N

N

Complete gravity field of an ellipsoidal prism by
Gauss—Legendre quadrature

Clément Roussel, Jérome Verdun, José Cali, Frédéric Masson

» To cite this version:

Clément Roussel, Jérome Verdun, José Cali, Frédéric Masson. Complete gravity field of an ellipsoidal
prism by Gauss—Legendre quadrature. Geophysical Journal International, 2015, 203 (3), pp.2220-2236.
10.1093/gji/ggv438 . hal-01947048

HAL Id: hal-01947048
https://hal.science/hal-01947048
Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright


https://hal.science/hal-01947048
https://hal.archives-ouvertes.fr

Geophysical Journal International

Geophys. J. Int. (2015) 203, 22202236
GIJI Gravity, geodesy and tides

doi: 10.1093/gji/ggv438

Complete gravity field of an ellipsoidal prism by Gauss—-Legendre

quadrature

C. Roussel,! J. Verdun,

I'J. Cali! and F. Masson?

! Laboratoire Cnam-GeF/GRGS (EA 4630) Ecole Supérieure des Géométres et Topographes (Cnam/ESGT) 1 boulevard Pythagore, 7200, Le Mans, France.

E-mail: jerome.verdun@cnam.fr

2IPGS/EOST, Université de Strasbourg/CNRS, Bdtiment Descartes 5, rue René Descartes, 67084, Strasbourg cedex, France

Accepted 2015 October 7. Received 2015 October 6; in original form 2015 February 20

1 INTRODUCTION

SUMMARY

The increasing availability of geophysical models of the Earth’s lithosphere and mantle has
generated renewed interest in computation of theoretical gravity effects at global and regional
scales. At the same time, the increasing availability of gravity gradient anomalies derived
from satellite measurements, such as those provided by GOCE satellite, requires mathematical
methods that directly model the gravity gradient anomalies in the same reference frame as
GOCE gravity gradients. Our main purpose is to interpret these anomalies in terms of source
and density distribution. Numerical integration methods for calculating gravity gradient values
are generally based on a mass discretization obtained by decomposing the Earth’s layers into
a finite number of elementary solid bodies. In order to take into account the curvature of
the Earth, spherical prisms or ‘tesseroids’ have been established unequivocally as accurate
computation tools for determining the gravitational effects of large-scale structures. The
question which then arises from, is whether gravity calculation methods using spherical
prisms remain valid when factoring in the ellipticity of the Earth. In the paper, we outline
a comprehensive method to numerically compute the complete gravity field with the help of
the Gauss—Legendre quadrature involving ellipsoidal shaped prisms. The assessment of this
new method is conducted by comparison between the gravity gradient values of simple sources
obtained by means of numerical and analytical calculations, respectively. A comparison of the
gravity gradients obtained from PREM and LITHO1.0 models using spherical- and ellipsoidal-
prism-based methods is also presented. Numerical results indicate that the error on gravity
gradients, caused by the use of the spherical prism instead of its ellipsoidal counterpart to
describe an ellipsoidally shaped Earth, is useful for a joint analysis with those deduced from
GOCE satellite measurements. Provided that a suitable scaling of prism densities has been
performed, the spherical approximation error at GOCE height hardly reaches 1 mE for the
entire Earth’s lithosphere. The error attains 6 mE at a peak for a complete modeling of the
Earth, from the crust down to the internal core.

Key words: Numerical approximations and analysis; Satellite geodesy; Gravity anomalies
and Earth structure; Geopotential theory.

satellite orbiting at low altitude—260 km, mean altitude in the
nominal phase—and equipped with an ultra-sensitive gradiometer

The current increasing availability of satellite-measured gravity data
covering the whole Earth combined with increasingly reliable geo-
physical models of the Earth’s lithosphere and mantle has generated
renewed interest in the computation of theoretical gravity effects
at global and regional scales from geological models (Arabelos
& Tsoulis 2013). The latest gravity satellite mission GOCE has
provided data of unprecedented resolution and accuracy at global
and regional scales (Yi & Rummel 2013) through the use of a
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for directly measuring the gravity gradients (Rummel ez al. 2011).
Gravity models based solely on satellite data (satellite-only grav-
ity models) provided by GOCE—also combined with other gravity
satellites such as GRACE and LAGEOS—are commonly expressed
in terms of Stokes’ coefficients as a spherical harmonics expansion
up to degree and order 280, for example, the TIM RS gravity model
(Brockmann et al. 2014), or even degree and order 300, for ex-
ample, the DIR RS, which methodology is described in Bruinsma
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et al. (2013). The theoretical spatial resolution of such gravity mod-
els is of 70 km (half-wavelength), which is suitable for regional
geophysical studies. For more local scales, the spherical harmon-
ics expansions can be significantly extended to higher degrees by
including the terrestrial gravity data measured over the Earth’s con-
tinents and the surface gravity data provided by satellite altimetry.
For instance, the maximum spherical harmonic degree attained in
the EGM2008 gravity model (Pavlis ez al. 2008) and the recently
presented EIGEN-6C4 gravity model (Forste et al. 2014) is 0f 2190,
which corresponds to a theoretical spatial resolution of 9 km.

Moreover, significant improvements in knowledge of the litho-
sphere have been obtained, particularly through seismology ad-
vances. In parallel, accurate global digital elevation models, which
include notably satellite-measured land topography and ocean
bathymetry deduced from satellite altimetry and depth soundings
(Smith & Sandwell 1997), have become available, thus giving a
fairly accurate image of the Earth’s land surface and sea bottom.
Seismological and elevation models combined with other geological
and geophysical models, giving for instance sediment thickness or
the depth of Mohorovici¢’s discontinuity (Moho), represent geolo-
cated data for areas ranging in size from a few degrees to global cov-
erage of the entire planet. Hence, such a crustal model as CRUST1.0
(Mooney 1998; Laske et al. 2013), based on ETOPO1 global relief
model (Amante & Eakins 2009), provides the density distribution
inside the crust divided into eight separate layers—ice, water, soft,
middle and hard sediment, upper, middle and lower crust—from the
Earth surface down to the Moho and the density value just beneath
the Moho on a 1° x 1° grid. Quite recently, a new model at 1° reso-
lution named LITHO1.0 (Pasyanos et al. 2014) has been developed
that offers an extension of crust models down to the asthenosphere
by including the lithospheric mantle (lid). The use of CRUST1.0 as
an initial model of the Earth’s crust in the inversion allows it to be
consistent with LITHO1.0. The availability at a time of lithospheric
models and the gravity gradients provided by the GOCE satellite
at whatever area around the Earth, offers us the unique opportunity
to determine regional gravity gradient anomalies for lithospheric
interpretation (Bouman et al. 2015), and for mapping the density
distribution beyond the lithosphere up to the Earth’s mantle (Panet
etal. 2014).

Interpreting gravity gradient anomalies derived from GOCE
satellite measurements in terms of source and density distribution
requires mathematical methods that directly model the gravity gra-
dients (consisting of the nine second-order derivatives of the gravity
potential, also known as Marussi’s tensor) due to large scale, arbi-
trarily shaped sources of variable density. The gravity gradients pre-
viously mentioned are actually gravitational gradients, since gravity
gradients also include the rotation of the mass source. The Earth’s
rotation is well known and not considered if we assume that the
gravitational gradients produced by the mass source can be inter-
preted as the differences between the measured gravity gradients
and those deduced from an Earth model, also known as gravity gra-
dient anomalies. From this point forward, we will only use the term
gravity gradients.

For the purpose of comparison, the gravity gradients obtained
by numerical computation have to be expressed in the same local
north-oriented frame—denoted by LNOF (Bouman et al. 2013)—as
those currently available for geophysical applications, derived from
GOCE data by scientists specialized in space gravimetry (Gruber
et al. 2014). The starting point of every numerical method for cal-
culating gravity gradients, relies upon the gravity potential since
gravity gradients can be calculated from the gravity potential by ap-
plying linear operators. The density distribution, given for instance
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by geological models of the Earth, is only available in discrete
form, for example, consisting of a regular grid of evenly spaced,
geolocated points. Thus, the numerical computation of the gravity
potential requires a mass discretization obtained by decomposing
the Earth’s layers into a finite number of elementary solid bodies.
As matters stand, the need to employ spherical prisms or ‘tesseroids’
to accurately compute the gravity effects of large-scale structures,
for which the Earth’s curvature must be considered, has been es-
tablished unequivocally (Heck & Seitz 2007; Wild-Pfeiffer 2008),
especially as the computation can be carried out in acceptable com-
putation time (Grombein ef al. 2013). Furthermore, the algorithms
currently used in many programs of geophysical forward modeling
are still based on a flat Earth approximation. Such an approxima-
tion has proven to be inadequate for computing gravity gradients of
Earth’s sources comparable to GOCE gravity gradients expressed
in the LNOF (Bouman ef al. 2013). An additional processing is
then required to transform the gravity gradients initially computed
in the flat model reference frame to the LNOEF. It is likely to be
more advantageous to directly calculate the gravity gradients in the
LNOF.

Numerous approaches have been adopted to numerically evaluate
gravity field constituents for a tesseroid volume depending on the
requirements of the specific applications in the fields of geophysics
as well as in physical geodesy. Because there is no analytical formula
giving the gravity effects of a tesseroid, calculations have to be
conducted by means of approximate methods of integral calculus. In
their innovative attempt to model the gravity effects of the spherical
Earth, Ku (1977) and von Frese et al. (1981a) derived a least-
squares-based method to determine the distribution of point sources
equivalent to the anomalous solid body generating the same gravity
anomaly as the one observed. In such a method, the disturbing
point sources within the anomalous body and their masses can
be estimated according to a Gauss—Legendre quadrature (GLQ)
decomposition of the integral involved in the expression giving the
anomalous body gravity field. The resulting equivalent point sources
can then be used to directly calculate the gravity effects of arbitrary
mass distributions (von Frese er al. 1981b). More recently, GLQ
has been used to numerically estimate the potential of a tesseroid
and its first and second derivatives (Asgharzadeh et al. 2007; Wild-
Pfeiffer 2008). Software such as Tesseroids (Uieda et al. 2011;
Uieda 2013) is a sequel to these two papers, thus allowing the
complete gravity field of an arbitrary mass distribution defined in
spherical coordinates to be calculated.

Other approaches have also been discussed involving alternative
mathematical methods for modeling the spherical prism (Johnson
& Litehiser 1972; Cochran & Talwani 1978; Smith et al. 2001).
For instance, Petrovi¢ (1996) and Tsoulis (2012) derived analytical
expressions of the gravitational potential and its first and second
derivatives for polyhedral bodies using line integrals. Alternatively,
some algorithms developed in Tsoulis et al. (2009) can directly
provide the finite set of Stokes’ coefficients involved in the spher-
ical harmonics expansion of the gravity potential of an arbitrarily
shaped polyhedral body. The transformation of the gravity anoma-
lies produced by rectangular prisms has been explored by some
authors (Talwani & Ewing 1960; Nagy 1966; Paul 1974; Plouff
1976; Ku 1977; Nagy et al. 2000), especially with the help of exact
analytical formulae for calculating gravity effects of the rectan-
gular prism. The flat top of rectangular prisms can be replaced
by a smooth surface to advantageously accommodate more com-
plex mass sources (Tsoulis et al. 2003). Some other approaches
rely upon a Taylor series expansion of the gravity potential inte-
gral kernel in the spirit of MacMillian (1930), who was the first to
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develop the theory for the gravity potential of a rectangular prism.
Heck & Seitz (2007) utilized a third-order Taylor expansion to eval-
uate the tesseroid gravity potential and its first radial derivative,
which is the radial component of the gravity vector. Wild-Pfeiffer
(2008) extended the method to all the second derivatives of the
tesseroid gravity potential, thus providing the complete gravity field
of a tesseroid (gravity vector and Marussi’s tensor) and, recently,
Grombein et al. (2013) have proposed optimal formulae that differ
from the previous in that Cartesian integral kernels are involved in-
stead of spherical ones and that also apply to the Poles, which permit
the computation time to be significantly decreased. Finally the semi-
analytical method proposed by Heck & Seitz (2007) consists in an-
alytically solving the one-dimensional integral involved in the grav-
ity potential, which depends on the radial distance and numerically
evaluating the remaining two-dimensional integral by means of a
quadrature.

The question which then arises is whether gravity calculation
methods using spherical prisms remain valid for calculating the
gravity effects produced by larger structures than those encoun-
tered in the topography or the crust and for which the ellipticity of
the Earth must be taken into account. Whether such an approxima-
tive calculation method is effective cannot be settled in isolation; it
makes more sense to ask whether the accuracy of calculated grav-
ity values is adequate for some stated purposes involving newly
acquired gravity data. As an illustration, the accuracy of the grav-
ity gradients provided by the GOCE satellite mission within spec-
tral ranges suitable for geological applications is expected to be
10712572 (Visser 2011; Bouman & Fuchs 2012), that is 1 mE (‘E’
denotes E6tvos unit; 1E = 1072 s72; 1 mE = 1073 E). With a view
of gravity forward modeling, a suitable gravity gradient calculation
method must ensure that the modeling error is always less than the
measurement error. Aware that the uncertainty still present in the
Earth’s geophysical models must be reduced further in order to be
used with GOCE data, we still contend that the development of a
reliable gravity gradient calculation method is a necessary first step.
Thus, in order to be used with GOCE gravity gradients, the method
should achieve at least an accuracy of a tenth or indeed a hundredth
of millie6tvos.

The paper is organized as follows: in Section 2, we review the
definitions of fundamental physical quantities related to the gravity
field. Section 3 is devoted to validating the numerical integration
method from the comparison between the gravity field values of
simple sources obtained by means of numerical and analytical cal-
culations, respectively. The necessary mathematical background for
understanding GLQ is recalled at this point. Section 4 outlines com-
parisons between the gravity gradient anomalies of an ellipsoidally
shaped Earth, by means of spherical prism and ellipsoidal prism
decompositions, respectively. The comparison is conducted in two
cases, the first involving the density distribution given by the Pre-
liminary Reference Earth Model (PREM; Dziewonski & Anderson
1981), the second using a combined density distribution derived
from those given by LITHO1.0 and PREM.

2 THEORY

In this section, we provide notations and review the necessary math-
ematical background related to the gravity field. Only equations
are written out, numerical tests for assessing our method will be
presented in Section 3. The reasoning and mathematical approach
adopted here are deliberately close to the ones of Asgharzadeh et al.
(2007) for the purpose of comparison.

Figure 1. Gravity field of a mass source and spherical coordinate definition.
The acceleration vector dg(P) at the point P results from the gravitational
attraction exerted by the mass source located at the point S. The frame
(OXYZ) defines an Earth-fixed, Earth-centred, Cartesian reference frame.
The observation point is positioned in the spherical coordinates (Ap, 6 p, p)
consisting of the longitude Ap, the spherical latitude 6 p and the geocentric
radius rp. The set of vectors (e, ey, e,) is the local spherical basis at
point P.

2.1 Gravity effects for a point mass

The gravitational potential dV(P) produced by a point pole (S) of
mass dm; (in kg) located at the source point S, at the observation
point P (Fig. 1) is given by :

dm S

—_— 1
7S Q)
where G is the gravitational constant (6.67 10~!! m’kg~'s~2) and PS
is the distance (in m) between the source point S and the observation
point P. The gravitational acceleration vector dg(P) (in m s™2 =
10° mGal) is obtained by calculating the space gradient vector of
the scalar potential with respect to the point P:

dV(P)=G

de

dg(P) = V(dV(P)) =V <G TS) . )

In the remainder of the paper, only gravitational effects contributing
to the Earth’s gravity field will be accounted for and thus vector
dg(P) will be regarded as an infinitesimal element of the Earth’s
gravity vector. Finally, the gravity gradient tensor, also referred to
as Marussi’s tensor (in s~ = 10° E), is obtained by calculating the
tensor of space gradients of the gravity vector:

dT(P) =V (dg(P) = V(V(V(P)) = ¥ (v (G dp—"gs)) e

2.2 Gravity effects for an extended mass distribution

Let pg be the constant density of the mass source of volume d<2g, ps
= dmyg/dQg (in kg m~3), then the point mass gravity effects given
by egs (1), (2) and (3), respectively become:
psdes

PS ’

dV(P)=G 4)
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dT(P)=V (v <G 7>) =GV <v (—)) 05 d2s.

Hence, the gravity effects of an extended mass body may be ex-
pressed by integrating the gravity effects of the mass elements that
fill up the volume 2 of the body, thus giving:

V(P)=Gp5///9%, @)
e =Gos [ [ [ v (%) a9, ®)
T(P) = GpS//va (v (%)) Q. ©)

The integrals in eqs (7)—(9) can be calculated once a first space
coordinate system is chosen to locate the observation point P and
a second to locate and describe the points S of the mass body (S).
On the one hand, when both are located by their Cartesian coordi-
nates (X, Y, Z), the mass bodies can be decomposed into rectangu-
lar prisms (right rectangular parallelepipeds) and integrals (7)—(9)
can be expressed analytically, thus giving rigorous and consistent
analytical forms describing the different gravity-related quantities
(Nagy et al. 2000; Plouff 1976). On the other hand, when both are
located by their spherical coordinates (A, 0, r) (Figs 1 and 2), the
mass bodies can be modeled by tesseroids (spherical prisms) and
integrals (7), (8) and (9) cannot be solved analytically. The GLQ is
then needed to obtain approximates of the different gravity-related
quantities (Asgharzadeh et al. 2007). Due to the flattening of the

dg(P) =V (G s dQS) _Gv (i) ps dS2s, 5)
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Earth at the Poles, an approximation error occurs when one uses
the spherical prism for describing large-scale geological structures
within an ellipsoidal Earth. This will be investigated in Section 4. At
this point, the mass element likely to be most suitable for decom-
posing ellipsoidal mass bodies is the ellipsoidal prism described
subsequently.

2.3 Gravity effects for the ellipsoidal prism

2.3.1 Ellipsoidal coordinates

A reference ellipsoid of revolution about polar axis is commonly
used to depict the Earth’s shape as flattened at the Poles (oblate
spheroid, see Fig. 3). Such an ellipsoid has two axes of equal length
and a third shorter one. Its geometric properties are completely
determined by its semi-major axis a (in m) and its eccentricity
e. Let O be the centre of the ellipsoid and (OX), (OY), (OZ) the
three axes of an orthogonal, right-handed Cartesian reference frame
such that (OZ) coincides with the symmetry axis (polar axis) of
the ellipsoid. In this case, the Cartesian coordinates (Xs, Ys, Zs) of
any point S belonging to the ellipsoid denoted by €, satisfy the
following equation:

2 2 2
L; % +% =1, (10)
where b = a+/1 — ¢? is the semi-minor axis of the ellipsoid.

Let As be the longitude of the point S, that is, the angle between
the meridian plane of Greenwich and the meridian plane that passes
through that point and @g the latitude of the point S, that is, the
angle between the equatorial plane and the normal to the ellipsoid
that passes through that point. In terms of geodetic latitude ¢ and

Figure 2. Tesseroid definition. When the points S of the Earth’s body are located in the spherical coordinates (As, €5, rs), the mass element can be modeled by
a spherical prism or ‘tesseroid’. If the dimensions of the tesseroid are, respectively, AX for the longitude, A6 for the spherical latitude and Ar for the geocentric
radius, then the tesseroid at point S corresponds to the mass element between the two meridians of respective longitudes As — AA/2 and As + AA/2, the two
conical surfaces leant on the parallels of respective latitudes 65 — A6/2 and 05 + A6 /2 and the two geocentric spheres of respective radii 7 — Ar/2 and rg

+ Ar/2.
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Figure 3. Reference ellipsoid and geodetic coordinates definitions. The reference ellipsoid of revolution about the polar axis (OZ) is completely defined once
given its semi-major axis a and its eccentricity e, from which the semi-minor axis 5 can be calculated. Any point S belonging to the reference ellipsoid can
be positioned in the geodetic coordinates (As, ¢s). Any point S, which does not belong to the ellipsoid surface, can still be located by using the algebraic
distance g measured between S’ and S along the normal passing through S. The three numbers (As, @5, /1 5) thereby corresponds to the geodetic coordinates of

point S'.

longitude A, the Cartesian coordinates of point S may be expressed
as:

Xs = Ns (¢s)cos @scos i
Yg = Ng(ps)cospgsinds (11)
Zs = Ns (ps) (1 — &%) singg

where Ns(ps) is the radius of curvature of the prime vertical at
latitude ¢ given by:

a
V1 —é?sin? <p3.
Any point S’ that does not belong to the ellipsoid surface can still
be located given its ellipsoidal height 4 (Fig. 3). The ellipsoidal
height is the algebraic distance measured between S’ and S along
the normal that passes through S. The ellipsoid height ¢ of point S’
can be either positive or negative depending on whether S’ is located
above or beneath the ellipsoid. Consequently, any point located on
the ellipsoid surface has an ellipsoidal height equal to zero (& = 0).
Finally, the Cartesian coordinates (X, Yy, Zs) of the point S" are
given by:

Ns(ps) = (12)

Xg = (Ns + hg)cospscos g
Yo = (Ns+ hg)cospssinks . (13)
Zs = (Ns(1 = €*) + hy)sings

The geodetic coordinates consisting of geodetic longitude and lati-
tude completed by ellipsoidal height are commonly used to locate
points with respect to a reference ellipsoid €,,.. However, solving
volume integrals such as those involved in gravity field calculations
can actually be more conveniently achieved using another system
of coordinates named ellipsoidal coordinates. Considering this co-
ordinate system, the latitude and longitude of point S’ previously

mentioned remain the same as those of its geodetic coordinates. A
new coordinate denoted by ug replaces the ellipsoidal height 4,
which may be expressed as a function of the Cartesian coordinates
of § as:

X:+7YZ N zZZ

7 o (14)

us’:

Rewriting eq. (14) after having divided each of its members by
ug # 0 leads to:

X2 4+ 72 Z2,
\/ s 15 S =1 (15)

(uga) (ugby?

This can be interpreted by the fact that the point S’ belongs to the
ellipsoid €, . the semi-major and semi-minor axes of which are,
respectively, given by ¢’ = uga and b’ = uyb. Such an ellipsoid as
€. and the reference ellipsoid €., are simply homothetic with a
scaling factor equal to u ¢ . In other words, the third coordinate u g in
the ellipsoidal coordinates (As, s, ts) of the point S’ corresponds
to the scaling factor needed to transform the reference ellipsoid
into a concentric ellipsoid passing through the point . Since ¢ =

a2-p? ué, (a2 7b2)
a2

= €2, we have ¢ = e. The eccentricity of the

uz,/az
ellipsoid €, . therefore remains the same as that of the reference
ellipsoid. Any point S on the reference ellipsoid satisfies us = 1.
The coordinate ug of a point §', which does not belong to the
reference ellipsoid surface, can be either greater or lower than 1
depending on whether the homothetic ellipsoid passing through §’
is located inside or outside the reference ellipsoid. In the ellipsoidal
coordinate system, the functions relating the ellipsoidal coordinates
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(A, @, u) of any point M to its Cartesian coordinates (X, Y, Z) are the
following:

X = uN(p)cosgpcosi
Y =uN(p)cosgsinr (16)
Z = uN(p)(1 — &*)sing

where N(¢) = 7\/1—:2T2w

These relationships can be considered as a parametric represen-
tation of the ellipsoid passing through the point M, of same centre
as the reference ellipsoid €,, and deduced from it by a scaling
factor equal to u. The use of ellipsoidal coordinates has proven to
be much more convenient than geodetic coordinates for mathemat-
ically decomposing the volume of an ellipsoid. From a practical
point of view, the calculation of the ellipsoidal coordinates (1, ¢, )
of a point from its geodetic coordinates (X, ¢, /) is crucial because
the latter are those usually given in the Earth’s geophysical models.
This can be readily carried out by transforming geodetic coordinates
(A, @, h) in Cartesian coordinates (X, Y, Z) through eqs (13), and by
calculating the scale factor # by means of eq. (14).

2.3.2 The ellipsoidal prism

An ellipsoidal prism can be easily defined in the ellipsoidal coordi-
nates. Indeed, given:

(i) two meridians of longitudes A, and X, respectively,

(ii) two parallels of geodetic latitudes ¢; and ¢, respectively,

(iii) two homothetic ellipsoids with the scaling factors u; and u,
respectively,

(iv) a constant density ps,

we obtain a unique ellipsoidal prism that can be viewed as the
elementary solid body bounded by six surfaces (Fig. 4): the two
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meridian planes of respective longitudes A; and A, (A; <A < Ay),
the two conical surface formed by the lines that pass through point
O and each point of the parallel circles of geodetic latitudes ¢,
and ¢, (@1 <@ < @,) respectively, and the surfaces of two geo-
centric and homothetic ellipsoids of respective scaling factors u,
and u, (u; <u <uy). The prism volume can be infinitesimal if the
differences A, — Ay, ¢» — ¢, and u, — u; either are or are as-
sumed to be infinitesimal themselves. In the context of gravity
effect calculations, such bodies can be considered as ellipsoidal
mass elements of constant density pg and volume d<2s. We shall
now express the differential volume in the ellipsoidal coordinates,
that is the volume d<2g of an infinitesimal ellipsoidal prism centred
at the point S(A, ¢, u). This volume is mathematically given by
Kellogg (1954):

dQ = |detd| drdgdu, (17)

where J is the Jacobian matrix of the parametric representation (16).
We have then to determine the Jacobian matrix given by:

(X X 9,X
J=|avy a,v 87|, (18)
WnZ 0,7 3,Z

where d,...,a = A, ¢, u denotes the partial derivation with respect
to «.
After having performed all the calculations, we obtain:

a’ cosg (1l —ée?)

2
Ay = Y dndedu. (19)
[1 — e?sin? gz)]

ol

If we integrate this expression over the reference ellipsoid €,, for
which the ellipsoidal coordinates A, ¢ and u lie, respectively, within

Mass source = ellipsoidal prism dg<P) P

Observation point

Figure 4. Ellipsoidal prism definition. The mass element bounded by the two meridian planes of longitudes A1 and X, respectively, the two conical surfaces
formed by the lines passing through point O and each point of the parallel circles of geodetic latitudes ¢ and ¢, respectively, and the surfaces of the two
concentric and homothetic ellipsoids of scale factors u; and w5, respectively, corresponds to an elementary ellipsoidal prism. The scale factors u; and u, are
particularly derived from the two heights /2; and 4, commonly used in the Earth geophysical models to define the vertical boundaries of the mass elements.
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[0, 27], [-7 /2, 7 /2] and [0, 1], then we can calculate its volume
by:

O

w7 sing
oo [£] [
’ o 13 0 1—e?sin’g | .
2

3 1— 2
(1 — €%) cos pu? @l Ze)eospu” i hodu
(1 — e?sin? (p)z

[SE]

Q.= —aJy1—e = 47 b, (20)
’ 3 3

Eq. (20) corresponds to the well-known formula giving the vol-

ume of an oblate spheroid the distinct axis lengths of which are,

respectively, a and b.

2.3.3 Formulae for the ellipsoidal prism

To solve the integrals (7), (8) and (9), we still have to determine the
expression of the distance PS. Since the mass S is now an ellipsoidal
prism, the distance PS must be regarded as the distance between the
observation point P and any point S located inside the ellipsoidal
prism.

In order to obtain gravity field components in the local spheri-
cal basis, the observation point P is defined through its spherical
coordinates (Ap, Op, rp), where Ap is the longitude measured in the
equatorial plane between the Greenwich meridian and the meridian
plane passing through P, 6 p is the spherical latitude measured in the
meridian plane between the equatorial plane and the radius vector
rp from the Earth centre O to P and r» is the magnitude of the radius
vector rp (Fig. 1). Let (As, s, us) be the ellipsoidal coordinates of
the running point S inside the ellipsoid. We can then express the
distance PS as:

PS = \/AXPSZ + AYp® + AZps?, (1)
where:

AXps = Xp— Xs

AYps=Yp—VYs , (22)

AZps=Zp—Zs

Xs =ugNgcosg@gscosig
S{ Yg=ugNgcosgpssinks (23)
Zs =ugNg(1 — €*)sin g

using Ns(¢s) = \/ﬁ, and,
Xp =rpcosfpcosip

P13 Yp=rpcosbpsinip . (24)
Zp =rpsinfp

By substituting the above details into eq. (7), we obtain an integral
form of the gravity potential produced by the ellipsoidal prism
expressed as:

oman [ 4

b2 rer pu2 N3 cos gs(1 — e?)u?
= pr S (pS( ¢ )us d}\é d(/)é dus.
2 2 2
el @1 u] \/AXPS +AYPS —|—AZPS

25

At this point, the derivation of the gravity vector components and
gravity gradient tensor elements could have been performed in the
local ellipsoidal basis at point P. As previously mentioned, since we
are interested of having the gravity vector and the gravity gradient
tensor expressed in the local spherical basis, the gradient operator V
has to be expressed in the spherical coordinates. This operator has
three components measured in the local spherical basis (e;, €5, €,)
consisting of three unitary, two-by-two orthogonal vectors, each
having its origin at point P. Let (g, gs,g-) be the components of
the gravity vector given by eq. (8) in the local spherical basis,
that is:

gP) =gie. + goes + g e (26)
then we have:

(P)=G / / / L L 27)
ST =T s o rpcosOp dhp \PS) S

(P)=G f / L) s (28)
8o Ps Q rp 8 9p PS S»

4(P) = GpSff/QgTP (Pis) ass. (29)

Similarly, by substituting the above-mentioned details, we obtain
integral forms of the gravity vector components:

L XpYs—YpX
2.(P) = G ps / f / Xe¥s =10 Xs s, (30)

rpcosfpPS?
hy per puy
g(P) = Gps/ / f
Ao Yo Jug

Zp(cosApAXps+sindpAYps) —rpcosOpAZps
X

dQy,
}"PPS3 5
@31
hpe2 pu
s ==Gos [ [ ]
Ao dor Ju
XpAX YpAY, ZpAZpg
. 2P ps +YpAY¥ps+ LpALpg Q. (32)

}"pPS3

where dQs = N3 cos ¢s(1 — e?)u’drdpdu.

Finally, the elementary gravity gradient tensor d7 defined by
eq. (3) may be expressed in the local spherical basis as the elements
of a3 x 3 square matrix as follows:

dTy. dTy dT,
dT = dTg}L dTeg dTg,» . (33)
T, dT, dT,
By incorporating the previous details into the gravity gradient com-
ponents, we obtain the expressions given in Table 1 and the related
partial derivatives given in Table 2. The complete gravity gradient

tensor 7 results from the integration of the elements of d 7" over the
source volume. Each of its elements may be expressed as:

roper pun
T = / / / a7, = / / / dT,., (34)
Q rodor Ju

where v,w =r, 0 or A.
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Table 1. Gravity gradient tensor elements.

Element Expression

d7y,; o CLS(,P ag‘iﬁf) + #dgr - %dge
dTsy L )

dT;, S

7. rp C(1759p aj)i%f) + r:i:()?;-)p 81
dTgg ﬁ%ﬁf) #dgr

ar, sz

dT")\ rp C(l)s(-)p Bgig[:)) - %dg)”

ATy 7 g — 7y de

i,

Note. The nine elements of the gradient gravity tensor ex-
pressed in the local spherical basis, tabulated as functions of
the gravity vector components.

Finally, it should be noted that the local spherical basis defined in
this manuscript (Fig. 1) and the LNOF mentioned in the introduction
are different. The transformation between these two frames simply
involves a matrix such as:

0 10
O0=R;90)=|-1 0 0]. (35)
0 0

If T is the gravity gradient tensor expressed in the local spherical
basis and T"NOF is the gravity gradient tensor expressed in the
LNOF, then:

T"™F =0T Q" (36)

Table 2. Partial derivatives of gravity vector components.
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3 ASSESSMENT OF THE NUMERICAL
INTEGRATION METHOD

3.1 The Gauss-Legendre quadrature

Integrating eqs (7)—(9) analytically is quite complicated. Instead we
evaluate them using the GLQ. Specifically, these integrals can be
expressed as the generalized triple integral:

Ay oper pun
/ / f(Ap,0p,7p, ks, @5, us)dusdpsdis, (37)
rodor Juy

which can be numerically evaluated by means of the following
quadrature formula:

Ny

(o = 22 — @) (12 — 1) o
. Y

i=1 j=1 k=1

X G)iw_/wkf()\m Op,7p, )»S,- s 955 Ms,c), (38)

where the function f'is calculated at n, x n, x n, optimal points,
also called nodes, and each corresponding value is weighted by the
product of three Gauss—Legendre coefficients (or weights) w;, w; and
w. Prior to the calculation of the quadrature formula (38), the ellip-
soidal coordinates (As,, ¢ 5> Us;) of'the nodes and the corresponding
weights have to be determined. The determination method is eas-
ily outlined by considering one single coordinate, As, for instance.
This coordinate is simply related to the ith root A 5; of the n, th order
polynomial P,, from the set of orthogonal Legendre polynomials
defined over the range [—1, +1], by Asgharzadeh et al. (2007):

R R B R
5 = > STy
where i lies within [—1, +1].
The weight w; affected to the coordinate A, is then given by:
2

ny Py, (5»5,) P, ():Si) ’

(39)

w; =

(40)

Element Expression
2 02

a(dgy) 3(Yp Xs—XpYs)? | XpAXps+YpAYpg—rpcos”Op

Mp Gos | = emars T 7p cosOp PSS ds2s

d(dg) G,O Zp(cosApAYps —sinApAXps)+sinfp(XpYs—YpXs) +

90p S rpcosfpPS3 e

3 XpYs—YpXs)(Zp(coshpAXpg +sinipAYps) —rpcos@pAZpg) a0
. 5 s
rpcosfpPS

9(dgy) Gps 3(YpXs — XpYs)(XpAXps + YpAYps + ZpAZps) dQg

arp r‘% cosfp PS>

(dgg) Gps [3XpYs = Yp XS Zp(coshpAXps + sinkpAYps) — rp cosbpAZps) |

ap ps 7p cosfp PSS e

Zp(cosipAYps —sinApAXps)
: rpPS? dQ2s
- ) 2

d(dgp) | 3(Zp(cosipA +sinkpAYps) —rp cosOp AZps)? XpAXps +YpAYps + ZpAZps —rp §

90p Gps rp PSS + P PS5 ds2s
3(dgy) Gps 3(rp cosOp AZps — Zp(sinipA¥pg + cos Ap AXp)(XpAXps + YpAYps + ZpAZps) Qs

orp 3 PSS

d(dgr) 3YpXs — XpYs)(XpAXps + YpAYps + ZpAZps) _ YpXsg — XpYg

Tp Gps [ rp PS5 sppss |48

a(dgy) G (rp cosOpAZps — Zp(cosipAXp +sinApAypS)<3(XpAXps+ypAyps+szsz)—Ps2) q

90p Ps rp PSS s
d(dgr) 3XpAXps+YpAYps+ZpAZpsY 1

arp Gps 12 PSS ps | 42s

Note. Partial derivatives of the three elementary gravity vector components involved in the expressions of gravity gradient
tensor elements (Table 1), expressed in the local spherical basis.
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where P, _| is the (n, — 1)th-order Legendre polynomials and P,
the first derivative of P,, .

The remaining coordinates and weights can be calculated simi-
larly by means of the same method, thus giving:

or+e . =@ 5
(/75,- = 2 + WS,- P ’ P"VJ ((PS,) = 0’
2
" 2 (1)
ny Pn'pfl (‘PS,-) in (905/')
uytux . Uy — Uy 0
us, = 2 + Us, 2 ’ P”“ (us/c) =0
2
o (42)

Ry By, (”A‘Sk) Pn/u (&Sk) ’

The quadrature formula in eq. (38) shows that the complete gravity
field of the ellipsoidal prism in eqs (7)—(9) can actually be com-
puted by summing at each observation point the effects of n; X
n, x n, equivalent point poles (see Section 2), each located within
the prism at the source point given in the ellipsoidal coordinates by
(As,, @s,, us, ), the gravity effect of which is weighted by the relevant
Gauss—Legendre coefficients related to the (As, @5, us) limits of the
prism. The only issue remaining in applying eq. (38) is the selection
of the number of nodes for the efficient computation of accurate
gravity field values. A large number of nodes ensures a very accu-
rate quadrature solution, but implies a longer computational time.
The number of nodes will depend on the desired accuracy, the size
of the ellipsoidal prism, the distance between the observation point
and the prism and the gravity field constituent—gravitational po-
tential, components of the gravity field vector, components of the
gravity gradient tensor—to be computed. Concerning the calcu-
lation time, since our method only differs from that using spher-
ical prisms (Asgharzadeh et al. 2007) by slightly more complex
integrands, we do not observe really significant calculation time
difference.

3.2 Validation of the Gauss-Legendre quadrature

To test whether the GLQ computation with ellipsoidal prisms gives
reasonable estimates of the gravity gradients, we carried out numer-
ical gravity gradient calculation for an ellipsoidal shell of constant
density. In this particular case, true analytical formulae exist in
the Cartesian coordinates (Kellogg 1954), thus allowing the gravity
vector components and the Marussi’s tensor elements specifically at
any point in a local Cartesian basis to be calculated. Once expressed
in the local spherical basis, these quantities are directly comparable
to those provided by the GLQ and their differences measure the
approximation error. Put more precisely, we considered the ellip-
soidal shell located between two homothetical ellipsoids €,-; and
€,4~1.00157, Tespectively, which is equivalent in terms of ellipsoidal
height to an elevation of 10 km above the Equator and an elevation
of about 9.966 km above the North and South Poles. The value of
the density was deliberately set to 10000 kgm . The choice of an
outer shell and a high density value was made in order to obtain an
upper limit of the error. The ellipsoidal layer was decomposed into
a set of ellipsoidal prisms defined by:

(i) us, = land ug, ~ 1.00157.

Overall, the ellipsoidal shell was divided into 360 x 180 = 64 800
ellipsoidal prisms. Finally, the gravity field has been computed ev-

ery 1° latitude above the meridian of 0° longitude from the Equa-
tor to the North Pole (0° < ¢ < 90°) at an ellipsoidal height of
260 km. The GLQ was computed using orders equal to 3/3/2,
that is, order 3 for longitudes and latitudes and order 2 for the
scaling factor us. Computing the gravity effect of a unique prism
thereby required summing of 3 x 3 x 2 = 18 effects of equiva-
lent point poles located within it. For the purpose of comparison,
calculations involving 2/2/2 and 4/4/4 orders were also performed.
The graphs in Fig. 5 show the numerical error er,, on the nine
elements 7,,, u, v = A, 0, r of the gravity gradient tensor as a
function of the latitude. The numerical error e, corresponds to
the difference between the values of 7, provided, respectively, by
GLQ and by means of analytical formulae. Notably, even though
the gravity gradient tensor is symmetric (7, = T,, for u # v),
the errors on both elements have been systematically calculated
given that their expressions are actually different (cf. Tables 1
and 2).

As is made clear in Fig. 5, the errors that occur when using GLQ
in the computation of gravity effects are in the order of tenth of
milliedtvos for orders 3/3/2 and higher, which complies with the
desired accuracy—better than 1 mE. Such orders 3/3/2 have been
chosen so as to ensure an adequate accuracy with a reasonable
computation time. If appropriate, these orders must be changed de-
pending on the location of observation points and the size of the
prisms. Because of its revolution symmetry, the ellipsoidal layer
produces gravity effects such as Ty = Ty, = T;, = T,, = 0, which
can have been estimated by GLQ at the same accuracy level. For a
given set of orders, the accuracy of the GLQ can be significantly
improved by using lower size prism. Take, as an example, the or-
ders 3/3/2 with half-size prisms (Als = Agps = 0.5°). As shown
in Fig. 6, the error affecting the element 7,, regardless of the lat-
itude is markedly lower than that obtained with 1° x 1° prisms
using orders 4/4/4. These results indicates that, for given gravity
sources, the gravity gradients at less than 1 mE uncertainty can be
numerically computed at GOCE altitude using GLQ, provided that
the number of nodes per prism or the prism size have been suitably
chosen.

4 GEOPHYSICAL APPLICATION

We are interested in the computation of the gravity gradient anoma-
lies from available geophysical models of the Earth’s interior. The
basic idea is that after calculating the gravity gradients at GOCE
altitude we shall be able to compare the gravity anomaly values
predicted by the geophysical models to those derived from GOCE
measurements anywhere over the Earth’s surface. If we were ever
to refine the Earth’s geophysical models at a global or local scale
by means of GOCE data, we would first have to perform joint in-
versions involving both seismic and satellite gravity data in order to
estimate the unknown densities inside the Earth. For this task, our
calculation method for determining gravity gradients from Earth
models actually solves the forward problem of density estimation
under the assumption of an ellipsoidal Earth. Our aim is there-
fore to demonstrate the efficiency of the method for calculating
the gravity gradient anomalies from any Earth model of ellipsoidal
shape.

Geological models usually consist of physical properties of
the Earth registered in elementary contiguous cells located on a
regular geographical grid, where each node is defined by its geode-
tic coordinates. As shown in Fig. 7, it is then possible to construct
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Figure 5. Approximation error on the gravity gradient tensor elements produced by a constant density ellipsoidal shell calculated by means of the GLQ. The
error, which corresponds to the difference between the values provided, respectively, by the GLQ and analytical formulae, has been plotted for all elements of
the gravity gradient tensor as a function of the latitude and for three sets of GLQ orders (2/2/2, 3/3/2, 4/4/4). The use of orders 3/3/2 in the GLQ allows the
error to be maintained under one-tenth of millie6tvos regardless of the latitude. Even less error can be achieved by means of orders 4/4/4 but requires a longer

computation time.

the corresponding ellipsoidal and spherical prisms. Let us consider
a unique cell of a geological grid model, which provides us with

ellipsoids with the scaling factors u; and u,, respectively, given by:

. . . M=Ar—2 h=Ar+ 2
the location (A, @, /), the size (A, Ag, Ah) and the density p of 2 2
an elementary solid body. F'irst, we can easily express the Cartesian ©r=¢ — % O =9+ % (45)
coordinates (Xs, Y5, Zs) of its top centre (S): X7 . i
B2 2 =

Xs = (N + h)cosgcosi
Ys = (N + h)cosgpsink
Zs = (N(1 —é*)+ h)sing

(43)

and the Cartesian coordinates (X o Y, ZS) of its bottom centre

(S):

Xg = (N + (h+ Ah))cos @ cos A
Yo = (N + (h + Ah))cosgsin
Zg = (N(1 —ée*)+ (h + Ah))sing

(44

As a reminder (see Section 2), the ellipsoidal prism is defined by
two meridians of longitudes A, and X,, respectively, two parallels
of geodetic latitudes ¢, and ¢, respectively, and two homothetic

Its spherical counterpart is defined by two meridians of longitudes
A and A,, respectively, two parallels of geocentric latitudes 6,
and 0,, respectively and two concentric spheres of radii r; and 7,
respectively, given by:
M=Ar—5 =M+ 2
6, = arctan((1 — e?)
x tan(gp — ££)) 6, = arctan((1 — e?) tan(p + 22)) (46)

= XA+ Y+ 2= X+ Y+ Z2

Note that, as their spherical counterparts, ellipsoidal prisms of same
geodetic latitudes boundaries, ¢; and ¢,, are all included between
the two geocentric latitudes 6, and 6, (Fig. 7). This property results
from the conservation of the excentricity value e that has been
demonstrated in Section 2. Once having solved the problem of
numerically computing the gravity effects of an ellipsoidal prism,
the next task is to compare the numerical values of gravity provided
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Figure 6. The graph shows the error that occurs on 7}, gravity tensor element with the orders 3/3/2 (green solid line) after dividing twofold the size of the
ellipsoidal prism (AA = Ag = 0.5°). The error is now negligible when compared to that obtained for 1° size prisms and the orders 4/4/4 (red solid line). The
result suggests that a better accuracy in the GLQ computation can be achieved by a simple change of prism size.
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Figure 7. Geometrical construction of ellipsoidal and spherical prisms from geological model information. Geographical information contained in geological
grid model is used to define the geometric location and boundaries of the ellipsoial and spherical prisms.

by GLQ using spherical and ellipsoidal prisms for the discretization
of an ellipsoidal shaped Earth.

4.1 Effect of an improper mass estimation

According to Fig. 7, the ellipsoidal and spherical prisms are not
perfectly stackable. Consequently, they do not represent the same

volume and by extension the same mass since they have the same
density p. To assess the impact of equating ellipsoidal and spherical
prisms on gravity gradient calculation, it is helpful to estimate the
gravity gradient variation induced by a given variation of the gravity
source mass. As typical of this variation, we shall consider the
magnitude of the gravity gradient along the radial direction d7,,
produced at the point P by the mass element d<2s located at the
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point S. According to Tables 1 and 2, the magnitude d7,, of the
elementary tensor d T is given by:

92 1
dT,, = Gps— dQ 47
'OSBr,ZJ (PS) S- 47)

Given the fact that the product psd€2s correspond to the elementary
mass of the source placed at S, the variation of the radial gradient
magnitude per unit of mass 7, due to the mass source at S may
simply be expressed as:

dT,, 02 1
T = ~¢l (L), (48)
,OSdQS 3}"P PS

This quantity depends only on the relative position of the observa-
tion point P with respect to the source point S, and the question then
arises, how does it vary when the point S skims within the Earth’s
interior. A reasonable estimate of t,,. for the Earth at GOCE altitude
can be obtained by calculating its mean value over the entire volume
of a sphere S centred at the point O and of radius R. This yields

I ot (o

which can be transformed by inverting the triple integration and the
double differentiation which operate on independent variables, thus
giving:

=i [I ], () =i las) o

For a point P located outside the sphere ET, the mean value of the
reciprocal distance < +5 is simply equal to . After having performed
the double differentiation with respect to rp, we obtain finally:

(t,) = ¥ G

T'p

Let us consider the satellite GOCE orbiting at Agoceg = 260 km
height above the mean sphere of radius R = 6371km such as
rp = hgoce + R. This leads to an estimate of the radial grav-
ity gradient variation per unit mass (z,,) at 4.571073' s~%kg~' or
4.57107" mE kg~'. More precisely, if the error affecting the vol-
ume of the mass element will cause an error of 1 kg on the mass, then
the resulting error on the radial gravity gradient is at 4.57 10~' mE.
As a result, this error reaches 1 mE as the error affecting the mass
of source is greater than 2.19 10'® kg.

Now considering the whole Earth’s shape as ellipsoidal, the use
of the spherical prism as mass element in the numerical calcula-
tion of volume integrals such as (7)—(9) gives rise to an error on
the resulting effect, which unavoidably increases when the volume
of material involved increases. The cumulative error, which affects
numerical evaluation of the Earth’s mass, can be rigorously cal-
culated using PREM (Dziewonski & Anderson 1981) as follows:
the exact value of mass of each Earth’s layers defined to be of
constant density by PREM, is obtained by summing the mass of
each ellipsoidal prism. This value can also be calculated by sum-
ming the mass of each corresponding spherical prism. By cumulat-
ing the differences between the mass values, cumulative error on
mass estimation can be obtained as a function of the layer depth
from the Earth’s surface. The cumulative error on mass layer esti-
mation has then been transformed into cumulative error on radial
gravity gradient 7,, multiplying it by the value of (z,,) previously
determined.

The cumulative error has been plotted as a function of depth in
the graphs shown in Fig. 8 (graph a). As is made clear by the graph,

Complete gravity field of ellipsoidal prism 2231

the error, which affects the numerical calculation of radial gravity
gradient, attains 1 mE at 230km depth and reaches 20 mE when
considering the entire radial mass distribution. This confirms that
the improper mass estimation, induced by the approximation of the
ellipsoidal prism by its spherical counterpart, has a significant effect
on the gravity gradient values.

Fortunately, the improper estimation of mass can be easily cor-
rected by scaling the density of each spherical prism. In this case, the
scaling factor is simply obtained by calculating the ratio between the
volume of the considered ellipsoidal prism and the corresponding
spherical prism:

Qo
Qelll: (52)
sp
using
3 IR 72 sing -
Quip =@’ (1 — ) [A]}} Y —— (53)
w | V1 —e€?sin®g
o1
and
3972
n|r : 02
Qpn = [A]3] [?i| [sinf];; . (54)
r

By doing so, we do not change the geometrical boundaries given
by the geological model. However, there is still an error due to the
fact that the Legendre’s nodes used in the GLQ involving spher-
ical prisms are slightly different from those involving ellipsoidal
prisms. To quantify this remaining error, the previous experiment
has been modified as follows: we applied the density scaling cor-
rection to eliminate the mass error and we directly calculated the
T, component, by mean of GLQ, for each layer of PREM at a
single point defined by (A = 0°,0 = 50°andr = 6637655.2m,
mean radius of GOCE grids). The graph plotted in Fig. 8 (graph b)
shows the cumulative difference between the two magnitude val-
ues of 7,, gravity gradient, provided, respectively, by the spherical-
and ellipsoidal-prism-based methods as a function of depth. This
graph shows that the improper location of Legendre’s nodes has
a smaller effect than the improper mass estimation effect previ-
ously established. The error only reaches 1 mE at 830 km depth
and 6 mE at the Earth’s centre, which suggests that the spherical
prism correctly approximates its ellipsoidal counterpart for global
lithospheric studies, provided that the scaling of prism densities has
been performed. The stabilization of the cumulative error observed
for the great depths, is naturally due to the increasing distance be-
tween the calculation point and the mass sources coupling with the
decrease of the masses involved, thus causing an attenuation of their
gravitational effects.

Because of the axial symmetry of the geological model adopted in
this experiment, the numerical errors might have offset each other.
In order to raise this uncertainty, we experimented on the previous
numerical test with a geological model including lateral density
changes.

4.2 Effect of lateral density changes

In this case, we consider the model of the Earth’s interior consisting
of the combination of LITHO1.0 model (Pasyanos et al. 2014) and
PREM model (Dziewonski & Anderson 1981). The former extends
from the Earth’s surface including topography, ice and water, down
to the lithosphere—asthenosphere boundary. It provides, among other
physical parameters, the rock densities along column materials of
various thicknesses the horizontal size of which is 1° by 1°. The
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Figure 8. (a) Cumulative error on the magnitude of the gravity gradient along the radial direction 7;,- at GOCE altitude for Earth’s layers of increasing depths.
The density distribution as well as the limits of Earth’s layers have been provided by PREM. The graph labeled by Z is a zoom showing the first 1000 km. The
error results from a misestimation of the volume of each ellipsoidal shape layers when computed from spherical mass elements. Variations of the radial gravity
gradient induced by these volume differences have been calculated using the mean value (z,,) of the radial gravity gradient variation per unit mass at 4.57 x
10~ mE kg~! determined in the paper. (b) Direct estimation of the error made on the 7}, component when equating the mass of each ellipsoidal and spherical

prism by means of a density scaling.

latter entirely described the density distribution as concentric, ax-
ially symmetric layers of constant density from the Earth’s sur-
face down to the internal core. The densities provided by PREM
have been utilized for completing the density distribution given by
LITHOL1.0 for the remaining part of the Earth’s interior, thus giving
what we shall henceforth call the combined model. At this point,
we can define the gravity anomaly with respect to PREM at GOCE
altitude as consisting, for each gravity gradient, of the difference
between the gravity gradient values computed from the combined
model and that computed at the same points from PREM. The grav-

ity gradients from the sole PREM model can be readily computed
by means of the close analytical formulae giving the gravity gradi-
ents of an ellipsoid of constant density. To put it more precisely, the
gravity effect of PREM can be obtained by adding the respective
contributions of concentric and homothetic ellipsoids of constant
densities which, once combined, result in the same density distribu-
tion as that given by PREM layers. Moreover, the numerical inte-
gration by means of GLQ is needed when lateral density variations
are present, that is, wherever LITHO1.0 model applies. Since the
density distribution given by the combined model beyond 400 km
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Figure 9. Differences between the gravity gradient anomalies produced by the combined model and computed by the two methods (the GLQ using spherical

and ellipsoidal prisms).

depth is identical to that of PREM, there is no gravity anomaly with
respect to PREM due to the layers located at more than 400 km
depth. The gravity gradient anomalies with respect to PREM can
therefore be calculated by means of GLQ considering only the first

400 km of the combined model. In that case, the gravity effect to be
calculated is that of an ellipsoidal layer of constant thickness with
lateral density variations related to the density contrast between
LITHO1.0 and PREM distributions.
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Figure 10. The combination of GLQ residual errors relative to the ellipsoidal and spherical prisms (blue plain curve) partly explains the north—south pattern

observed on Fig. 9 (green plain and red dashed curves).

Having defined the Earth’s model and assuming a perfectly cir-
cular orbit of the GOCE satellite, the computation of the resulting
gravity gradient anomaly for each gravity gradient over the whole
Earth’s surface can be carried out by means of GLQ. For the pur-
pose of comparison, these calculations were conducted twice, once
using our own method based on ellipsoidal Earth’s mass elements,
another by means of Tesseroids software (Uieda 2013, op. cit.)
based on spherical Earth’s mass elements. As in our the previous
experiment, the mass of each individual spherical prism has been
corrected by scaling the density value. The maps of the differences
drawn up for six of the nine Marussi’s tensor elements on a 1° x
1° grid, are shown in Fig. 9. Clearly, the magnitude of the approx-
imation error is lesser than 1 mE, which is consistent with results
obtained in the previous experiment (Fig. 8, graph b). This finding
indicates that lateral density variations do not significantly influence
the approximation error. The north—south variations in the differ-
ences visible on the maps, particularly for 7;, Type, Ty, and T,,, are
likely due to the combination of GLQ residual errors. Indeed, the
GLQ residual error for the ellipsoidal prism depends on the adopted
quadrature order and varies according to the latitude of the calcula-
tion point (Fig. 5). Since similar variations also appear when dealing
with the spherical prism, their linear combination may induce pat-
terns such as those illustrated on Fig. 9. This is exemplified by the
graph in Fig. 10. The green plain curve corresponds to a north—
south profile of the 7,, approximation error that appears in Fig. 9,
measured along the meridian of 0° longitude. The error fluctuates
along the meridian from the equator to the pole. The overall trend,
derived from a polynomial fit (red dashed curve in Fig. 10), shows
a peak-to-peak variation of about 0.8 mE from the equator to the
poles. To test whether such trend might be attributed to the GLQ,
we carried out an experiment consisting in comparing the sole GLQ
errors, respectively, from an ellipsoidal and a spherical-prism-based

method. Let €.y, be the GLQ error relative to the ellipsoidal prism.
This error has already been determined in Section 3 by using an
ellipsoidal shell of constant density whose true gravity effect can
be analytically performed (Fig. 5). In the same way, let €, be the
GLQ error relative to spherical prism. This error can be determined
by calculating the effect of a spherical shell of constant density. In
this particular case, true analytical formulae exist and are directly
comparable to those provided by the GLQ. The blue plain curve in
Fig. 10 corresponds to the difference between these two residual
numerical errors: €., — €gn. Even if its magnitude does not fit
with the red dashed curve (approximation error observed in Fig. 5),
it shows the same overall trend, which tends to confirm that the
north—south patterns are due to the combination of GLQ residual
eITors.

5 CONCLUSIONS AND OUTLOOK

In this paper, we have been interested in the mathematical formula-
tion of a computational method for calculating by GLQ integration
the complete gravity field (gravity potential and vector components
and gravity gradients) produced by the Earth’s material given a den-
sity distribution model. While current integration methods assume
a decomposition of the Earth’s body into spherical mass elements,
our own is essentially based on ellipsoidal mass elements, thus
giving an exact decomposition of an ellipsoidally shaped Earth.
Because the Marussi’s tensor calculated from our method is de-
liberately expressed in a local spherical basis, the resulting gravity
gradients are easily comparable to those measured by GOCE. We
have demonstrated by means of simulation using synthetic gravity
sources that the error induced by the numerical integration involved
in our method is negligible regarding GOCE measurement accuracy
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(1 mE). The use of spherical prisms as the mass element for decom-
posing an ellipsoidal shaped Earth leads to errors on gravity gradient
estimates that accumulate when the maximum depth of the Earth’s
materials involved in the calculation increases. The level reached
by the resulting error (<1 mE), such as shown with the combined
model involving PREM and LITHO1.0, has proved that the use of
the tesseroid is largely suitable for a joint analysis with GOCE data
from lithospheric scale, provided that a scaling of prism densities is
performed. Alongside a direct comparison between the gravity gra-
dients measured by GOCE and those computed from geophysical
Earth’s models for the purpose of validation, our method allows us
to refine the density distribution models derived solely from terres-
trial geophysical methods, by adding satellite gravity data. Indeed,
the same mathematical formulation can be used in the inverse prob-
lem consisting of determining the Earth’s density distribution from
gravity measurements, among others. Owing to the fact that ellip-
soidal mass elements are intrinsically involved in the calculation of
integrals, the method is particularly well suited to ellipsoidal shaped
Earth’s models.
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