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Geometry and topology of the space of Kahler
metrics on singular varieties

Eleonora Di Nezza and Vincent Guedj

ABSTRACT

Let Y be a compact Kahler normal space and a € H]gé(Y) a Kahler class. We study
metric properties of the space H, of Kéhler metrics in o using Mabuchi geodesics.
We extend several results by Calabi, Chen and Darvas previously established when
the underlying space is smooth. As an application we analytically characterize the
existence of Kahler-Finstein metrics on Q-Fano varieties, generalizing a result of Tian,
and illustrate these concepts in the case of toric varieties.

Introduction

Let Y be a compact Kéhler normal space and ay € HEé(Y) a Kéhler class, where Héé(Y)
denotes the Bott-Chern cohomology space. The space H,, of Kéhler metrics wy in oy can be
seen as an infinite dimensional riemannian manifold whose tangent spaces 1, H., can all be
identified with C>°(Y,R). When Y is smooth, Mabuchi has introduced in [Mab87] an L?-metric
on H,,y , by setting

<fvg>wy :/Yfgc‘jv: )

where n = dimc Y and V,, = fY wy™ = ay- denotes the volume of ay.

Mabuchi studied the corresponding geometry of H,,, showing in particular that it can
formally be seen as a locally symmetric space of non positive curvature. Semmes [Sem92] re-
interpreted the geodesic equation as a complex homogeneous equation, while Donaldson [Don99]
strongly motivated the search for smooth geodesics through its connection with the uniqueness
of constant scalar curvature Kahler metrics.

In a series of remarkable works [Chen00, CC02, CT08, Chen09, CS12] X.X.Chen and his
collaborators have studied the metric and geometric properties of the space H,, when Y is
smooth, showing in particular that it is a path metric space (a non trivial assertion in this
infinite dimensional setting) of non-positive curvature in the sense of Alexandrov. A key step from
[Chen00] has been to produce C'''-geodesics which turn out to minimize the intrinsic distance d. It
follows from the work of Lempert-Vivas [LV13], Darvas-Lempert [DL12] and Ross-Witt-Nystrom
[RWN15] that one can not expect better regularity, but for the toric setting (see Section 6).

The metric study of the space (Ha, , d) has been recently pushed further by Darvas in [Darl3,
Darl14, Darl15]. He characterizes there the metric completion of (#Ha, ,d) and introduces several
Finsler type metrics on H,, , which turn out to be quite useful (see [DR15, BBJ15]). For p > 1,
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we set
dp (o, $1) == inf{l,(¢) | ¢ is a path joining ¢g to ¢1},

o) i= [ toat= [ ([ )@)”MA(@))W .

The goal of this article is to extend these studies to the case when the underlying space
has singularities. We fix a base point wy representing ay and work with the space of Kahler
potentials H,,, . Our first main result extends the main results of [Chen00] and [Dar15, Theorem
1] as follows:

where

Theorem A.

— (Huwy ,dp) is a metric space;
. / . /
— dy(60.00) = (Jy 1ol M AW0)) " = (Jy 1M A@) .

Following [Darl4, Darl5] we then study the metric completion of the space (Hq, ,dp) and
establish the following generalization of [Darl5, Theorem 2J:

Theorem B. Let Y be a projective normal variety and assume wy is a Hodge form. The metric
completion of (Huy ,dp) is a geodesic metric space which is bi-Lipschitz equivalent to the finite
energy class (EP(Y,wy), Ip).

Finite energy classes have been introduced in [GZ07] and further studied in [BEGZ10, BBGZ13],
we recall their definition in Section 2. The Mabuchi geodesics can be extended to finite en-
ergy geodesics which are still metric geodesics. A key technical tool here is Theorem 3.6 which
compares dy, and I, a natural quantity which defines the ”strong topology” on EP(Y, wy)

The metric completion of (Ha, ,d) has been considered by Streets in his study of the Calabi
flow [Strl6] and also plays an important role in recent works by Berman-Boucksom-Jonsson
[BBJ15] and Berman-Darvas-Lu [BDL16]. There is no doubt that the extension to the singular
setting will play a leading role in subsequent applications. We illustrate this here by generalizing
Tian’s analytic criterion [Tian97, PSSW08], using results of [BBEGZ| and an idea of [DR15]:

Theorem C. Let (Y, D) be a log Fano pair. It admits a unique Kdihler-Einstein metric iff there
exists €, M > 0 such that for all ¢ € Huorm,

.7'—((;5) < —z—:dl(O, (15) + M.

Here F is a functional whose critical points are Kahler-Einstein potentials (Section 5) and
Hnorm 1S the set of normalized potentials. This result has been independently obtained by
T.Darvas [Darl6] by a different approach.

Our results should also be useful in analyzing more generally cscK metrics on midly singular
varieties (see e.g. the recent construction by Arezzo and Spotti of cscK metrics on crepant
resolutions of Calabi-Yau varieties with non-orbifold singularities [AS15]).

A way to establish the above results is to consider a resolution of singularities 7 : X — Y
and to work with the space H,, of potentials associated to the form w = w*wy. All the above
results actually hold in the more general setting when w is merely a semi-positive and big form
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(ie. [ w" > 0). We approximate H,, by spaces of Kéhler potentials H. -0y and show that the
most important metric properties of (Huytewy,de) pass to the limit.

The organization of the paper is as follows. Section 1 starts by a recap on Mabuchi geodesics
and metrics. Theorem A is proved in Section 1.2, where we develop a low-regularity approach
for understanding geodesics by approximation. We introduce in Section 2 classes of finite energy
currents and compare their natural topologies with the one induced by the Mabuchi distances in
Section 3. We study finite energy geodesics in Section 4 and prove Theorem B. We finally prove
Theorem C'in Section 5 and provide a detailed analysis of the toric setting in Section 6.

1. The space of Kéahler currents

Let (Y,wy) be a compact Kéhler normal space of dimension n. It follows from the definition
of Héé(Y) (see for example [BEG, Definition 4.6.2]) that any other Kéhler metric on Y in the
same Bott-Chern cohomology class of wy can be written as
Wy = wy + dd°¢,

where d = 0 + 9 and d° = 5 (0 — 0). Let H,,, be the space of Kihler potentials

Huy = {0 € C*(Y,R); wy = w +dd°¢ > 0} .
This is a convex open subset of the Fréchet vector space C*°(Y) := C°°(Y,R), thus itself a
Fréchet manifold, which is moreover parallelizable :

THeyy = Huy X C(Y).

For any ¢ € H,,,, each tangent space TyH,,, is identified with C*>°(Y).

As two Kahler potentials define the same metric when (and only when) they differ by an
additive constant, we set

Hoy = Huy /R
where R acts on H,, by addition. The set H,, is therefore the space of Kahler metrics on Y in
1,1
the cohomology class ay := {wy} € Hg(Y).
In the whole article we fix 7 : X — Y a resolution of singularities and set w = w*wy,
a = mray. Since « is no longer Kahler, we fix wx a Kéhler form on X and set
We '= W + ewy,
for € > 0. We will study the geometry and the topology of the spaces
Ho =71 Hay and Hy = 7 Hey
by approximating them by the spaces H,,_, H.., where
He. :={p € C°(X,R) ;w: +dd°¢ > 0} and o := {w:}.

All the properties that we are going to establish actually hold for cohomology classes «
that are merely semi-positive and big (not necessarily the pull-back of a Ké&hler class under a
desingularization).

Our analysis will focus on the ample locus of «a:

Definition 1.1 The ample locus Amp («) of « is the Zarisiki open set of those points x € X
such that « can be represented by a positive closed (1,1)-current which is a smooth positive form
near x.
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We then let H,, denote the space of potentials ¢ € C>°(X, R) such that w, is a Kéhler form in
Amp (a). In our main case of interest, i.e. when a = 7*ay, the ample locus

Amp (o) = 7 H(Y7")

is the preimage of the set of regular points of Y.

1.1 The Riemannian structure
1.1.1 Mabuchi geodesics

Definition 1.2 [Mab87] The Mabuchi metric is the L? Riemannian metric on H,,. It is defined
by
w + ddp)™

<unte>o= [t
X Va
where ¢ € Hy,, 1,12 € C®(X) and (w + dd°p)"™ [V, is the volume element, normalized so that
it 1s a probability measure. Here Vy, := o™ = fX w™.
In the sequel we shall also use the notation w, := w + dd“p and
MA(p) =V Wl

Geodesics between two points ¢g, @1 in H,, correspond to the extremals of the Energy functional

1
o H(p) = ;/0 /)(((pt)2 M A(py) dt.

where ¢ = ¢, is a smooth path in #H, joining ¢¢ and ¢;. The geodesic equation is formally
obtained by computing the Euler-Lagrange equation for this Energy functional (with fixed end
points). It is given by

. no e
cpMA(gp):vdcp/\d P Nwg L (1)

We are interested in the boundary value problem for the geodesic equation: given g, @1 two
distinct points in H,,, can one find a path (¢(t))o<t<1 in H,, which is a solution of (1) with end

points ¢(0) = ¢o and p(1) =1 7
For each path (4t).e(0,1] in Huw, we set
oz, t+1is) = p(x), reX, t+iseS={ze€C : 0<R(z) <1}

i.e. we associate to each path (¢;) a function ¢ on the complex manifold M = X x S, which
only depends on the real part of the stripe coordinate: we consider S as a Riemann surface
with boundary and use the complex coordinate z = t + is to parametrize the stripe S. Set
w(x, z) = w(x).

Semmes observed in [Sem92] that the path ¢y is a geodesic in H,, if and only if the associated
function ¢ on X x S is a w-psh solution of the homogeneous complex Monge-Ampere equation

(w+ ddfc,ch)”Jrl =0. (2)
This motivates the following:
Definition 1.3 The function
¢ =sup{u; u € PSH(M,w) and u < @1 on OM}
is the Mabuchi geodesic joining pg to 1.
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Here PSH(M,w) denotes the set of w-psh functions on M: these are functions v : M —
R N {—o0} which are locally the sum of a plurisubharmonic and a smooth function and such
that w + ddg ,u > 0 in the sense of currents (see section 2.1.1 for more details).

Proposition 1.4 Let (¢¢)o<i<1 be the Mabuchi geodesic joining po to w1. Then
(i) ¢ € PSH(M,w) is uniformly bounded on M and continuous on Amp ({w}) x S.

(ii) (@, z) — p(x,2')] < A|R(2) = R(2")| with A = [lgo — @1l (x)-
(iii) |(R(z)=0}) = P0: Pl{R(z)=1} = P1 and (w + ddS )"+ = 0.

It is moreover the unique bounded w-psh solution to this Dirichlet problem.

We thank Hoang Chinh Lu for sharing his ideas on the continuity of .

Proof. The proof follows from a classical balayage technique, together with a barrier argument
as noted by Berndtsson [Bern15]. Set A = [|p1 — @ol| oo (x)-

Observe that the function ¢ — At, with t = R(z), is w-psh on M and ¢g — At|onmr < ¢o,1-
Hence it belongs to the family F defining the upper envelope ¢, so ¢y — At < .

Similarly ¢ + At is a w-psh function on M and ¢ + At|aar > o,1. Since (w + ddg, . (¢o +
At))"*t! = 0, it follows from the maximum principle that v < g + At, for any u € F in the
family. Therefore

o — At < ¢y < @o + At.

Similar arguments show that

1+ At —1) < <1 — At - 1).

The upper semi-continuous regularization ¢* of ¢ satisfies the same estimates, showing in
particular that *|oar = @o,1. Since ¢* is w-psh, we infer ¢* € F hence ¢* = ¢. Thus ¢ is w-psh
and uniformly bounded, proving the first statement in (7). Classical balayage arguments show
that (w + dds, @)"*! = 0, proving (iii).

We now prove prove (ii). Consider the function

xt(z) = max{pg(x) — Alog ||, p1(x) + A(log |2| — 1)}
and note that it belongs to F and has the right boundary values.
Since x— = @o(r) — At < ¢ with equality at ¢t = 0, we infer for all x,

Ox— ,
—A=-"— < )
ot |t=0 — #olw)

Similarly x4+ = p1(x)+A(t—1) < ¢ with equality at t = 1 yields for all z, 91 (z) < +A4 = 85‘—;’”:1.
Since t — ¢¢(x) is convex (by subharmonicity in z), we infer that for a.e. t,z, —A < ¢o(z) <
Pi(z) < 1(z) < +A.

It remains to show that ¢ is continuous on Amp ({w}) x S. We can assume without loss of
generality that ¢g < ¢1. Indeed, given any ¢q, 1 € H,,, there exists C' > 0 such that pg < p1+C.
By Lemma 1.8, the Mabuchi geodesic joining pg and ¢1 + C' is ¥y = ¢, + Ct, t € [0,1]. The
continuity of (x,t) — () will then imply the continuity of (z,t) — ().

We change notations slighlty, replacing the stripe S by the annulus D := {z = /™% €
C : 1 < |w| < e}. We are going to express the function ¢ as a global ©-psh envelope on the
compact manifold X x P!, where we view the annulus D as a subset of the Rieman sphere,
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C C P! = CU{c0}. The form O(z,2) = w(x) + Awpg(z) is a semi-positive and big form on the
compact Kéahler manifold M= X x P!, so the viscosity approach of [EGZ16] can be applied
showing that the envelope ¢ is continuous on Amp ({w}) x S. Here wrg denotes the Fubini-Study
metric on P! and A > 0 is a constant to be chosen below.

Consider U = max(Uy, Uy), where Up(z, z) := po(x) and
Uiz, 2) := p1(z) + A(log |z|> — log(|z|> + 1) + log(e® 4+ 1) — 2).
We choose A > 0 so large that U(z,1) = ¢o(z). Note that U(z,e) = ¢1(x) since g < ¢1. Both
Uy and Uy are ©-psh on M, hence so is U.
Fix p alocal potential of Awpg in D such that plop = 0 and let F be a continuous S'-invariant
function on M such that
(a) F'= o1 on X x 9D,
(b) F(z,2) =2 Uz, 2) = go(),
(¢) F(x,z)+ p(z) > ¢e(x) in X x D, with t = log |z|.

We let the reader check that the function F = U in M \ X x D and

F(x, 2) := (1 —log|z|)po(z) + (log [z])¢1(z) — p(2) + (log|2|)(1 — log |z]),
for (z,z) € X x D, does the job.
We claim that for all (z,2) € X x D,

Po(F)(x,2) + p(2) = Prog|z|(7)
where
Pg(F) :=sup{v : v e PSH(M, ©) and v < F'}.
Indeed Pg(F') + p is w-psh in X x D and has boundary values < ¢q 1. It follows from definition
of the geodesic that Po(F') 4+ p < ¢¢. On the other hand, F 4+ p > U + p € PSH(X x D,w) and
U = 0,1 on OM thus Po(F')+ p = o1 on M. Condition (c) insures that M = X x D does not

meet the contact set {Po(F') = F'} since F + p > ¢y > Po(F') + p. It thus follows from [BD12]
that (© + dd°Pe(F))"*! = 0 in M, and the maximum principle yields
Po(F) +p =t

The continuity of ¢ on Amp ({w}) x S now follows from [EGZ16] together with the following
easy observation: the arguments in [EGZ16, Section 2.2] insures that if F' is a smooth function
on M , then Pg(F) is a ©-psh function, continuous on Amp ({©}). The same result holds if F is
merely continuous. Indeed, let F} be a sequence of smooth functions on M converging uniformly
to F. Taking the envelope at both sides of the inequality F; < F'+ [|[Fj — F|1(x) we get
Po(F;) < Po(F) + |[Fj — Fll~(x) Hence, |Po(F}) — Po(F)lp=(x) < I|Fs — Fllz(x)- Thus
Pg(Fj) converges uniformly to Po(F), and so Pg(F') is a ©-psh function that is continuous on
Amp ({6}) = Amp ({w}) x 5. 0

Remark 1.5 If one could choose F' smooth in the proof above, it would follow from [BD12] that
@ € CH(Amp (o) x S). This would also provide a compact proof of Chen’s regularity result.

We now observe that geodesics in H,, are projection of those in H,,_ :
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Proposition 1.6 Let ¢ denote the geodesic joining wo to @1 in H, and let ¢° denote the cor-
responding geodesic in the space H,,_ . The map € — ¢° is increasing and ¢° decreases to ¢ as €
decreases to zero. Moreover

¢ = P(¢),
where P denotes the projection operator onto the space PSH (M, w).

Recall that, for an upper semi-continuous function u : M — R, its projection P(u) is defined
by
P(u) :=sup{v € PSH(M,w); v < u}.
The function P(u) is either identically —oo or belongs to PSH(M,w). It is the greatest w-psh
function on M that lies below w.

Proof. Set 1 := P(¢%). Since w < w, it follows from the envelope point of view that ¢ < ¢°.
Thus ¢ = P(¢) < P(¢f) =1 and ¢ € PSH(M,w). Now ¢ < ¢ since 1 < ¢° = ¢g, 1 on OM
and 1» € PSH(M,w). Thus ¢ = P(¢°) = ¢.

Fix ¢/ < e. The inclusion PSH(M,w./) C PSH(M,w.) implies similarly that ¢ < ¢ < .
The decreasing limit v of ¢, as € decreases to zero, satsifies both ¢ < v and v € PSH(M,w)
with boundary values g, 1, thus v = . O

It will also be interesting to consider subgeodesics:

Definition 1.7 A subgeodesic is a path (¢;) of functions in H,, (or in larger classes of w-psh
functions) such that the associated function is a w-psh function on X X S.

We shall soon need the following simple observation:

Lemma 1.8 Fizc e R, p,¢ € H, and let (pr)o<i<1 denote the Mabuchi geodesic joining ¢ = o
to o1 = . Then Yy(x) = @i(x) — ct,0 < t < 1,z € X, is the Mabuchi geodesic joining ¢ to
P —c.

Proof. The proof follows from Definition 1.3 and the definition of envelopes since sup{v; v €
PSH(M,w) and v < p,v <1t —con OM} = ¢ — ct. O

1.1.2 Mabuchi and other Finsler distances When w is Kéhler, the length of a differential
path (¢¢)efo,1) in Hew is defined in a standard way,

o) = [ adai= [\ [ etaraceo

The distance between two points in H,, is then
d(po, 1) := Inf{l(p) | ¢ is a smooth path joining o to ¢1}.

It is easy to verify that d defines a semi-distance (i.e. non-negative, symmetric and satisfying
the triangle inequality). It is however non trivial to check that d is non degenerate (see [MMO5]
for a striking example).

Observe that d induces a distance on H, (that we abusively still denote by d) compatible
with the riemannian splitting H,, = Hq X R, by setting

d(wg, wy) = d(p, 1)
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whenever the potentials ¢, of wy,,wy are normalized by E(yp) = E(¢) = 0 (see section 2.2.1 for
the definition of the functional E).

It is rather easy to check that (H,,d) is not a complete metric space. We shall describe
the metric completion (H,,d) in section 4. Following Darvas [Darl5] we introduce a family of
distances that generalize d:

Definition 1.9 Forp > 1 and w Kdhler, we set
dy (o, 1) = inf{l,(p) | ¢ is a smooth path joining o to ¢1},
. . 1
where £y(p) = fol |6t pdt = fol (fX | &P MA((pt)) P at.

Note that dy = d is the Mabuchi distance. Mabuchi geodesics have constant speed with
respect to all the Finsler structures £, as was observed by Berndtsson [Bern09, Lemma 2.1]: for
any C!-function Y,

Fos /X X( @) MA(gr)

is constant along a geodesic. Indeed

X( @) MA(p) = / (OB MA(pr) + - /X X(@)ddep, At

dt Jx b'e Va

=/X%M{%MA@0—V
X «
since g M A(py) — v dpe AN dCop A wgt_l = 0. Applying this observation to x(t) = t shows that
Mabuchi geodesics have constant £,-speed.

d%Af@A%f}zO

When w is merely semi-positive there are fewer smooth paths within H,. It is natural to
consider smooth paths in H,,_ and pass to the limit in the previous definitions :

Definition 1.10 Assume w is semi-positive and big. Let po, o1 € H,,. We define the Mabuchi
distance between pg and p1 as

dp(g007 Sol) = hlgl}é’lf dp,E(‘va Sol)a
where dy, . is the distance w.r.t. the Kahler form w, := w + ewx.

It is again easy to check that d), is a semi-distance. We will show in Theorem 1.13 that it is
a distance, which moreover does not depend on the way we approximate w by Kéhler classes.

Remark 1.11 For any smooth path v : [0,1] — H,,, we can still define

1 ) 1/p
)= [ (3 [ 1P drvgr)

when w is merely semi-positive. Since PSH(M,w) C PSH(M,w;), v is both in H, and H,, .
Observe that

yo! / Gl (e + ddoupy) = V! / P + ddty + ey )
X X
<yl / |4 |P(w + ddo;)™ + Ae,
X

hence

lpe() < Ly() + A'e
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where £, . denotes the length in H,,. . We infer
dp (o, 1) < inf{fy(¢) 1 smooth path joining ¢o and ¢q in H,}.
The converse inequality is however unclear, due to the lack of positivity of w: it is difficult to

smooth out w-psh functions if w is not Kdhler. This partially explains Definition 1.10.

1.2 Approximation by Kahler classes
Fix ¢g, p1 € Hw. We let (¢pr)o<t<1 denote the Mabuchi geodesic in H,, joining ¢q to ¢;.

Definition 1.12 Fort = 0,1 we set

1(t) = /X G PMA(g).

Theorem 1.13 Set w. = w +ewx, € > 0. Then lim._,o dp,. (@0, 1) exists and is independent
of wx. More precisely,

> (o, 1) = 1(0) = I(1)
for almost every t € (0,1). In particular dy(po, p1) = I(0)Y/P = I(1)Y/P defines a distance on H.,.

In the definition of I(0), (1), the time derivatives po = ¢, ¢1 = ] denote the right and
left derivative, respectively.

Proof. Observe that ¢g, 1 € H,. and let ¢i be the corresponding geodesic. It follows from
[Chen00] that

Balonen) =V [ 168G+ o)
Now observe that
b <er< AP vie()
where the first inequality follows from the fact that € — ¢f is decreasing (Proposition 1.6), while
second uses the convexity of ¢ — ¢f. Thus

Yi— %o .4

95 — &1 < | — 95

Letting € \, 0 and then ¢ — 0 shows that |¢f — gbar | converges pointwise to zero. Moreover,
(we +ddpo)™ = f-dV where dV is the Lebesgue measure and f. > 0 are smooth densities which
converge locally uniformly to f > 0 with (w + ddp)™ = fdV. The dominated convergence
theorem thus yields

lim d2 (o, 1) = V! /X GE[P(w + dd®po)" = 1(0).

e—0 Pf

The argument for I(1) is similar.

This shows in particular that d, is a distance on H,, : if d,(v0, 1) = 0, then I(0) = I(1) =0,
hence ¢o(x) = p1(x) =0 for a.e. © € X, which implies ¢;(z) = 0 for a.e. x € X, by convexity of
t — ¢(x). Thus, po(x) = ¢1(x) for ae. z € X. O

We now extend the definition of the distance d,, for bounded w-psh potentials.



ELEONORA D1 NEzZzZA AND VINCENT GUEDJ

Definition 1.14 Let ¢g, 1 € PSH(X,w) N L>®(X) then
dp (0, ¢1) = liminf lim inf dp,e(gpé,golf) = liminf dj, - (@0, ¢1)
e— e—0

0 jk—+o0
where ), ga’f are smooth sequences of wz-psh functions decreasing to wg and @1, respectively.

Observe that dy, ., (o, ¢1) is well defined for potentials in £P(X,w,) ([Darl5]), and so in parti-
cular for bounded w.-psh functions.

Proposition 1.15 Let ¢y, p1 € PSH(X,w)NL>(X). The limit of dp ., (o, 1) as € goes to zero
exists and it does not depend on the choice of wx.

Proof. Let gog, cp’f be smooth sequences of w.-psh functions decreasing to g and @1, respectively.
Fix j, k. By [Darl5, Corollary 4.14] we know that the Pythagore formula holds true, i.e.
dp,= (20, ‘P’f) = dp (0, ) Ve Splf) + dpe(pp Ve ‘Plfy golf),

where ¢ := ga% Ve Lp’f is the greatest w.-psh function that lies below min (cpé, go’f) Fix ¢ < ¢&'. We
claim that

dp (95, %) < dpor(pdw) and  dpe(,07) < dpor (¥, 01).
Let vy, wf/ denote the e-geodesic and the &’-geodesic both joining gpg and 1. Since € — ¥ is
increasing (Proposition 1.6) we have that for any ¢ € (0, 1)
T W
t - t
that implies 1/}8 < 1&8/. Moreover observe that since cpé (z) < () for all z € X, Lemma 3.3 yields
P5(z) > 0 for all z € X. It then follows that

, - (we + dde@d)" o (W + ddcgpj)” :
by = [ Al o [ gple H RS g Gy )
X € X €

The same type of arguments give d,, - (¢, ¢}) < dper (¥, ©¥). Hence

Ay (90, 1) < dper (90, 0 Ve 1) + dper (90 Ve 01, 1)
Using again [Darl5, Corollary 4.14] and the triangle inequality we get

dp,e (@), SOIf) < dp,s'(sf%a ‘Plf) + 2dp,€’(90€) Ve @’fa ©p Ver SOIf)
Moreover Lemma 3.3 yields d, () Ve ©F, @} Ver cp’f) < |¢d Ver OF — @l Ve F||Le < (' —e),
where the last inequality follows from the fact that ¢} Ve ¥, ) Vor oF are continuos functions.

Thus letting j,k go to 400 we infer that the function ¢ — d, . (¢0, 1) + € is increasing.
Hence the limit exists. Now, let wx,wyx be two Kéahler metrics on X such that

wx <wy < Cwy

for some C' > 0. Assume that ¢g, @1 are smooth w.-psh functions such that pg < 1. Set
We := w + ewx and observe that w. < @, < w. where ¢’ = eC. Let ¢f, $7 be the geodesic w.r.t.
we and we, respectively and observe that ¢ < @f < gofl. The same arguments of above give

2517 < |G5IP < |5 1P
hence

dpw. (0, 01) < dpz. (90, 01) < dpw (0, P1)-

10
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The latter tells us that the limit does not depend on wy. The general case, i.e. without the
asspumption ¢g < 1, can be treated using Pythagore formula as above. O

An adaptation of the classical Perron envelope technique yields the following result due to
Berndtsson [Bernl5]:

Proposition 1.16 Assume @q, @1 are bounded w-psh functions. Then

oz, z) :=sup{u(z, z) |u € PSH(X x S,w) with tlironlu < o1}
% )

1s the unique bounded w-psh function on X x S, which is the solution of the Dirichlet problem
| xx05 = 0,1 with
(w+ dd;’zgo)"H =0in X x S.

Moreover p(x, z) = ¢(z,t) only depends on R(z) and [p] < |lv1 — poll Lo (x)-

The proof goes exactly as that of Proposition 1.4. The function ¢ (or rather the path ¢; C
PSH(X,w)N L>®(X)) is called a bounded geodesic in [Bernl5]. We use the same terminology
here, as it turns out that bounded geodesics are geodesics in the metric sense:

Proposition 1.17 Bounded geodesics are metric geodesics. More precisely, if po, v1 are bounded
w-psh functions and o(x,z) = @i(x) is the bounded geodesic joining po to @1, then for all
t,s €[0,1],

dp(pt; ps) = |t — sl dp(p0, p1)-

Proof. Let gp%, golf € H,,. be sequences decreasing respectively to g, ¢1. It follows from the com-
parison principle and the uniqueness in Proposition 1.16 that ¢; ; decreases to ¢; as j increases
to +00. From Definition 1.14, Proposition 1.15 and the fact that the identity below holds in the
Kaéhler setting for d. we obtain

dy (@1, ¢s) = liminf liminf d, - (o1 5, Ys k)

e—=0 jk—+o0

= |t — s|liminf lim inf dp@(cpé,golf) = |t — s|d, (o0, ¢1)-

e—=0 jk—4o0

O

Remark 1.18 One can no longer expect that dy(wo, 01)P = [y |¢iff M A(p) for a.e. t € [0,1] as
simple examples show. One can e.g. take p9 = 0 and p; = max(u,0), where u takes positive val-
ues, has isolated singularities and solves M A(u) =Dirac mass at some point: in this case M A(p1)
is concentrated on the contact set (u = 0) while o1 = 0 on this set hence [y [p1|P MA(p1) = 0.
We thank T.Darvas for pointing this to us.

As the above remark points out we do not have that dp (o, p1) = I(0) = I(1) when g, @1 are
just bounded w-psh functions. Nevertheless we can still recover the formula in some special cases.

We start recalling the following:

Theorem 1.19 Let f be a continuous function such that dd°f < Cwx on X, for some C' > 0.
Then P(f) has bounded laplacian on Amp ({w}) and

(w+ dd°Pu(£))" = Lip,(p)=ry (w + dd° )™ (4)

11
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The fact that P(f) has locally bounded laplacian in Amp ({w}) is essentially [Ber, Theorem 1.2].
We do not assume here that f is smooth but one can check that the upper bound on dd®f is the
only estimate needed in order to pursue Berman’s approach. One can then argue as in [GZ17,
Theorem 9.25] to get identity (4).

Denote

Hpq == {p € PSH(X,w) N L®(X), ¢ = P,(f) forsome f € C°(X)withdd°f < Cwx, C > 0}.

Theorem 1.20 Assume that g, 1 € Hpq. Let o be the Mabuchi geodesic joining vo and ¢;.

Then

. (W ddpo)" .1y (W ddCpor)™

Blooon) = [ popEEITAL [ g, pletdlen), )
X |4 X Vv

Proof. Set @o. = P,_(fo) and 1. := P,_(f1). Clearly ¢;. decreases pointwise to ¢;, i = 1,2.
Combining Chen’s formula together with (4) we get

Vedg,a(soo,a 901,5) = / ‘Qb(),a‘p (Ws + ddCSOO,a>n = / ‘850,5’;0 (ws + ddcf())n~
X {SOO,EZfO}
Denote Uy := {¢o < @0} and note that {po. = fo} C {po < vo.}U{po = fo}. Therefore

Vsdp,z-:(SDO,saSol,e)_/ |¢0|pw$o <
X

/ |00.el? (we + dd° fo)" — / [ol” (w + dd° fo)"
{po=fo wo=fo
+ C/ w'y

/ lo,el” (we +ddfo)" < C | wh.
Ue U,

where C' > 0 is such that

The first term can be shown to converge to zero arguing as in Theorem 1.13. The second term
goes to zero since ¢q . converges pointwise to ¢g. Hence the conclusion. O

Observe that if g, 1 € H,,, then gV € Hpg. Indeed since g, 1 are smooth, the functions
—o, —p1 are quasi-plurisubharmonic, i.e. there exists C' > 0 such that dd°(—p;) > —Cwy for
any ¢ = 1,2. Thus min(pg, ¢1) = — max(—¢p, —¢1) is such that

dd® min(@o, 301) = —dd* maX(“POa _(101) < CWX'
In particular the equality (5) holds for dy(¢0, w0 V ¢1) and d,(p1, o V ¢1).

2. Finite energy classes

We define in this section the set £(a) (resp. EP(a)) of positive closed currents T' = w + ddp with
full Monge-Ampeére mass (resp. finite weighted energy) in «, by defining the corresponding class
E(X,w) (resp. EP(X,w) ) of finite energy potentials ¢.

2.1 The space &(a)

2.1.1 Bounded quasi-plurisubharmonic functions Recall that a function is quasi-plurisub-
harmonic if it is locally given as the sum of a smooth and a psh function. In particular quasi-psh
(gpsh for short) functions are upper semi-continuous and integrable. They are actually in LP for

12
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all p > 1, and the induced topologies are all equivalent. A much stronger integrability property
actually holds: Skoda’s integrability theorem [Sko72] asserts indeed that e =% € L}(X) if 0 < ¢ is
smaller than 2/v(y), where v(p) denotes the maximal logarithmic singularity (Lelong number)
of ¢ on X.

Quasi-plurisubharmonic functions have gradient in L" for all < 2, but not in L? as shown
by the local model log |21].

Definition 2.1 We let PSH(X,w) denote the set of all w-plurisubharmonic functions. These
are quasi-psh functions ¢ : X — R U{—o0} such that

w~+dd°p >0

in the weak sense of currents.

The set PSH(X,w) is a closed subset of L!(X), for the L'-topology.

Bedford and Taylor have observed in [BT82] that one can define the complex Monge-Ampere
operator

MA(p) := Vo Hw + dd°p)"
for all bounded w-psh function: they showed that whenever (¢;) is a sequence of smooth w-psh

functions locally decreasing to ¢, then the smooth probability measures M A(p;) converge, in the
weak sense of Radon measures, towards a unique probability measure that we denote by M A(yp).

At the heart of Bedford-Taylor’s theory lies the following maximum principle: if u,v are
bounded w-plurisubharmonic functions, then

(MP) 1{v<u}MA<maX(ua v)) = 1{v<u}MA(u>'
This equality is elementary when u is continuous, as the set {v < u} is open. When u is merely
bounded, this set is only open in the plurifine topology. Since Monge-Ampere measures of bounded
gpsh functions do not charge pluripolar sets (by the Chern-Levine-Nirenberg inequalities), and
since u is nevertheless quasi-continuous, this gives a heuristic justification for (M P).
2.1.2 The class £(X,w) Given ¢ € PSH(X,w), we consider
@; = max(p,—j) € PSH(X,w)NL>(X).

It follows from the Bedford-Taylor theory that the M A(p;)’s are well defined probability mea-
sures. Since the ¢;’s are decreasing, it is natural to expect that these measures converge. The
following monotonicity property holds:

Lemma 2.2 The sequence pij := 1y, ;3 M A(p;) is increasing.

The proof is an elementary consequence of (M P) (see [GZ07, p.445]).

Remark 2.3 Note : t — max(p(x), —t) is a subgeodesic (Definition 1.7).
Since the p;’s all have total mass bounded from above by 1, we consider

= lim p;
M(P j—+o0 :u]7

which is a positive Borel measure on X, with total mass < 1.

13
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Definition 2.4 We set
E(X,w) :={p € PSH(X,w) | pp(X) =1}
For ¢ € £(X,w), we set MA(p) := pug.
The notation is justified by the following important fact [GZ07]:

Theorem 2.5 The complex Monge-Ampére operator ¢ — MA(p) is well defined on the class
E(X,w): for every decreasing sequence of bounded w-psh functions y;, the measures MA(p;)
converge towards fi,, if ¢ € E(X,w).

Every bounded w-psh function clearly belongs to £(X,w) since in this case {¢ > —j} = X
for j large enough, hence p, = puj = MA(p;) = MA(p). The class £(X,w) also contains many
w-psh functions which are unbounded.

Example 2.6 If p € PSH(X,w) is normalized so that ¢ < —1, then —(—p)¢ belongs to E(X, w)
whenever 0 < e < 1. The functions which belong to the class E(X,w), although usually unbounded,
have relatively mild singularities. In particular they have zero Lelong numbers on Amp (o).

It is shown in [GZ07] that the maximum principle (M P) continue to hold in the class £(X, w).
The latter can be characterized as the largest class for which the complex Monge-Ampere is well
defined and the maximum principle holds. We further note that the domination principle holds:

Proposition 2.7 If ¢,¢ € £(X,w) are such that
o) < () for MAW) - ae. ,
then o(x) < (x) for allx € X.

It follows from the 90-lemma that any positive closed current T € « can be written T =
w ~+ ddyp for some function ¢ € PSH(X,w) which is unique up to an additive constant.

Definition 2.8 We let £(«) denote the set of all positive currents in o, T = w + ddp, with
peé(X,w).

The definition does not depend on the choice of w, nor on the choice of .

2.2 The class £1(X,w)

2.2.1 The Aubin-Mabuchi functional Each tangent space T,,’H admits the following orthog-
onal decomposition

ToH ={y € CF(X); Bp(¢) =0} & R,
where 8 = M A is the 1-form defined on H by

Bo(e) = /X b MA(p).

It is a classical observation due to Mabuchi that the 1-form £ is closed. Therefore there exists
a unique function E defined on the convex open set H, such that § = dE and E(0) = 0. It is
often called the Aubin-Mabuchi functional and can be expressed (after integration along affine
paths) by

1 “ . ,
E(p)= —— o) AW
(¢) CEENA § /Xw(erddw) Aw
j=0

14
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Lemma 2.9 The Aubin-Mabuchi functional E is concave along euclidean segments, increasing,
and satisfies the cocycle condition

E(p) — E(1) = Z/ o — ) (@ +ddp) A (w + ddep)™

(n+1)V, 1
It is affine along geodesics and convex along subgeodesics in H.

Proof. These properties are well-known when w is a Kahler form.

The monotonicity property follows from the definition since the first derivative of F is dE =
8= MA >0, a probability measure: if ¢; is an arbitrary path, then
d

aE(%) /X OtMA(pr).

It follows from Stokes theorem that

d? . n . C . n—1
@E(%) Z/XSOtMA(SOt)+Va/XSOtdd bt N\ weg

. n . C - n—1
= /X {gptMA(got) — Vad% N dCpr N wg, } .

Thus F is concave along euclidean segments (¢, = 0), affine along Mabuchi geodesics, and convex
along Mabuchi subgeodesics. The cocycle condition follows by differentiating F(t¢ + (1 — t)1)).

These computations are mereley heuristic as t — () is poorly regular when ¢ is a geodesic
or a subgeodesic. We can however approximate w by w, = w+cwx, consider (¢§) the correspond-
ing geodesic and

Ewg((pt n+1 Z/ gpt w€—|-ddc 5) n ;

It follows from Proposition 1.6 that € — ¢f decreases to ¢y, hence t — E(¢;) is affine, being the
limit of the affine maps t — E,,_(¢f).

For subgeodesics we approximate again w by w. and we proceed as in the Kahler case. O

Observe that E(p +t) = E(p) + t. Given ¢ € H there exists a unique ¢ € R such that
E(p + ¢) = 0. The restriction of the Mabuchi metric to the fiber E~!(0) induces a Riemannian
structure on the quotient space H, = H/R and allows to decompose H = H,, X R as a product
of Riemannian manifolds.

Definition 2.10 For ¢ € PSH(X,w), we set
E(p) :=inf{E(); ¢ <1 and € PSH(X,w)NL*(X)} € [—00, +0]
and E1(X,w) := {p € PSH(X,w); E(p) > —c}.
Remark 2.11 The functional E can be used to characterize the class E(X,w). Forp € PSH(X,w),
we set oy = max(p, —t). Observe that t — FE(p¢) is convex since t — @y is a subgeodesic ray and

E(py) = O(t). Moreover E(p;) = O(1) if and only if ¢ € EY(X,w). Following Darvas [Dar13]
we now claim that p € E(X,w) <= E(p;) = o(t).
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We provide an alternative proof of independent interest. Observe that
/ prgrl Awh Il = / prg;) Aw 4 / wddp /\wfo Awnh Il
X X X

s/w%Awi
X

since chpddCcp A wé AWl = —fX de A d°p A wfo A w7l < 0. For ¢ < 0, we infer
Jx e MA(p) < E(p) < (n+1)"! [, g MA(p) so our claim is equivalent to showing that ¢ €
E(X,w) <=t [ otMA(p;) — 0. Observe now that

o [ et = MA@ < -0+t [ pdu,,
X (p>—1)
Since py(p = —o0) = 0, there exists x : R = R, a convex increasing function such that
x(—00) = —00 and x o p € L' (u,). Therefore t=* f{<p>—t} wdu, = O(x(—t)~1) — 0, hence
/U%MA@g:qw¢:ALu%x@g—o:ouy:iweaxwy
X

2.2.2 Strong topology on E'(a) Set

o) = [ (o= ) MMAW) = MA).
It has been shown in [BBEGZ] that I defines a complete metrizable uniform structure on
EY(a). More precisely we identify £1(a) with the set
Enorm(X,w) = {p € £/(X,w)| supp = 0}
X
of normalized potentials. Then

(X,w)?\ {diagonal};
— I satisfies a quasi-triangle inequality [BBEGZ, Theorem 1.8];

. . oy 1
— [ is symmetric and positive on &,,,,,

— I induces a uniform structure which is metrizable [Bourbakil;

— the metric space (£'(«a),d;) is complete [BBEGZ, Proposition 2.4], where d; denotes one
of the distances induced by the uniform structure I.

Definition 2.12 The strong topology on () is the metrizable topology defined by I.

The corresponding notion of convergence is the convergence in energy previously introduced
in [BBGZ13] (see [BBEGZ, Proposition 2.3]). It is the coarsest refinement of the weak topology
such that E becomes continuous. In particular if 7; — T in (£1(«),dy), then

Tj — T weakly and T}" — T"

in the weak sense of Radon measures, while the Monge-Ampere operator is usually discontinuous
for the weak topology of currents.

Example 2.13 When dimc X = n = 1, £Y(X,w) = PSH(X,w) N W12(X) is the set of w-
subharmonic functions with square integrable gradient. The strong topology on E'(a) is the one
induced by the Sobolev norm.
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2.2.3 Yet another distance To fit in with the notations of the next section, we introduce yet
another notion of convergence in £1(X,w). We set

Li(p, ) ::/X|(p_w| [MA(SD)—;MA(zp)

This symmetric quantity is non-negative. It follows from the Proposition 2.7 that it only
vanishes on the diagonal of £1(X,w)?, while Theorem 3.6 will insure that it satisfies a quasi-
triangle inequality. For C' > 0, we set

EL(X,w) = {p e & (X,w); E(p) > —C and ¢ < C}.

It follows from Hartogs lemma, the upper-semi continuity and the concavity of E along euclidean
segments (Lemma 2.9) that this set is a compact and convex subset of PSH (X, w), when endowed
with the L!-topology (see [BBGZ13, Lemma 2.6)).

Proposition 2.14 For all o, € EY(X,w), I(p,) < 2I1(p,1). Conversely for each C > 0,
there exists A > 0 such that for all ¢, € c‘%(X, w)

I(p,9) < /X 2max(p, ) — (i + )] MAD) + AT(p, )"

In particular the distances induced by I, I on &}, (X,w) are equivalent.

norm

Observe that I; induces a distance on £'(X,w), but I is merely defined on &} . (X, w), as
I+ c,p+ )= 1I(p,v), for any ¢, € R.
Proof. The first inequality is obvious, as
I(p,Y) = /X(so — ) (MA(¢) — MA(p)) < /X o = [ (MA(P) + MA(@)) -
It follows from Proposition 2.19 below that
Il((pa ¢) =1 (907 max(cp, @ZJ)) + 1 (maX(% ¢)a ¢)’
hence it suffices to establish the second inequality when ¢ < 9. In this case
hie) < [ (6= oMA),
by Lemma 2.18, while Cauchy-Schwarz inequality yields
| w-enac)
X
= / (¢ — )M A(0) +/ d(e =) Ndp A S,
X X
1/2
< [ w-oMa0 + 16,02 ([ dto- v nao-vins,)
where we have set S, := Z?:_& w& A w" 177, Observing that Sy < 2"‘%}2/_21, we can invoke

[BBEGZ, Lemma 1.9] to obtain

/X d(p — ) Ad°(p — ) A Sy < enl (0, 0)>" {I (e, %)H/QH +1(, g)l_wﬂ} .
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Now I(p,¢/2) < anI(p,0) < C" and [BBEGZ, Theorem 1.3] yields
I(1,/2) < ba {1(1,0) + 1(¢/2,0)} < b, {I(¥,0) + I(,0)} < C".

The conclusion follows. O

2.3 The complete metric spaces £P(«)
Fix p > 1. Following [GZ07, BEGZ10] we consider the following finite energy classes:
Definition 2.15 We set

EP(X,w) = {p € E(X,w) /ol € L' (MA(p)) }

and let EP(a) = {T = w4 dd°p| ¢ € EP(X,w)} denote the corresponding sets of finite energy
currents.

We introduce a strong topology on the class EP(«), p > 1, by setting

I(p, ) = (/x P {MA(@) —;MA(¢)])1/p

This quantity is well-defined by [GZ07, Proposition 3.6]. It is obviously non-negative and
symmetric. It follows from the domination principle (Proposition 2.7) that

Iy(p,¥) =0 = ¢ =1
Definition 2.16 The strong topology on EP(«) is the one induced by I,.

By [BEGZ10, Theorem 2.17], a decreasing sequence converges strongly. We also have good
convergence properties if we approximate by slightly larger finite energy classes EP(X, we):

Proposition 2.17 Fizw. = wtewx, e > 0. Ifp, 9 € EP(X,w)NL>(X), then p,1 € EP(X,we)N
L>®(X) and Ip . (0, %) = Ipo(@, 1) ase — 0.

Moreover, if o, € EP(X,w) and @j,; are sequences of smooth we,-psh functions decreasing
to @, with e; — 0, then

Ip,wg]— ((pj7 %) — Ip,w(‘;@v 1/})
as j goes to +oo.

Proof. The first assertion follows from the fact that (w. + dd°p)™ and (we: + dd“y)™ converges
weakly to (w + ddp)"™ and (w + dd“y)" as € — 0, respectively. For the second statement, we
observe that by symmetry it suffices to prove that

t&wa—%pwg+ng”ﬁ/Qw—w%w+M%w,zw¢++m.

Given a bounded function f on X, we set

1/p
= ([ 1P, 4 o)

The triangle inequality yields
05 = bilp <l = Ylp + [(05 = D)+ 1Y = 5l

and similarly

i — Yilp > o = Ylp — (0 — )| = [(¥ = ) p-
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Since ¢ — 1 is a quasi-continuous function on X, it follows from the continuity of the Monge-
Ampere operator along decreasing sequence [GZ07, Theorem 1.9] and [Kol05, Corollary 1.14]
that

S /X [ = VP (we; +ddopy)" — /X o — YIP(w + dd°p)"

as j — +00. Moreover, we claim that the terms |(¢; — )|, and |(¥» — ;)| goes to 0 as j — +o0.
Lemma 2.18 together with the fact that w., <w + wx yields

/X(st — )P (we, + dd°p;)" < /X(st — )P (w +wx + dd°p)™.

Since ¢; is decreasing to ¢, it then follows from the dominated convergence theorem that |(¢; —
©)[2 — 0 as j — 4oc. Fix jo < j. Then

[ =, + davep < [ (y - 0P+ wx +dp)
X X

It follows again from the continuity of the Monge-Ampere operator along decreasing sequence,
[Kol05, Corollary 1.14] and the dominated convergence theorem that letting j — +oo and then
Jo — +oo we get

/ (o — V)P (w + wy + ddo;)" = 0,
X
Thus |(¢); — )b — 0 as j — +oo. Hence the conclusion. O

It follows from Holder inequality that the strong topology on EP(«) is stronger than the one
on EY(a): if a sequence (p;) € EP(X,w) is a Cauchy sequence for I, then it is a Cauchy sequence
in (£1(X,w),d;) since

0< I(p,0) = /X (0 — ) [MA@) - MA(g)] < 2V7L,(p, 1)),

Since (E'(X,w),ds) is complete, there is ¢ € E1(X,w) s.t. dr(p;,¢) — 0. Now I,(¢p;,0) is
bounded and M A(p;) converges to M A(y) (by [BBGZ13, Proposition 5.6]). Thus ¢ € EP(X,w)
by Fatou’s and Hartogs’ lemma.

One would now like to prove that I,(¢;, ») — 0 and conclude that the space (EP(X,w), Ip) is
complete, arguing as in [BBEGZ, Proposition 2.4]. There is an abuse of terminology here as we
haven’t checked that I, induces a uniform structure. This follows from Theorem 3.6 which shows
in particular that I, satisfies a quasi-triangle inequality (like I does, see  BBEGZ, Theorem 1.8]).
We refer the reader to Theorem 4.2 for a neat treatment.

Lemma 2.18 Let ¢, be bounded w-psh functions and S be a positive closed current of bidi-
mension (1,1) on X. If ¢ < 1), then

/X(w—so)pwwAss/X(w—gomMs.

In particular Vit [ (¢ — w)pwi Awp ™ < Jx (¥ — @)P M A(p).
Proof. By Stokes’ theorem,

Jw-erons— [ @-orosns=p [ @-ortao-v)ade-vns
X X X

is non-negative if (¢p — ¢) > 0.
The second assertion follows by applying the first one inductively. O
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We now establish a few useful properties of I, that will notably allow to compare I, to d, in
the next section.

Proposition 2.19 For ¢, € EP(X,w),
Ip(gD7 d))p = Ip(@a max(go, ¢))p + Ip(maX(Sov w)a dj)p

Proof. Recall that the maximum principle insures that

1pepy M A(max(p,9)) = Liocgy MA(Y),
while (¢ — max(p,))? =0 on (¢ > 1), thus

21, (10, max(ip, )P = /{ |l M AGR) + MA).
<

Similarly 21,(1, max(p,))? f{@>¢} lo — Y|P [MA(p) + M A(¢)] and the result follows since

L) =+ / o — o [MA(p) + MA(W)].
2 J{pte}

Corollary 2.20 For all ¢, € EP(X,w),
+
IP <g0 wﬂﬁ) ( 71/))

Proof. By approximating ¢, from above by a decreasing sequences, it suffices to treat the
case when ¢,1 € H,. Changing w in wy, we can further assume that ¢ = 0. It follows from
Proposition 2.19 that

1, (0,¢/2)P = I,(0, max(0, ¢/2))* + I,(max(0, ¢/2), p/2)".
It follows from Lemma 2.18 that

1,(0, max(0, 9/2) )P < / max(0, ¢/2)P M A(0)
=2 p/ max(0, )’ MA(0) < I,(0, max(0, ))".
We claim that for all 0 < j < n,

/X(max(O, @) —pPw, Aw" ™ < /X(max(O, ®) — p)fwy.

Assuming this for the moment, it follows again from Lemma 2.18 that
Tyfmax(0. /2. 0/27 < [ (max(0.0/2) = o/2" MA(p/2
1 & , _
— STEETA ZOC% /X(max((), ) — gp)pwfa Aw™™
j:

< %/X(max(o, ©) — )P M A(p) < Ip(p, max(0, p))?.

We infer
IP (07 @/2)17 S Ip(()’ maX(O, (P))p + Ip(max(O, QD)’ So)p = Ip(ov (P)p7
by using Proposition 2.19 again.
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It remains to justify our claim. Set S = w/~1 A wg_j . It suffices, by induction, to establish
the following inequality:

/X(maX(O, ©)—p)PwAS
= / (max(0,¢) — ¢)Pw, A S — / (max(0, ¢) — @)Pdd°p A S
X X

< / (max(0,¢) — ¢)Pw, AS.
X
This follows by observing that
- [ (max(0,0) ~ @pdice AS = p [ (max(0.) ~ ) dlamax(0,¢) - ) Adp A S
X X

= fp/ (—p)P e Ndp A S <0.
{e<0}

3. Comparing distances

In this section we show that I, is equivalent to d,, (Theorem 3.6). For notational convenience we
let H denote the set Hpy defined in Section 1.2.

3.1 Kiselman transform and geodesics

Let (pt)o<t<1 be the Mabuchi geodesic. For all z € X, ¢t € [0,1] — ¢:(z) € R is convex. It is
natural to consider its Legendre transform us(z) : s — supycpo1{st — ¢¢(x)}. This function is
convex in s, but the dependence in x is —w-psh, so we rather consider —us. We finally change s
in —s to obtain a more elegant formula,

Uue) = it {st+ pulo)}:

Proposition 3.1 The functions x +— s(x) are w-plurisubharmonic. In particular x — o(z) =
info<i<1 () is w-psh.

This is the minimum principle of Kiselman [Kis78]. For ¢, p1 € H we let ¢g V ¢1 denote the
greatest w-psh function that lies below ¢ and ;. In the notations of Berman-Demailly [BD12]
¢o V 1 = P(min(po, ¢1)),

while ¢g V ¢1 is denoted by P(po,¢1) in [Darld].
An important consequence of Kiselman minimum principle [Kis78] is the following observation

due to Darvas and Rubinstein [DR14]:

Proposition 3.2 The function ¢gV 1 is a bounded w-psh which has locally bounded Laplacian
on the ample locus of a« = {w} and its Monge-Ampére measure M A(poV ¢1) is supported on the
coincidence set

{z € X[ oV ¢1(x) =min(po, p1)(x)}.
Moreover M A(po V ©1) = 1{pover=pot MA(90) + Lipgvier —pr <o} M A(p1).
Let (@) be the Mabuchi geodesic joining wo and ¢1. Then for all x € X,

wo Vi(x) = tel%fl} oi().
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Proof. It follows from a classical balayage procedure that goes back to Bedford and Taylor [BT82]
that M A(pg V ¢1) is supported on the coincidence set {x € X | o V ¢1(x) = min(po, ¢1)(x)}
This holds true more generally for the Monge-Ampere measure of any envelope, namely

Lpny<myMA(P(h)) =0,

where h is a bounded lower semcontinuous function.
We have observed in Proposition 3.1 that = + infyc[g 1) ¢(2) is a w-psh function. Since it lies
both below ¢y and ¢1, we infer

inf < V1.
t€[071]¢t_¢0 #1

Conversely (t,z) — ¢V ¢1(z) is a subgeodesic (independent of t), hence for all ¢, z, po V1 (z) <
(). Thus ¢ := @ V @1 = infyc(o,1] ¢, hence ¢ is bounded thanks to Proposition 1.4.

By Proposition 3.1, ¢ is w-psh, hence Awx-psh for some Kéahler form wx and A > 0. Thus
supx Ay, ¥ > —C for some C > 0.

It follows from the work of Berman and Demailly [BD12] that for any compact subset K C
Amp (@), there exists Cx > 0 such that for all ¢ € [0, 1],

sup Ay ot < Cgn.
K

Thus (—¢¢) is a family of Cxwx-psh functions in a neighborhood of K, which are uniformly
bounded from above. Thus

— = — = — 1 f
P 08;21( ©t) onf e

is Cxwx-psh near K, in particular A, 1 < Cgn. This means that i has locally bounded
laplacian on Amp («).

It follows then from classical arguments that the measure M A(pgV 1) is absolutely continu-
ous with respect to Lebesgue measure. Since ¢g V ¢1, @ (resp. ¢o V ¢1, 1) have locally bounded
Laplacian in Amp («), it follows from [GT83, Lemma 7.7] that their second partial derivatives

agree on {¢g V @1 = o} (resp. on {pg V @1 = ¢1}), hence

MA(po V1) = 1{ADOV<P1=500}MA(900) + 1{<POV<P1:<P1<€00}MA(<’01)'

We have used here the fact that none of the measures M A(po V ¢1), M A(po), MA(p1) charges
the pluripolar set X \ Amp («). O

A basic observation that we shall use on several occasions is the following:
Lemma 3.3 Assume @o,p1 € H and let (¢i)o<i<1 be the Mabuchi geodesic joining o to ¢1.

Then:
dp(0, 01) < [le1 — wollLeo(x)-
Moreover,
(i) If po(x) < @1(x) for some x € X, then $1(x) > 0.
(ii) If po(x) < @1(x) for all x € X then ¢i(x) >0 for allx € X and a.e t € [0,1].

By symmetry, if ¢1(x) < @o(x), it follows that ¢g(x) < 0. Moreover, if p1(x) < po(z) for

all z € X then ¢i(x) < 0 for a.e. x,t. Here and in the sequel gy, ¢1 denote the right and left
derivative, respectively while we recall that ¢;(x) is well defined for a.e (x,t).
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Proof. From Theorem 1.13 we know that dj(po, 1) = [ [¢0/PM A(po). Moreover, Proposition
1.4 insures that [¢o] < |[¢1 — @o||L~(x). Hence, the first statement.

Assume ¢;(x) < 0. Since t — ¢(z) is convex we infer ¢y () < g1(z) < 0. Thus ¢t — () is
decreasing, hence ¢1(z) < ¢o(z), a contradiction. This proves (7).

Assume now that pg(x) < ¢i(x) for all x € X. Then

Yo < o < 1.
The first of the inequalities above follows from the fact that by Proposition 1.4
e =sup{u we PSH(M,w) : u<¢g;onM}

with ¢(z,t + is) = ¢¢(z) and that @o(z,t + is) = ¢o(x) is a subsolution (i.e. a candidate in the
envelope). The other inequality follows from the fact that ¢ (z,t+1is) = ¢1(x) is a supersolution
of (2) since (w + dd;zgpl)"ﬂ = 0 and o1 > @g,1. The same argument shows that ¢y < s < ¢y
forall 0 < s <t and z € X, hence ¢;(z) > 0 for all x € X and a.e t € [0, 1] since the derivative
in time of ; is well defined for a.e. t. O

We now establish a very useful relation established by Darvas [Dar14, Proposition 8.1] when
w is Kéhler (see also [Darl5, Corollary 4.14]).

Proposition 3.4 Assume g, 1 € H. Then for allp > 1,
db (o, 1) = db (o, v0 V 1) + db(wo V ©1,01).

Proof. We proceed by approximation, so as to reduce to the Kéahler case. The identity is known
to hold for d,. and ¢ V. @1, where dp,. denotes the distance associated to the Kéhler form
we = w + ewx and g Ve @1 is the greatest w.-psh function that lies below min(pq, ¢1).

Using Theorem 1.13 and the triangle inequality, the proof boils down to check that dj, -(¢o V
©1,%0 Ve 1) — 0 as € — 0. The same arguments used in the proof of Proposition 1.15 yield

dpe(po V1,00 Ve o1) < dper(po Vo1, 00 Ve 1), € <€

We claim that d,, ./(po V @1, 90 Ve ¢1) goes to zero as € goes to zero since @g Ve 1 decreases to
wo V1 as e — 0. Indeed, observe that ¢V ¢1, 9o Ve 1 € EP(X,wl)NL>(X) and by Proposition
3.8 we know that

dper (00 V o1, 00 Ve 1) < 2Uper(po V 91500 Ve 1)
The same arguments in the proof of Proposition 2.17 then show that I, . (o V @1, ¢o Ve 1) — 0
as € goes to zero. The conclusion then follows from (3). t

We note for later use the following consequence:
Corollary 3.5 If po, 1 € H then

dp(p0; 0 V 1) < dp(0, p1)-

3.2 Comparing d, and I,

The goal of this section is to establish that d,, and I, are equivalent, extending [Dar15, Theorem
5.5]:

Theorem 3.6 For all po,p1 € H,
2_1dp(8007 901) < IP(SOOa 901) < 24+(2n—1)/pdp(¢07 801)
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It follows from Definition 1.10 and Proposition 2.17 that
dp(p0, p1) = lim dp, (0, 1) and Ip(o, 1) = lim Iy (o, ¢1),
e—0 e—0

so it suffices to establish these inequalities when w is a Kéahler form.

We nevertheless give a direct proof, valid when w is merely semi-positive, with several inter-
mediate results of independent interest. Several of these results have been obtained by Darvas in
[Dar13, Dar14, Dar15] when w is Ké&hler.

Lemma 3.7 Assume o, o1 € H satisfy po < p1. Then
1) dp (1, 22521 < dy(o,1);
2) dy(po, 1) < 2'47Pdy(00/2, 1/2);
3) if 1 =0 then dp(go,0) = 2dp(po/2,0);
4) If ¥ € H is such that o < 1 < 1, then
max{dy (o, V); dp(¥, p1)} < dp(0, 1)

Proof. Let ¢y (resp. 1¢) denote the Mabuchi geodesic joining ¢q (resp. (w0 + ©1)/2) to 1. Since
wo < 1, it follows from Lemma 3.3.ii that ¢ +— ¢y, t — 1y are increasing and ¢; < vy hence
pr—p1 Y-
t—1 — t—1

since 1 = 1. Therefore ¢ > 11.)1 > 0 and we infer

. p
/X|¢1|pMA("L/11) =d, (@17@0;%) Sdp(woasm)p_/x\@ﬂpMA((Pl)-

This proves 1).

Let now (¢¢) (resp. (¢)) denote the geodesic joining g to ¢1 (resp. ¢o/2 to ¢1/2). Observe
that ¢ — ¢y, 1, are increasing hence ¢y > 0. The family (y;/2) is a subgeodesic joining ¢g/2 to
©1/2, hence /2 < 1) and

'0 . . .
0< % < Yo = [ol” < 2P[to|”.
Moreover M A(po) < 2"M A(po/2), so we infer

dp(po, p1)? = /X lol? M A(po) < 2" Pdy(100/2, ¢1/2)P,

which proves 2). A similar argument shows that
. p1 . |p .
0< 1< 5= || <277,

Now MA(p1/2) = MA(p1) = MA(0) when 1 = 0, hence
o0 = [ 1 MAW) = 2 (0/2,00,
X

which yields 3).

It remains to prove 4). Let (¢t)o<t<1 (resp. (¢+)o<t<1) be the geodesic joining ¢p to 1 (resp.
o to 1). Observe that pg = ¥y and ¥ < ¢4, hence 1y < pg. Moreover 0 < 1y since t — 1y (x)

24



THE METRIC SPACE OF KAHLER CURRENTS
is increasing. We infer

(0o, V)P = /X ol M A(go) < /X GolP MA(go) = dy(go, 1)

The other inequality is proved similarly. ]

Proposition 3.8 For all g, o1 € H,
0< dp(8007901) < 21;0(9007@1)‘

Moreover if o < @1 then Iy(vo, p1) < (IX(SM _ SOO)pMA((po))l/p and

1/p
dp(po, 1) < </ (o1 — wo)pMA(@0)> < 21/ (0o, 1).
X

Proof. We first assume that g < ¢1. The inequality

follows from Lemma 2.18. Let (p;) be the geodesic joining g to ¢;. It follows from Lemma 3.3
that 0 < ¢¥g < 1 — o < 1 hence

/ (o1 — w0’ MA(p1) < / (1P MA(p1) = dy(go, 1)? (6)
X X

and similarly d, (@0, 1) < [ (1 — o)’ M A(po).

We give an alternative proof of this upper bound which could be of interest in more singular
contexts. We can join g to 1 by a straight line ¢; = t¢1 + (1 —t)po. This is a smooth path both
in H,, and H,,, hence its length dominates the distance d, (see Remark 1.11). Holder inequality
yields

1/p

dp(p0, 1) < Lp(p) = /01 </X(801 - wo)pMA(cpt)) dt

< </01 /X(<P1 - wo)pMA(SDt)dt> 1/”.

Now MA(p:) =V ' Y0 ( 7; ) (1 — )" Jwl, Awle? and for 0 < j <n, fol (1 —t)"Idt =

-1
(n+1)7t < ? > , hence

1 - , ,
SR A —po)Pwl Awl 7l < — wo)PMA
(n+ 1)V, jgo/x(% %) Wiy NWgo ™ = /X(‘Pl ®0) (¥0),

as follows from Lemma 2.18, yielding
1/p
dp(po, 1) < (/X(wl - wo)pMA(soo)> :

We now show that [ (¢1 — 0)PMA(po) < 2"1Pd(g, p1)P. Observe that 2072 € H with
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MA(po) < 2" MA (£272L) hence

/X(% — 0)" M A(po) = 2p/ ((Po e sﬂo)pMA(SDo)

x 2

p
S2n+p/ (wo+w1_(p0> MA<900+901>
< 2 2

p
< onteg, (@07 %0 -;— 801> ’

as follows from the first step of the proof since ¢y < 1. Lemma 3.7.4 yields

wo + ¥1
dy (soo, ) < dp(0, ¢1)

2

hence fX(gol — ©0)P M A(po) < 2"FPd, (g, p1)P.

We finally treat the first upper bound of the Proposition which does not require ¢q to lie
below ;. It follows from the triangle inequality that

dp (0, p1) < dp(po, max(po, 1)) + dp(max(eo, ¢1), ¥1)

1/p 1/p
= (/{WM(% - wo)”MA(%)) + </{900>901}(<p0 - wl)PMA(¢1)>

<2i-lr (/X le1 — wol” [MA(po) + MA(@l)])l/p

=2 (/X o1 — polp A0 + MA(%)])l/p

2
by using the elementary inequality a'/? 4 b1/P < 21-1/P(q + b)l/p. O

Remark 3.9 Working with ¥ = tyg + (1 —t)p1, 0 < t < 1, instead of %, one can improve
the above inequality and obtain

1/p n -+ 1+n/p
[or—araaen) < BTG 0, o),
X pnn/p

We now extend Lemma 3.7.1, following [Darl5, Lemma 5.3]:

Lemma 3.10 For all g, p1 € H,
0+ ¥1
dp (800, <p2<p) < 2212, (0, 1)

Proof. When g < 1, this follows from Lemma 3.7.1. Replacing w by w 4+ ddpq, we can assume
without loss of generality that ¢g = 0. The triangle inequality yields

dp(o,%) gdp(o,ov%)+dp(ov%,%).
m

Observe that 0V 1 <0V G <min(0, ). It follows therefore from Lemma 3.7.4 that

dp(o,ov%)ﬂzp (ov%,%) < dy(0,0V 1) +d (ovspl,%).
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Since 0V ¢1 <0 and 0V ¢; < €4, we can invoke Proposition 3.8 to obtain

d, (0,0V ¢1) +dp (ov%,%)

1/p o1 1/p
< (/ |O\/g01|pMA(0\/cpl)) +(/ |0\/g012|pMA(O\/<pl)>
X X
o1 1/p
< 2i=1/p (/ [|0\/ O1P + 10V @y — 7\17} MA(OV cp1)> .
X

Recall now that the measure M A(0V ¢1) is supported on the contact set S :={z € X ; 0V
1(z) = min(0, p1)(x)}. On this set we have

0V 1P +10V o1 = TP < 2palP = 2[0V @1 +10V o1 = pi]?],

while Proposition 3.8 yields

[ 10Vl +10v e — il MAQV 1)
X
< 2P [dyp(0,0 V 1)P + dp(0V 1, 1)) = 277y (0,01 )7,
where the last equality follows from Proposition 3.4. Altogether this yields d,, (0, %) < 9%tn/ Pd,(0, ¢1),
as claimed. 0

We are now ready to prove Theorem 3.6.

Proof. We have already observed that dy,(vo,p1) < 2I,(v0, 1) in Proposition 3.8, so we focus
on the reverse control. Lemma 3.10 and Proposition 3.4 yield

_l’_
22p+nd£(tp07¢1) > dg (4,00, M)

wo + 1 wo + p1 Yo + ¥1
—dr dr
p<¢07900\/ 2 >+ p< 2 7%00\/ 2 )

It follows from (6) together with the fact that 2"MA (£23£1) > MA(¢) that

+ + P
dy <¢o,soo v 9002901> > / <900 -9 5 Ly ¢o> MA (o)
X

and

+ + _ + +¢1\”
dg<“002‘p1,¢0v“002901> > n/X(saozsm_%vtpoztm) MA ().

Hence

Cotpin + P + + P
dB (o, p1) > 27 2(PF )/ Ks@o - % Vwo) + (% 5 N 5 ol Vwc) }MA(s@o)

_ypoter
2

P

X
> 91—3p—2n MA(‘PO)
X

’900
= g1tr—2n /X 9o — 1P MA (o)

where in the last inequality we used the fact that |a — b|P < 2P~1(aP + bP), for any a,b € R*.
Reversing the role of ¢y adn ¢ we get
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Blgo,o1) 2 270 [ o1 - lPMA()
X
from which it follows db (o, @1) > 2174228 (g, 1). O

3.3 Controlling the sup

It follows from previous results that the supremum of a bounded potential with locally bounded
laplacian in Amp («) is controlled by the distance to the base point:

Lemma 3.11 There exists C > 0 such that for all ¢ € H,
—28214,(0, ) < supp < 2472 (n 4 1)d1(0, ) + C
X

Proof. If supy ¢ <0, then supy ¢ <0 < (n+ 1)di(0,¢) + C, while
~i(0,9) = Elp) < swpg,

as follows from Proposition 3.12. We therefore assume in the sequel that supy ¢ > 0. If ¢ > 0,
then Proposition 3.12 yields
1
n+1

/X PMA(0) < E(p) = dy(0, ).

It is a classical consequence of the w-plurisubharmonicity [GZ05, Proposition 2.7] that there
exists C' > 0 such that such that for all p € PSH(X,w),

sup ¢ §/ @ MA(0) + C.
X X

Thus supy ¢ < (n+1)d1(0,¢) + C.

When supy ¢ > 0 but ¢ takes both positive and negative values, we set ¢ = max(0, ¢) and
observe that supy ¥ = supy ¢. Using Propositions 2.19, 3.8 and Theorem 3.6 we obtain

d1 (0, max (0, ¢)) < 2I1(0, max(0, )) < 211 (0, ) < 25~*=1/Pq, (0, ).

The conclusion follows therefore from the previous case. O

Proposition 3.12 Assume p,v € H. Then
di(p,¥) = E(p) + E(¢) = 2E(p V ¢).

Proof. Assume first that ¢ < 1 and let (¢¢)o<t<1 denote the geodesic joining ¢ to 1. Then
¢¢(z) > 0 for all ¢, z, hence

1 1
i) = [ [ edAar = [ LG = B - Blo).

To treat the general case we use Proposition 3.4, which yields

di(p, ) = di(p, o V) +di(p VY, 0) = E(p) — E(p V) + E(¥) — E(p V),

as claimed. 0
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4. The complete geodesic space (EP(X,w),d))

4.1 Metric completion

For ¢, € EP(X,w) we let ¢;, 1y, denote sequences of elements in H;y decreasing to ¢, 1 respec-
tively, and set

D = liminf d,(©;, ¥p).
(0, 9) lim inf (05 Uk

)

We list in the proposition below various properties of this extension.

Proposition 4.1
i) Dy is a distance on EP(X,w) which coincides with d,, on Hpq;
ii) the definition of D, is independent of the choice of the approzimants;
iii) Dy, is continuous along decreasing sequences in EP(X,w).

Moreover all previous inequalities comparing dy, and I, on Hpq extend to inequalities between
D, and I, on EP(X,w).

In the sequel we will therefore denote D, by d,.

Proof. It is a tedious exercise to verify that D, defines a ”"semi-distance”, i.e. satisfies all proper-
ties of a distance but for the separation property. It follows from the definition of D, and Propo-
sition 2.17 that Theorem 3.6 extends in a natural way to potentials in EP(X,w). If Dp(¢,1) =0,
it follows therefore that I,(y, ) = 0 hence ¢ = ¢ by the domination principle.

One can check that D), coincides with dj, on H, as follows: using ii) one can use the constant
sequences ¢; = ¢ and v, = 1) to obtain this equality.

We now prove ii). Let ¢}, u; (resp. 1y, v) denote two sequences of elements of Hyq decreasing
to ¢ (resp. ¥). We can assume without loss of generality that these sequences are intertwining,
i.e. for all j,k € N, there exists £,q € N such that ¢; < u, and ¥ < v, with similar reverse
inequalities. It follows from Proposition 3.8 and the triangle inequality that

|dp(90j>wk) - dp(ué>vq)| < dp(SOja ug) + dp(wka Uq)
< 20p(pj, up) + 21 (g, vg)-

Now, again by Proposition 3.8 we get

T < [ (we= )P MAG) < 041" [ (= pPMAG)

where the last inequality follows from [GZ07, Lemma 3.5]. The monotone convergence theorem
therefore yields Ip,(¢;,ue) + Ip(vr, vq) — 0 as £,q — +o0, proving ii).

One shows iii) with similar arguments. The extension of the inequalities comparing d, and
I, follows from [BEGZ10, Theorem 2.17]. O

Proposition 4.2 The metric spaces (Ehorm(X,w),dp) and (EP(X,w),d,) are complete. The
Mabuchi topology d, dominates the topology induced by I: if a sequence converges for d,, then it
converges in energy.

Proof. Let (p;) € Ehorm(X,w)N be a Cauchy sequence for d,. Since supy ¢; is bounded, the
sequence is relatively compact for the (weak) L!-topology. Let v be a cluster point for the
L'-topology. We claim that 1) € Ehorm (X, w),

dp(pj, ) = 0 and I(¢, ;) = 0.
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Extracting and relabelling, we can assume that

Ll s
pj —> ¢ and  dy(pj, pit1) <277
Set o1 =0 and for k > j, ¥ = ¢;j Vi1 V-V Observe that

j—1

dp(0,9055) < O dp(pe, 0e41) + dp( 05, 158)
(=1

J
<Y o0 pes1) + dp(@jin, iiin) < 4,
—1
as
dp(©5, Vi) = dp(0, 05 V js1k) < dp(05,j410) < 277 + dp(@jg1, Vjg1n)-

It follows from Proposition 3.8 and Theorem 3.6 that 1,,(0,1); ) is uniformly bounded hence
¥j = limg 100 i € EP(X,w). Now 1), increases a.e. towards 1, hence ¢ € Eform (X, w) and
[BEGZ10, Theorem 2.17] yields

It follows therefore from Proposition 3.8 that dp(v, ;) — 0 and

dp (1, 05) < dp(tb,b5) + dp(thj, 05) < dp(ib,b5) + 277 — 0.

Recalling that 1; < ¢, it follows from the quasi-triangle inequality, Proposition 2.14 and Theo-
rem 3.6 that

I, 05) < en {I(, ;) + 1(¥5,05)} < enp {I(¥,95) + dp(ibj, ¢5)} — 0.

It remains to treat the case of a Cauchy sequence (¢;) € EP(X,w)N. The only extra infor-
mation we need to add is that (supy ¢;); is a bounded sequence of real numbers. This follows
from Lemma 3.11, the fact that dy(0, ;) < 4 and Hoélder inequality, which guarantees that d,
dominates d;. O

Recall that the precompletion of a metric space (X,d) is the set of all Cauchy sequences C'x
of X, together with the semi-distance

. ) — ).
6({$J}7{yj}) j_g_nood(xjayj)
The metric completion (X,d) of (X,d) is the quotient space Cx/ ~, where

{z;} ~{y;} = d({z;}.{y;}) =0,
equipped with the induced distance that we still denote by d.

Recall that a path metric space is a metric space for which the distance between any two
points coincides with the infimum of the lengths of rectifiable curves joining the two points.
By construction the space (H,d) is a path metric space. For such metric spaces, an alternative
description of the metric completion can be obtained as follows: consider C% the set of all
rectifiable curves v : (0,1] — X equipped with the semi-distance

5(7,9) += lim d(+(8), 3(0))

The metric completion (X,d) is then the quotient space C'/ ~ which identifies zero-distance

curves v, 7.
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Both constructions yield a rather abstract view on the metric completion. We are now taking
advantage of the fact that H4 lives inside the complete metric space (£P(«a),dp) to conclude
that:

Theorem 4.3 The metric completion of (Hpa, dp) is isometric to (EP(X,w),dp).

Thanks to Theorem 3.6, an equivalent formulation of the above statement is that the metric
completion of (Hpq,dp) is bi-Lipschitz equivalent to (EP(X,w), ).

Proof. We work at the level of normalized potentials,
& (X w) ={p € E"(X,w) | E(p) = 0}
and Ho = {¢ € Hpq|w + dd°¢p > 0 and E(p) = 0}.

Since (&)(X,w), d,) is a complete metric space that contains Hy, it suffices to show that the
latter is dense in &) (X,w). Fix ¢ € EJ(X,w) and let (¢;) € HY' be a sequence quasi-decreasing
to ¢ : the normalization condition E(y;) = 0 prevents from getting a truly decreasing sequence,
however ¢; +¢; is decreasing where €; is a sequence of real numbers decreasing to zero. It follows
from Proposition 3.8 that

dp(@jte + €j+1, 05 +€5)7 < /X(%‘ — @j+e)’ MA(pjte) + €
Now [GZ07, Lemma 3.5] shows that the latter is bounded from above by

(p+1)" /X (5 — QP MA(p) + ¢

which converges to zero as j — 400, as follows from the monotone convergence theorem. There-
fore (p;) is a Cauchy sequence in (Ho, dp) which converges to ¢ since

0 < dp(, ¢ +¢;) < liminfdp(pjre, ) < 2(1 +p)"PLy(p5.0) + /P =0

by Proposition 3.8 and [BEGZ10, Theorem 2.17].

We note the following alternative approach of independent interest. One first shows that Hg
is dense in the set of all bounded w-psh functions. Given ¢ € &J(X,w) one then considers its
“canonical approximants”

; =max(p, —j) +¢; € PSHyo(X,w) N L>®(X)
which decrease towards ¢ € EJ(X,w). It follows from Proposition 3.8 that

dp(@jte, )P < 0(1)+/ (0; = @jre)PMA(pj10)

X
— o(1) + / PMA(pj40) + / () — pye0)P MA()
(p<—j—2) (—j—Ll<p<—j)
—o)+ [ eaa)+ [ (65 — 951 MA(p)
(p<—j—2) (—j—t<p<—j)

< o(1) + / PMA(),
(p<—y)

where we have used the maximum principle together with the fact that

MA(or) = | MA(gy) — MA(pp) = MA(p),
/<¢<-k> (on) /X (ox) /(k) (o0) /(k) ()
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since ¢ € £(X,w), as follows again from the maximum principle. We infer that (¢;) is a Cauchy
sequence which converges to . O

We are now in position to prove Theorem B of the introduction:

Corollary 4.4 Assume w = w*wy, where wy is a Hodge form. Then the metric completion
(Ha,dp) is isometric to (EP(a),dp). Similarly the metric completion (H,d,) is isometric to
(EP(X,w),dp).

Proof. Thanks to [CGZ, Corollary C] we can insure that the space H is dense in Hpq. The result
then follows from Theorem 4.3. O

4.2 Weak geodesics

4.2.1 Finite energy geodesics We now define finite energy geodesics joining two finite energy
endpoints g, o1 € E(X,w). Fix j € N and consider cpf), ¢’ bounded w-psh functions decreasing
to o, 1. We let ¢ ; denote the bounded geodesic joining Lpé to go{. It follows from the maximum
principle that j — ¢; ; is non-increasing. We can thus set

o= lim ¢y ;.

Jj—+oo
Definition 4.5 The map (t,x) — @(x) is the (finite energy) Mabuchi geodesic joining o to
$1-

The ¢;’s form indeed a family of finite energy functions : since ¢ — E(yy ;) is affine (Lemma
2.9), we infer for all j € N,

(1= O)B(po) +tE(e1) < (1 = (¢ + tE(eY) = Elpry),
hence ¢, € EY(X,w) with (1 —t)E(pg) + tE (1) = E(¢y).
It follows from the maximum principle that ¢; is independent of the choice of the approxi-
mants ¢, ¢1: if we set (z,2) := ¢(z), 2 = t +1s, then ¢ is a maximal w-psh function in X x S,

as a decreasing limit of maximal w-psh functions. It is thus the unique maximal w-psh function
in X x S with boundary values g, 1.

When ¢, ¢1 belong to EP(X,w), these weak geodesics are again metric geodesics in the
complete metric space (EP(X,w),dp):

Proposition 4.6 Given ¢, 1 € EP(X,w), the Mabuchi geodesic ¢ joining ¢g to @1 lies in
EP(X,w) and satisfies, for all t,s € [0,1],

dp(p1: ps5) = |t = 8| dp(po, 1)
Thus (EP(X,w),dp) is a geodesic space.

Proof. We can assume without loss of generality that ¢g, 1 < 0. Fix 7 € N and consider @%, ga{
bounded w-psh functions decreasing to (g, p1. We let ¢ ; denote the bounded geodesic joining
@} to ¢}, which decreases towards ¢ as j increases to +o00. Observe that

PoV o1 < bV el < g
It follows therefore from [GZ07, Lemma 3.5] and Lemma 4.7 that

/ (—pr)PMA(pr;) < (p+1)" / (—g0 V 01)P MA(g0 V 1) < +00
X X

32



THE METRIC SPACE OF KAHLER CURRENTS

hence the monotone convergence theorem yields [y (—p¢)PMA(py) < +o0, for all t, ie. ¢y €
EP(X,w).

The remaining assertion is proved as in the case of bounded geodesics (Proposition 1.17). [

Lemma 4.7 Assume 0 > ¢g,p1 € EP(X,w). Then ¢o V ¢1 € EP(X,w) and
[ enverrsaoven < [ (CorMao) + [ (oM
X X X
Proof. 1t suffices to establish the claimed inequality when ¢g,1 € H and then proceed by
approximation. It follows from Proposition 3.2 that
MA(po V ¢1) < Lippvor=po} MA(P0) + Lipgvii=o1} M A(91)-
The inequality follows since ¢q, 1 < 0. U

4.2.2 (Non) uniqueness of geodesics Fix @, p1 € EL(X,w). If the sets (¢ < ¢1) and (po >
1) are both non empty, the function ¢V differs from g and ¢; and it follows from Proposition
3.4 that

d1(0, 1) = di(po, vo V v1) +di(po V ¢1,¥1),
thus the concatenation of the geodesic joining o to gV ¢1 and that joining ¢ V 1 to ¢ gives
another minimizing path joining ¢g to ¢1.

When g < 1, this argument does not work anymore, but there are nevertheless very many
minimizing paths, as shown by the following result:

Lemma 4.8 Assume @o, p1 € H are such that o < ¢1. Let (1)o<t<1 be a path joining o to
p1. Then

0 (1Y) = di (o, p1) <= Yy(x) > 0, for a.e.t,z.

In particular t — tpi(x) + (1 — t)po is a minimizing path for di which is not a Mabuchi
geodesic, unless w1 — g s constant.

Proof. Observe that

b1 () :/OI/X‘T/}t(ﬂ?)‘MA(%)th /01/)(¢t($)MA(¢t)dt
L

/ W) dt' = |E(p1) = E(po)| = di(v0, ¢1)
0

where the last identity follows from Proposition 3.12. There is equality iff |¢);(z)| = t(z) > 0
for a.e. (t,x) (the sign has to be positive because 1y = ¢ < p1 = ¥1).

In particular ¢t — ¢ = ty1(x) + (1 —t)po has this property, since ¢y = @1 — o > 0. We recall
that, since vy is a smooth path, the geodesic equation can be written as

P MA () = %d% A day Nwlf !

(see Section 1.1.1). Now ¢); = 0 hence ¢ ~— 1, is not a Mabuchi geodesic, unless d(¢; — ©g) A
d°(p1 — o) A wZ;l =0 for all ¢, i.e. 1 — ¢p is contant. O

On the other hand it follows from the work of Calabi-Chen [CC02] that minimizing geodesics
are unique in £2(X,w):

33



ELEONORA D1 NEzZzZA AND VINCENT GUEDJ

Theorem 4.9 Assume w = 7wy, where wy is a Hodge form. Then the space (E*(X,w),ds) is
a CAT(0) space.

Complete CAT(0) spaces are also called Hadamard spaces. Recall that a CAT(0) space is a
geodesic space which has non positive curvature in the sense of Alexandrov. Hadamard spaces
enjoy many interesting properties (uniqueness of geodesics, contractibility, convexity proper-
ties,...see [BH99)).

Proof. By Corollary 4.4 we know that (£2(X,w),ds) is the completion of (H,ds). Note that
(H., d2) is a complete path metric space, being the completion of the path metric space (H, dz).
The Hopf-Rinow-Cohn-Vossen theorem (see [BH99, Proposition 1.3.7]) insures that a complete
locally compact path metric space is automatically a geodesic space. Here (H,, dz) is not locally
compact (it is merely locally weakly compact), but we have a natural candidate for the minimizing
geodesics.

[BH99, Exercise 1.9.1.c (p. 193)] insures that (H,,, d2) is a CAT(0) space if and only if the
CN inequality of Bruhat-Tits [BT72] holds, i.e. VP,Q, R € H,, and for any M € H,, such that
da(Q, M) = da(R, M) = d2(Q, R)/2 one has

d(M, P < 5s(P,QP + 3da(P, R)? — 1da(Q, R)* (7

Calabi and Chen proved in [CCO02, Theorem 1.1] that (H,,, d2) satisfies the CN inequality (7)
in the case when the reference form w is Kéhler. The result extends to our present setting by
approximation (Theorem 1.13).

Moreover, the CN inequality extends to £2(X,w) by density. It follows therefore from [BH99,
Corollary 11.3.11] that (H,,dz) is a CAT(0) space. O

5. Singular Kahler-Einstein metrics of positive curvature

The existence of singular K&hler-Einstein metrics of non-positive curvature has been established
in [EGZ09], generalizing the fundamental work of Aubin [Aub78] and Yau [Yau78]. They always
exist, provided the underlying variety has mild singularities and the first Chern class is non-
positive.

Singular Kéhler-Einstein metrics of positive curvature are more difficult to construct. It is
already so in the smooth case [CDS15]. Their first properties have been obtained in [BBGZ13,
BBEGZ]. In Section 5.3, pushing further these works, we provide a necessary and sufficient
analytic condition for their existence, generalizing a result of Tian [Tian97] and Phong-Song-
Sturm-Weinkove [PSSWO0S].

5.1 Log terminal singularities

A pair (Y, D) is the data of a connected normal compact complex variety Y and an effective
Q-divisor D such that Ky + D is Q-Cartier. We write

Y0 := Yieg \ SuppD.

Given a log resolution 7 : X — Y of (Y, D) (which may be chosen to be an isomorphism over
Yp), there exists a unique Q-divisor ), a;E; whose push-forward to Y is —D and such that

Kx =7"(Ky + D)+ Y _aE;.

7
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Definition 5.1 The pair (Y, D) is klt if a; > —1 for all j.

The same condition will then hold for all log resolutions of Y. When D = 0, one says that
Y is log terminal when the pair (Y, 0) is klt. We have the following analytic interpretation. Fix
r € N* such that r(Ky + D) is Cartier. If o is a nowhere vanishing section of the corresponding
line bundle over a small open set U of Y then

(z‘mQU A a) v (8)

defines a smooth, positive volume form on Uy := U NYjy. If f; is a local equation of E; around a
point of 7~1(U), then

" <im20 A 6) v = H | fi| 2% dV

locally on 7~ 1(U) for some local volume form dV. Since Y, E; has normal crossings, this shows
that (Y, D) is klt iff each volume form of the form (8) has locally finite mass near singular points
of Y.

The previous construction globalizes as follows:

Definition 5.2 Let (Y, D) be a pair and let ¢ be a smooth Hermitian metric on the Q-line bundle
—(Ky + D). The corresponding adapted measure mesy, on Yieg is locally defined by choosing a
nowhere zero section o of r(Ky + D) over a small open set U and setting

1/r
mes 1= (z"a A a) Jlo2].
The point is that the measure mes, does not depend on the choice of o, hence is globally
defined. The above discussion shows that

(Y, D) is klt <= mes, has finite total mass on Y,

in which case we view it as a Radon measure on the whole of Y.

5.2 Kahler-Einstein metrics on log Fano pairs

Definition 5.3 A log Fano pair is a kit pair (Y, D) such that Y is projective and —(Ky + D) is
ample.

Let (Y, D) be a log Fano pair. Fix a reference smooth strictly psh metric ¢9 on —(Ky + D),
with curvature wg and adapted measure o = mesgy,. We normalize ¢ so that fig is a probability
measure. The volume of (Y, D) is

Vi=c(Y,D)" = / wg-
X
Definition 5.4 A Kéhler-Einstein metric T for the log Fano pair (Y, D) is a finite energy current
T € c1(Y,D) such that T" =V - ur.
We now list some important properties of these objects established in [BBGZ13, Bernl5,
BBEGZ]:

— A Kaéhler-Einstein metric w is automatically smooth on Y{, with continuous potentials on
Y, and it satisfies

Ric(wKE) = WKE + [D] on Y}eg.
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— The definition of a log Fano pair requires the singularities to be klt. This condition is in
fact necessary to obtain K-E metrics on Y.

— The Kihler-Einstein equation reads (wg + dd®¢)"™ = e~%*¢pq for some constant ¢ € R.. If we
choose a log resolution, the equation becomes (w + ddp)"™ = e ¥+ [y, where w = m*wy is
semipositive and big and fig = [, | fi|**dV .

— The potential ¢ belongs to H and maximizes the functional

F(0) = B(p) +log [ /

€_¢dﬁ0:| .
X
Conversely any maximizer of F is a Ké&hler-Einstein metric.

— Two Kéhler-Einstein metrics are connected by the flow of a holomorphic vector field that
leaves D invariant.

— If the functional F is proper (i.e. if E(pj) = —oco0 = F(p;) — —o0), then there exists a

unique Kéahler-Einstein metric.

Here [D] is the integration current on Dly,,,. Writing Ric(wxg) on Yies implicitely means
that the positive measure wf ply,,, corresponds to a singular metric on —Ky;,,,, whose curvature
is then Ric(wkg) by definition.

5.3 The analytic criterion

Following and idea of Darvas-Rubinstein [DR15], we now extend [Tian97, Theorem 1.6] and
[PSSWO08] by proving the following:

Theorem 5.5 Let (Y, D) be a log Fano pair. It admits a unique Kdhler-Einstein metric iff there
exists €, M > 0 such that for all ¢ € Hyporm,

Flp) < —edi(0,¢) + M.
This is Theorem D of the introduction.

Proof. We are going to use Theorem B. Note that wy € ¢;(—Kx — D) is a Hodge form. One
implication is due to [BBEGZ, Theorems 4.8 and 5.4]: if

*F(SD) < _€d1(0> (10) + M7

then F is proper, hence there exists a unique Kahler-Einstein metric.
So we assume now that there exists w a unique Kéhler-Einstein metric, which we take as our
base point of H. It is the unique maximizer of F on £!(X,w),

F(0)= sup F(p),
pefH (X w)

as follows from [BBGZ13, Theorem 6.6], [BBEGZ, Theorems 4.8 and 5.3].

Note that F is invariant by translations, so we actually consider the restriction of F on
ELm(X,w) = {p € EY(X,w), supy ¢ = 0}. Assume for contradiction that there is no ¢ > 0
such that F(¢) < —ed1(0,¢) + M for all ¢ € Hyporm, where we set M := F(0) + 1. Then we can
find a sequence (¢;) € HN such that supy ¢; = 0 and

7d1 (0’ SOJ)

: 1.
Flpj) > I + F(0) +
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If E(p;) does not blow up to —oo, we reach a contradiction: up to extracting and relabelling,
we can assume that E(p;) is bounded and ¢; converges to some ¢ € £1(X,w). Since F is upper
semi-continuous, we infer F(¢) > F(0) + 1, a contradiction.

So we assume now that E(yp;) — —oo. It follows from Lemma 3.12 that d; := di(0,¢;) =
—E(pj) — +oo. We let (41 j)o<t<a; denote the Mabuchi geodesic with unit speed joining 0 to
@ and set ¥, := 1 ;. Note that the arguments in Lemma 3.3 show that ¢ — ¢, ; is decreasing,
hence ¢; < 1; <0. In particular supy ¢; = 0, while by definition d;(0,%;) =1 = —E(¢;).

It follows now from Berndtsson’s convexity result [Bernl5, Section 6.2] and its generalization
to the singular context [BBEGZ, Theorem 11.1] that the map ¢ — F(¢y ;) is concave. We infer

F(pd; 5) — Flwo) 1 1

0> ) — ) = - d;
_.7'—(301,3) ]:(SDO,J)— d; = j—|—1+dj’

thus F(z;) — F(0). This shows that (¢;) is a maximizing sequence for F which therefore strongly
converges to 0, by [BBEGZ, Theorem 5.3.3]. This yields a contradiction since d;(0,;) =1. O

6. The toric case

Recall that a compact Kéhler toric manifold (X,w,T') is an equivariant compactification of the
torus T = (C*)" equipped with a (S1)"-invariant Kéhler metric w which can be written

w = dd in (C*)",
with ¢ (S1)"-invariant hence 1(z) = F o L(z) where
L:ze (C)"— (log|z1],--- ,logl|zs|) € R"

and F': R® — R is strictly convex.

The celebrated Atiyah-Guillemin-Sternberg theorem asserts that the moment map VF :
R"™ — R" sends R" to a bounded convex polytope

P={li(s)>0,1<i<d}CR"
where d > n + 1 is the number of (n — 1)-dimensional faces of P,
Ci(s) = (s,ui) — i,

with \; € R and u; is a primitive element of Z", normal to the i*" (n — 1)-dimensional face of P.

Delzant observed in [Del88] that in this case P is "Delzant”, i.e. there are exactly n faces
of dimension (n — 1) meeting at each vertex, and the corresponding u;’s form a Z-basis of
Z". He conversely showed that there is exactly one (up to symplectomorphism) compact toric
Kéhler manifold (Xp,{wp},T) associated to a Delzant polytope P C R". Here {wp} denotes
the cohomology class of the T-invariant Kéhler form wp. Let

Gls) = sup {{z,s) = F(2)}

denote the Legendre transform of F'. Observe that G = +o0 in R"\ P and for s € P = VF(R"),
G(s) = (z,s) — F(z) with VF(z) =s < VG(s) = .

Guillemin observed in [Gui94] that a "natural” representative of the cohomology class {wp} is

37



ELEONORA D1 NEzZzZA AND VINCENT GUEDJ

given by

Gref(s {ZE )logli(s) + leo(s) logfoo(s)}

where (o (s) = Z?:1<S,Ui>~ We refer the reader to [CDGO3] for a neat proof of this beautiful
formula of Guillemin.

Example 6.1 When X = CP" andw is the Fubini-Study Kdhler form, then F.cf(x) = %log [1 +>0 62”“] ,
P =VF..¢+(R") is the simplex

n
P—{siZO,lgignand Zsigl},

i=1
thus d = n+1, £i(s) = si, i =0, u; = ¢ forl < i < mn, lpyi(s) =1—>0 158, A1 =
—1, ent1=—3"7_1¢j and log =0 so that

1 n n n
Gref(s — Zszlogsl—i- 1—Zsj log 1—Zsj
j=1 J=1

6.1 Toric geodesics

Let (X,w,T) be a compact toric manifold. Here (and through all the section) w is a genuine
Kihler form. In the sequel we let PSH;,,.(X,w), &, (X,w), Hior denote the (S1)"-invariant ver-

tor
sions of the classes of w-psh functions we have considered so far.

If po, 1 € Hior are both (S!)"-invariant, it follows from the uniqueness that the geodesic
(¢¢)o<i<1 consists of (S1)"-invariant functions. Let F; denote the corresponding potentials in R
so that

FioL=F,foL+ ¢ in (C*)".

Proposition 6.2 [Guan99] The map (x,t) — (x) is smooth and corresponds to the Legendre
transform of an affine path on P. In other words the Legendre transform Gy of Fi is affine in t.

We include the proof for the reader’s convenience.

Proof. Recall that
Gi(s) = sup {(z,s) — Fy(x)} = (w4, 5) — Fi(x),
TeR"™
where z; = x4(s) is such that VFi(z;) = s. Taking derivatives of this identity with respect to ¢
yields

O*F, ) .
[(‘31’@-8%} ] =-VH

hence Gy(s) = —F}(x;) and

2 —1
@t(s) = —Ft(.?}) — <.j3t,VFt> = —Ft(m) + < [835;} . VFt,VFt>

. .12

Therefore (¢;) is a geodesic if and only if G; = 0. O
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In a similar vein we obtain an explicit formula for the Mabuchi distance between g and ¢g:

Proposition 6.3 For all ¢ > 1 and pg, 1 € Hior,

1/q
™ n T n
dafn 1) = (321G~ Gallary = (50 ([ 163 - Galotsyas)

Proof. Recall that

Now Fyo L = Fyef o L+ ¢ has Legendre transform Gy = tG1 + (1 —1t)Go. Thus ¢y = F, o L with
Gy(s) = (x4, s) — Fi(xy) with s = VFy(x¢) hence Gi(s) = —F;(z) and we infer

dyfioson) = |

C*)

|Fy o LIYMA(Fyo L).
Observe that
O*(FpoL) 1 1  9*F

_t - L in (C*)"
82182 42’7‘2]‘ 81‘181'] ° ln ( )

0*(Fyo L) nN" 1
0° Y (2) ———  MAR(F) o L
det( 02,075 > <4> I 2|2 r(fo)o L,

where M Ar denotes the real Monge-Ampere measure (in the sense of Alexandrov, see [Gut01])
of the convex function Fy. Thus

hence

™

/ |FooL|qMA(FooL):<§) / | Fy|7M AR (Fp).
(C*)" n

Now F() = —Go o VFy and MAR(F()) = (VFo)*dS therefore

/ | Fy|1M AR (Fo) = / |Go|?(s)ds = / Gy — Gol(s)ds.
R" P P
0

Example 6.4 Assume X = CP! is the Riemann sphere and w is the Fubini-Study Kdhler form.
Let ¢q be the toric function associated to the convex potential

Fy(z) = max(z,0) so that Go(s) =0 on the simplex P = [0, 1].

Observe that wy = dd°Fy o L is the (normalized) Lebesque measure on the unit circle S' ¢ C* C
CP!. We consider o1 = @; a sequence of toric potentials defined by the convex functions

Fj(z) = (1 — ;) Fo(z) + ¢ max(z, —C}),

where € decreases to 0, while C; increases to +00. A straightforward computation yields G;(s) =
max(Cjle; — s],0). Therefore

Cjel.H/q /g
o) = ()
(q+ 1)1 \2
We thus obtain in this case, as j — +00,
R — o mn Ll iﬁ&j — 0,‘
- Yj — Y0 in L™>° foEjCj — 0;
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— pj — o in (E9(X,w),dy) iﬁajl-ﬂ/ch — 0;

The convergence in (£Y(X,w),d1) is here the convergence in the Sobolev norm W12, For
gj=1/3,C; = 33/2 we therefore obtain an example of a sequence which converges in the Sobolev
sense but not in the Mabuchi metric de. Observe that this example also shows that the convergence
in the Mabuchi sense is weaker than the uniform convergence.

6.2 Toric singularities

Let ¢ € H,, be a toric potential. We are going to read off the singular behavior of ¢ from the
integrability properties of the Legendre transform of its associated convex potential.

We let F, and G, denote the corresponding convex function and its Legendre transform. The
function ¢ is bounded if and only if so is F, — F..y on R", since F, 0o L = Fy..y o L + ¢, if and
only if so is G, on P, as Gy.s (Guillemin’s potential) is continuous on P. The same conclusion
holds if we take as a reference potential the support function Fp of P, defined by

Fp(z) = sup(s, x).
seP

It is the Legendre transform of the function Gp which is identically 0 on P and 400 in R™ \ P.
We can similarly understand finite energy classes:

Proposition 6.5
¢ € PSHyor(X,w) N L¥(X) <= G, € L™(P).
pe&l (X,w) < G, e LIP).

tor

We refer the reader to [BerBerl3, Proposition 2.9] for an elegant proof of this result when
q=1.

Proof. We first show that ¢ € £ (X,w) = G, € LI(P). Approximating ¢ from above by a

decreasing sequence of smooth strictly w-psh toric functions, this boils down to show a uniform
a priori bound

1/q
Gl o < € ( [ o WMA(@) .

for some uniform constant C' > 0. We can assume without loss of generality that F, < Fp (since
¢ is upper semi-continuous hence bounded from above on X which is compact). Recall that
¢ = (Fy—Frep)oL in (C*)", where F,.y denotes a reference potential associated to w. Changing
variables and using the Legendre transform yields

™

| te=eemrae) = (5)" [ 1, - FetiAn(,)

= (g)n/P |Fy 0 VG, (s) — Fp o VG,(s)|?ds,
where F,(z) = (z,s) — G, (s), with VG, (s) = . Therefore
Fp(VGy(5)) = (VGy(s),8) = Gy(s)
and

Fp(VGy(s)) — F(VGy(s)) =
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since Gp(s) = supyern{(z,s) — Fp(z)} =0 for s € P. We infer

TR /|Fp (VGp(s)) — Fo(VGio(s))|" ds

We now take care of the converse implication. Assume ¢ € PSHy,.(X,w) is such that ¢ <0
and G, € LI(P). It follows then from Proposition 3.8 and Proposition 6.3 that

/X(—SO)"MA(sD) < 217 (0, )1 = 277 C(n)[|Gyp — Gol|74 () < +00,

hence ¢ € & (X, w), as claimed. O

It also follows from the previous arguments that:

Theorem 6.6 The metric completion of (Hior,dy) is (EL,,dp).

Remark 6.7 We let the reader check that the Legendre transform G,y of the minimum of two
convex functions is

Govyp = max(Gy, Gy).

The orthogonality relation from Proposition 3.4 thus translates here

dy(p, 0V )P = /P (G — G)P = / (Gy— Gy)P,

{Ge<Gy}

while dp(1), @ V )P f{G ~Gu) (Gyp — Gy)? so that

dp(‘Pv PV ¢)p + dp(SO Vap, )P = dp(‘Pa 1#)”-
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