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Introduction

Let Y be a compact Kähler normal space and α Y ∈ H 1,1 BC (Y ) a Kähler class, where H 1,1 BC (Y ) denotes the Bott-Chern cohomology space. The space H α Y of Kähler metrics ω Y in α Y can be seen as an infinite dimensional riemannian manifold whose tangent spaces T ω Y H α Y can all be identified with C ∞ (Y, R). When Y is smooth, Mabuchi has introduced in [Mab87] an L 2 -metric on H α Y , by setting

f, g ω Y := Y f g ω Y n V α Y ,
where n = dim C Y and V α Y = Y ω Y n = α n Y denotes the volume of α Y . Mabuchi studied the corresponding geometry of H α Y , showing in particular that it can formally be seen as a locally symmetric space of non positive curvature. Semmes [Sem92] reinterpreted the geodesic equation as a complex homogeneous equation, while Donaldson [Don99] strongly motivated the search for smooth geodesics through its connection with the uniqueness of constant scalar curvature Kähler metrics.

In a series of remarkable works [Chen00, CC02, CT08, Chen09, CS12] X.X.Chen and his collaborators have studied the metric and geometric properties of the space H α Y when Y is smooth, showing in particular that it is a path metric space (a non trivial assertion in this infinite dimensional setting) of non-positive curvature in the sense of Alexandrov. A key step from [Chen00] has been to produce C 1,1 -geodesics which turn out to minimize the intrinsic distance d. It follows from the work of Lempert-Vivas [LV13], and Ross-Witt-Nyström [RWN15] that one can not expect better regularity, but for the toric setting (see Section 6).

The metric study of the space (H α Y , d) has been recently pushed further by Darvas in [Dar13,Dar14,Dar15]. He characterizes there the metric completion of (H α Y , d) and introduces several Finsler type metrics on H α Y , which turn out to be quite useful (see [DR15,BBJ15]). For p ≥ 1, we set d p (φ 0 , φ 1 ) := inf{ p (φ) | φ is a path joining φ 0 to φ 1 }, where p (φ) :=

1 0 | φt | p dt = 1 0 Y φt p M A(φ t ) 1/p dt.
The goal of this article is to extend these studies to the case when the underlying space has singularities. We fix a base point ω Y representing α Y and work with the space of Kähler potentials H ω Y . Our first main result extends the main results of [Chen00] and [Dar15, Theorem 1] as follows:

Theorem A.

-(H ω Y , d p ) is a metric space;

-d p (φ 0 , φ 1 ) = Y | φ0 | p M A(φ 0 ) 1/p = Y | φ1 | p M A(φ 1 ) 1/p .
Following [Dar14,Dar15] we then study the metric completion of the space (H α Y , d p ) and establish the following generalization of [Dar15, Theorem 2]:

Theorem B. Let Y be a projective normal variety and assume ω Y is a Hodge form. The metric completion of (H ω Y , d p ) is a geodesic metric space which is bi-Lipschitz equivalent to the finite energy class (E p (Y, ω Y ), I p ).

Finite energy classes have been introduced in [GZ07] and further studied in [BEGZ10, BBGZ13], we recall their definition in Section 2. The Mabuchi geodesics can be extended to finite energy geodesics which are still metric geodesics. A key technical tool here is Theorem 3.6 which compares d p and I p , a natural quantity which defines the "strong topology" on E p (Y, ω Y )

The metric completion of (H α Y , d) has been considered by Streets in his study of the Calabi flow [Str16] and also plays an important role in recent works by Berman-Boucksom-Jonsson [BBJ15] and Berman- . There is no doubt that the extension to the singular setting will play a leading role in subsequent applications. We illustrate this here by generalizing Tian's analytic criterion [Tian97,PSSW08], using results of [BBEGZ] and an idea of [DR15]:

Theorem C. Let (Y, D) be a log Fano pair. It admits a unique Kähler-Einstein metric iff there exists ε, M > 0 such that for all φ ∈ H norm ,

F(φ) ≤ -εd 1 (0, φ) + M.
Here F is a functional whose critical points are Kähler-Einstein potentials (Section 5) and H norm is the set of normalized potentials. This result has been independently obtained by T. Darvas [Dar16] by a different approach.

Our results should also be useful in analyzing more generally cscK metrics on midly singular varieties (see e.g. the recent construction by Arezzo and Spotti of cscK metrics on crepant resolutions of Calabi-Yau varieties with non-orbifold singularities [AS15]).

A way to establish the above results is to consider a resolution of singularities π : X → Y and to work with the space H ω of potentials associated to the form ω = π * ω Y . All the above results actually hold in the more general setting when ω is merely a semi-positive and big form (i.e. X ω n > 0). We approximate H ω by spaces of Kähler potentials H ω+εω X and show that the most important metric properties of (H ω+εω X , d ε ) pass to the limit.

The organization of the paper is as follows. Section 1 starts by a recap on Mabuchi geodesics and metrics. Theorem A is proved in Section 1.2, where we develop a low-regularity approach for understanding geodesics by approximation. We introduce in Section 2 classes of finite energy currents and compare their natural topologies with the one induced by the Mabuchi distances in Section 3. We study finite energy geodesics in Section 4 and prove Theorem B. We finally prove Theorem C in Section 5 and provide a detailed analysis of the toric setting in Section 6.

The space of Kähler currents

Let (Y, ω Y ) be a compact Kähler normal space of dimension n. It follows from the definition of H 1,1 BC (Y ) (see for example [BEG,Definition 4.6.2]) that any other Kähler metric on Y in the same Bott-Chern cohomology class of ω Y can be written as

ω φ = ω Y + dd c φ, where d = ∂ + ∂ and d c = 1 2iπ (∂ -∂).
Let H ω Y be the space of Kähler potentials

H ω Y = {φ ∈ C ∞ (Y, R); ω φ = ω + dd c φ > 0} .
This is a convex open subset of the Fréchet vector space C ∞ (Y ) := C ∞ (Y, R), thus itself a Fréchet manifold, which is moreover parallelizable :

T H ω Y = H ω Y × C ∞ (Y ).
For any φ ∈ H ω Y , each tangent space T φ H ω Y is identified with C ∞ (Y ).

As two Kähler potentials define the same metric when (and only when) they differ by an additive constant, we set

H α Y = H ω Y /R
where R acts on H ω Y by addition. The set H α Y is therefore the space of Kähler metrics on Y in the cohomology class α Y := {ω Y } ∈ H 1,1 BC (Y ). In the whole article we fix π : X → Y a resolution of singularities and set ω = π * ω Y , α = π * α Y . Since α is no longer Kähler, we fix ω X a Kähler form on X and set

ω ε := ω + εω X ,
for ε > 0. We will study the geometry and the topology of the spaces

H α = π * H α Y and H ω = π * H ω Y
by approximating them by the spaces H αε , H ωε , where

H ωε := {ϕ ∈ C ∞ (X, R) ; ω ε + dd c ϕ > 0} and α ε := {ω ε }.
All the properties that we are going to establish actually hold for cohomology classes α that are merely semi-positive and big (not necessarily the pull-back of a Kähler class under a desingularization).

Our analysis will focus on the ample locus of α:

Definition 1.1 The ample locus Amp (α) of α is the Zarisiki open set of those points x ∈ X such that α can be represented by a positive closed (1, 1)-current which is a smooth positive form near x.

We then let H ω denote the space of potentials ϕ ∈ C ∞ (X, R) such that ω ϕ is a Kähler form in Amp (α). In our main case of interest, i.e. when α = π * α Y , the ample locus

Amp (α) = π -1 (Y reg )
is the preimage of the set of regular points of Y .

1.1 The Riemannian structure

1.1.1 Mabuchi geodesics Definition 1.2 [Mab87] The Mabuchi metric is the L 2 Riemannian metric on H ω . It is defined by < ψ 1 , ψ 2 > ϕ = X ψ 1 ψ 2 (ω + dd c ϕ) n V α where ϕ ∈ H ω , ψ 1 , ψ 2 ∈ C ∞ (X) and (ω + dd c ϕ) n /V α is the volume element, normalized so that it is a probability measure. Here V α := α n = X ω n .
In the sequel we shall also use the notation ω ϕ := ω + dd c ϕ and

M A(ϕ) := V -1 α ω n ϕ . Geodesics between two points ϕ 0 , ϕ 1 in H ω correspond to the extremals of the Energy functional ϕ → H(ϕ) = 1 2 1 0 X ( φt ) 2 M A(ϕ t ) dt.
where ϕ = ϕ t is a smooth path in H ω joining ϕ 0 and ϕ 1 . The geodesic equation is formally obtained by computing the Euler-Lagrange equation for this Energy functional (with fixed end points). It is given by

φ M A(ϕ) = n V α d φ ∧ d c φ ∧ ω n-1 ϕ . (1) 
We are interested in the boundary value problem for the geodesic equation: given ϕ 0 , ϕ 1 two distinct points in H ω , can one find a path (ϕ(t)) 0≤t≤1 in H ω which is a solution of (1) with end points ϕ(0) = ϕ 0 and ϕ(1) = ϕ 1 ?

For each path (ϕ t ) t∈[0,1] in H ω , we set

ϕ (x, t + is) = ϕ t (x), x ∈ X, t + is ∈ S = {z ∈ C : 0 < (z) < 1};
i.e. we associate to each path (ϕ t ) a function ϕ on the complex manifold M = X × S, which only depends on the real part of the stripe coordinate: we consider S as a Riemann surface with boundary and use the complex coordinate z = t + is to parametrize the stripe S. Set ω(x, z) := ω(x).

Semmes observed in [Sem92] that the path ϕ t is a geodesic in H ω if and only if the associated function ϕ on X × S is a ω-psh solution of the homogeneous complex Monge-Ampère equation

(ω + dd c x,z ϕ) n+1 = 0. ( 2 
)
This motivates the following:

Definition 1.3 The function ϕ = sup{u ; u ∈ P SH(M, ω) and u ≤ ϕ 0,1 on ∂M }
is the Mabuchi geodesic joining ϕ 0 to ϕ 1 .

Here P SH(M, ω) denotes the set of ω-psh functions on M : these are functions u : M → R ∩ {-∞} which are locally the sum of a plurisubharmonic and a smooth function and such that ω + dd c

x,z u ≥ 0 in the sense of currents (see section 2.1.1 for more details).

Proposition 1.4 Let (ϕ t ) 0≤t≤1 be the Mabuchi geodesic joining ϕ 0 to ϕ 1 . Then (i) ϕ ∈ P SH(M, ω) is uniformly bounded on M and continuous on Amp ({ω}) × S.

(ii) |ϕ(x, z) -ϕ(x, z )| ≤ A| (z) -(z )| with A = ϕ 0 -ϕ 1 L ∞ (X) . (iii) ϕ |{ (z)=0} = ϕ 0 , ϕ |{ (z)=1} = ϕ 1 and (ω + dd c x,z ϕ) n+1 = 0.
It is moreover the unique bounded ω-psh solution to this Dirichlet problem.

We thank Hoang Chinh Lu for sharing his ideas on the continuity of ϕ.

Proof. The proof follows from a classical balayage technique, together with a barrier argument as noted by Berndtsson [Bern15].

Set A = ϕ 1 -ϕ 0 L ∞ (X) .
Observe that the function ϕ 0 -At, with t = (z), is ω-psh on M and ϕ 0 -At| ∂M ≤ ϕ 0,1 . Hence it belongs to the family F defining the upper envelope ϕ, so ϕ 0 -At ≤ ϕ t .

Similarly ϕ 0 + At is a ω-psh function on M and ϕ 0 + At| ∂M ≥ ϕ 0,1 . Since (ω + dd c x,z (ϕ 0 + At)) n+1 = 0, it follows from the maximum principle that u ≤ ϕ 0 + At, for any u ∈ F in the family. Therefore

ϕ 0 -At ≤ ϕ t ≤ ϕ 0 + At.

Similar arguments show that

ϕ 1 + A(t -1) ≤ ϕ t ≤ ϕ 1 -A(t -1).
The upper semi-continuous regularization ϕ * of ϕ satisfies the same estimates, showing in particular that ϕ * | ∂M = ϕ 0,1 . Since ϕ * is ω-psh, we infer ϕ * ∈ F hence ϕ * = ϕ. Thus ϕ is ω-psh and uniformly bounded, proving the first statement in (i). Classical balayage arguments show that (ω + dd c

x,z ϕ) n+1 = 0, proving (iii). We now prove prove (ii). Consider the function

χ t (x) = max{ϕ 0 (x) -A log |z|, ϕ 1 (x) + A(log |z| -1)}
and note that it belongs to F and has the right boundary values.

Since χ -= ϕ 0 (x) -At ≤ ϕ with equality at t = 0, we infer for all x,

-A = ∂χ - ∂t |t=0 ≤ φ0 (x).
Similarly χ + = ϕ 1 (x)+A(t-1) ≤ ϕ with equality at t = 1 yields for all x, φ1 (x)

≤ +A = ∂χ + ∂t |t=1 . Since t → ϕ t (x) is convex (by subharmonicity in z), we infer that for a.e. t, x, -A ≤ φ0 (x) ≤ φt (x) ≤ φ1 (x) ≤ +A.
It remains to show that ϕ is continuous on Amp ({ω}) × S. We can assume without loss of generality that ϕ 0 < ϕ 1 . Indeed, given any ϕ 0 , ϕ 1 ∈ H ω , there exists C > 0 such that ϕ 0 < ϕ 1 +C. By Lemma 1.8, the Mabuchi geodesic joining ϕ 0 and ϕ 1 + C is ψ t = ϕ t + Ct, t ∈ [0, 1]. The continuity of (x, t) → ψ t (x) will then imply the continuity of (x, t) → ϕ t (x).

We change notations slighlty, replacing the stripe S by the annulus D := {z = e t+is ∈ C : 1 ≤ |w| ≤ e}. We are going to express the function ϕ as a global Θ-psh envelope on the compact manifold X × P 1 , where we view the annulus D as a subset of the Rieman sphere,

C ⊂ P 1 = C ∪ {∞}. The form Θ(x, z) = ω(x) + Aω F S (z)
is a semi-positive and big form on the compact Kähler manifold M := X × P 1 , so the viscosity approach of [EGZ16] can be applied showing that the envelope ϕ is continuous on Amp ({ω})× S. Here ω F S denotes the Fubini-Study metric on P 1 and A > 0 is a constant to be chosen below.

Consider U = max(U 0 , U 1 ), where U 0 (x, z) := ϕ 0 (x) and

U 1 (x, z) := ϕ 1 (x) + A(log |z| 2 -log(|z| 2 + 1) + log(e 2 + 1) -2).
We choose A > 0 so large that U (x, 1) ≡ ϕ 0 (x). Note that U (x, e) ≡ ϕ 1 (x) since ϕ 0 < ϕ 1 . Both U 0 and U 1 are Θ-psh on M , hence so is U . Fix ρ a local potential of Aω F S in D such that ρ| ∂D = 0 and let F be a continuous

S 1 -invariant function on M such that (a) F = ϕ 0,1 on X × ∂D, (b) F (x, z) ≥ U (x, z) ≥ ϕ 0 (x), (c) F (x, z) + ρ(z) > ϕ t (x) in X × D, with t = log |z|.
We let the reader check that the function

F = U in M \ X × D and F (x, z) := (1 -log |z|)ϕ 0 (x) + (log |z|)ϕ 1 (x) -ρ(z) + (log |z|)(1 -log |z|), for (x, z) ∈ X × D, does the job.
We claim that for all (x, z) ∈ X × D,

P Θ (F )(x, z) + ρ(z) = ϕ log |z| (x)
where

P Θ (F ) := sup{v : v ∈ PSH( M , Θ) and v ≤ F }.
Indeed P Θ (F ) + ρ is ω-psh in X × D and has boundary values ≤ ϕ 0,1 . It follows from definition of the geodesic that P Θ (F ) + ρ ≤ ϕ t . On the other hand,

F + ρ ≥ U + ρ ∈ PSH(X × D, ω) and U = ϕ 0,1 on ∂M thus P Θ (F ) + ρ = ϕ 0,1 on ∂M . Condition (c) insures that M = X × D does not meet the contact set {P Θ (F ) = F } since F + ρ > ϕ t ≥ P Θ (F ) + ρ. It thus follows from [BD12]
that (Θ + dd c P Θ (F )) n+1 = 0 in M , and the maximum principle yields

P Θ (F ) + ρ = ϕ t .
The continuity of ϕ on Amp ({ω}) × S now follows from [EGZ16] together with the following easy observation: the arguments in [EGZ16, Section 2.2] insures that if F is a smooth function on M , then P Θ (F ) is a Θ-psh function, continuous on Amp ({Θ}). The same result holds if F is merely continuous. Indeed, let F j be a sequence of smooth functions on M converging uniformly to F . Taking the envelope at both sides of the inequality

F j ≤ F + F j -F L ∞ (X) we get P Θ (F j ) ≤ P Θ (F ) + F j -F L ∞ (X) . Hence, P Θ (F j ) -P Θ (F ) L ∞ (X) ≤ F j -F L ∞ (X)
. Thus P Θ (F j ) converges uniformly to P Θ (F ), and so P Θ (F ) is a Θ-psh function that is continuous on Amp ({Θ}) = Amp ({ω}) × S.

Remark 1.5 If one could choose F smooth in the proof above, it would follow from [BD12] that ϕ ∈ C 1, 1(Amp (α) × S). This would also provide a compact proof of Chen's regularity result.

We now observe that geodesics in H ω are projection of those in H ωε :

Proposition 1.6 Let ϕ denote the geodesic joining ϕ 0 to ϕ 1 in H ω and let ϕ ε denote the corresponding geodesic in the space H ωε . The map ε → ϕ ε is increasing and ϕ ε decreases to ϕ as ε decreases to zero. Moreover

ϕ = P (ϕ ε ),
where P denotes the projection operator onto the space P SH(M, ω).

Recall that, for an upper semi-continuous function u : M → R, its projection P (u) is defined by

P (u) := sup{v ∈ P SH(M, ω) ; v ≤ u}.
The function P (u) is either identically -∞ or belongs to P SH(M, ω). It is the greatest ω-psh function on M that lies below u.

Proof. Set ψ := P (ϕ ε ). Since ω ≤ ω ε , it follows from the envelope point of view that ϕ ≤ ϕ ε . Thus ϕ = P (ϕ) ≤ P (ϕ ε ) = ψ and ψ ∈ P SH(M, ω). Now ψ ≤ ϕ since ψ ≤ ϕ ε = ϕ 0 , ϕ 1 on ∂M and ψ ∈ P SH(M, ω). Thus ψ = P (ϕ ε ) = ϕ.

Fix ε ≤ ε. The inclusion P SH(M, ω ε ) ⊂ P SH(M, ω ε ) implies similarly that ϕ ≤ ϕ ε ≤ ϕ ε . The decreasing limit v of ϕ ε , as ε decreases to zero, satsifies both ϕ ≤ v and v ∈ P SH(M, ω) with boundary values ϕ 0 , ϕ 1 , thus v = ϕ.

It will also be interesting to consider subgeodesics: Definition 1.7 A subgeodesic is a path (ϕ t ) of functions in H ω (or in larger classes of ω-psh functions) such that the associated function is a ω-psh function on X × S.

We shall soon need the following simple observation: Lemma 1.8 Fix c ∈ R, ϕ, ψ ∈ H ω and let (ϕ t ) 0≤t≤1 denote the Mabuchi geodesic joining ϕ = ϕ 0 to ϕ 1 = ψ. Then ψ t (x) := ϕ t (x) -ct, 0 ≤ t ≤ 1, x ∈ X, is the Mabuchi geodesic joining ϕ to ψ -c.

Proof. The proof follows from Definition 1.3 and the definition of envelopes since sup{v ; v ∈ P SH(M, ω) and v ≤ ϕ, v ≤ ψ -c on ∂M } = ϕ t -ct.

1.1.2 Mabuchi and other Finsler distances When ω is Kähler, the length of a differential path (ϕ t ) t∈[0,1] in H ω is defined in a standard way,

(ϕ) := 1 0 | φt |dt = 1 0 X φ2 t M A(ϕ t )dt.
The distance between two points in H ω is then

d(ϕ 0 , ϕ 1 ) := inf{ (ϕ) | ϕ is a smooth path joining ϕ 0 to ϕ 1 }.
It is easy to verify that d defines a semi-distance (i.e. non-negative, symmetric and satisfying the triangle inequality). It is however non trivial to check that d is non degenerate (see [MM05] for a striking example).

Observe that d induces a distance on H α (that we abusively still denote by d) compatible with the riemannian splitting H ω = H α × R, by setting

d(ω ϕ , ω ψ ) := d(ϕ, ψ)
whenever the potentials ϕ, ψ of ω ϕ , ω ψ are normalized by E(ϕ) = E(ψ) = 0 (see section 2.2.1 for the definition of the functional E).

It is rather easy to check that (H α , d) is not a complete metric space. We shall describe the metric completion (H α , d) in section 4. Following Darvas [Dar15] we introduce a family of distances that generalize d: Definition 1.9 For p ≥ 1 and ω Kähler, we set

d p (ϕ 0 , ϕ 1 ) := inf{ p (ϕ) | ϕ is a smooth path joining ϕ 0 to ϕ 1 }, where p (ϕ) := 1 0 | φt | p dt = 1 0 X | φt | p M A(ϕ t )
1/p dt.

Note that d 2 = d is the Mabuchi distance. Mabuchi geodesics have constant speed with respect to all the Finsler structures p , as was observed by Berndtsson [Bern09, Lemma 2.1]: for any

C 1 -function χ, t → X χ( φt )M A(ϕ t ) is constant along a geodesic. Indeed d dt X χ( φt )M A(ϕ t ) = X χ ( φt ) φt M A(ϕ t ) + n V α X χ( φt )dd c φt ∧ ω n-1 ϕt = X χ ( φt ) φt M A(ϕ t ) - n V α d φt ∧ d c φt ∧ ω n-1 ϕt = 0 since φt M A(ϕ t ) -n Vα d φt ∧ d c φt ∧ ω n-1 ϕt = 0.
Applying this observation to χ(t) = t p shows that Mabuchi geodesics have constant p -speed.

When ω is merely semi-positive there are fewer smooth paths within H ω . It is natural to consider smooth paths in H ωε and pass to the limit in the previous definitions : Definition 1.10 Assume ω is semi-positive and big. Let ϕ 0 , ϕ 1 ∈ H ω . We define the Mabuchi distance between ϕ 0 and ϕ 1 as

d p (ϕ 0 , ϕ 1 ) := lim inf ε→0 d p,ε (ϕ 0 , ϕ 1 ),
where d p,ε is the distance w.r.t. the Kähler form ω ε := ω + εω X .

It is again easy to check that d p is a semi-distance. We will show in Theorem 1.13 that it is a distance, which moreover does not depend on the way we approximate ω by Kähler classes.

Remark 1.11 For any smooth path ψ : [0, 1] → H ω , we can still define

p (ψ) := 1 0 1 V X | ψt | p (ω + dd c ψ t ) n 1/p dt
when ω is merely semi-positive. Since P SH(M, ω) ⊂ P SH(M, ω ε ), ψ t is both in H ω and H ωε .

Observe that

V -1 ε X | ψt | p (ω ε + dd c ψ t ) n = V -1 ε X | ψt | p (ω + dd c ψ t + εω X ) n ≤ V -1 X | ψt | p (ω + dd c ψ t ) n + Aε, hence p,ε (ψ) ≤ p (ψ) + A ε
where p,ε denotes the length in H ωε . We infer d p (ϕ 0 , ϕ 1 ) ≤ inf{ p (ψ) ψ smooth path joining ϕ 0 and ϕ 1 in H ω }.

The converse inequality is however unclear, due to the lack of positivity of ω: it is difficult to smooth out ω-psh functions if ω is not Kähler. This partially explains Definition 1.10.

Approximation by Kähler classes

Fix ϕ 0 , ϕ 1 ∈ H ω . We let (ϕ t ) 0≤t≤1 denote the Mabuchi geodesic in H ω joining ϕ 0 to ϕ 1 .

Definition 1.12 For t = 0, 1 we set

I(t) := X | φt | p M A(ϕ t ).
Theorem 1.13 Set ω ε = ω + εω X , ε > 0. Then lim ε→0 d p,ωε (ϕ 0 , ϕ 1 ) exists and is independent of ω X . More precisely, d p p,ε (ϕ 0 , ϕ 1 ) → I(0) = I(1) for almost every t ∈ (0, 1). In particular d p (ϕ 0 , ϕ 1 ) = I(0) 1/p = I(1) 1/p defines a distance on H ω .

In the definition of I(0), I(1), the time derivatives φ0 = φ+ 0 , φ1 = φ-1 denote the right and left derivative, respectively.

Proof. Observe that ϕ 0 , ϕ 1 ∈ H ωε and let ϕ ε t be the corresponding geodesic. It follows from [Chen00] that

d p p,ε (ϕ 0 , ϕ 1 ) = V -1 ε X | φε 0 | p (ω ε + dd c ϕ 0 ) n . Now observe that φ+ 0 ≤ φε 0 ≤ ϕ ε t -ϕ 0 t ∀t ∈ (0, 1)
where the first inequality follows from the fact that ε → ϕ ε t is decreasing (Proposition 1.6), while second uses the convexity of t → ϕ ε t . Thus

| φε 0 -φ+ 0 | ≤ ϕ ε t -ϕ 0 t -φ+ 0 .
Letting ε 0 and then t → 0 shows that | φε 0 -φ+ 0 | converges pointwise to zero. Moreover, (ω ε + dd c ϕ 0 ) n = f ε dV where dV is the Lebesgue measure and f ε > 0 are smooth densities which converge locally uniformly to f ≥ 0 with (ω + dd c ϕ 0 ) n = f dV . The dominated convergence theorem thus yields

lim ε→0 d p p,ε (ϕ 0 , ϕ 1 ) = V -1 X | φ+ 0 | p (ω + dd c ϕ 0 ) n = I(0).
The argument for I(1) is similar. This shows in particular that d p is a distance on H ω : if d p (ϕ 0 , ϕ 1 ) = 0, then I(0) = I(1) = 0, hence φ0 (x) = φ1 (x) = 0 for a.e. x ∈ X, which implies φt (x) = 0 for a.e. x ∈ X, by convexity of t → ϕ t (x). Thus, ϕ 0 (x) = ϕ 1 (x) for a.e. x ∈ X.

We now extend the definition of the distance d p for bounded ω-psh potentials.

Definition 1.14 Let ϕ 0 , ϕ 1 ∈ PSH(X, ω) ∩ L ∞ (X) then d p (ϕ 0 , ϕ 1 ) := lim inf ε→0 lim inf j,k→+∞ d p,ε (ϕ j 0 , ϕ k 1 ) = lim inf ε→0 d p,ε (ϕ 0 , ϕ 1 )
where ϕ j 0 , ϕ k 1 are smooth sequences of ω ε -psh functions decreasing to ϕ 0 and ϕ 1 , respectively. Observe that d p,ωε (ϕ 0 , ϕ 1 ) is well defined for potentials in E p (X, ω ε ) ([Dar15]), and so in particular for bounded ω ε -psh functions.

Proposition 1.15 Let ϕ 0 , ϕ 1 ∈ PSH(X, ω)∩L ∞ (X). The limit of d p,ωε (ϕ 0 , ϕ 1 ) as ε goes to zero exists and it does not depend on the choice of ω X .

Proof. Let ϕ j 0 , ϕ k 1 be smooth sequences of ω ε -psh functions decreasing to ϕ 0 and ϕ 1 , respectively. Fix j, k. By [Dar15, Corollary 4.14] we know that the Pythagore formula holds true, i.e.

d p,ε (ϕ j 0 , ϕ k 1 ) = d p,ε (ϕ j 0 , ϕ j 0 ∨ ε ϕ k 1 ) + d p,ε (ϕ j 0 ∨ ε ϕ k 1 , ϕ k 1 ), where ψ := ϕ j 0 ∨ ε ϕ k 1 is the greatest ω ε -psh function that lies below min (ϕ j 0 , ϕ k 1 ). Fix ε ≤ ε . We claim that d p,ε (ϕ j 0 , ψ) ≤ d p,ε (ϕ j 0 , ψ) and d p,ε (ψ, ϕ k 1 ) ≤ d p,ε (ψ, ϕ k 1 ). Let ψ ε
t , ψ ε t denote the ε-geodesic and the ε -geodesic both joining ϕ j 0 and ψ. Since ε → ψ ε t is increasing (Proposition 1.6) we have that for any t ∈ (0, 1)

ψ ε t -ϕ j 0 t ≤ ψ ε t -ϕ j 0 t that implies ψε 0 ≤ ψε 0 .
Moreover observe that since ϕ j 0 (x) ≤ ψ(x) for all x ∈ X, Lemma 3.3 yields ψε 0 (x) ≥ 0 for all x ∈ X. It then follows that

d p p,ε (ϕ j 0 , ψ) = X | ψε 0 | p (ω ε + dd c ϕ j 0 ) n V ε ≤ X | ψε 0 | p (ω ε + dd c ϕ j 0 ) n V ε = d p p,ε (ϕ j 0 , ψ). (3) 
The same type of arguments give

d p,ε (ψ, ϕ k 1 ) ≤ d p,ε (ψ, ϕ k 1 ). Hence d p,ε (ϕ j 0 , ϕ k 1 ) ≤ d p,ε (ϕ j 0 , ϕ j 0 ∨ ε ϕ k 1 ) + d p,ε (ϕ j 0 ∨ ε ϕ k 1 , ϕ k 1 )
. Using again [Dar15, Corollary 4.14] and the triangle inequality we get

d p,ε (ϕ j 0 , ϕ k 1 ) ≤ d p,ε (ϕ j 0 , ϕ k 1 ) + 2d p,ε (ϕ j 0 ∨ ε ϕ k 1 , ϕ j 0 ∨ ε ϕ k 1 ). Moreover Lemma 3.3 yields d p,ε (ϕ j 0 ∨ ε ϕ k 1 , ϕ j 0 ∨ ε ϕ k 1 ) ≤ ||ϕ j 0 ∨ ε ϕ k 1 -ϕ j 0 ∨ ε ϕ k 1 || L ∞ ≤ (ε -ε)
, where the last inequality follows from the fact that ϕ j 0 ∨ ε ϕ k 1 , ϕ j 0 ∨ ε ϕ k 1 are continuos functions. Thus letting j, k go to +∞ we infer that the function ε → d p,ωε (ϕ 0 , ϕ 1 ) + ε is increasing. Hence the limit exists. Now, let ω X , ω X be two Kähler metrics on X such that

ω X ≤ ω X ≤ Cω X for some C > 0. Assume that ϕ 0 , ϕ 1 are smooth ω ε -psh functions such that ϕ 0 ≤ ϕ 1 . Set ω ε := ω + ε ω X and observe that ω ε ≤ ω ε ≤ ω ε where ε = εC. Let ϕ ε
t , φε t be the geodesic w.r.t. ω ε and ω ε , respectively and observe that ϕ ε t ≤ φε t ≤ ϕ ε t . The same arguments of above give

| φε 0 | p ≤ | φε 0 | p ≤ | φε 0 | p hence d p,ωε (ϕ 0 , ϕ 1 ) ≤ d p, ωε (ϕ 0 , ϕ 1 ) ≤ d p,ω ε (ϕ 0 , ϕ 1 ).
The latter tells us that the limit does not depend on ω X . The general case, i.e. without the asspumption ϕ 0 ≤ ϕ 1 , can be treated using Pythagore formula as above.

An adaptation of the classical Perron envelope technique yields the following result due to Berndtsson [Bern15]:

Proposition 1.16 Assume ϕ 0 , ϕ 1 are bounded ω-psh functions. Then

ϕ(x, z) := sup{u(x, z) | u ∈ P SH(X × S, ω) with lim t→0,1 u ≤ ϕ 0,1 }.
is the unique bounded ω-psh function on X × S, which is the solution of the Dirichlet problem ϕ |X×∂S = ϕ 0,1 with

(ω + dd c x,z ϕ) n+1 = 0 in X × S. Moreover ϕ(x, z) = ϕ(x, t) only depends on (z) and | φ| ≤ ϕ 1 -ϕ 0 L ∞ (X) .
The proof goes exactly as that of Proposition 1.4. The function ϕ (or rather the path

ϕ t ⊂ P SH(X, ω) ∩ L ∞ (X)) is called a bounded geodesic in [Bern15].
We use the same terminology here, as it turns out that bounded geodesics are geodesics in the metric sense: Proposition 1.17 Bounded geodesics are metric geodesics. More precisely, if ϕ 0 , ϕ 1 are bounded ω-psh functions and ϕ(x, z) = ϕ t (x) is the bounded geodesic joining ϕ 0 to ϕ 1 , then for all t, s ∈ [0, 1],

d p (ϕ t , ϕ s ) = |t -s| d p (ϕ 0 , ϕ 1 ).
Proof. Let ϕ j 0 , ϕ k 1 ∈ H ωε be sequences decreasing respectively to ϕ 0 , ϕ 1 . It follows from the comparison principle and the uniqueness in Proposition 1.16 that ϕ t,j decreases to ϕ t as j increases to +∞. From Definition 1.14, Proposition 1.15 and the fact that the identity below holds in the Kähler setting for d ε we obtain

d p (ϕ t , ϕ s ) = lim inf ε→0 lim inf j,k→+∞ d p,ε (ϕ t,j , ϕ s,k ) = |t -s| lim inf ε→0 lim inf j,k→+∞ d p,ε (ϕ j 0 , ϕ k 1 ) = |t -s|d p (ϕ 0 , ϕ 1 ). Remark 1.18 One can no longer expect that d p (ϕ 0 , ϕ 1 ) p = X | φt | p M A(ϕ t ) for a.e. t ∈ [0, 1] as simple examples show.
One can e.g. take ϕ 0 ≡ 0 and ϕ 1 = max(u, 0), where u takes positive values, has isolated singularities and solves M A(u) =Dirac mass at some point: in this case M A(ϕ 1 ) is concentrated on the contact set (u = 0) while φ1 ≡ 0 on this set hence X | φ1 | p M A(ϕ 1 ) = 0. We thank T.Darvas for pointing this to us.

As the above remark points out we do not have that d p p (ϕ 0 , ϕ 1 ) = I(0) = I(1) when ϕ 0 , ϕ 1 are just bounded ω-psh functions. Nevertheless we can still recover the formula in some special cases.

We start recalling the following:

Theorem 1.19 Let f be a continuous function such that dd c f ≤ Cω X on X, for some C > 0.

Then P (f ) has bounded laplacian on Amp ({ω}) and

(ω + dd c P ω (f )) n = 1 {Pω(f )=f } (ω + dd c f ) n . ( 4 
)
The fact that P (f ) has locally bounded laplacian in Amp ({ω}) is essentially [Ber,Theorem 1.2]. We do not assume here that f is smooth but one can check that the upper bound on dd c f is the only estimate needed in order to pursue Berman's approach. One can then argue as in [GZ17, Theorem 9.25] to get identity (4). Denote

H bd := {ϕ ∈ PSH(X, ω) ∩ L ∞ (X), ϕ = P ω (f ) for some f ∈ C 0 (X) with dd c f ≤ Cω X , C > 0}.
Theorem 1.20 Assume that ϕ 0 , ϕ 1 ∈ H bd . Let ϕ t be the Mabuchi geodesic joining ϕ 0 and ϕ 1 . Then

d p p (ϕ 0 , ϕ 1 ) = X | φ0 | p (ω + dd c ϕ 0 ) n V = X | φ1 | p (ω + dd c ϕ 1 ) n V . (5) 
Proof. Set ϕ 0,ε := P ωε (f 0 ) and ϕ 1,ε := P ωε (f 1 ). Clearly ϕ i,ε decreases pointwise to ϕ i , i = 1, 2. Combining Chen's formula together with (4) we get

V ε d p p,ε (ϕ 0,ε , ϕ 1,ε ) = X | φ0,ε | p (ω ε + dd c ϕ 0,ε ) n = {ϕ 0,ε =f 0 } | φ0,ε | p (ω ε + dd c f 0 ) n . Denote U ε := {ϕ 0 < ϕ 0,ε } and note that {ϕ 0,ε = f 0 } ⊂ {ϕ 0 < ϕ 0,ε } ∪ {ϕ 0 = f 0 }. Therefore V ε d p,ε (ϕ 0,ε , ϕ 1,ε ) - X | φ0 | p ω n ϕ 0 ≤ {ϕ 0 =f 0 } | φ0,ε | p (ω ε + dd c f 0 ) n - {ϕ 0 =f 0 } | φ0 | p (ω + dd c f 0 ) n + C Uε ω n X where C > 0 is such that Uε | φ0,ε | p (ω ε + dd c f 0 ) n ≤ C Uε ω n X .
The first term can be shown to converge to zero arguing as in Theorem 1.13. The second term goes to zero since ϕ 0,ε converges pointwise to ϕ 0 . Hence the conclusion.

Observe that if ϕ 0 , ϕ 1 ∈ H ω , then ϕ 0 ∨ϕ 1 ∈ H bd . Indeed since ϕ 0 , ϕ 1 are smooth, the functions -ϕ 0 , -ϕ 1 are quasi-plurisubharmonic, i.e. there exists C > 0 such that dd c (-ϕ i ) ≥ -Cω X for any i = 1, 2. Thus min(ϕ 0 , ϕ 1 ) = -max(-ϕ 0 , -ϕ 1 ) is such that

dd c min(ϕ 0 , ϕ 1 ) = -dd c max(-ϕ 0 , -ϕ 1 ) ≤ Cω X .
In particular the equality ( 5) holds for d p (ϕ 0 , ϕ 0 ∨ ϕ 1 ) and d p (ϕ 1 , ϕ 0 ∨ ϕ 1 ).

Finite energy classes

We define in this section the set E(α) (resp. E p (α)) of positive closed currents T = ω + dd c ϕ with full Monge-Ampère mass (resp. finite weighted energy) in α, by defining the corresponding class E(X, ω) (resp. E p (X, ω) ) of finite energy potentials ϕ.

The space E(α)

2.1.1 Bounded quasi-plurisubharmonic functions Recall that a function is quasi-plurisubharmonic if it is locally given as the sum of a smooth and a psh function. In particular quasi-psh (qpsh for short) functions are upper semi-continuous and integrable. They are actually in L p for all p ≥ 1, and the induced topologies are all equivalent. A much stronger integrability property actually holds: Skoda's integrability theorem [Sko72] asserts indeed that e -εϕ ∈ L 1 (X) if 0 < ε is smaller than 2/ν(ϕ), where ν(ϕ) denotes the maximal logarithmic singularity (Lelong number) of ϕ on X.

Quasi-plurisubharmonic functions have gradient in L r for all r < 2, but not in L 2 as shown by the local model log |z 1 |.

Definition 2.1 We let P SH(X, ω) denote the set of all ω-plurisubharmonic functions. These are quasi-psh functions ϕ : X → R ∪ {-∞} such that ω + dd c ϕ ≥ 0 in the weak sense of currents.

The set P SH(X, ω) is a closed subset of L 1 (X), for the L 1 -topology. Bedford and Taylor have observed in [BT82] that one can define the complex Monge-Ampère operator

M A(ϕ) := V α -1 (ω + dd c ϕ) n
for all bounded ω-psh function: they showed that whenever (ϕ j ) is a sequence of smooth ω-psh functions locally decreasing to ϕ, then the smooth probability measures M A(ϕ j ) converge, in the weak sense of Radon measures, towards a unique probability measure that we denote by M A(ϕ).

At the heart of Bedford-Taylor's theory lies the following maximum principle: if u, v are bounded ω-plurisubharmonic functions, then

(M P ) 1 {v<u} M A(max(u, v)) = 1 {v<u} M A(u).
This equality is elementary when u is continuous, as the set {v < u} is open. When u is merely bounded, this set is only open in the plurifine topology. Since Monge-Ampère measures of bounded qpsh functions do not charge pluripolar sets (by the Chern-Levine-Nirenberg inequalities), and since u is nevertheless quasi-continuous, this gives a heuristic justification for (M P ).

2.1.2

The class E(X, ω) Given ϕ ∈ P SH(X, ω), we consider

ϕ j := max(ϕ, -j) ∈ P SH(X, ω) ∩ L ∞ (X).
It follows from the Bedford-Taylor theory that the M A(ϕ j )'s are well defined probability measures. Since the ϕ j 's are decreasing, it is natural to expect that these measures converge. The following monotonicity property holds:

Lemma 2.2 The sequence µ j := 1 {ϕ>-j} M A(ϕ j ) is increasing.
The proof is an elementary consequence of (M P ) (see [GZ07, p.445]).

Remark 2.3 Note : t → max(ϕ(x), -t) is a subgeodesic (Definition 1.7).

Since the µ j 's all have total mass bounded from above by 1, we consider

µ ϕ := lim j→+∞ µ j ,
which is a positive Borel measure on X, with total mass ≤ 1.
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Definition 2.4 We set E(X, ω) := {ϕ ∈ P SH(X, ω) | µ ϕ (X) = 1} . For ϕ ∈ E(X, ω), we set M A(ϕ) := µ ϕ .
The notation is justified by the following important fact [GZ07]:

Theorem 2.5 The complex Monge-Ampère operator ϕ → M A(ϕ) is well defined on the class E(X, ω): for every decreasing sequence of bounded ω-psh functions ϕ j , the measures M A(ϕ j ) converge towards µ ϕ , if ϕ ∈ E(X, ω).

Every bounded ω-psh function clearly belongs to E(X, ω) since in this case {ϕ > -j} = X for j large enough, hence µ ϕ ≡ µ j = M A(ϕ j ) = M A(ϕ). The class E(X, ω) also contains many ω-psh functions which are unbounded.

Example 2.6 If ϕ ∈ P SH(X, ω) is normalized so that ϕ ≤ -1, then -(-ϕ) ε belongs to E(X, ω) whenever 0 ≤ ε < 1. The functions which belong to the class E(X, ω), although usually unbounded, have relatively mild singularities. In particular they have zero Lelong numbers on Amp (α).

It is shown in [GZ07] that the maximum principle (M P ) continue to hold in the class E(X, ω). The latter can be characterized as the largest class for which the complex Monge-Ampère is well defined and the maximum principle holds. We further note that the domination principle holds:

Proposition 2.7 If ϕ, ψ ∈ E(X, ω) are such that ϕ(x) ≤ ψ(x) for M A(ψ) -a.e. x, then ϕ(x) ≤ ψ(x) for all x ∈ X.
It follows from the ∂∂-lemma that any positive closed current T ∈ α can be written T = ω + dd c ϕ for some function ϕ ∈ P SH(X, ω) which is unique up to an additive constant.

Definition 2.8 We let E(α) denote the set of all positive currents in α, T = ω + dd c ϕ, with ϕ ∈ E(X, ω).

The definition does not depend on the choice of ω, nor on the choice of ϕ.

2.2

The class E 1 (X, ω)

2.2.1 The Aubin-Mabuchi functional Each tangent space T ϕ H admits the following orthogonal decomposition

T ϕ H = {ψ ∈ C ∞ (X); β ϕ (ψ) = 0} ⊕ R, where β = M A is the 1-form defined on H by β ϕ (ψ) = X ψ M A(ϕ).
It is a classical observation due to Mabuchi that the 1-form β is closed. Therefore there exists a unique function E defined on the convex open set H, such that β = dE and E(0) = 0. It is often called the Aubin-Mabuchi functional and can be expressed (after integration along affine paths) by

E(ϕ) = 1 (n + 1)V α n j=0 X ϕ (ω + dd c ϕ) j ∧ ω n-j .
Lemma 2.9 The Aubin-Mabuchi functional E is concave along euclidean segments, increasing, and satisfies the cocycle condition

E(ϕ) -E(ψ) = 1 (n + 1)V α n j=0 X (ϕ -ψ) (ω + dd c ϕ) j ∧ (ω + dd c ψ) n-j
It is affine along geodesics and convex along subgeodesics in H.

Proof. These properties are well-known when ω is a Kähler form.

The monotonicity property follows from the definition since the first derivative of E is dE = β = M A ≥ 0, a probability measure: if ϕ t is an arbitrary path, then

d dt E(ϕ t ) = X φt M A(ϕ t ).
It follows from Stokes theorem that

d 2 dt 2 E(ϕ t ) = X φt M A(ϕ t ) + n V α X φt dd c φt ∧ ω n-1 ϕ = X φt M A(ϕ t ) - n V α d φt ∧ d c φt ∧ ω n-1 ϕt .
Thus E is concave along euclidean segments ( φt = 0), affine along Mabuchi geodesics, and convex along Mabuchi subgeodesics. The cocycle condition follows by differentiating E(tϕ + (1 -t)ψ).

These computations are mereley heuristic as t → ϕ t (x) is poorly regular when ϕ t is a geodesic or a subgeodesic. We can however approximate ω by ω ε = ω +εω X , consider (ϕ ε t ) the corresponding geodesic and

E ωε (ϕ ε t ) = 1 (n + 1)V ε n j=0 X ϕ ε t (ω ε + dd c ϕ ε t ) ∧ ω n-j ε .
It follows from Proposition 1.6 that ε → ϕ ε t decreases to ϕ t , hence t → E(ϕ t ) is affine, being the limit of the affine maps t → E ωε (ϕ ε t ). For subgeodesics we approximate again ω by ω ε and we proceed as in the Kähler case.

Observe that E(ϕ + t) = E(ϕ) + t. Given ϕ ∈ H there exists a unique c ∈ R such that E(ϕ + c) = 0. The restriction of the Mabuchi metric to the fiber E -1 (0) induces a Riemannian structure on the quotient space H α = H/R and allows to decompose H = H α × R as a product of Riemannian manifolds.

Definition 2.10 For ϕ ∈ P SH(X, ω), we set

E(ϕ) := inf{E(ψ) ; ϕ ≤ ψ and ψ ∈ P SH(X, ω) ∩ L ∞ (X)} ∈ [-∞, +∞[ and E 1 (X, ω) := {ϕ ∈ P SH(X, ω) ; E(ϕ) > -∞}.

Remark 2.11

The functional E can be used to characterize the class E(X, ω). For ϕ ∈ P SH(X, ω), we set ϕ t = max(ϕ, -t). Observe that t → E(ϕ t ) is convex since t → ϕ t is a subgeodesic ray and

E(ϕ t ) = O(t). Moreover E(ϕ t ) = O(1) if and only if ϕ ∈ E 1 (X, ω). Following Darvas [Dar13] we now claim that ϕ ∈ E(X, ω) ⇐⇒ E(ϕ t ) = o(t).
We provide an alternative proof of independent interest. Observe that

X ϕ ω j+1 ϕ ∧ ω n-j-1 = X ϕ ω j ϕ ∧ ω n-j + X ϕ dd c ϕ ∧ ω j ϕ ∧ ω n-j-1 ≤ X ϕ ω j ϕ ∧ ω n-j , since X ϕ dd c ϕ ∧ ω j ϕ ∧ ω n-j-1 = -X dϕ ∧ d c ϕ ∧ ω j ϕ ∧ ω n-j-1 ≤ 0. For ϕ ≤ 0, we infer X ϕ M A(ϕ) ≤ E(ϕ) ≤ (n + 1) -1 X ϕ M A(ϕ) so our claim is equivalent to showing that ϕ ∈ E(X, ω) ⇐⇒ t -1 X ϕ t M A(ϕ t ) → 0. Observe now that t -1 X ϕ t M A(ϕ t ) = -M A(ϕ t )(ϕ ≤ -t) + t -1 (ϕ>-t) ϕ dµ ϕ . Since µ ϕ (ϕ = -∞) = 0, there exists χ : R → R, a convex increasing function such that χ(-∞) = -∞ and χ • ϕ ∈ L 1 (µ ϕ ). Therefore t -1 {ϕ>-t} ϕ dµ ϕ = O(χ(-t) -1 ) → 0, hence X ϕ t M A(ϕ t ) = o(t) ⇐⇒ M A(ϕ t )(ϕ ≤ -t) = o(1) ⇐⇒ ϕ ∈ E(X, ω). 2.2.2 Strong topology on E 1 (α) Set I(ϕ, ψ) = X (ϕ -ψ) (M A(ψ) -M A(ϕ)) .
It has been shown in [BBEGZ] that I defines a complete metrizable uniform structure on E 1 (α). More precisely we identify E 1 (α) with the set

E 1 norm (X, ω) = {ϕ ∈ E 1 (X, ω) | sup X ϕ = 0}
of normalized potentials. Then -I is symmetric and positive on E 1 norm (X, ω) 2 \ {diagonal}; -I satisfies a quasi-triangle inequality [BBEGZ, Theorem 1.8];

-I induces a uniform structure which is metrizable [Bourbaki];

the metric space (E 1 (α), d I ) is complete [BBEGZ, Proposition 2.4], where d I denotes one of the distances induced by the uniform structure I.

Definition 2.12 The strong topology on E 1 (α) is the metrizable topology defined by I.

The corresponding notion of convergence is the convergence in energy previously introduced in [BBGZ13] (see [BBEGZ, Proposition 2.3]). It is the coarsest refinement of the weak topology such that E becomes continuous. In particular if T j -→ T in (E 1 (α), d I ), then T j -→ T weakly and T n j -→ T n in the weak sense of Radon measures, while the Monge-Ampère operator is usually discontinuous for the weak topology of currents.

Example 2.13 When dim C X = n = 1, E 1 (X, ω) = P SH(X, ω) ∩ W 1,2 (X) is the set of ωsubharmonic functions with square integrable gradient. The strong topology on E 1 (α) is the one induced by the Sobolev norm.

Yet another distance

To fit in with the notations of the next section, we introduce yet another notion of convergence in E 1 (X, ω). We set

I 1 (ϕ, ψ) := X |ϕ -ψ| M A(ϕ) + M A(ψ) 2 
This symmetric quantity is non-negative. It follows from the Proposition 2.7 that it only vanishes on the diagonal of E 1 (X, ω) 2 , while Theorem 3.6 will insure that it satisfies a quasitriangle inequality. For C > 0, we set

E 1 C (X, ω) := {ϕ ∈ E 1 (X, ω) ; E(ϕ) ≥ -C and ϕ ≤ C}.
It follows from Hartogs lemma, the upper-semi continuity and the concavity of E along euclidean segments (Lemma 2.9) that this set is a compact and convex subset of P SH(X, ω), when endowed with the L 1 -topology (see [BBGZ13, Lemma 2.6]).

Proposition 2.14 For all ϕ, ψ ∈ E 1 (X, ω), I(ϕ, ψ) ≤ 2I 1 (ϕ, ψ). Conversely for each C > 0, there exists A > 0 such that for all ϕ, ψ ∈ E 1 C (X, ω)

I 1 (ϕ, ψ) ≤ X [2 max(ϕ, ψ) -(ϕ + ψ)] M A(0) + A I(ϕ, ψ) 1/2 n .
In particular the distances induced by I, I 1 on E 1 norm (X, ω) are equivalent.

Observe that I 1 induces a distance on E 1 (X, ω), but I is merely defined on E 1 norm (X, ω), as

I(ϕ + c, ψ + c ) = I(ϕ, ψ), for any c, c ∈ R.
Proof. The first inequality is obvious, as

I(ϕ, ψ) = X (ϕ -ψ) (M A(ψ) -M A(ϕ)) ≤ X |ϕ -ψ| (M A(ψ) + M A(ϕ)) .
It follows from Proposition 2.19 below that I 1 (ϕ, ψ) = I 1 (ϕ, max(ϕ, ψ)) + I 1 (max(ϕ, ψ), ψ), hence it suffices to establish the second inequality when ϕ ≤ ψ. In this case

I 1 (ϕ, ψ) ≤ X (ψ -ϕ)M A(ϕ),
by Lemma 2.18, while Cauchy-Schwarz inequality yields

X (ψ -ϕ)M A(ϕ) = X (ψ -ϕ)M A(0) + X d(ϕ -ψ) ∧ d c ϕ ∧ S ϕ ≤ X (ψ -ϕ)M A(0) + I(ϕ, 0) 1/2 X d(ϕ -ψ) ∧ d c (ϕ -ψ) ∧ S ϕ 1/2
, where we have set S ϕ := n-1 j=0 ω j ϕ ∧ ω n-1-j . Observing that S ϕ ≤ 2 n-1 ω n-1 ϕ/2 , we can invoke [BBEGZ, Lemma 1.9] to obtain

X d(ϕ -ψ) ∧ d c (ϕ -ψ) ∧ Sϕ ≤ cnI(ϕ, ψ) 1/2 n-1 I ϕ, ϕ 2 
1-1/2 n-1 + I ψ, ϕ 2 
1-1/2 n-1 . Now I(ϕ, ϕ/2) ≤ a n I(ϕ, 0) ≤ C and [BBEGZ, Theorem 1.3] yields I(ψ, ϕ/2) ≤ b n {I(ψ, 0) + I(ϕ/2, 0)} ≤ b n {I(ψ, 0) + I(ϕ, 0)} ≤ C .
The conclusion follows.

2.3

The complete metric spaces E p (α) Fix p ≥ 1. Following [GZ07, BEGZ10] we consider the following finite energy classes:

Definition 2.15 We set E p (X, ω) := ϕ ∈ E(X, ω) / |ϕ| p ∈ L 1 (M A(ϕ))
and let E p (α) = {T = ω + dd c ϕ | ϕ ∈ E p (X, ω)} denote the corresponding sets of finite energy currents.

We introduce a strong topology on the class E p (α), p ≥ 1, by setting

I p (ϕ, ψ) := X |ϕ -ψ| p M A(ϕ) + M A(ψ) 2 1/p
This quantity is well-defined by [GZ07, Proposition 3.6]. It is obviously non-negative and symmetric. It follows from the domination principle (Proposition 2.7) that

I p (ϕ, ψ) = 0 =⇒ ϕ = ψ.
Definition 2.16 The strong topology on E p (α) is the one induced by I p .

By [BEGZ10, Theorem 2.17], a decreasing sequence converges strongly. We also have good convergence properties if we approximate by slightly larger finite energy classes E p (X, ω ε ):

Proposition 2.17 Fix ω ε = ω+εω X , ε > 0. If ϕ, ψ ∈ E p (X, ω)∩L ∞ (X), then ϕ, ψ ∈ E p (X, ω ε )∩ L ∞ (X) and I p,ωε (ϕ, ψ) → I p,ω (ϕ, ψ) as ε → 0.
Moreover, if ϕ, ψ ∈ E p (X, ω) and ϕ j , ψ j are sequences of smooth ω ε j -psh functions decreasing to ϕ, ψ with ε j → 0, then I p,ωε j (ϕ j , ψ j ) → I p,ω (ϕ, ψ) as j goes to +∞.

Proof. The first assertion follows from the fact that (ω ε + dd c ϕ) n and (ω ε + dd c ψ) n converges weakly to (ω + dd c ϕ) n and (ω + dd c ψ) n as ε → 0, respectively. For the second statement, we observe that by symmetry it suffices to prove that

X |ϕ j -ψ j | p (ω ε j + dd c ϕ j ) n → X |ϕ -ψ| p (ω + dd c ϕ) n , as j → +∞.
Given a bounded function f on X, we set

|f | p := X |f | p (ω ε j + dd c ϕ j ) n 1/p .
The triangle inequality yields

|ϕ j -ψ j | p ≤ |ϕ -ψ| p + |(ϕ j -ϕ)| + |(ψ -ψ j )| p and similarly |ϕ j -ψ j | p ≥ |ϕ -ψ| p -|(ϕ j -ϕ)| -|(ψ -ψ j )| p .
Since ϕ -ψ is a quasi-continuous function on X, it follows from the continuity of the Monge-Ampère operator along decreasing sequence [GZ07, Theorem 1.9] and [Kol05, Corollary 1.14] that

|ϕ -ψ| p p = X |ϕ -ψ| p (ω ε j + dd c ϕ j ) n → X |ϕ -ψ| p (ω + dd c ϕ) n
as j → +∞. Moreover, we claim that the terms |(ϕ j -ϕ)| p and |(ψ -ψ j )| p goes to 0 as j → +∞. Lemma 2.18 together with the fact that ω

ε j ≤ ω + ω X yields X (ϕ j -ϕ) p (ω ε j + dd c ϕ j ) n ≤ X (ϕ j -ϕ) p (ω + ω X + dd c ϕ) n .
Since ϕ j is decreasing to ϕ, it then follows from the dominated convergence theorem that |(ϕ jϕ)| p p → 0 as j → +∞. Fix j 0 < j. Then

X (ψ j -ψ) p (ω ε j + dd c ϕ j ) n ≤ X (ψ j 0 -ψ) p (ω + ω X + dd c ϕ j ) n .
It follows again from the continuity of the Monge-Ampère operator along decreasing sequence, [Kol05, Corollary 1.14] and the dominated convergence theorem that letting j → +∞ and then j 0 → +∞ we get

X (ψ j 0 -ψ) p (ω + ω X + dd c ϕ j ) n → 0.
Thus |(ψ j -ψ)| p p → 0 as j → +∞. Hence the conclusion.

It follows from Hölder inequality that the strong topology on E p (α) is stronger than the one on E 1 (α): if a sequence (ϕ j ) ∈ E p (X, ω) is a Cauchy sequence for I p , then it is a Cauchy sequence in (E 1 (X, ω), d I ) since

0 ≤ I(ϕ, ψ) = X (ϕ -ψ) [M A(ψ) -M A(ϕ)] ≤ 2 1/p I p (ϕ, ψ).
Since (E 1 (X, ω), d I ) is complete, there is ϕ ∈ E 1 (X, ω) s.t. d I (ϕ j , ϕ) → 0. Now I p (ϕ j , 0) is bounded and M A(ϕ j ) converges to M A(ϕ) (by [BBGZ13, Proposition 5.6]). Thus ϕ ∈ E p (X, ω) by Fatou's and Hartogs' lemma.

One would now like to prove that I p (ϕ j , ϕ) → 0 and conclude that the space (E p (X, ω), I p ) is complete, arguing as in [BBEGZ, Proposition 2.4]. There is an abuse of terminology here as we haven't checked that I p induces a uniform structure. This follows from Theorem 3.6 which shows in particular that I p satisfies a quasi-triangle inequality (like I does, see [BBEGZ, Theorem 1.8]). We refer the reader to Theorem 4.2 for a neat treatment.

Lemma 2.18 Let ϕ, ψ be bounded ω-psh functions and S be a positive closed current of bidimension (1, 1) on X.

If ϕ ≤ ψ, then X (ψ -ϕ) p ω ψ ∧ S ≤ X (ψ -ϕ) p ω ϕ ∧ S. In particular V -1 α X (ψ -ϕ) p ω j ψ ∧ ω n-j ϕ ≤ X (ψ -ϕ) p M A(ϕ).
Proof. By Stokes' theorem,

X (ψ -ϕ) p ω ϕ ∧ S - X (ψ -ϕ) p ω ψ ∧ S = p X (ψ -ϕ) p-1 d(ϕ -ψ) ∧ d c (ϕ -ψ) ∧ S is non-negative if (ψ -ϕ) ≥ 0.
The second assertion follows by applying the first one inductively.

We now establish a few useful properties of I p that will notably allow to compare I p to d p in the next section.

Proposition 2.19 For ϕ, ψ ∈ E p (X, ω), I p (ϕ, ψ) p = I p (ϕ, max(ϕ, ψ)) p + I p (max(ϕ, ψ), ψ) p .

Proof. Recall that the maximum principle insures that

1 {ϕ<ψ} M A(max(ϕ, ψ)) = 1 {ϕ<ψ} M A(ψ), while (ϕ -max(ϕ, ψ)) p = 0 on (ϕ ≥ ψ), thus 2I p (ϕ, max(ϕ, ψ)) p = {ϕ<ψ} |ϕ -ψ| p [M A(ϕ) + M A(ψ)] .
Similarly 2I p (ψ, max(ϕ, ψ)) p = {ϕ>ψ} |ϕ -ψ| p [M A(ϕ) + M A(ψ)] and the result follows since

I p (ϕ, ψ) p = 1 2 {ϕ =ψ} |ϕ -ψ| p [M A(ϕ) + M A(ψ)] .
Corollary 2.20 For all ϕ, ψ ∈ E p (X, ω),

I p ϕ + ψ 2 , ψ ≤ I p (ϕ, ψ).
Proof. By approximating ϕ, ψ from above by a decreasing sequences, it suffices to treat the case when ϕ, ψ ∈ H ω . Changing ω in ω ψ , we can further assume that ψ = 0. It follows from Proposition 2.19 that I p (0, ϕ/2) p = I p (0, max(0, ϕ/2)) p + I p (max(0, ϕ/2), ϕ/2) p .

It follows from Lemma 2.18 that

I p (0, max(0, ϕ/2)) p ≤ X max(0, ϕ/2) p M A(0) = 2 -p X max(0, ϕ) p M A(0) ≤ I p (0, max(0, ϕ)) p .
We claim that for all 0 ≤ j ≤ n,

X (max(0, ϕ) -ϕ) p ω j ϕ ∧ ω n-j ≤ X (max(0, ϕ) -ϕ) p ω n ϕ .
Assuming this for the moment, it follows again from Lemma 2.18 that

I p (max(0, ϕ/2), ϕ/2) p ≤ X (max(0, ϕ/2) -ϕ/2) p M A(ϕ/2) = 1 2 n+p V α n j=0 C j n X (max(0, ϕ) -ϕ) p ω j ϕ ∧ ω n-j ≤ 1 2 X (max(0, ϕ) -ϕ) p M A(ϕ) ≤ I p (ϕ, max(0, ϕ)) p .
We infer I p (0, ϕ/2) p ≤ I p (0, max(0, ϕ)) p + I p (max(0, ϕ), ϕ) p = I p (0, ϕ) p , by using Proposition 2.19 again.

It remains to justify our claim. Set S = ω j-1 ∧ ω n-j ϕ . It suffices, by induction, to establish the following inequality:

X (max(0, ϕ) -ϕ) p ω ∧ S = X (max(0, ϕ) -ϕ) p ω ϕ ∧ S - X (max(0, ϕ) -ϕ) p dd c ϕ ∧ S ≤ X (max(0, ϕ) -ϕ) p ω ϕ ∧ S.
This follows by observing that

- X (max(0, ϕ) -ϕ) p dd c ϕ ∧ S = p X (max(0, ϕ) -ϕ) p-1 d(max(0, ϕ) -ϕ) ∧ d c ϕ ∧ S = -p {ϕ<0} (-ϕ) p-1 dϕ ∧ d c ϕ ∧ S ≤ 0.

Comparing distances

In this section we show that I p is equivalent to d p (Theorem 3.6). For notational convenience we let H denote the set H bd defined in Section 1.2.

Kiselman transform and geodesics

Let (ϕ t ) 0≤t≤1 be the Mabuchi geodesic. For all x ∈ X, t

∈ [0, 1] → ϕ t (x) ∈ R is convex. It is natural to consider its Legendre transform u s (x) : s → sup t∈[0,1] {st -ϕ t (x)}.
This function is convex in s, but the dependence in x is -ω-psh, so we rather consider -u s . We finally change s in -s to obtain a more elegant formula,

ψ s (x) := inf 0≤t≤1 {st + ϕ t (x)}.
Proposition 3.1 The functions x → ψ s (x) are ω-plurisubharmonic. In particular x → ψ 0 (x) = inf 0≤t≤1 ϕ t (x) is ω-psh. This is the minimum principle of Kiselman [Kis78]. For ϕ 0 , ϕ 1 ∈ H we let ϕ 0 ∨ ϕ 1 denote the greatest ω-psh function that lies below ϕ 0 and ϕ 1 . In the notations of Berman-Demailly [BD12]

ϕ 0 ∨ ϕ 1 = P (min(ϕ 0 , ϕ 1 )), while ϕ 0 ∨ ϕ 1 is denoted by P (ϕ 0 , ϕ 1 ) in [Dar14].
An important consequence of Kiselman minimum principle [Kis78] is the following observation due to Darvas and Rubinstein [DR14]: Proposition 3.2 The function ϕ 0 ∨ ϕ 1 is a bounded ω-psh which has locally bounded Laplacian on the ample locus of α = {ω} and its Monge-Ampère measure M A(ϕ 0 ∨ ϕ 1 ) is supported on the coincidence set

{x ∈ X | ϕ 0 ∨ ϕ 1 (x) = min(ϕ 0 , ϕ 1 )(x)}. Moreover M A(ϕ 0 ∨ ϕ 1 ) = 1 {ϕ 0 ∨ϕ 1 =ϕ 0 } M A(ϕ 0 ) + 1 {ϕ 0 ∨ϕ 1 =ϕ 1 <ϕ 0 } M A(ϕ 1 ).
Let (ϕ t ) be the Mabuchi geodesic joining ϕ 0 and ϕ 1 . Then for all x ∈ X,

ϕ 0 ∨ ϕ 1 (x) = inf t∈[0,1] ϕ t (x).
Proof. It follows from a classical balayage procedure that goes back to Bedford and Taylor [BT82] that M A(ϕ 0 ∨ ϕ 1 ) is supported on the coincidence set {x ∈ X | ϕ 0 ∨ ϕ 1 (x) = min(ϕ 0 , ϕ 1 )(x)} This holds true more generally for the Monge-Ampère measure of any envelope, namely

1 {P (h)<h} M A(P (h)) ≡ 0,
where h is a bounded lower semcontinuous function.

We have observed in Proposition 3.1 that x → inf t∈[0,1] ϕ t (x) is a ω-psh function. Since it lies both below ϕ 0 and ϕ 1 , we infer inf

t∈[0,1] ϕ t ≤ ϕ 0 ∨ ϕ 1 . Conversely (t, x) → ϕ 0 ∨ ϕ 1 (x) is a subgeodesic (independent of t), hence for all t, x, ϕ 0 ∨ ϕ 1 (x) ≤ ϕ t (x). Thus ψ := ϕ 0 ∨ ϕ 1 = inf t∈[0,1] ϕ t , hence ψ is bounded thanks to Proposition 1.4.
By Proposition 3.1, ψ is ω-psh, hence Aω X -psh for some Kähler form ω X and A > 0. Thus sup X ∆ ω X ψ ≥ -C for some C > 0.

It follows from the work of Berman and Demailly [BD12] that for any compact subset K ⊂ Amp (α), there exists

C K > 0 such that for all t ∈ [0, 1], sup K ∆ ω X ϕ t < C K n.
Thus (-ϕ t ) is a family of C K ω X -psh functions in a neighborhood of K, which are uniformly bounded from above. Thus

-ψ = sup 0≤t≤1 (-ϕ t ) = -inf 0≤t≤1 ϕ t is C K ω X -psh near K, in particular ∆ ω X ψ < C K n.
This means that ψ has locally bounded laplacian on Amp (α).

It follows then from classical arguments that the measure M A(ϕ 0 ∨ ϕ 1 ) is absolutely continuous with respect to Lebesgue measure. Since ϕ 0 ∨ ϕ 1 , ϕ 0 (resp. ϕ 0 ∨ ϕ 1 , ϕ 1 ) have locally bounded Laplacian in Amp (α), it follows from [GT83, Lemma 7.7] that their second partial derivatives agree on {ϕ 0 ∨ ϕ 1 = ϕ 0 } (resp. on

{ϕ 0 ∨ ϕ 1 = ϕ 1 }), hence M A(ϕ 0 ∨ ϕ 1 ) = 1 {ϕ 0 ∨ϕ 1 =ϕ 0 } M A(ϕ 0 ) + 1 {ϕ 0 ∨ϕ 1 =ϕ 1 <ϕ 0 } M A(ϕ 1 ).
We have used here the fact that none of the measures M A(ϕ 0 ∨ ϕ 1 ), M A(ϕ 0 ), M A(ϕ 1 ) charges the pluripolar set X \ Amp (α).

A basic observation that we shall use on several occasions is the following: Lemma 3.3 Assume ϕ 0 , ϕ 1 ∈ H and let (ϕ t ) 0≤t≤1 be the Mabuchi geodesic joining ϕ 0 to ϕ 1 . Then:

d p (ϕ 0 , ϕ 1 ) ≤ ||ϕ 1 -ϕ 0 || L ∞ (X) .
Moreover, (i) If ϕ 0 (x) ≤ ϕ 1 (x) for some x ∈ X, then φ1 (x) ≥ 0.

(ii) If ϕ 0 (x) ≤ ϕ 1 (x) for all x ∈ X then φt (x) ≥ 0 for all x ∈ X and a.e t ∈ [0, 1].

By symmetry, if ϕ 1 (x) ≤ ϕ 0 (x), it follows that φ0 (x) ≤ 0. Moreover, if ϕ 1 (x) ≤ ϕ 0 (x) for all x ∈ X then φt (x) ≤ 0 for a.e. x, t. Here and in the sequel φ0 , φ1 denote the right and left derivative, respectively while we recall that φt (x) is well defined for a.e (x, t).

Proof. From Theorem 1.13 we know that

d p p (ϕ 0 , ϕ 1 ) = X | φ0 | p M A(ϕ 0 ). Moreover, Proposition 1.4 insures that | φ0 | ≤ ||ϕ 1 -ϕ 0 || L ∞ (X)
. Hence, the first statement.

Assume φ1 (x) < 0. Since t → ϕ t (x) is convex we infer φt (x) ≤ φ1 (x) < 0. Thus t → ϕ t (x) is decreasing, hence ϕ 1 (x) < ϕ 0 (x), a contradiction. This proves (i).

Assume now that ϕ 0 (x) ≤ ϕ 1 (x) for all x ∈ X. Then

ϕ 0 ≤ ϕ t ≤ ϕ 1 .
The first of the inequalities above follows from the fact that by Proposition 1.4

ϕ = sup{u u ∈ P SH(M, ω) : u ≤ ϕ 0,1 on M } with ϕ(x, t + is) = ϕ t (x)
and that ϕ 0 (x, t + is) = ϕ 0 (x) is a subsolution (i.e. a candidate in the envelope). The other inequality follows from the fact that ϕ 1 (x, t + is) = ϕ 1 (x) is a supersolution of ( 2) since (ω + dd c x,z ϕ 1 ) n+1 = 0 and ϕ 1 ≥ ϕ 0,1 . The same argument shows that ϕ 0 ≤ ϕ s ≤ ϕ t for all 0 < s < t and x ∈ X, hence φt (x) ≥ 0 for all x ∈ X and a.e t ∈ [0, 1] since the derivative in time of ϕ t is well defined for a.e. t.

We now establish a very useful relation established by Darvas [Dar14,Proposition 8.1] when ω is Kähler (see also [Dar15,Corollary 4.14]).

Proposition 3.4 Assume ϕ 0 , ϕ 1 ∈ H. Then for all p ≥ 1,

d p p (ϕ 0 , ϕ 1 ) = d p p (ϕ 0 , ϕ 0 ∨ ϕ 1 ) + d p p (ϕ 0 ∨ ϕ 1 , ϕ 1 ).
Proof. We proceed by approximation, so as to reduce to the Kähler case. The identity is known to hold for d p,ε and ϕ 0 ∨ ε ϕ 1 , where d p,ε denotes the distance associated to the Kähler form ω ε = ω + εω X and ϕ 0 ∨ ε ϕ 1 is the greatest ω ε -psh function that lies below min(ϕ 0 , ϕ 1 ). Using Theorem 1.13 and the triangle inequality, the proof boils down to check that d p,ε (ϕ 0 ∨ ϕ 1 , ϕ 0 ∨ ε ϕ 1 ) → 0 as ε → 0. The same arguments used in the proof of Proposition 1.15 yield

d p,ε (ϕ 0 ∨ ϕ 1 , ϕ 0 ∨ ε ϕ 1 ) ≤ d p,ε (ϕ 0 ∨ ϕ 1 , ϕ 0 ∨ ε ϕ 1 ), ε < ε .
We claim that d p,ε (ϕ 0 ∨ ϕ 1 , ϕ 0 ∨ ε ϕ 1 ) goes to zero as ε goes to zero since ϕ 0 ∨ ε ϕ 1 decreases to ϕ 0 ∨ ϕ 1 as ε → 0. Indeed, observe that ϕ 0 ∨ ϕ 1 , ϕ 0 ∨ ε ϕ 1 ∈ E p (X, ω ε ) ∩ L ∞ (X) and by Proposition 3.8 we know that

d p,ε (ϕ 0 ∨ ϕ 1 , ϕ 0 ∨ ε ϕ 1 ) ≤ 2I p,ε (ϕ 0 ∨ ϕ 1 , ϕ 0 ∨ ε ϕ 1 ).
The same arguments in the proof of Proposition 2.17 then show that I p,ε (ϕ 0 ∨ ϕ 1 , ϕ 0 ∨ ε ϕ 1 ) → 0 as ε goes to zero. The conclusion then follows from (3).

We note for later use the following consequence:

Corollary 3.5 If ϕ 0 , ϕ 1 ∈ H then d p (ϕ 0 , ϕ 0 ∨ ϕ 1 ) ≤ d p (ϕ 0 , ϕ 1 ).

Comparing d p and I p

The goal of this section is to establish that d p and I p are equivalent, extending [Dar15, Theorem 5.5]: Theorem 3.6 For all ϕ 0 , ϕ 1 ∈ H, 2 -1 d p (ϕ 0 , ϕ 1 ) ≤ I p (ϕ 0 , ϕ 1 ) ≤ 2 4+(2n-1)/p d p (ϕ 0 , ϕ 1 ).

It follows from Definition 1.10 and Proposition 2.17 that d p (ϕ 0 , ϕ 1 ) = lim ε→0 d p,ε (ϕ 0 , ϕ 1 ) and I p (ϕ 0 , ϕ 1 ) = lim ε→0 I p,ε (ϕ 0 , ϕ 1 ), so it suffices to establish these inequalities when ω is a Kähler form.

We nevertheless give a direct proof, valid when ω is merely semi-positive, with several intermediate results of independent interest. Several of these results have been obtained by Darvas in [Dar13,Dar14,Dar15] when ω is Kähler.

Lemma 3.7 Assume ϕ 0 , ϕ 1 ∈ H satisfy ϕ 0 ≤ ϕ 1 . Then 1) d p ϕ 1 , ϕ 0 +ϕ 1 2 ≤ d p (ϕ 0 , ϕ 1 ); 2) d p (ϕ 0 , ϕ 1 ) ≤ 2 1+n/p d p (ϕ 0 /2, ϕ 1 /2); 3) if ϕ 1 = 0 then d p (ϕ 0 , 0) ≥ 2d p (ϕ 0 /2, 0); 4) If ψ ∈ H is such that ϕ 0 ≤ ψ ≤ ϕ 1 , then max{d p (ϕ 0 , ψ); d p (ψ, ϕ 1 )} ≤ d p (ϕ 0 , ϕ 1 ).
Proof. Let ϕ t (resp. ψ t ) denote the Mabuchi geodesic joining ϕ 0 (resp. (ϕ 0 + ϕ 1 )/2) to ϕ 1 . Since ϕ 0 ≤ ϕ 1 , it follows from Lemma 3.3.ii that t → ϕ t , t → ψ t are increasing and ϕ t ≤ ψ t hence

ϕ t -ϕ 1 t -1 ≥ ψ t -ψ 1 t -1 since ϕ 1 = ψ 1 . Therefore φ1 ≥ ψ1 ≥ 0 and we infer X | ψ1 | p M A(ψ 1 ) = d p ϕ 1 , ϕ 0 + ϕ 1 2 p ≤ d p (ϕ 0 , ϕ 1 ) p = X | φ1 | p M A(ϕ 1 ).
This proves 1).

Let now (ϕ t ) (resp. (ψ t )) denote the geodesic joining ϕ 0 to ϕ 1 (resp. ϕ 0 /2 to ϕ 1 /2). Observe that t → ϕ t , ψ t are increasing hence φ0 ≥ 0. The family (ϕ t /2) is a subgeodesic joining ϕ 0 /2 to ϕ 1 /2, hence ϕ t /2 ≤ ψ t and

0 ≤ φ0 2 ≤ ψ0 =⇒ | φ0 | p ≤ 2 p | ψ0 | p .
Moreover M A(ϕ 0 ) ≤ 2 n M A(ϕ 0 /2), so we infer

d p (ϕ 0 , ϕ 1 ) p = X | φ0 | p M A(ϕ 0 ) ≤ 2 n+p d p (ϕ 0 /2, ϕ 1 /2) p , which proves 2). A similar argument shows that 0 ≤ ψ1 ≤ φ1 2 =⇒ ψ1 p ≤ 2 -p | φ1 | p . Now M A(ϕ 1 /2) = M A(ϕ 1 ) = M A(0) when ϕ 1 = 0, hence d p (ϕ 0 , 0) p = X | φ1 | p M A(0) ≥ 2 p d p (ϕ 0 /2, 0) p ,
which yields 3).

It remains to prove 4). Let (ϕ t ) 0≤t≤1 (resp. (ψ t ) 0≤t≤1 ) be the geodesic joining ϕ 0 to ϕ 1 (resp. ϕ 0 to ψ). Observe that ϕ 0 = ψ 0 and ψ t ≤ ϕ t , hence ψ0 ≤ φ0 . Moreover 0 ≤ ψ0 since t → ψ t (x) is increasing. We infer

d p (ϕ 0 , ψ) p = X | ψ0 | p M A(ϕ 0 ) ≤ X | φ0 | p M A(ϕ 0 ) = d p (ϕ 0 , ϕ 1 ) p .
The other inequality is proved similarly. Proposition 3.8 For all ϕ 0 , ϕ 1 ∈ H,

0 ≤ d p (ϕ 0 , ϕ 1 ) ≤ 2I p (ϕ 0 , ϕ 1 ). Moreover if ϕ 0 ≤ ϕ 1 then I p (ϕ 0 , ϕ 1 ) ≤ X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) 1/p and d p (ϕ 0 , ϕ 1 ) ≤ X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) 1/p ≤ 2 1+n/p d p (ϕ 0 , ϕ 1 ).
Proof. We first assume that ϕ 0 ≤ ϕ 1 . The inequality

I p (ϕ 0 , ϕ 1 ) ≤ X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) 1/p
follows from Lemma 2.18. Let (ϕ t ) be the geodesic joining

ϕ 0 to ϕ 1 . It follows from Lemma 3.3 that 0 ≤ φ0 ≤ ϕ 1 -ϕ 0 ≤ φ1 hence X (ϕ 1 -ϕ 0 ) p M A(ϕ 1 ) ≤ X ( φ1 ) p M A(ϕ 1 ) = d p (ϕ 0 , ϕ 1 ) p (6) and similarly d p (ϕ 0 , ϕ 1 ) p ≤ X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ).
We give an alternative proof of this upper bound which could be of interest in more singular contexts. We can join ϕ 0 to ϕ 1 by a straight line ϕ t = tϕ 1 + (1 -t)ϕ 0 . This is a smooth path both in H ω and H ωε , hence its length dominates the distance d p (see Remark 1.11). Hölder inequality yields

d p (ϕ 0 , ϕ 1 ) ≤ p (ϕ) = 1 0 X (ϕ 1 -ϕ 0 ) p M A(ϕ t ) 1/p dt ≤ 1 0 X (ϕ 1 -ϕ 0 ) p M A(ϕ t )dt 1/p . Now M A(ϕ t ) = V -1 α n j=0 n j t j (1 -t) n-j ω j ϕ 1 ∧ ω n-j ϕ 0 and for 0 ≤ j ≤ n, 1 0 t j (1 -t) n-j dt = (n + 1) -1 n j -1 , hence 1 (n + 1)V α n j=0 X (ϕ 1 -ϕ 0 ) p ω j ϕ 1 ∧ ω n-j ϕ 0 ≤ X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ),
as follows from Lemma 2.18, yielding

d p (ϕ 0 , ϕ 1 ) ≤ X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) 1/p . We now show that X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) ≤ 2 n+p d(ϕ 0 , ϕ 1 ) p . Observe that ϕ 0 +ϕ 1 M A(ϕ 0 ) ≤ 2 n M A ϕ 0 +ϕ 1 2 hence X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) = 2 p X ϕ 0 + ϕ 1 2 -ϕ 0 p M A(ϕ 0 ) ≤ 2 n+p X ϕ 0 + ϕ 1 2 -ϕ 0 p M A ϕ 0 + ϕ 1 2 ≤ 2 n+p d p ϕ 0 , ϕ 0 + ϕ 1 2 p ,
as follows from the first step of the proof since ϕ 0 ≤ ϕ 1 . Lemma 3.7.4 yields

d p ϕ 0 , ϕ 0 + ϕ 1 2 ≤ d p (ϕ 0 , ϕ 1 ) hence X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) ≤ 2 n+p d p (ϕ 0 , ϕ 1 ) p .
We finally treat the first upper bound of the Proposition which does not require ϕ 0 to lie below ϕ 1 . It follows from the triangle inequality that

d p (ϕ 0 , ϕ 1 ) ≤ d p (ϕ 0 , max(ϕ 0 , ϕ 1 )) + d p (max(ϕ 0 , ϕ 1 ), ϕ 1 ) ≤ {ϕ0<ϕ1} (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) 1/p + {ϕ0>ϕ1} (ϕ 0 -ϕ 1 ) p M A(ϕ 1 ) 1/p ≤ 2 1-1/p X |ϕ 1 -ϕ 0 | p [M A(ϕ 0 ) + M A(ϕ 1 )] 1/p = 2 X |ϕ 1 -ϕ 0 | p [M A(ϕ 0 ) + M A(ϕ 1 )] 2
1/p by using the elementary inequality a 1/p + b 1/p ≤ 2 1-1/p (a + b) 1/p . Remark 3.9 Working with ψ = tϕ 0 + (1 -t)ϕ 1 , 0 < t < 1, instead of ϕ 0 +ϕ 1 2 , one can improve the above inequality and obtain

X (ϕ 1 -ϕ 0 ) p M A(ϕ 0 ) 1/p ≤ (n + p) 1+n/p p n n/p d p (ϕ 0 , ϕ 1 ).
We now extend Lemma 3.7.1, following [Dar15, Lemma 5.3]:

Lemma 3.10 For all ϕ 0 , ϕ 1 ∈ H,

d p ϕ 0 , ϕ 0 + ϕ 1 2 ≤ 2 2+n/p d p (ϕ 0 , ϕ 1 ).
Proof. When ϕ 0 ≤ ϕ 1 , this follows from Lemma 3.7.1. Replacing ω by ω + dd c ϕ 0 , we can assume without loss of generality that ϕ 0 = 0. The triangle inequality yields

d p 0, ϕ 1 2 ≤ d p 0, 0 ∨ ϕ 1 2 + d p 0 ∨ ϕ 1 2 , ϕ 1 2 .
Observe that 0 ∨ ϕ 1 ≤ 0 ∨ ϕ 1 2 ≤ min(0, ϕ 1 2 ). It follows therefore from Lemma 3.7.4 that

d p 0, 0 ∨ ϕ 1 2 + d p 0 ∨ ϕ 1 2 , ϕ 1 2 ≤ d p (0, 0 ∨ ϕ 1 ) + d p 0 ∨ ϕ 1 , ϕ 1 2 .
Since 0 ∨ ϕ 1 ≤ 0 and 0 ∨ ϕ 1 ≤ ϕ 1 2 , we can invoke Proposition 3.8 to obtain

d p (0, 0 ∨ ϕ 1 ) + d p 0 ∨ ϕ 1 , ϕ 1 2 ≤ X |0 ∨ ϕ 1 | p M A(0 ∨ ϕ 1 ) 1/p + X |0 ∨ ϕ 1 - ϕ 1 2 | p M A(0 ∨ ϕ 1 ) 1/p ≤ 2 1-1/p X |0 ∨ ϕ 1 | p + |0 ∨ ϕ 1 - ϕ 1 2 | p M A(0 ∨ ϕ 1 ) 1/p .
Recall now that the measure M A(0 ∨ ϕ 1 ) is supported on the contact set S := {x ∈ X ; 0 ∨ ϕ 1 (x) = min(0, ϕ 1 )(x)}. On this set we have

|0 ∨ ϕ 1 | p + |0 ∨ ϕ 1 - ϕ 1 2 | p ≤ 2|ϕ 1 | p = 2 [|0 ∨ ϕ 1 | p + |0 ∨ ϕ 1 -ϕ 1 | p ] ,
while Proposition 3.8 yields

X [|0 ∨ ϕ 1 | p + |0 ∨ ϕ 1 -ϕ 1 | p ] M A(0 ∨ ϕ 1 ) ≤ 2 p+n [d p (0, 0 ∨ ϕ 1 ) p + d p (0 ∨ ϕ 1 , ϕ 1 ) p ] = 2 p+n d p (0, ϕ 1 ) p ,
where the last equality follows from Proposition 3.4. Altogether this yields d p 0, ϕ 1 2 ≤ 2 2+n/p d p (0, ϕ 1 ), as claimed.

We are now ready to prove Theorem 3.6.

Proof. We have already observed that d p (ϕ 0 , ϕ 1 ) ≤ 2I p (ϕ 0 , ϕ 1 ) in Proposition 3.8, so we focus on the reverse control. Lemma 3.10 and Proposition 3.4 yield

2 2p+n d p p (ϕ 0 , ϕ 1 ) ≥ d p p ϕ 0 , ϕ 0 + ϕ 1 2 = d p p ϕ 0 , ϕ 0 ∨ ϕ 0 + ϕ 1 2 + d p p ϕ 0 + ϕ 1 2 , ϕ 0 ∨ ϕ 0 + ϕ 1 2
It follows from ( 6) together with the fact that 2 n MA ϕ 0 +ϕ 1 2 ≥ MA(ϕ 0 ) that

d p p ϕ 0 , ϕ 0 ∨ ϕ 0 + ϕ 1 2 ≥ X ϕ 0 - ϕ 0 + ϕ 1 2 ∨ ϕ 0 p MA(ϕ 0 )
and

d p p ϕ 0 + ϕ 1 2 , ϕ 0 ∨ ϕ 0 + ϕ 1 2 ≥ 2 -n X ϕ 0 + ϕ 1 2 -ϕ 0 ∨ ϕ 0 + ϕ 1 2 p MA(ϕ 0 ). Hence d p p (ϕ 0 , ϕ 1 ) ≥ 2 -2(p+n) X ϕ 0 - ϕ 0 + ϕ 1 2 ∨ ϕ 0 p + ϕ 0 + ϕ 1 2 - ϕ 0 + ϕ 1 2 ∨ ϕ 0 p MA(ϕ 0 ) ≥ 2 1-3p-2n X ϕ 0 - ϕ 0 + ϕ 1 2 p MA(ϕ 0 ) = 2 1-4p-2n X |ϕ 0 -ϕ 1 | p MA(ϕ 0 )
where in the last inequality we used the fact that |a -b| p ≤ 2 p-1 (a p + b p ), for any a, b ∈ R + .

Reversing the role of ϕ 0 adn ϕ 1 we get

d p p (ϕ 0 , ϕ 1 ) ≥ 2 1-4p-2n X |ϕ 1 -ϕ 0 | p MA(ϕ 1 )
from which it follows d p p (ϕ 0 , ϕ 1 ) ≥ 2 1-4p-2n I p p (ϕ 0 , ϕ 1 ).

Controlling the sup

It follows from previous results that the supremum of a bounded potential with locally bounded laplacian in Amp (α) is controlled by the distance to the base point:

Lemma 3.11 There exists C > 0 such that for all ϕ ∈ H,

-2 4+2n d 1 (0, ϕ) ≤ sup X ϕ ≤ 2 4+2n (n + 1)d 1 (0, ϕ) + C Proof. If sup X ϕ ≤ 0, then sup X ϕ ≤ 0 ≤ (n + 1)d 1 (0, ϕ) + C, while -d 1 (0, ϕ) = E(ϕ) ≤ sup X ϕ,
as follows from Proposition 3.12. We therefore assume in the sequel that sup X ϕ ≥ 0. If ϕ ≥ 0, then Proposition 3.12 yields

1 n + 1 X ϕM A(0) ≤ E(ϕ) = d 1 (0, ϕ).
It is a classical consequence of the ω-plurisubharmonicity [GZ05, Proposition 2.7] that there exists C > 0 such that such that for all ϕ ∈ P SH(X, ω),

sup X ϕ ≤ X ϕ M A(0) + C. Thus sup X ϕ ≤ (n + 1)d 1 (0, ϕ) + C.
When sup X ϕ ≥ 0 but ϕ takes both positive and negative values, we set ψ = max(0, ϕ) and observe that sup X ψ = sup X ϕ. Using Propositions 2.19, 3.8 and Theorem 3.6 we obtain

d 1 (0, max(0, ϕ)) ≤ 2I 1 (0, max(0, ϕ)) ≤ 2I 1 (0, ϕ) ≤ 2 5-(2n-1)/p d 1 (0, ϕ).
The conclusion follows therefore from the previous case. Proposition 3.12 Assume ϕ, ψ ∈ H. Then

d 1 (ϕ, ψ) = E(ϕ) + E(ψ) -2E(ϕ ∨ ψ).
Proof. Assume first that ϕ ≤ ψ and let (ϕ t ) 0≤t≤1 denote the geodesic joining ϕ to ψ. Then φt (x) ≥ 0 for all t, x, hence

d 1 (ϕ, ψ) = 1 0 X φt M A(ϕ t ) dt = 1 0 d dt E(ϕ t )dt = E(ψ) -E(ϕ).
To treat the general case we use Proposition 3.4, which yields

d 1 (ϕ, ψ) = d 1 (ϕ, ϕ ∨ ψ) + d 1 (ϕ ∨ ψ, ψ) = E(ϕ) -E(ϕ ∨ ψ) + E(ψ) -E(ϕ ∨ ψ),
as claimed.

The metric space of Kähler currents 4. The complete geodesic space (E p (X, ω), d p )

Metric completion

For ϕ, ψ ∈ E p (X, ω) we let ϕ j , ψ k denote sequences of elements in H bd decreasing to ϕ, ψ respectively, and set

D p (ϕ, ψ) := lim inf j,k→+∞ d p (ϕ j , ψ k ).
We list in the proposition below various properties of this extension.

Proposition 4.1 i) D p is a distance on E p (X, ω) which coincides with d p on H bd ; ii) the definition of D p is independent of the choice of the approximants; iii) D p is continuous along decreasing sequences in E p (X, ω).

Moreover all previous inequalities comparing d p and I p on H bd extend to inequalities between D p and I p on E p (X, ω).

In the sequel we will therefore denote D p by d p .

Proof. It is a tedious exercise to verify that D p defines a "semi-distance", i.e. satisfies all properties of a distance but for the separation property. It follows from the definition of D p and Proposition 2.17 that Theorem 3.6 extends in a natural way to potentials in E p (X, ω). If D p (ϕ, ψ) = 0, it follows therefore that I p (ϕ, ψ) = 0 hence ϕ = ψ by the domination principle.

One can check that D p coincides with d p on H bd as follows: using ii) one can use the constant sequences ϕ j ≡ ϕ and ψ k ≡ ψ to obtain this equality.

We now prove ii). Let ϕ j , u j (resp. ψ k , v k ) denote two sequences of elements of H bd decreasing to ϕ (resp. ψ). We can assume without loss of generality that these sequences are intertwining, i.e. for all j, k ∈ N, there exists , q ∈ N such that ϕ j ≤ u and ψ k ≤ v q , with similar reverse inequalities. It follows from Proposition 3.8 and the triangle inequality that

|d p (ϕ j , ψ k ) -d p (u , v q )| ≤ d p (ϕ j , u ) + d p (ψ k , v q ) ≤ 2I p (ϕ j , u ) + 2I p (ψ k , v q ).
Now, again by Proposition 3.8 we get

I p (ϕ j , u ) p ≤ X (u -ϕ j ) p M A(ϕ j ) ≤ (p + 1) n X (u -ϕ) p M A(ϕ)
where the last inequality follows from [GZ07, Lemma 3.5]. The monotone convergence theorem therefore yields I p (ϕ j , u ) + I p (ψ k , v q ) → 0 as , q → +∞, proving ii).

One shows iii) with similar arguments. The extension of the inequalities comparing d p and I p follows from [BEGZ10, Theorem 2.17]. Proof. Let (ϕ j ) ∈ E p norm (X, ω) N be a Cauchy sequence for d p . Since sup X ϕ j is bounded, the sequence is relatively compact for the (weak) L 1 -topology. Let ψ be a cluster point for the L 1 -topology. We claim that ψ ∈ E p norm (X, ω), d p (ϕ j , ψ) → 0 and I(ψ, ϕ j ) → 0.

Extracting and relabelling, we can assume that

ϕ j L 1 -→ ψ and d p (ϕ j , ϕ j+1 ) ≤ 2 -j . Set ϕ -1 ≡ 0 and for k ≥ j, ψ j,k := ϕ j ∨ ϕ j+1 ∨ • • • ∨ ϕ k . Observe that d p (0, ψ j,k ) ≤ j-1 =-1 d p (ϕ , ϕ +1 ) + d p (ϕ j , ψ j,k ) ≤ j =-1 d p (ϕ , ϕ +1 ) + d p (ϕ j+1 , ψ j+1,k ) ≤ 4, as d p (ϕ j , ψ j,k ) = d p (ϕ j , ϕ j ∨ ψ j+1,k ) ≤ d p (ϕ j , ψ j+1,k ) ≤ 2 -j + d p (ϕ j+1 , ψ j+1,k ).
It follows from Proposition 3.8 and Theorem 3.6 that I p (0, ψ j,k ) is uniformly bounded hence ψ j := lim k→+∞ ψ j,k ∈ E p (X, ω). Now ψ j increases a.e. towards ψ, hence ψ ∈ E p norm (X, ω) and [BEGZ10, Theorem 2.17] yields I(ψ, ψ j ) + I p (ψ j , ψ) -→ 0.

It follows therefore from Proposition 3.8 that d p (ψ, ψ j ) → 0 and

d p (ψ, ϕ j ) ≤ d p (ψ, ψ j ) + d p (ψ j , ϕ j ) ≤ d p (ψ, ψ j ) + 2 1-j → 0.
Recalling that ψ j ≤ ϕ j , it follows from the quasi-triangle inequality, Proposition 2.14 and Theorem 3.6 that

I(ψ, ϕ j ) ≤ c n {I(ψ, ψ j ) + I(ψ j , ϕ j )} ≤ c n,p {I(ψ, ψ j ) + d p (ψ j , ϕ j )} → 0.
It remains to treat the case of a Cauchy sequence (ϕ j ) ∈ E p (X, ω) N . The only extra information we need to add is that (sup X ϕ j ) j is a bounded sequence of real numbers. This follows from Lemma 3.11, the fact that d p (0, ϕ j ) ≤ 4 and Hölder inequality, which guarantees that d p dominates d 1 .

Recall that the precompletion of a metric space (X, d) is the set of all Cauchy sequences C X of X, together with the semi-distance δ({x j }, {y j }) = lim j→+∞ d(x j , y j ).

The metric completion (X, d) of (X, d) is the quotient space C X / ∼, where {x j } ∼ {y j } ⇐⇒ δ({x j }, {y j }) = 0, equipped with the induced distance that we still denote by d.

Recall that a path metric space is a metric space for which the distance between any two points coincides with the infimum of the lengths of rectifiable curves joining the two points. By construction the space (H, d) is a path metric space. For such metric spaces, an alternative description of the metric completion can be obtained as follows: consider C X the set of all rectifiable curves γ : (0, 1] → X equipped with the semi-distance δ(γ, γ) := lim t→0 d(γ(t), γ(t)).

The metric completion (X, d) is then the quotient space C X / ∼ which identifies zero-distance curves γ, γ.

Both constructions yield a rather abstract view on the metric completion. We are now taking advantage of the fact that H bd lives inside the complete metric space (E p (α), d p ) to conclude that:

Theorem 4.3 The metric completion of (H bd , d p ) is isometric to (E p (X, ω), d p ).

Thanks to Theorem 3.6, an equivalent formulation of the above statement is that the metric completion of (H bd , d p ) is bi-Lipschitz equivalent to (E p (X, ω), I p ).

Proof. We work at the level of normalized potentials,

E p 0 (X, ω) = {ϕ ∈ E p (X, ω) | E(ϕ) = 0} and H 0 := {ϕ ∈ H bd | ω + dd c ϕ ≥ 0 and E(ϕ) = 0}.
Since (E p 0 (X, ω), d p ) is a complete metric space that contains H 0 , it suffices to show that the latter is dense in E p 0 (X, ω). Fix ϕ ∈ E p 0 (X, ω) and let (ϕ j ) ∈ H N 0 be a sequence quasi-decreasing to ϕ : the normalization condition E(ϕ j ) = 0 prevents from getting a truly decreasing sequence, however ϕ j + ε j is decreasing where ε j is a sequence of real numbers decreasing to zero. It follows from Proposition 3.8 that Lemma 3.5] shows that the latter is bounded from above by (p + 1) n X (ϕ j -ϕ) p M A(ϕ) + ε j which converges to zero as j → +∞, as follows from the monotone convergence theorem. Therefore (ϕ j ) is a Cauchy sequence in (H 0 , d p ) which converges to ϕ since 0 ≤ d p (ϕ, ϕ j + ε j ) ≤ lim inf →+∞ d p (ϕ j+ , ϕ j ) ≤ 2(1 + p) n/p I p (ϕ j , ϕ) + ε 1/p j → 0 by Proposition 3.8 and [BEGZ10, Theorem 2.17].

d p (ϕ j+ + ε j+l , ϕ j + ε j ) p ≤ X (ϕ j -ϕ j+ ) p M A(ϕ j+ ) + ε j . Now [GZ07,
We note the following alternative approach of independent interest. One first shows that H 0 is dense in the set of all bounded ω-psh functions. Given ϕ ∈ E p 0 (X, ω) one then considers its "canonical approximants"

ϕ j = max(ϕ, -j) + ε j ∈ P SH 0 (X, ω) ∩ L ∞ (X)
which decrease towards ϕ ∈ E p 0 (X, ω). It follows from Proposition 3.8 that

d p (ϕ j+ , ϕ j ) p ≤ o(1) + X (ϕ j -ϕ j+ ) p M A(ϕ j+ ) = o(1) + (ϕ≤-j-) p M A(ϕ j+ ) + (-j-<ϕ<-j) (ϕ j -ϕ j+ ) p M A(ϕ) = o(1) + (ϕ≤-j-) p M A(ϕ) + (-j-<ϕ<-j) (ϕ j -ϕ j+ ) p M A(ϕ) ≤ o(1) + (ϕ<-j) ϕ p M A(ϕ),
where we have used the maximum principle together with the fact that

(ϕ≤-k) M A(ϕ k ) = X M A(ϕ k ) - (ϕ>-k) M A(ϕ k ) = (ϕ≤-k) M A(ϕ),
since ϕ ∈ E(X, ω), as follows again from the maximum principle. We infer that (ϕ j ) is a Cauchy sequence which converges to ϕ.

We are now in position to prove Theorem B of the introduction: We now define finite energy geodesics joining two finite energy endpoints ϕ 0 , ϕ 1 ∈ E 1 (X, ω). Fix j ∈ N and consider ϕ j 0 , ϕ j 1 bounded ω-psh functions decreasing to ϕ 0 , ϕ 1 . We let ϕ t,j denote the bounded geodesic joining ϕ j 0 to ϕ j 1 . It follows from the maximum principle that j → ϕ t,j is non-increasing. We can thus set

Corollary 4.4 Assume ω = π ω Y ,
ϕ t := lim j→+∞ ϕ t,j .
Definition 4.5 The map (t, x) → ϕ t (x) is the (finite energy) Mabuchi geodesic joining ϕ 0 to ϕ 1 .

The ϕ t 's form indeed a family of finite energy functions : since t → E(ϕ t,j ) is affine (Lemma 2.9), we infer for all j ∈ N,

(1 -t)E(ϕ 0 ) + tE(ϕ 1 ) ≤ (1 -t)E(ϕ (j) 0 ) + tE(ϕ (j) 1 ) = E(ϕ t,j ), hence ϕ t ∈ E 1 (X, ω) with (1 -t)E(ϕ 0 ) + tE(ϕ 1 ) = E(ϕ t ).
It follows from the maximum principle that ϕ t is independent of the choice of the approximants ϕ j 0 , ϕ j 1 : if we set ϕ(x, z) := ϕ t (x), z = t + is, then ϕ is a maximal ω-psh function in X × S, as a decreasing limit of maximal ω-psh functions. It is thus the unique maximal ω-psh function in X × S with boundary values ϕ 0 , ϕ 1 . When ϕ 0 , ϕ 1 belong to E p (X, ω), these weak geodesics are again metric geodesics in the complete metric space (E p (X, ω), d p ): Proposition 4.6 Given ϕ 0 , ϕ 1 ∈ E p (X, ω), the Mabuchi geodesic ϕ joining ϕ 0 to ϕ 1 lies in E p (X, ω) and satisfies, for all t, s ∈ [0, 1],

d p (ϕ t , ϕ s ) = |t -s| d p (ϕ 0 , ϕ 1 ). Thus (E p (X, ω), d p ) is a geodesic space.
Proof. We can assume without loss of generality that ϕ 0 , ϕ 1 ≤ 0. Fix j ∈ N and consider ϕ j 0 , ϕ j 1 bounded ω-psh functions decreasing to ϕ 0 , ϕ 1 . We let ϕ t,j denote the bounded geodesic joining ϕ j 0 to ϕ j 1 , which decreases towards ϕ t as j increases to +∞. Observe that ϕ 0 ∨ ϕ 1 ≤ ϕ j 0 ∨ ϕ j 1 ≤ ϕ t,j . It follows therefore from [GZ07, Lemma 3.5] and Lemma 4.7 that X (-ϕ t,j ) p M A(ϕ t,j ) ≤ (p + 1) n X (-ϕ 0 ∨ ϕ 1 ) p M A(ϕ 0 ∨ ϕ 1 ) < +∞ Theorem 4.9 Assume ω = π ω Y , where ω Y is a Hodge form. Then the space (E 2 (X, ω), d 2 ) is a CAT(0) space.

Complete CAT(0) spaces are also called Hadamard spaces. Recall that a CAT(0) space is a geodesic space which has non positive curvature in the sense of Alexandrov. Hadamard spaces enjoy many interesting properties (uniqueness of geodesics, contractibility, convexity properties,...see [BH99]).

Proof. By Corollary 4.4 we know that (E 2 (X, ω), d 2 ) is the completion of (H ω , d 2 ). Note that (H ω , d 2 ) is a complete path metric space, being the completion of the path metric space (H ω , d 2 ). The Hopf-Rinow-Cohn-Vossen theorem (see [BH99, Proposition I.3.7]) insures that a complete locally compact path metric space is automatically a geodesic space. Here (H ω , d 2 ) is not locally compact (it is merely locally weakly compact), but we have a natural candidate for the minimizing geodesics.

[BH99, Exercise 1.9. 

(Q, M ) = d 2 (R, M ) = d 2 (Q, R)/2 one has d 2 (M, P ) 2 ≤ 1 2 d 2 (P, Q) 2 + 1 2 d 2 (P, R) 2 - 1 4 d 2 (Q, R) 2 . ( 7 
)
Calabi and Chen proved in [CC02, Theorem 1.1] that (H ω , d 2 ) satisfies the CN inequality (7) in the case when the reference form ω is Kähler. The result extends to our present setting by approximation (Theorem 1.13).

Moreover, the CN inequality extends to E 2 (X, ω) by density. It follows therefore from [BH99, Corollary II.3.11] that (H ω , d 2 ) is a CAT(0) space.

Singular Kähler-Einstein metrics of positive curvature

The existence of singular Kähler-Einstein metrics of non-positive curvature has been established in [EGZ09], generalizing the fundamental work of Aubin [Aub78] and Yau [Yau78]. They always exist, provided the underlying variety has mild singularities and the first Chern class is nonpositive.

Singular Kähler-Einstein metrics of positive curvature are more difficult to construct. It is already so in the smooth case [CDS15]. Their first properties have been obtained in [BBGZ13, BBEGZ]. In Section 5.3, pushing further these works, we provide a necessary and sufficient analytic condition for their existence, generalizing a result of Tian [Tian97] and Phong-Song-Sturm-Weinkove [PSSW08].

Log terminal singularities

A pair (Y, D) is the data of a connected normal compact complex variety Y and an effective

Q-divisor D such that K Y + D is Q-Cartier. We write Y 0 := Y reg \ SuppD.
Given a log resolution π : X → Y of (Y, D) (which may be chosen to be an isomorphism over Y 0 ), there exists a unique Q-divisor i a i E i whose push-forward to Y is -D and such that

K X = π * (K Y + D) + i a i E i . Definition 5.1 The pair (Y, D) is klt if a j > -1 for all j.
The same condition will then hold for all log resolutions of Y . When D = 0, one says that Y is log terminal when the pair (Y, 0) is klt. We have the following analytic interpretation. Fix r ∈ N * such that r(K Y + D) is Cartier. If σ is a nowhere vanishing section of the corresponding line bundle over a small open set U of Y then 

i rn 2 σ ∧ σ 1/r (8) defines a smooth, positive volume form on U 0 := U ∩ Y 0 . If f j is a local equation of E j around a point of π -1 (U ), then π * i rn 2 σ ∧ σ 1/r = i |f i | 2a i dV locally on π -1 (U )
φ := i rn 2 σ ∧ σ 1/r /|σ| 2/r rφ .
The point is that the measure mes φ does not depend on the choice of σ, hence is globally defined. The above discussion shows that (Y, D) is klt ⇐⇒ mes φ has finite total mass on Y, in which case we view it as a Radon measure on the whole of Y . Let (Y, D) be a log Fano pair. Fix a reference smooth strictly psh metric φ 0 on -(K Y + D), with curvature ω 0 and adapted measure µ 0 = mes φ 0 . We normalize φ 0 so that µ 0 is a probability measure. The volume of (Y, D) is

V := c 1 (Y, D) n = X ω n 0 . Definition 5.4 A Kähler-Einstein metric T for the log Fano pair (Y, D) is a finite energy current T ∈ c 1 (Y, D) such that T n = V • µ T .
We now list some important properties of these objects established in [BBGZ13, Bern15, BBEGZ]:

-A Kähler-Einstein metric ω is automatically smooth on Y 0 , with continuous potentials on Y , and it satisfies

Ric(ω KE ) = ω KE + [D] on Y reg .
-The definition of a log Fano pair requires the singularities to be klt. This condition is in fact necessary to obtain K-E metrics on Y reg .

-The Kähler-Einstein equation reads (ω 0 + dd c φ) n = e -φ+c µ 0 for some constant c ∈ R. If we choose a log resolution, the equation becomes (ω + dd c ϕ) n = e -ϕ+c µ 0 , where ω = π * ω 0 is semipositive and big and µ 0 = i |f i | 2a i dV .

-The potential ϕ belongs to H and maximizes the functional F(ϕ) := E(ϕ) + log X e -ϕ d µ 0 . Conversely any maximizer of F is a Kähler-Einstein metric.

-Two Kähler-Einstein metrics are connected by the flow of a holomorphic vector field that leaves D invariant.

-If the functional F is proper (i.e. if E(ϕ j ) → -∞ ⇒ F(ϕ j ) → -∞), then there exists a unique Kähler-Einstein metric.

Here [D] is the integration current on D| Yreg . Writing Ric(ω KE ) on Y reg implicitely means that the positive measure ω n KE | Yreg corresponds to a singular metric on -K Yreg , whose curvature is then Ric(ω KE ) by definition.

The analytic criterion

Following and idea of , we now extend [Tian97,Theorem 1.6] and [PSSW08] by proving the following: Theorem 5.5 Let (Y, D) be a log Fano pair. It admits a unique Kähler-Einstein metric iff there exists ε, M > 0 such that for all ϕ ∈ H norm , F(ϕ) ≤ -εd 1 (0, ϕ) + M. This is Theorem D of the introduction.

Proof. We are going to use Theorem B. Note that ω Y ∈ c 1 (-K X -D) is a Hodge form. One implication is due to [BBEGZ,Theorems 4.8 and 5.4]: if F(ϕ) ≤ -εd 1 (0, ϕ) + M, then F is proper, hence there exists a unique Kähler-Einstein metric.

So we assume now that there exists ω a unique Kähler-Einstein metric, which we take as our base point of H. It is the unique maximizer of F on E 1 (X, ω),

F(0) = sup ϕ∈E 1 (X,ω) F(ϕ),
as follows from [BBGZ13, Theorem 6.6], [BBEGZ,Theorems 4.8 and 5.3].

Note that F is invariant by translations, so we actually consider the restriction of F on E 1 norm (X, ω) = {ϕ ∈ E 1 (X, ω), sup X ϕ = 0}. Assume for contradiction that there is no ε > 0 such that F(ϕ) ≤ -εd 1 (0, ϕ) + M for all ϕ ∈ H norm , where we set M := F(0) + 1. Then we can find a sequence (ϕ j ) ∈ H N such that sup X ϕ j = 0 and F(ϕ j ) > -d 1 (0, ϕ j ) j + 1 + F(0) + 1.

given by

G ref (s) = 1 2 d i=1 i (s) log i (s) + ∞ (s) log ∞ (s)
where ∞ (s) = d i=1 s, u i . We refer the reader to [CDG03] for a neat proof of this beautiful formula of Guillemin. 6.1 Toric geodesics Let (X, ω, T ) be a compact toric manifold. Here (and through all the section) ω is a genuine Kähler form. In the sequel we let P SH tor (X, ω), E • tor (X, ω), H tor denote the (S 1 ) n -invariant versions of the classes of ω-psh functions we have considered so far.

If ϕ 0 , ϕ 1 ∈ H tor are both (S 1 ) n -invariant, it follows from the uniqueness that the geodesic (ϕ t ) 0≤t≤1 consists of (S 1 ) n -invariant functions. Let F t denote the corresponding potentials in R n so that

F t • L = F ref • L + ϕ t in (C * ) n .
Proposition 6.2 [Guan99] The map (x, t) → ϕ t (x) is smooth and corresponds to the Legendre transform of an affine path on P . In other words the Legendre transform G t of F t is affine in t.

We include the proof for the reader's convenience. Therefore (ϕ t ) is a geodesic if and only if Gt ≡ 0.

ϕ j -→ ϕ 0 in (E q (X, ω), d q ) iff ε 1+1/q j C j → 0;

The convergence in (E 1 (X, ω), d 1 ) is here the convergence in the Sobolev norm W 1,2 . For ε j = 1/j, C j = j 3/2 we therefore obtain an example of a sequence which converges in the Sobolev sense but not in the Mabuchi metric d 2 . Observe that this example also shows that the convergence in the Mabuchi sense is weaker than the uniform convergence.

Toric singularities

Let ϕ ∈ H ω be a toric potential. We are going to read off the singular behavior of ϕ from the integrability properties of the Legendre transform of its associated convex potential.

We let F ϕ and G ϕ denote the corresponding convex function and its Legendre transform. The function ϕ is bounded if and only if so is

F ϕ -F ref on R n , since F ϕ • L = F ref • L + ϕ, if
and only if so is G ϕ on P , as G ref (Guillemin's potential) is continuous on P . The same conclusion holds if we take as a reference potential the support function F P of P , defined by

F P (x) := sup s∈P s, x .
It is the Legendre transform of the function G P which is identically 0 on P and +∞ in R n \ P . We can similarly understand finite energy classes: Proposition 6.5 ϕ ∈ P SH tor (X, ω) ∩ L ∞ (X) ⇐⇒ G ϕ ∈ L ∞ (P ).

ϕ ∈ E q tor (X, ω) ⇐⇒ G ϕ ∈ L q (P ).

We refer the reader to [BerBer13, Proposition 2.9] for an elegant proof of this result when q = 1.

Proof. We first show that ϕ ∈ E q tor (X, ω) =⇒ G ϕ ∈ L q (P ). Approximating ϕ from above by a decreasing sequence of smooth strictly ω-psh toric functions, this boils down to show a uniform a priori bound ||G ϕ || L q (P ) ≤ C X |ϕ P -ϕ| q M A(ϕ) 1/q . for some uniform constant C > 0. We can assume without loss of generality that F ϕ ≤ F P (since ϕ is upper semi-continuous hence bounded from above on X which is compact). Recall that ϕ = (F ϕ -F ref ) • L in (C * ) n , where F ref denotes a reference potential associated to ω. Changing variables and using the Legendre transform yields

(C * ) n |ϕ -ϕ P | q M A(ϕ) = π 2 n R n |F ϕ -F P | q M A R (F ϕ ) = π 2 n P |F ϕ • ∇G ϕ (s) -F P • ∇G ϕ (s)| q ds,
where F ϕ (x) = x, s -G ϕ (s), with ∇G ϕ (s) = x. Therefore We now take care of the converse implication. Assume ϕ ∈ P SH tor (X, ω) is such that ϕ ≤ 0 and G ϕ ∈ L q (P ). It follows then from Proposition 3.8 and Proposition 6.3 that X (-ϕ) q M A(ϕ) ≤ 2 q+n d q (0, ϕ) q = 2 q+n C(n)||G ϕ -G 0 || q L q (P ) < +∞, hence ϕ ∈ E q tor (X, ω), as claimed.

It also follows from the previous arguments that:

Theorem 6.6 The metric completion of (H tor , d q ) is (E q tor , d p ).

Remark 6.7 We let the reader check that the Legendre transform G ϕ∨ψ of the minimum of two convex functions is

G ϕ∨ψ = max(G ϕ , G ψ ).
The orthogonality relation from Proposition 3.4 thus translates here 

Proposition 4. 2

 2 The metric spaces (E p norm (X, ω), d p ) and (E p (X, ω), d p ) are complete. The Mabuchi topology d p dominates the topology induced by I: if a sequence converges for d p , then it converges in energy.

5. 2

 2 Kähler-Einstein metrics on log Fano pairs Definition 5.3 A log Fano pair is a klt pair (Y, D) such that Y is projective and -(K Y + D) is ample.

Example 6. 1

 1 When X = CP n and ω is the Fubini-Study Kähler form, thenF ref (x) = 1 2 log 1 + n i=1 e 2x i , P = ∇F ref (R n ) is the simplex P = s i ≥ 0, 1 ≤ i ≤ n and n i=1 s i ≤ 1 , thus d = n + 1, i (s) = s i , λ i = 0, u i = e i for 1 ≤ i ≤ n, n+1 (s) = 1 -n i=1 s i , λ n+1 = -1, e n+1 = -nj=1 e j and ∞ ≡ 0 so thatG ref (s

  Proof. Recall thatG t (s) = sup x∈R n { x, s -F t (x)} = x t , s -F t (x t ), where x t = x t (s) is such that ∇F t (x t ) = s. Taking derivatives of this identity with respect to t yields ∂ 2 F t ∂x i ∂x j • [ ẋt ] = -∇ Ḟt hence Ġt (s) = -Ḟt (x t ) and Gt (s) = -Ft (x) -ẋt , ∇ Ḟt = -Ft (x) + ∂ 2 F t ∂x i ∂x j -1 • ∇ Ḟt , ∇ Ḟt = -Ft (x) + ∇ Ḟt 2 ωt .

F

  ϕ (∇G ϕ (s)) = ∇G ϕ (s), s -G ϕ (s)andF P (∇G ϕ (s)) -F (∇G ϕ (s)) = G ϕ (s) -{ ∇G ϕ (s), s -F P • ∇G ϕ (s)} ≥ G ϕ (s) -G P (s) = G ϕ (s) ≥ 0, since G P (s) = sup x∈R n { x, s -F P (x)} = 0 for s ∈ P . We infer ||G ϕ || q L q (P ) ≤ P |F P (∇G ϕ (s)) -F ϕ (∇G ϕ (s))| q ds ≤ 2 π n X|ϕ P -ϕ| q M A(ϕ).

  d p (ϕ, ϕ ∨ ψ) p = P (G ϕ∨ψ -G ϕ ) p = {Gϕ<G ψ } (G ψ -G ϕ ) p , while d p (ψ, ϕ ∨ ψ) p = {Gϕ>G ψ } (G ϕ -G ψ ) p so that d p (ϕ, ϕ ∨ ψ) p + d p (ϕ ∨ ψ, ψ) p = d p (ϕ, ψ) p .

  where ω Y is a Hodge form. Then the metric completion(H α , d p ) is isometric to (E p (α), d p ). Similarly the metric completion (H ω , d p ) is isometric to (E p (X, ω), d p ).Proof. Thanks to [CGZ, Corollary C] we can insure that the space H is dense in H bd . The result then follows from Theorem 4.3.

	4.2 Weak geodesics
	4.2.1 Finite energy geodesics

  1.c (p. 193)] insures that (H ω , d 2 ) is a CAT(0) space if and only if the CN inequality of Bruhat-Tits [BT72] holds, i.e. ∀P, Q, R ∈ H ω and for any M ∈ H ω such that d 2

  for some local volume form dV . Since i E i has normal crossings, this shows that (Y, D) is klt iff each volume form of the form (8) has locally finite mass near singular points of Y .

The previous construction globalizes as follows: Definition 5.2 Let (Y, D) be a pair and let φ be a smooth Hermitian metric on the Q-line bundle -(K Y + D). The corresponding adapted measure mes φ on Y reg is locally defined by choosing a nowhere zero section σ of r(K Y + D) over a small open set U and setting mes
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hence the monotone convergence theorem yields X (-ϕ t ) p M A(ϕ t ) < +∞, for all t, i.e. ϕ t ∈ E p (X, ω).

The remaining assertion is proved as in the case of bounded geodesics (Proposition 1.17).

Lemma 4.7 Assume 0 ≥ ϕ 0 , ϕ 1 ∈ E p (X, ω). Then ϕ 0 ∨ ϕ 1 ∈ E p (X, ω) and X (-ϕ 0 ∨ ϕ 1 ) p M A(ϕ 0 ∨ ϕ 1 ) ≤ X (-ϕ 0 ) p M A(ϕ 0 ) + X (-ϕ 1 ) p M A(ϕ 1 ).

Proof. It suffices to establish the claimed inequality when ϕ 0 , ϕ 1 ∈ H and then proceed by approximation. It follows from Proposition 3.2 that

The inequality follows since ϕ 0 , ϕ 1 ≤ 0.

4.2.2 (Non) uniqueness of geodesics Fix ϕ 0 , ϕ 1 ∈ E 1 (X, ω). If the sets (ϕ 0 < ϕ 1 ) and (ϕ 0 > ϕ 1 ) are both non empty, the function ϕ 0 ∨ϕ 1 differs from ϕ 0 and ϕ 1 and it follows from Proposition 3.4 that

thus the concatenation of the geodesic joining ϕ 0 to ϕ 0 ∨ ϕ 1 and that joining ϕ 0 ∨ ϕ 1 to ϕ 1 gives another minimizing path joining ϕ 0 to ϕ 1 .

When ϕ 0 ≤ ϕ 1 , this argument does not work anymore, but there are nevertheless very many minimizing paths, as shown by the following result: Lemma 4.8 Assume ϕ 0 , ϕ 1 ∈ H are such that ϕ 0 ≤ ϕ 1 . Let (ψ t ) 0≤t≤1 be a path joining ϕ 0 to ϕ 1 . Then 1 (ψ) = d 1 (ϕ 0 , ϕ 1 ) ⇐⇒ ψt (x) ≥ 0, for a.e. t, x. In particular t → tϕ 1 (x) + (1 -t)ϕ 0 is a minimizing path for d 1 which is not a Mabuchi geodesic, unless ϕ 1 -ϕ 0 is constant.

Proof. Observe that

where the last identity follows from Proposition 3.12. There is equality iff | ψt (x)| = ψt (x) ≥ 0 for a.e. (t, x) (the sign has to be positive because

We recall that, since ψ t is a smooth path, the geodesic equation can be written as

On the other hand it follows from the work of Calabi-Chen [CC02] that minimizing geodesics are unique in E 2 (X, ω):

If E(ϕ j ) does not blow up to -∞, we reach a contradiction: up to extracting and relabelling, we can assume that E(ϕ j ) is bounded and ϕ j converges to some ψ ∈ E 1 (X, ω). Since F is upper semi-continuous, we infer F(ψ) ≥ F(0) + 1, a contradiction.

So we assume now that E(ϕ j ) → -∞. It follows from Lemma 3.12 that d j := d 1 (0, ϕ j ) = -E(ϕ j ) → +∞. We let (ϕ t,j ) 0≤t≤d j denote the Mabuchi geodesic with unit speed joining 0 to ϕ j and set ψ j := ϕ 1,j . Note that the arguments in Lemma 3.3 show that t → ϕ t,j is decreasing, hence ϕ j ≤ ψ j ≤ 0. In particular sup X ψ j = 0, while by definition d 1 (0, ψ j ) = 1 = -E(ψ j ).

It follows now from Berndtsson's convexity result [Bern15, Section 6.2] and its generalization to the singular context [BBEGZ, Theorem 11.1] that the map t → F(ϕ t,j ) is concave. We infer

thus F(ψ j ) → F(0). This shows that (ψ j ) is a maximizing sequence for F which therefore strongly converges to 0, by [BBEGZ,Theorem 5.3.3]. This yields a contradiction since d 1 (0, ψ j ) = 1.

The toric case

Recall that a compact Kähler toric manifold (X, ω, T ) is an equivariant compactification of the torus T = (C * ) n equipped with a (S 1 ) n -invariant Kähler metric ω which can be written

where

and F : R n → R is strictly convex.

The celebrated Atiyah-Guillemin-Sternberg theorem asserts that the moment map ∇F : R n → R n sends R n to a bounded convex polytope

with λ i ∈ R and u i is a primitive element of Z n , normal to the i th (n -1)-dimensional face of P . Delzant observed in [Del88] that in this case P is "Delzant", i.e. there are exactly n faces of dimension (n -1) meeting at each vertex, and the corresponding u j 's form a Z-basis of Z n . He conversely showed that there is exactly one (up to symplectomorphism) compact toric Kähler manifold (X P , {ω P }, T ) associated to a Delzant polytope P ⊂ R n . Here {ω P } denotes the cohomology class of the T -invariant Kähler form ω P . Let

Guillemin observed in [Gui94] that a "natural" representative of the cohomology class {ω P } is In a similar vein we obtain an explicit formula for the Mabuchi distance between ϕ 0 and ϕ 1 : Proposition 6.3 For all q ≥ 1 and ϕ 0 , ϕ 1 ∈ H tor ,

) with s = ∇F t (x t ) hence Ġt (s) = -Ḟt (x) and we infer

Observe that

Example 6.4 Assume X = CP 1 is the Riemann sphere and ω is the Fubini-Study Kähler form. Let ϕ 0 be the toric function associated to the convex potential F 0 (x) = max(x, 0) so that G 0 (s) ≡ 0 on the simplex P = [0, 1].

Observe that ω 0 = dd c F 0 • L is the (normalized) Lebesgue measure on the unit circle S 1 ⊂ C * ⊂ CP 1 . We consider ϕ 1 = ϕ j a sequence of toric potentials defined by the convex functions

where ε j decreases to 0, while C j increases to +∞. A straightforward computation yields G j (s) = max(C j [ε j -s], 0). Therefore d q (ϕ j , ϕ 0 ) = C j ε 1+1/q j (q + 1) 1/q π 2 n/q

We thus obtain in this case, as j → +∞, ϕ j -→ ϕ 0 in L 1 iff ε j → 0; ϕ j -→ ϕ 0 in L ∞ iff ε j C j → 0;