ε′(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1) goes to zero as ε goes to zero since ϕ0 ∨ε ϕ1 decreases to
ϕ0∨ϕ1 as ε→ 0. Indeed, observe that ϕ0∨ϕ1, ϕ0∨εϕ1 ∈ Ep(X,ω′ε)∩L∞(X) and by Proposition
3.8 we know that

dp,ε′(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1) ≤ 2Ip,ε′(ϕ0 ∨ ϕ1, ϕ0 ∨ε ϕ1).

The same arguments in the proof of Proposition 2.17 then show that Ip,ε′(ϕ0 ∨ϕ1, ϕ0 ∨ε ϕ1)→ 0
as ε goes to zero. The conclusion then follows from (3).

We note for later use the following consequence:

Corollary 3.5 If ϕ0, ϕ1 ∈ H then

dp(ϕ0, ϕ0 ∨ ϕ1) ≤ dp(ϕ0, ϕ1).

3.2 Comparing dp and Ip

The goal of this section is to establish that dp and Ip are equivalent, extending [Dar15, Theorem
5.5]:

Theorem 3.6 For all ϕ0, ϕ1 ∈ H,

2−1dp(ϕ0, ϕ1) ≤ Ip(ϕ0, ϕ1) ≤ 24+(2n−1)/pdp(ϕ0, ϕ1).
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It follows from Definition 1.10 and Proposition 2.17 that

dp(ϕ0, ϕ1) = lim
ε→0

dp,ε(ϕ0, ϕ1) and Ip(ϕ0, ϕ1) = lim
ε→0

Ip,ε(ϕ0, ϕ1),

so it suffices to establish these inequalities when ω is a Kähler form.

We nevertheless give a direct proof, valid when ω is merely semi-positive, with several inter-
mediate results of independent interest. Several of these results have been obtained by Darvas in
[Dar13, Dar14, Dar15] when ω is Kähler.

Lemma 3.7 Assume ϕ0, ϕ1 ∈ H satisfy ϕ0 ≤ ϕ1. Then

1) dp
(
ϕ1,

ϕ0+ϕ1

2

)
≤ dp(ϕ0, ϕ1);

2) dp(ϕ0, ϕ1) ≤ 21+n/pdp(ϕ0/2, ϕ1/2);

3) if ϕ1 = 0 then dp(ϕ0, 0) ≥ 2dp(ϕ0/2, 0);

4) If ψ ∈ H is such that ϕ0 ≤ ψ ≤ ϕ1, then

max{dp(ϕ0, ψ); dp(ψ,ϕ1)} ≤ dp(ϕ0, ϕ1).

Proof. Let ϕt (resp. ψt) denote the Mabuchi geodesic joining ϕ0 (resp. (ϕ0 +ϕ1)/2) to ϕ1. Since
ϕ0 ≤ ϕ1, it follows from Lemma 3.3.ii that t 7→ ϕt, t 7→ ψt are increasing and ϕt ≤ ψt hence

ϕt − ϕ1

t− 1
≥ ψt − ψ1

t− 1

since ϕ1 = ψ1. Therefore ϕ̇1 ≥ ψ̇1 ≥ 0 and we infer∫
X
|ψ̇1|pMA(ψ1) = dp

(
ϕ1,

ϕ0 + ϕ1

2

)p
≤ dp(ϕ0, ϕ1)p =

∫
X
|ϕ̇1|pMA(ϕ1).

This proves 1).

Let now (ϕt) (resp. (ψt)) denote the geodesic joining ϕ0 to ϕ1 (resp. ϕ0/2 to ϕ1/2). Observe
that t 7→ ϕt, ψt are increasing hence ϕ̇0 ≥ 0. The family (ϕt/2) is a subgeodesic joining ϕ0/2 to
ϕ1/2, hence ϕt/2 ≤ ψt and

0 ≤ ϕ̇0

2
≤ ψ̇0 =⇒ |ϕ̇0|p ≤ 2p|ψ̇0|p.

Moreover MA(ϕ0) ≤ 2nMA(ϕ0/2), so we infer

dp(ϕ0, ϕ1)p =

∫
X
|ϕ̇0|pMA(ϕ0) ≤ 2n+pdp(ϕ0/2, ϕ1/2)p,

which proves 2). A similar argument shows that

0 ≤ ψ̇1 ≤
ϕ̇1

2
=⇒

∣∣∣ψ̇1

∣∣∣p ≤ 2−p|ϕ̇1|p.

Now MA(ϕ1/2) = MA(ϕ1) = MA(0) when ϕ1 = 0, hence

dp(ϕ0, 0)p =

∫
X
|ϕ̇1|pMA(0) ≥ 2pdp(ϕ0/2, 0)p,

which yields 3).

It remains to prove 4). Let (ϕt)0≤t≤1 (resp. (ψt)0≤t≤1) be the geodesic joining ϕ0 to ϕ1 (resp.
ϕ0 to ψ). Observe that ϕ0 = ψ0 and ψt ≤ ϕt, hence ψ̇0 ≤ ϕ̇0. Moreover 0 ≤ ψ̇0 since t 7→ ψt(x)
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is increasing. We infer

dp(ϕ0, ψ)p =

∫
X
|ψ̇0|pMA(ϕ0) ≤

∫
X
|ϕ̇0|pMA(ϕ0) = dp(ϕ0, ϕ1)p.

The other inequality is proved similarly.

Proposition 3.8 For all ϕ0, ϕ1 ∈ H,

0 ≤ dp(ϕ0, ϕ1) ≤ 2Ip(ϕ0, ϕ1).

Moreover if ϕ0 ≤ ϕ1 then Ip(ϕ0, ϕ1) ≤
(∫
X(ϕ1 − ϕ0)pMA(ϕ0)

)1/p
and

dp(ϕ0, ϕ1) ≤
(∫

X
(ϕ1 − ϕ0)pMA(ϕ0)

)1/p

≤ 21+n/pdp(ϕ0, ϕ1).

Proof. We first assume that ϕ0 ≤ ϕ1. The inequality

Ip(ϕ0, ϕ1) ≤
(∫

X
(ϕ1 − ϕ0)pMA(ϕ0)

)1/p

follows from Lemma 2.18. Let (ϕt) be the geodesic joining ϕ0 to ϕ1. It follows from Lemma 3.3
that 0 ≤ ϕ̇0 ≤ ϕ1 − ϕ0 ≤ ϕ̇1 hence∫

X
(ϕ1 − ϕ0)pMA(ϕ1) ≤

∫
X

(ϕ̇1)pMA(ϕ1) = dp(ϕ0, ϕ1)p (6)

and similarly dp(ϕ0, ϕ1)p ≤
∫
X(ϕ1 − ϕ0)pMA(ϕ0).

We give an alternative proof of this upper bound which could be of interest in more singular
contexts. We can join ϕ0 to ϕ1 by a straight line ϕt = tϕ1 +(1− t)ϕ0. This is a smooth path both
in Hω and Hωε , hence its length dominates the distance dp (see Remark 1.11). Hölder inequality
yields

dp(ϕ0, ϕ1) ≤ `p(ϕ) =

∫ 1

0

(∫
X

(ϕ1 − ϕ0)pMA(ϕt)

)1/p

dt

≤
(∫ 1

0

∫
X

(ϕ1 − ϕ0)pMA(ϕt)dt

)1/p

.

Now MA(ϕt) = V −1
α

∑n
j=0

(
n
j

)
tj(1− t)n−jωjϕ1 ∧ ω

n−j
ϕ0 and for 0 ≤ j ≤ n,

∫ 1
0 t

j(1− t)n−jdt =

(n+ 1)−1

(
n
j

)−1

, hence

1

(n+ 1)Vα

n∑
j=0

∫
X

(ϕ1 − ϕ0)pωjϕ1
∧ ωn−jϕ0

≤
∫
X

(ϕ1 − ϕ0)pMA(ϕ0),

as follows from Lemma 2.18, yielding

dp(ϕ0, ϕ1) ≤
(∫

X
(ϕ1 − ϕ0)pMA(ϕ0)

)1/p

.

We now show that
∫
X(ϕ1 − ϕ0)pMA(ϕ0) ≤ 2n+pd(ϕ0, ϕ1)p. Observe that ϕ0+ϕ1

2 ∈ H with
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MA(ϕ0) ≤ 2nMA
(ϕ0+ϕ1

2

)
hence∫

X
(ϕ1 − ϕ0)pMA(ϕ0) = 2p

∫
X

(
ϕ0 + ϕ1

2
− ϕ0

)p
MA(ϕ0)

≤ 2n+p

∫
X

(
ϕ0 + ϕ1

2
− ϕ0

)p
MA

(
ϕ0 + ϕ1

2

)
≤ 2n+pdp

(
ϕ0,

ϕ0 + ϕ1

2

)p
,

as follows from the first step of the proof since ϕ0 ≤ ϕ1. Lemma 3.7.4 yields

dp

(
ϕ0,

ϕ0 + ϕ1

2

)
≤ dp(ϕ0, ϕ1)

hence
∫
X(ϕ1 − ϕ0)pMA(ϕ0) ≤ 2n+pdp(ϕ0, ϕ1)p.

We finally treat the first upper bound of the Proposition which does not require ϕ0 to lie
below ϕ1. It follows from the triangle inequality that

dp(ϕ0, ϕ1) ≤ dp(ϕ0,max(ϕ0, ϕ1)) + dp(max(ϕ0, ϕ1), ϕ1)

≤

(∫
{ϕ0<ϕ1}

(ϕ1 − ϕ0)pMA(ϕ0)

)1/p

+

(∫
{ϕ0>ϕ1}

(ϕ0 − ϕ1)pMA(ϕ1)

)1/p

≤ 21−1/p
(∫

X

|ϕ1 − ϕ0|p [MA(ϕ0) +MA(ϕ1)]

)1/p

= 2

(∫
X

|ϕ1 − ϕ0|p
[MA(ϕ0) +MA(ϕ1)]

2

)1/p

by using the elementary inequality a1/p + b1/p ≤ 21−1/p(a+ b)1/p.

Remark 3.9 Working with ψ = tϕ0 + (1− t)ϕ1, 0 < t < 1, instead of ϕ0+ϕ1

2 , one can improve
the above inequality and obtain(∫

X
(ϕ1 − ϕ0)pMA(ϕ0)

)1/p

≤ (n+ p)1+n/p

p nn/p
dp(ϕ0, ϕ1).

We now extend Lemma 3.7.1, following [Dar15, Lemma 5.3]:

Lemma 3.10 For all ϕ0, ϕ1 ∈ H,

dp

(
ϕ0,

ϕ0 + ϕ1

2

)
≤ 22+n/pdp(ϕ0, ϕ1).

Proof. When ϕ0 ≤ ϕ1, this follows from Lemma 3.7.1. Replacing ω by ω+ddcϕ0, we can assume
without loss of generality that ϕ0 = 0. The triangle inequality yields

dp

(
0,
ϕ1

2

)
≤ dp

(
0, 0 ∨ ϕ1

2

)
+ dp

(
0 ∨ ϕ1

2
,
ϕ1

2

)
.

Observe that 0 ∨ ϕ1 ≤ 0 ∨ ϕ1

2 ≤ min(0, ϕ1

2 ). It follows therefore from Lemma 3.7.4 that

dp

(
0, 0 ∨ ϕ1

2

)
+ dp

(
0 ∨ ϕ1

2
,
ϕ1

2

)
≤ dp (0, 0 ∨ ϕ1) + dp

(
0 ∨ ϕ1,

ϕ1

2

)
.
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Since 0 ∨ ϕ1 ≤ 0 and 0 ∨ ϕ1 ≤ ϕ1

2 , we can invoke Proposition 3.8 to obtain

dp (0, 0 ∨ ϕ1) + dp

(
0 ∨ ϕ1,

ϕ1

2

)
≤
(∫

X

|0 ∨ ϕ1|pMA(0 ∨ ϕ1)

)1/p

+

(∫
X

|0 ∨ ϕ1 −
ϕ1

2
|pMA(0 ∨ ϕ1)

)1/p

≤ 21−1/p
(∫

X

[
|0 ∨ ϕ1|p + |0 ∨ ϕ1 −

ϕ1

2
|p
]
MA(0 ∨ ϕ1)

)1/p

.

Recall now that the measure MA(0 ∨ ϕ1) is supported on the contact set S := {x ∈ X ; 0 ∨
ϕ1(x) = min(0, ϕ1)(x)}. On this set we have

|0 ∨ ϕ1|p + |0 ∨ ϕ1 −
ϕ1

2
|p ≤ 2|ϕ1|p = 2 [|0 ∨ ϕ1|p + |0 ∨ ϕ1 − ϕ1|p] ,

while Proposition 3.8 yields∫
X

[|0 ∨ ϕ1|p + |0 ∨ ϕ1 − ϕ1|p]MA(0 ∨ ϕ1)

≤ 2p+n [dp(0, 0 ∨ ϕ1)p + dp(0 ∨ ϕ1, ϕ1)p] = 2p+ndp(0, ϕ1)p,

where the last equality follows from Proposition 3.4. Altogether this yields dp
(
0, ϕ1

2

)
≤ 22+n/pdp(0, ϕ1),

as claimed.

We are now ready to prove Theorem 3.6.

Proof. We have already observed that dp(ϕ0, ϕ1) ≤ 2Ip(ϕ0, ϕ1) in Proposition 3.8, so we focus
on the reverse control. Lemma 3.10 and Proposition 3.4 yield

22p+ndpp(ϕ0, ϕ1) ≥ dpp
(
ϕ0,

ϕ0 + ϕ1

2

)
= dpp

(
ϕ0, ϕ0 ∨

ϕ0 + ϕ1

2

)
+ dpp

(
ϕ0 + ϕ1

2
, ϕ0 ∨

ϕ0 + ϕ1

2

)
It follows from (6) together with the fact that 2nMA

(ϕ0+ϕ1

2

)
≥ MA(ϕ0) that

dpp

(
ϕ0, ϕ0 ∨

ϕ0 + ϕ1

2

)
≥
∫
X

(
ϕ0 −

ϕ0 + ϕ1

2
∨ ϕ0

)p
MA(ϕ0)

and

dpp

(
ϕ0 + ϕ1

2
, ϕ0 ∨

ϕ0 + ϕ1

2

)
≥ 2−n

∫
X

(
ϕ0 + ϕ1

2
− ϕ0 ∨

ϕ0 + ϕ1

2

)p
MA(ϕ0).

Hence

dpp(ϕ0, ϕ1) ≥ 2−2(p+n)

∫
X

[(
ϕ0 −

ϕ0 + ϕ1

2
∨ ϕ0

)p
+

(
ϕ0 + ϕ1

2
−
ϕ0 + ϕ1

2
∨ ϕ0

)p]
MA(ϕ0)

≥ 21−3p−2n

∫
X

∣∣∣∣ϕ0 −
ϕ0 + ϕ1

2

∣∣∣∣p MA(ϕ0)

= 21−4p−2n

∫
X
|ϕ0 − ϕ1|pMA(ϕ0)

where in the last inequality we used the fact that |a− b|p ≤ 2p−1(ap + bp), for any a, b ∈ R+.

Reversing the role of ϕ0 adn ϕ1 we get
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dpp(ϕ0, ϕ1) ≥ 21−4p−2n

∫
X
|ϕ1 − ϕ0|pMA(ϕ1)

from which it follows dpp(ϕ0, ϕ1) ≥ 21−4p−2nIpp (ϕ0, ϕ1).

3.3 Controlling the sup

It follows from previous results that the supremum of a bounded potential with locally bounded
laplacian in Amp (α) is controlled by the distance to the base point:

Lemma 3.11 There exists C > 0 such that for all ϕ ∈ H,

−24+2nd1(0, ϕ) ≤ sup
X
ϕ ≤ 24+2n(n+ 1)d1(0, ϕ) + C

Proof. If supX ϕ ≤ 0, then supX ϕ ≤ 0 ≤ (n+ 1)d1(0, ϕ) + C, while

−d1(0, ϕ) = E(ϕ) ≤ sup
X
ϕ,

as follows from Proposition 3.12. We therefore assume in the sequel that supX ϕ ≥ 0. If ϕ ≥ 0,
then Proposition 3.12 yields

1

n+ 1

∫
X
ϕMA(0) ≤ E(ϕ) = d1(0, ϕ).

It is a classical consequence of the ω-plurisubharmonicity [GZ05, Proposition 2.7] that there
exists C > 0 such that such that for all ϕ ∈ PSH(X,ω),

sup
X
ϕ ≤

∫
X
ϕMA(0) + C.

Thus supX ϕ ≤ (n+ 1)d1(0, ϕ) + C.

When supX ϕ ≥ 0 but ϕ takes both positive and negative values, we set ψ = max(0, ϕ) and
observe that supX ψ = supX ϕ. Using Propositions 2.19, 3.8 and Theorem 3.6 we obtain

d1(0,max(0, ϕ)) ≤ 2I1(0,max(0, ϕ)) ≤ 2I1(0, ϕ) ≤ 25−(2n−1)/pd1(0, ϕ).

The conclusion follows therefore from the previous case.

Proposition 3.12 Assume ϕ,ψ ∈ H. Then

d1(ϕ,ψ) = E(ϕ) + E(ψ)− 2E(ϕ ∨ ψ).

Proof. Assume first that ϕ ≤ ψ and let (ϕt)0≤t≤1 denote the geodesic joining ϕ to ψ. Then
ϕ̇t(x) ≥ 0 for all t, x, hence

d1(ϕ,ψ) =

∫ 1

0

∫
X
ϕ̇tMA(ϕt) dt =

∫ 1

0

d

dt
E(ϕt)dt = E(ψ)− E(ϕ).

To treat the general case we use Proposition 3.4, which yields

d1(ϕ,ψ) = d1(ϕ,ϕ ∨ ψ) + d1(ϕ ∨ ψ,ψ) = E(ϕ)− E(ϕ ∨ ψ) + E(ψ)− E(ϕ ∨ ψ),

as claimed.
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4. The complete geodesic space (Ep(X,ω), dp)

4.1 Metric completion

For ϕ,ψ ∈ Ep(X,ω) we let ϕj , ψk denote sequences of elements in Hbd decreasing to ϕ,ψ respec-
tively, and set

Dp(ϕ,ψ) := lim inf
j,k→+∞

dp(ϕj , ψk).

We list in the proposition below various properties of this extension.

Proposition 4.1

i) Dp is a distance on Ep(X,ω) which coincides with dp on Hbd;
ii) the definition of Dp is independent of the choice of the approximants;

iii) Dp is continuous along decreasing sequences in Ep(X,ω).

Moreover all previous inequalities comparing dp and Ip on Hbd extend to inequalities between
Dp and Ip on Ep(X,ω).

In the sequel we will therefore denote Dp by dp.

Proof. It is a tedious exercise to verify that Dp defines a ”semi-distance”, i.e. satisfies all proper-
ties of a distance but for the separation property. It follows from the definition of Dp and Propo-
sition 2.17 that Theorem 3.6 extends in a natural way to potentials in Ep(X,ω). If Dp(ϕ,ψ) = 0,
it follows therefore that Ip(ϕ,ψ) = 0 hence ϕ = ψ by the domination principle.

One can check that Dp coincides with dp on Hbd as follows: using ii) one can use the constant
sequences ϕj ≡ ϕ and ψk ≡ ψ to obtain this equality.

We now prove ii). Let ϕj , uj (resp. ψk, vk) denote two sequences of elements of Hbd decreasing
to ϕ (resp. ψ). We can assume without loss of generality that these sequences are intertwining,
i.e. for all j, k ∈ N, there exists `, q ∈ N such that ϕj ≤ u` and ψk ≤ vq, with similar reverse
inequalities. It follows from Proposition 3.8 and the triangle inequality that

|dp(ϕj , ψk)− dp(u`, vq)| ≤ dp(ϕj , u`) + dp(ψk, vq)

≤ 2Ip(ϕj , u`) + 2Ip(ψk, vq).

Now, again by Proposition 3.8 we get

Ip(ϕj , u`)
p ≤

∫
X

(u` − ϕj)pMA(ϕj) ≤ (p+ 1)n
∫
X

(u` − ϕ)pMA(ϕ)

where the last inequality follows from [GZ07, Lemma 3.5]. The monotone convergence theorem
therefore yields Ip(ϕj , u`) + Ip(ψk, vq)→ 0 as `, q → +∞, proving ii).

One shows iii) with similar arguments. The extension of the inequalities comparing dp and
Ip follows from [BEGZ10, Theorem 2.17].

Proposition 4.2 The metric spaces (Epnorm(X,ω), dp) and (Ep(X,ω), dp) are complete. The
Mabuchi topology dp dominates the topology induced by I: if a sequence converges for dp, then it
converges in energy.

Proof. Let (ϕj) ∈ Epnorm(X,ω)N be a Cauchy sequence for dp. Since supX ϕj is bounded, the
sequence is relatively compact for the (weak) L1-topology. Let ψ be a cluster point for the
L1-topology. We claim that ψ ∈ Epnorm(X,ω),

dp(ϕj , ψ)→ 0 and I(ψ,ϕj)→ 0.
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Extracting and relabelling, we can assume that

ϕj
L1

−→ ψ and dp(ϕj , ϕj+1) ≤ 2−j .

Set ϕ−1 ≡ 0 and for k ≥ j, ψj,k := ϕj ∨ ϕj+1 ∨ · · · ∨ ϕk. Observe that

dp(0, ψj,k) ≤
j−1∑
`=−1

dp(ϕ`, ϕ`+1) + dp(ϕj , ψj,k)

≤
j∑

`=−1

dp(ϕ`, ϕ`+1) + dp(ϕj+1, ψj+1,k) ≤ 4,

as

dp(ϕj , ψj,k) = dp(ϕj , ϕj ∨ ψj+1,k) ≤ dp(ϕj , ψj+1,k) ≤ 2−j + dp(ϕj+1, ψj+1,k).

It follows from Proposition 3.8 and Theorem 3.6 that Ip(0, ψj,k) is uniformly bounded hence
ψj := limk→+∞ ψj,k ∈ Ep(X,ω). Now ψj increases a.e. towards ψ, hence ψ ∈ Epnorm(X,ω) and
[BEGZ10, Theorem 2.17] yields

I(ψ,ψj) + Ip(ψj , ψ) −→ 0.

It follows therefore from Proposition 3.8 that dp(ψ,ψj)→ 0 and

dp(ψ,ϕj) ≤ dp(ψ,ψj) + dp(ψj , ϕj) ≤ dp(ψ,ψj) + 21−j → 0.

Recalling that ψj ≤ ϕj , it follows from the quasi-triangle inequality, Proposition 2.14 and Theo-
rem 3.6 that

I(ψ,ϕj) ≤ cn {I(ψ,ψj) + I(ψj , ϕj)} ≤ cn,p {I(ψ,ψj) + dp(ψj , ϕj)} → 0.

It remains to treat the case of a Cauchy sequence (ϕj) ∈ Ep(X,ω)N. The only extra infor-
mation we need to add is that (supX ϕj)j is a bounded sequence of real numbers. This follows
from Lemma 3.11, the fact that dp(0, ϕj) ≤ 4 and Hölder inequality, which guarantees that dp
dominates d1.

Recall that the precompletion of a metric space (X, d) is the set of all Cauchy sequences CX
of X, together with the semi-distance

δ({xj}, {yj}) = lim
j→+∞

d(xj , yj).

The metric completion (X, d) of (X, d) is the quotient space CX/ ∼, where

{xj} ∼ {yj} ⇐⇒ δ({xj}, {yj}) = 0,

equipped with the induced distance that we still denote by d.

Recall that a path metric space is a metric space for which the distance between any two
points coincides with the infimum of the lengths of rectifiable curves joining the two points.
By construction the space (H, d) is a path metric space. For such metric spaces, an alternative
description of the metric completion can be obtained as follows: consider C ′X the set of all
rectifiable curves γ : (0, 1]→ X equipped with the semi-distance

δ(γ, γ̃) := lim
t→0

d(γ(t), γ̃(t)).

The metric completion (X, d) is then the quotient space C ′X/ ∼ which identifies zero-distance
curves γ, γ̃.
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Both constructions yield a rather abstract view on the metric completion. We are now taking
advantage of the fact that Hbd lives inside the complete metric space (Ep(α), dp) to conclude
that:

Theorem 4.3 The metric completion of (Hbd, dp) is isometric to (Ep(X,ω), dp).

Thanks to Theorem 3.6, an equivalent formulation of the above statement is that the metric
completion of (Hbd, dp) is bi-Lipschitz equivalent to (Ep(X,ω), Ip).

Proof. We work at the level of normalized potentials,

Ep0 (X,ω) = {ϕ ∈ Ep(X,ω) |E(ϕ) = 0}

and H0 := {ϕ ∈ Hbd |ω + ddcϕ ≥ 0 and E(ϕ) = 0}.
Since (Ep0 (X,ω), dp) is a complete metric space that contains H0, it suffices to show that the

latter is dense in Ep0 (X,ω). Fix ϕ ∈ Ep0 (X,ω) and let (ϕj) ∈ HN
0 be a sequence quasi-decreasing

to ϕ : the normalization condition E(ϕj) = 0 prevents from getting a truly decreasing sequence,
however ϕj +εj is decreasing where εj is a sequence of real numbers decreasing to zero. It follows
from Proposition 3.8 that

dp(ϕj+` + εj+l, ϕj + εj)
p ≤

∫
X

(ϕj − ϕj+`)pMA(ϕj+`) + εj .

Now [GZ07, Lemma 3.5] shows that the latter is bounded from above by

(p+ 1)n
∫
X

(ϕj − ϕ)pMA(ϕ) + εj

which converges to zero as j → +∞, as follows from the monotone convergence theorem. There-
fore (ϕj) is a Cauchy sequence in (H0, dp) which converges to ϕ since

0 ≤ dp(ϕ,ϕj + εj) ≤ lim inf
`→+∞

dp(ϕj+`, ϕj) ≤ 2(1 + p)n/pIp(ϕj , ϕ) + ε
1/p
j → 0

by Proposition 3.8 and [BEGZ10, Theorem 2.17].

We note the following alternative approach of independent interest. One first shows that H0

is dense in the set of all bounded ω-psh functions. Given ϕ ∈ Ep0 (X,ω) one then considers its
“canonical approximants”

ϕj = max(ϕ,−j) + εj ∈ PSH0(X,ω) ∩ L∞(X)

which decrease towards ϕ ∈ Ep0 (X,ω). It follows from Proposition 3.8 that

dp(ϕj+`, ϕj)
p ≤ o(1) +

∫
X

(ϕj − ϕj+`)pMA(ϕj+`)

= o(1) +

∫
(ϕ≤−j−`)

`pMA(ϕj+`) +

∫
(−j−`<ϕ<−j)

(ϕj − ϕj+`)pMA(ϕ)

= o(1) +

∫
(ϕ≤−j−`)

`pMA(ϕ) +

∫
(−j−`<ϕ<−j)

(ϕj − ϕj+`)pMA(ϕ)

≤ o(1) +

∫
(ϕ<−j)

ϕpMA(ϕ),

where we have used the maximum principle together with the fact that∫
(ϕ≤−k)

MA(ϕk) =

∫
X
MA(ϕk)−

∫
(ϕ>−k)

MA(ϕk) =

∫
(ϕ≤−k)

MA(ϕ),
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since ϕ ∈ E(X,ω), as follows again from the maximum principle. We infer that (ϕj) is a Cauchy
sequence which converges to ϕ.

We are now in position to prove Theorem B of the introduction:

Corollary 4.4 Assume ω = π?ωY , where ωY is a Hodge form. Then the metric completion
(Hα, dp) is isometric to (Ep(α), dp). Similarly the metric completion (Hω, dp) is isometric to
(Ep(X,ω), dp).

Proof. Thanks to [CGZ, Corollary C] we can insure that the space H is dense in Hbd. The result
then follows from Theorem 4.3.

4.2 Weak geodesics

4.2.1 Finite energy geodesics We now define finite energy geodesics joining two finite energy
endpoints ϕ0, ϕ1 ∈ E1(X,ω). Fix j ∈ N and consider ϕj0, ϕ

j
1 bounded ω-psh functions decreasing

to ϕ0, ϕ1. We let ϕt,j denote the bounded geodesic joining ϕj0 to ϕj1. It follows from the maximum
principle that j 7→ ϕt,j is non-increasing. We can thus set

ϕt := lim
j→+∞

ϕt,j .

Definition 4.5 The map (t, x) 7→ ϕt(x) is the (finite energy) Mabuchi geodesic joining ϕ0 to
ϕ1.

The ϕt’s form indeed a family of finite energy functions : since t 7→ E(ϕt,j) is affine (Lemma
2.9), we infer for all j ∈ N,

(1− t)E(ϕ0) + tE(ϕ1) ≤ (1− t)E(ϕ
(j)
0 ) + tE(ϕ

(j)
1 ) = E(ϕt,j),

hence ϕt ∈ E1(X,ω) with (1− t)E(ϕ0) + tE(ϕ1) = E(ϕt).

It follows from the maximum principle that ϕt is independent of the choice of the approxi-
mants ϕj0, ϕ

j
1: if we set ϕ(x, z) := ϕt(x), z = t+ is, then ϕ is a maximal ω-psh function in X×S,

as a decreasing limit of maximal ω-psh functions. It is thus the unique maximal ω-psh function
in X × S with boundary values ϕ0, ϕ1.

When ϕ0, ϕ1 belong to Ep(X,ω), these weak geodesics are again metric geodesics in the
complete metric space (Ep(X,ω), dp):

Proposition 4.6 Given ϕ0, ϕ1 ∈ Ep(X,ω), the Mabuchi geodesic ϕ joining ϕ0 to ϕ1 lies in
Ep(X,ω) and satisfies, for all t, s ∈ [0, 1],

dp(ϕt, ϕs) = |t− s| dp(ϕ0, ϕ1).

Thus (Ep(X,ω), dp) is a geodesic space.

Proof. We can assume without loss of generality that ϕ0, ϕ1 ≤ 0. Fix j ∈ N and consider ϕj0, ϕ
j
1

bounded ω-psh functions decreasing to ϕ0, ϕ1. We let ϕt,j denote the bounded geodesic joining

ϕj0 to ϕj1, which decreases towards ϕt as j increases to +∞. Observe that

ϕ0 ∨ ϕ1 ≤ ϕj0 ∨ ϕ
j
1 ≤ ϕt,j .

It follows therefore from [GZ07, Lemma 3.5] and Lemma 4.7 that∫
X

(−ϕt,j)pMA(ϕt,j) ≤ (p+ 1)n
∫
X

(−ϕ0 ∨ ϕ1)pMA(ϕ0 ∨ ϕ1) < +∞
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hence the monotone convergence theorem yields
∫
X(−ϕt)pMA(ϕt) < +∞, for all t, i.e. ϕt ∈

Ep(X,ω).

The remaining assertion is proved as in the case of bounded geodesics (Proposition 1.17).

Lemma 4.7 Assume 0 ≥ ϕ0, ϕ1 ∈ Ep(X,ω). Then ϕ0 ∨ ϕ1 ∈ Ep(X,ω) and∫
X

(−ϕ0 ∨ ϕ1)pMA(ϕ0 ∨ ϕ1) ≤
∫
X

(−ϕ0)pMA(ϕ0) +

∫
X

(−ϕ1)pMA(ϕ1).

Proof. It suffices to establish the claimed inequality when ϕ0, ϕ1 ∈ H and then proceed by
approximation. It follows from Proposition 3.2 that

MA(ϕ0 ∨ ϕ1) ≤ 1{ϕ0∨ϕ1=ϕ0}MA(ϕ0) + 1{ϕ0∨ϕ1=ϕ1}MA(ϕ1).

The inequality follows since ϕ0, ϕ1 ≤ 0.

4.2.2 (Non) uniqueness of geodesics Fix ϕ0, ϕ1 ∈ E1(X,ω). If the sets (ϕ0 < ϕ1) and (ϕ0 >
ϕ1) are both non empty, the function ϕ0∨ϕ1 differs from ϕ0 and ϕ1 and it follows from Proposition
3.4 that

d1(ϕ0, ϕ1) = d1(ϕ0, ϕ0 ∨ ϕ1) + d1(ϕ0 ∨ ϕ1, ϕ1),

thus the concatenation of the geodesic joining ϕ0 to ϕ0 ∨ϕ1 and that joining ϕ0 ∨ϕ1 to ϕ1 gives
another minimizing path joining ϕ0 to ϕ1.

When ϕ0 ≤ ϕ1, this argument does not work anymore, but there are nevertheless very many
minimizing paths, as shown by the following result:

Lemma 4.8 Assume ϕ0, ϕ1 ∈ H are such that ϕ0 ≤ ϕ1. Let (ψt)0≤t≤1 be a path joining ϕ0 to
ϕ1. Then

`1(ψ) = d1(ϕ0, ϕ1)⇐⇒ ψ̇t(x) ≥ 0, for a.e. t, x.

In particular t 7→ tϕ1(x) + (1 − t)ϕ0 is a minimizing path for d1 which is not a Mabuchi
geodesic, unless ϕ1 − ϕ0 is constant.

Proof. Observe that

`1(ψ) =

∫ 1

0

∫
X

∣∣∣ψ̇t(x)
∣∣∣MA(ψt) dt ≥

∣∣∣∣∫ 1

0

∫
X
ψ̇t(x)MA(ψt) dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

d

dt
E(ψt) dt

∣∣∣∣ = |E(ϕ1)− E(ϕ0)| = d1(ϕ0, ϕ1)

where the last identity follows from Proposition 3.12. There is equality iff |ψ̇t(x)| = ψ̇t(x) ≥ 0
for a.e. (t, x) (the sign has to be positive because ψ0 = ϕ0 ≤ ϕ1 = ψ1).

In particular t 7→ ψt = tϕ1(x) + (1− t)ϕ0 has this property, since ψ̇t = ϕ1−ϕ0 ≥ 0. We recall
that, since ψt is a smooth path, the geodesic equation can be written as

ψ̈tMA(ψt) =
n

V
dψ̇t ∧ dcψ̇t ∧ ωn−1

ψt

(see Section 1.1.1). Now ψ̈t = 0 hence t 7→ ψt is not a Mabuchi geodesic, unless d(ϕ1 − ϕ0) ∧
dc(ϕ1 − ϕ0) ∧ ωn−1

ψt
= 0 for all t, i.e. ϕ1 − ϕ0 is contant.

On the other hand it follows from the work of Calabi-Chen [CC02] that minimizing geodesics
are unique in E2(X,ω):
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Theorem 4.9 Assume ω = π?ωY , where ωY is a Hodge form. Then the space (E2(X,ω), d2) is
a CAT(0) space.

Complete CAT(0) spaces are also called Hadamard spaces. Recall that a CAT(0) space is a
geodesic space which has non positive curvature in the sense of Alexandrov. Hadamard spaces
enjoy many interesting properties (uniqueness of geodesics, contractibility, convexity proper-
ties,...see [BH99]).

Proof. By Corollary 4.4 we know that (E2(X,ω), d2) is the completion of (Hω, d2). Note that
(Hω, d2) is a complete path metric space, being the completion of the path metric space (Hω, d2).
The Hopf-Rinow-Cohn-Vossen theorem (see [BH99, Proposition I.3.7]) insures that a complete
locally compact path metric space is automatically a geodesic space. Here (Hω, d2) is not locally
compact (it is merely locally weakly compact), but we have a natural candidate for the minimizing
geodesics.

[BH99, Exercise 1.9.1.c (p. 193)] insures that (Hω, d2) is a CAT(0) space if and only if the
CN inequality of Bruhat-Tits [BT72] holds, i.e. ∀P,Q,R ∈ Hω and for any M ∈ Hω such that
d2(Q,M) = d2(R,M) = d2(Q,R)/2 one has

d2(M,P )2 ≤ 1

2
d2(P,Q)2 +

1

2
d2(P,R)2 − 1

4
d2(Q,R)2. (7)

Calabi and Chen proved in [CC02, Theorem 1.1] that (Hω, d2) satisfies the CN inequality (7)
in the case when the reference form ω is Kähler. The result extends to our present setting by
approximation (Theorem 1.13).

Moreover, the CN inequality extends to E2(X,ω) by density. It follows therefore from [BH99,
Corollary II.3.11] that (Hω, d2) is a CAT(0) space.

5. Singular Kähler-Einstein metrics of positive curvature

The existence of singular Kähler-Einstein metrics of non-positive curvature has been established
in [EGZ09], generalizing the fundamental work of Aubin [Aub78] and Yau [Yau78]. They always
exist, provided the underlying variety has mild singularities and the first Chern class is non-
positive.

Singular Kähler-Einstein metrics of positive curvature are more difficult to construct. It is
already so in the smooth case [CDS15]. Their first properties have been obtained in [BBGZ13,
BBEGZ]. In Section 5.3, pushing further these works, we provide a necessary and sufficient
analytic condition for their existence, generalizing a result of Tian [Tian97] and Phong-Song-
Sturm-Weinkove [PSSW08].

5.1 Log terminal singularities

A pair (Y,D) is the data of a connected normal compact complex variety Y and an effective
Q-divisor D such that KY +D is Q-Cartier. We write

Y0 := Yreg \ SuppD.

Given a log resolution π : X → Y of (Y,D) (which may be chosen to be an isomorphism over
Y0), there exists a unique Q-divisor

∑
i aiEi whose push-forward to Y is −D and such that

KX = π∗(KY +D) +
∑
i

aiEi.
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Definition 5.1 The pair (Y,D) is klt if aj > −1 for all j.

The same condition will then hold for all log resolutions of Y . When D = 0, one says that
Y is log terminal when the pair (Y, 0) is klt. We have the following analytic interpretation. Fix
r ∈ N∗ such that r(KY +D) is Cartier. If σ is a nowhere vanishing section of the corresponding
line bundle over a small open set U of Y then(

irn
2
σ ∧ σ̄

)1/r
(8)

defines a smooth, positive volume form on U0 := U ∩ Y0. If fj is a local equation of Ej around a
point of π−1(U), then

π∗
(
irn

2
σ ∧ σ̄

)1/r
=
∏
i

|fi|2aidV

locally on π−1(U) for some local volume form dV . Since
∑

iEi has normal crossings, this shows
that (Y,D) is klt iff each volume form of the form (8) has locally finite mass near singular points
of Y .

The previous construction globalizes as follows:

Definition 5.2 Let (Y,D) be a pair and let φ be a smooth Hermitian metric on the Q-line bundle
−(KY + D). The corresponding adapted measure mesφ on Yreg is locally defined by choosing a
nowhere zero section σ of r(KY +D) over a small open set U and setting

mesφ :=
(
irn

2
σ ∧ σ

)1/r
/|σ|2/rrφ .

The point is that the measure mesφ does not depend on the choice of σ, hence is globally
defined. The above discussion shows that

(Y,D) is klt ⇐⇒ mesφ has finite total mass on Y,

in which case we view it as a Radon measure on the whole of Y .

5.2 Kähler-Einstein metrics on log Fano pairs

Definition 5.3 A log Fano pair is a klt pair (Y,D) such that Y is projective and −(KY +D) is
ample.

Let (Y,D) be a log Fano pair. Fix a reference smooth strictly psh metric φ0 on −(KY +D),
with curvature ω0 and adapted measure µ0 = mesφ0 . We normalize φ0 so that µ0 is a probability
measure. The volume of (Y,D) is

V := c1(Y,D)n =

∫
X
ωn0 .

Definition 5.4 A Kähler-Einstein metric T for the log Fano pair (Y,D) is a finite energy current
T ∈ c1(Y,D) such that Tn = V · µT .

We now list some important properties of these objects established in [BBGZ13, Bern15,
BBEGZ]:

– A Kähler-Einstein metric ω is automatically smooth on Y0, with continuous potentials on
Y , and it satisfies

Ric(ωKE) = ωKE + [D] on Yreg.
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– The definition of a log Fano pair requires the singularities to be klt. This condition is in
fact necessary to obtain K-E metrics on Yreg.

– The Kähler-Einstein equation reads (ω0 +ddcφ)n = e−φ+cµ0 for some constant c ∈ R. If we
choose a log resolution, the equation becomes (ω + ddcϕ)n = e−ϕ+cµ̃0, where ω = π∗ω0 is
semipositive and big and µ̃0 =

∏
i |fi|2aidV .

– The potential ϕ belongs to H and maximizes the functional

F(ϕ) := E(ϕ) + log

[∫
X̃
e−ϕdµ̃0

]
.

Conversely any maximizer of F is a Kähler-Einstein metric.

– Two Kähler-Einstein metrics are connected by the flow of a holomorphic vector field that
leaves D invariant.

– If the functional F is proper (i.e. if E(ϕj) → −∞ ⇒ F(ϕj) → −∞), then there exists a
unique Kähler-Einstein metric.

Here [D] is the integration current on D|Yreg . Writing Ric(ωKE) on Yreg implicitely means
that the positive measure ωnKE |Yreg corresponds to a singular metric on −KYreg , whose curvature
is then Ric(ωKE) by definition.

5.3 The analytic criterion

Following and idea of Darvas-Rubinstein [DR15], we now extend [Tian97, Theorem 1.6] and
[PSSW08] by proving the following:

Theorem 5.5 Let (Y,D) be a log Fano pair. It admits a unique Kähler-Einstein metric iff there
exists ε,M > 0 such that for all ϕ ∈ Hnorm,

F(ϕ) ≤ −εd1(0, ϕ) +M.

This is Theorem D of the introduction.

Proof. We are going to use Theorem B. Note that ωY ∈ c1(−KX − D) is a Hodge form. One
implication is due to [BBEGZ, Theorems 4.8 and 5.4]: if

F(ϕ) ≤ −εd1(0, ϕ) +M,

then F is proper, hence there exists a unique Kähler-Einstein metric.

So we assume now that there exists ω a unique Kähler-Einstein metric, which we take as our
base point of H. It is the unique maximizer of F on E1(X,ω),

F(0) = sup
ϕ∈E1(X,ω)

F(ϕ),

as follows from [BBGZ13, Theorem 6.6], [BBEGZ, Theorems 4.8 and 5.3].

Note that F is invariant by translations, so we actually consider the restriction of F on
E1
norm(X,ω) = {ϕ ∈ E1(X,ω), supX ϕ = 0}. Assume for contradiction that there is no ε > 0

such that F(ϕ) ≤ −εd1(0, ϕ) +M for all ϕ ∈ Hnorm, where we set M := F(0) + 1. Then we can
find a sequence (ϕj) ∈ HN such that supX ϕj = 0 and

F(ϕj) > −
d1(0, ϕj)

j + 1
+ F(0) + 1.
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If E(ϕj) does not blow up to −∞, we reach a contradiction: up to extracting and relabelling,
we can assume that E(ϕj) is bounded and ϕj converges to some ψ ∈ E1(X,ω). Since F is upper
semi-continuous, we infer F(ψ) ≥ F(0) + 1, a contradiction.

So we assume now that E(ϕj) → −∞. It follows from Lemma 3.12 that dj := d1(0, ϕj) =
−E(ϕj) → +∞. We let (ϕt,j)0≤t≤dj denote the Mabuchi geodesic with unit speed joining 0 to
ϕj and set ψj := ϕ1,j . Note that the arguments in Lemma 3.3 show that t 7→ ϕt,j is decreasing,
hence ϕj ≤ ψj ≤ 0. In particular supX ψj = 0, while by definition d1(0, ψj) = 1 = −E(ψj).

It follows now from Berndtsson’s convexity result [Bern15, Section 6.2] and its generalization
to the singular context [BBEGZ, Theorem 11.1] that the map t 7→ F(ϕt,j) is concave. We infer

0 ≥ F(ϕ1,j)−F(ϕ0,j) ≥
F(ϕdj ,j)−F(ϕ0,j)

dj
> − 1

j + 1
+

1

dj
,

thus F(ψj)→ F(0). This shows that (ψj) is a maximizing sequence for F which therefore strongly
converges to 0, by [BBEGZ, Theorem 5.3.3]. This yields a contradiction since d1(0, ψj) = 1.

6. The toric case

Recall that a compact Kähler toric manifold (X,ω, T ) is an equivariant compactification of the
torus T = (C∗)n equipped with a (S1)n-invariant Kähler metric ω which can be written

ω = ddcψ in (C∗)n,

with ψ (S1)n-invariant hence ψ(z) = F ◦ L(z) where

L : z ∈ (C∗)n 7→ (log |z1|, · · · , log |zn|) ∈ Rn

and F : Rn → R is strictly convex.

The celebrated Atiyah-Guillemin-Sternberg theorem asserts that the moment map ∇F :
Rn → Rn sends Rn to a bounded convex polytope

P = {`i(s) ≥ 0, 1 ≤ i ≤ d} ⊂ Rn

where d ≥ n+ 1 is the number of (n− 1)-dimensional faces of P ,

`i(s) = 〈s, ui〉 − λi,

with λi ∈ R and ui is a primitive element of Zn, normal to the ith (n− 1)-dimensional face of P .

Delzant observed in [Del88] that in this case P is ”Delzant”, i.e. there are exactly n faces
of dimension (n − 1) meeting at each vertex, and the corresponding uj ’s form a Z-basis of
Zn. He conversely showed that there is exactly one (up to symplectomorphism) compact toric
Kähler manifold (XP , {ωP }, T ) associated to a Delzant polytope P ⊂ Rn. Here {ωP } denotes
the cohomology class of the T -invariant Kähler form ωP . Let

G(s) := sup
x∈Rn

{〈x, s〉 − F (x)}

denote the Legendre transform of F . Observe that G = +∞ in Rn \P and for s ∈ P = ∇F (Rn),

G(s) = 〈x, s〉 − F (x) with ∇F (x) = s⇔ ∇G(s) = x.

Guillemin observed in [Gui94] that a ”natural” representative of the cohomology class {ωP } is
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given by

Gref (s) =
1

2

{
d∑
i=1

`i(s) log `i(s) + `∞(s) log `∞(s)

}
where `∞(s) =

∑d
i=1〈s, ui〉. We refer the reader to [CDG03] for a neat proof of this beautiful

formula of Guillemin.

Example 6.1 When X = CPn and ω is the Fubini-Study Kähler form, then Fref (x) = 1
2 log

[
1 +

∑n
i=1 e

2xi
]
,

P = ∇Fref (Rn) is the simplex

P =

{
si ≥ 0, 1 ≤ i ≤ n and

n∑
i=1

si ≤ 1

}
,

thus d = n + 1, `i(s) = si, λi = 0, ui = ei for 1 ≤ i ≤ n, `n+1(s) = 1 −
∑n

i=1 si, λn+1 =
−1, en+1 = −

∑n
j=1 ej and `∞ ≡ 0 so that

Gref (s) =
1

2


n∑
i=1

si log si +

1−
n∑
j=1

sj

 log

1−
n∑
j=1

sj

 .

6.1 Toric geodesics

Let (X,ω, T ) be a compact toric manifold. Here (and through all the section) ω is a genuine
Kähler form. In the sequel we let PSHtor(X,ω), E ·tor(X,ω),Htor denote the (S1)n-invariant ver-
sions of the classes of ω-psh functions we have considered so far.

If ϕ0, ϕ1 ∈ Htor are both (S1)n-invariant, it follows from the uniqueness that the geodesic
(ϕt)0≤t≤1 consists of (S1)n-invariant functions. Let Ft denote the corresponding potentials in Rn

so that

Ft ◦ L = Fref ◦ L+ ϕt in (C∗)n.

Proposition 6.2 [Guan99] The map (x, t) 7→ ϕt(x) is smooth and corresponds to the Legendre
transform of an affine path on P . In other words the Legendre transform Gt of Ft is affine in t.

We include the proof for the reader’s convenience.

Proof. Recall that

Gt(s) = sup
x∈Rn

{〈x, s〉 − Ft(x)} = 〈xt, s〉 − Ft(xt),

where xt = xt(s) is such that ∇Ft(xt) = s. Taking derivatives of this identity with respect to t
yields [

∂2Ft
∂xi∂xj

]
· [ẋt] = −∇Ḟt

hence Ġt(s) = −Ḟt(xt) and

G̈t(s) = −F̈t(x)− 〈ẋt,∇Ḟt〉 = −F̈t(x) +

〈[
∂2Ft
∂xi∂xj

]−1

· ∇Ḟt,∇Ḟt

〉
= −F̈t(x) +

∣∣∣∇Ḟt∣∣∣2
ωt
.

Therefore (ϕt) is a geodesic if and only if G̈t ≡ 0.
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In a similar vein we obtain an explicit formula for the Mabuchi distance between ϕ0 and ϕ1:

Proposition 6.3 For all q ≥ 1 and ϕ0, ϕ1 ∈ Htor,

dq(ϕ0, ϕ1) = (
π

2
)n/q||G1 −G0||Lq(P ) = (

π

2
)n/q

(∫
P
|G1 −G0|q(s)ds

)1/q

.

Proof. Recall that

dq(ϕ0, ϕ1) =

(∫
X
|ϕ̇0|qMA(ϕ0)

)1/q

.

Now Ft ◦L = Fref ◦L+ϕt has Legendre transform Gt = tG1 + (1− t)G0. Thus ϕ̇t = Ḟt ◦L with
Gt(s) = 〈xt, s〉 − Ft(xt) with s = ∇Ft(xt) hence Ġt(s) = −Ḟt(x) and we infer

dq(ϕ0, ϕ1)q =

∫
(C∗)n

|Ḟ0 ◦ L|qMA(F0 ◦ L).

Observe that
∂2(F0 ◦ L)

∂zi∂zj
=

1

4

1

zizj
· ∂2F0

∂xi∂xj
◦ L in (C∗)n

hence

det

(
∂2(F0 ◦ L)

∂zi∂zj

)
=

(
1

4

)n 1

Πj |zj |2
·MAR(F0) ◦ L,

where MAR denotes the real Monge-Ampère measure (in the sense of Alexandrov, see [Gut01])
of the convex function F0. Thus∫

(C∗)n
|Ḟ0 ◦ L|qMA(F0 ◦ L) =

(π
2

)n ∫
Rn

|Ḟ0|qMAR(F0).

Now Ḟ0 = −Ġ0 ◦ ∇F0 and MAR(F0) = (∇F0)∗ds therefore∫
Rn

|Ḟ0|qMAR(F0) =

∫
P
|Ġ0|q(s)ds =

∫
P
|G1 −G0|q(s)ds.

Example 6.4 Assume X = CP1 is the Riemann sphere and ω is the Fubini-Study Kähler form.
Let ϕ0 be the toric function associated to the convex potential

F0(x) = max(x, 0) so that G0(s) ≡ 0 on the simplex P = [0, 1].

Observe that ω0 = ddcF0 ◦L is the (normalized) Lebesgue measure on the unit circle S1 ⊂ C∗ ⊂
CP1. We consider ϕ1 = ϕj a sequence of toric potentials defined by the convex functions

Fj(x) = (1− εj)F0(x) + εj max(x,−Cj),

where εj decreases to 0, while Cj increases to +∞. A straightforward computation yields Gj(s) =
max(Cj [εj − s], 0). Therefore

dq(ϕj , ϕ0) =
Cjε

1+1/q
j

(q + 1)1/q

(π
2

)n/q
We thus obtain in this case, as j → +∞,

– ϕj −→ ϕ0 in L1 iff εj → 0;

– ϕj −→ ϕ0 in L∞ iff εjCj → 0;
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– ϕj −→ ϕ0 in (Eq(X,ω), dq) iff ε
1+1/q
j Cj → 0;

The convergence in (E1(X,ω), d1) is here the convergence in the Sobolev norm W 1,2. For
εj = 1/j, Cj = j3/2 we therefore obtain an example of a sequence which converges in the Sobolev
sense but not in the Mabuchi metric d2. Observe that this example also shows that the convergence
in the Mabuchi sense is weaker than the uniform convergence.

6.2 Toric singularities

Let ϕ ∈ Hω be a toric potential. We are going to read off the singular behavior of ϕ from the
integrability properties of the Legendre transform of its associated convex potential.

We let Fϕ and Gϕ denote the corresponding convex function and its Legendre transform. The
function ϕ is bounded if and only if so is Fϕ − Fref on Rn, since Fϕ ◦ L = Fref ◦ L + ϕ, if and
only if so is Gϕ on P , as Gref (Guillemin’s potential) is continuous on P . The same conclusion
holds if we take as a reference potential the support function FP of P , defined by

FP (x) := sup
s∈P
〈s, x〉.

It is the Legendre transform of the function GP which is identically 0 on P and +∞ in Rn \ P .
We can similarly understand finite energy classes:

Proposition 6.5

ϕ ∈ PSHtor(X,ω) ∩ L∞(X)⇐⇒ Gϕ ∈ L∞(P ).

ϕ ∈ Eqtor(X,ω)⇐⇒ Gϕ ∈ Lq(P ).

We refer the reader to [BerBer13, Proposition 2.9] for an elegant proof of this result when
q = 1.

Proof. We first show that ϕ ∈ Eqtor(X,ω) =⇒ Gϕ ∈ Lq(P ). Approximating ϕ from above by a
decreasing sequence of smooth strictly ω-psh toric functions, this boils down to show a uniform
a priori bound

||Gϕ||Lq(P ) ≤ C
(∫

X
|ϕP − ϕ|qMA(ϕ)

)1/q

.

for some uniform constant C > 0. We can assume without loss of generality that Fϕ ≤ FP (since
ϕ is upper semi-continuous hence bounded from above on X which is compact). Recall that
ϕ = (Fϕ−Fref )◦L in (C∗)n, where Fref denotes a reference potential associated to ω. Changing
variables and using the Legendre transform yields∫

(C∗)n
|ϕ− ϕP |qMA(ϕ) =

(π
2

)n ∫
Rn

|Fϕ − FP |qMAR(Fϕ)

=
(π

2

)n ∫
P
|Fϕ ◦ ∇Gϕ(s)− FP ◦ ∇Gϕ(s)|qds,

where Fϕ(x) = 〈x, s〉 −Gϕ(s), with ∇Gϕ(s) = x. Therefore

Fϕ(∇Gϕ(s)) = 〈∇Gϕ(s), s〉 −Gϕ(s)

and

FP (∇Gϕ(s))− F (∇Gϕ(s)) = Gϕ(s)− {〈∇Gϕ(s), s〉 − FP ◦ ∇Gϕ(s)}
≥ Gϕ(s)−GP (s) = Gϕ(s) ≥ 0,
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since GP (s) = supx∈Rn{〈x, s〉 − FP (x)} = 0 for s ∈ P . We infer

||Gϕ||qLq(P ) ≤
∫
P
|FP (∇Gϕ(s))− Fϕ(∇Gϕ(s))|q ds

≤
(

2

π

)n ∫
X
|ϕP − ϕ|qMA(ϕ).

We now take care of the converse implication. Assume ϕ ∈ PSHtor(X,ω) is such that ϕ ≤ 0
and Gϕ ∈ Lq(P ). It follows then from Proposition 3.8 and Proposition 6.3 that∫

X
(−ϕ)qMA(ϕ) ≤ 2q+ndq(0, ϕ)q = 2q+nC(n)||Gϕ −G0||qLq(P ) < +∞,

hence ϕ ∈ Eqtor(X,ω), as claimed.

It also follows from the previous arguments that:

Theorem 6.6 The metric completion of (Htor, dq) is (Eqtor, dp).

Remark 6.7 We let the reader check that the Legendre transform Gϕ∨ψ of the minimum of two
convex functions is

Gϕ∨ψ = max(Gϕ, Gψ).

The orthogonality relation from Proposition 3.4 thus translates here

dp(ϕ,ϕ ∨ ψ)p =

∫
P

(Gϕ∨ψ −Gϕ)p =

∫
{Gϕ<Gψ}

(Gψ −Gϕ)p ,

while dp(ψ,ϕ ∨ ψ)p =
∫
{Gϕ>Gψ} (Gϕ −Gψ)p so that

dp(ϕ,ϕ ∨ ψ)p + dp(ϕ ∨ ψ,ψ)p = dp(ϕ,ψ)p.
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