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Macroscopic analysis of shot-noise Cox random balls

Adrien Clarenne
∗

Abstract

In this paper, we consider a cluster model of weighted Euclidean random balls gener-
ated by a shot-noise Cox process. It is an example of cluster point process. We perform
a scaling on the model by shrinking the radii of the balls and compensate this effect by
increasing the (mean) number of balls in each cluster, or/and increasing the (mean) num-
ber of clusters. We consider two different scenarios, say a local and a global scenarios.
Heuristically, in the first scenario, we focus on the mean number of large balls in a cluster
while in the second one, we focus on the global mean number of large balls in the model.
According to the different scenarios, the cluster structure can persist at the limit or dis-
appear.

Keywords: Cox processes, random balls, random fields, limit theorem.
MSC Classification: 60G55, 60F05, 60G60.

Introduction

We consider a model of weighted Euclidean random balls in R
d generated by a shot-noise Cox

process as follows. The centers of the balls are generated by a shot-noise Cox process Z and
this point process is marked twice, first by random variables r with density probability f ,
seen as the radii of the balls, and second by a mark seen as the weights of the balls generated
by a probability measure G. The marks are all independent and independent also of Z. The
resulting marked point process is still a Cox process C but on R

d × R+ × R.
It is an example of cluster Poisson process where the centers of the clusters are drawn by a
Poisson point process Φ on R

d. Since a Cox process can be seen as a Poisson point process
with a random intensity, the model under study is actually a randomized version of the
Poissonian random balls model. When the intensity is deterministic, we recover the usual
Poissonian model which has been studied in several papers since its introduction in [7], see
also [1, 2] for generalizations of [7] with weights and/or zoom-in and zoom-out. See also [3]
for a determinantal random ball model beyond the Poissonian setting.
The class of Cox point process is one of the most used among the cluster models, because it can
represent random constraint of a field, for example a random heterogeneity (see [8, 9] for more
details on shot-noise Cox processes). In dimension 1, a random balls model can be interpreted
as a model for the study of communication network (see [10]) or power consumption for
example. In this situation, the centers x of the balls are interpreted as the date of the
connection and the radius r the duration of the connection. In the Poissonian case, the
dates of connections are placed uniformly in time. In the determinantal case, the connection
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dates are not too close to each other. Here, in the shot-noise Cox model, we represent the
situation where there are peaks of connections, for example in the morning or in the evening
when people are at home. We are typically in a cluster situation. In dimension 2, we can
interpret the model as a wireless network, where x is the location of a transmitter and r is its
range of transmission. In the Poissonian case, the transmitters are uniformly distributed in
the space. In the shot-noise Cox model, the cluster structure implies that the antennas are
highly concentrated in some places and sparse at others which is indeed the case in some real
situation (think about a city with no antennas on lakes, river or some special infrastructure
like schools).
In the following, our macroscopic analysis is driven as follow. We perform a scaling in this
model by first shrinking the radii; to compensate this effect, we rescale the shot-noise Cox
process Z that generated the centers of the balls. In contrast with the Poissonian (see [1])
or the determinantal case (see [3]), where there is just one level of randomness, the global
location of the balls, here we have two levels of randomness with the collection of cluster and
within each cluster. As a consequence, this additional level of randomness makes it possible
to study many more different asymptotics behaviours in this model. In practice, we dispose
of two levels of scaling with the (mean) number of clusters and the (mean) number of balls
in each cluster.
In the Poissonian or determinantal cases, a key quantity appearing to drives the fluctuations
is the mean number of large balls. In the setting of Cox process, two different scenarios, say a
local and a global one, are possible because two distinct quantities can drive the fluctuations.
The first one is the mean number of large balls in each cluster, and we will refer to it as
the local scaling. In this scenario, we do not rescale the mean number of clusters. Roughly
speaking, each cluster is a Poissonian ball model whose asymptotics are well known from [1, 2]
and the whole limit of the Cox model is then a mixture of the limit random fields obtained,
and so we obtain a randomized version of the Poissonian results from [1, 2].
The second scenario will be refer to as the global scaling: in contrast to the first one where
we only focus on the mean number of balls in each cluster, in this scenario we focus on the
global mean number of large balls in the model. This situation is analogous to the Poissonian
case, and we recover the same three regimes as therein, with a disappearance of the cluster
structure.
The document is organized as follow. In Section 1, we give a detailed description of the model
under study. In Section 2, we introduce the rescaled model and the object of interest in the
paper. In Section 3, we give the main results in two subsections dealing with the two scenarios
described above. Finally, some general results about Cox processes are given in Appendix A.
In particular, we refer to this Appendix for any reader unfamiliar with Cox processes, see
Definition A.3.

1 Shot-noise Cox random ball model

We now describe mathematically the model under study. We consider a collection of Euclidean
balls B(x, r) =

{
y ∈ R

d : ‖y − x‖ ≤ r
}
whose centers x and radii r are generated by a Cox

process on R
d × R+. To generate the balls, we first consider a shot-noise Cox process D on

R
d directed by a random measure

Z(dx) =
∑

y∈Φ

k(x, y)dx (1.1)
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that generates the centers of the balls. Here, Φ is a Poisson point process on R
d with intensity

the Lebesgue measure on R
d and k a positive function on R

d × R
d satisfying

‖k‖∞ = sup
(x,y)∈(Rd)2

k(x, y) < +∞ (1.2)

and for all x ∈ R
d, ∫

Rd

k(x, y)dy = 1. (1.3)

This is an example of a Poisson cluster process, where Φ is the base point process drawing
the centers c of the clusters Xc, and k(c, ·) is the density intensity of the Poisson process Xc.
To each center x, we attach two marks r (positive) and m, interpreted respectively as the
radius of the ball and as the weight of the ball. These radii and weights are each identically
distributed according respectively to a density f on R+ and a probability distribution G on
R. We obtain a Cox process C on R

d ×R+ × R directed by the random measure

Λ(dx, dr, dm) = Z(dx)f(r)drG(dm). (1.4)

Like in the previous studies of random ball model [1, 2, 3], we focus on the following measure-
indexed random field given for a measure µ on R

d by

M(µ) =

∫

Rd×R+×R

mµ(B(x, r))C(dx, dr, dm). (1.5)

To ensure that the quantity (1.5) is indeed well defined, we actually restrain the study ofM to
finite signed measures µ, i.e. µ ∈ Z(Rd) :=

{
µ : |µ|(Rd) < +∞

}
and we denote ‖µ‖ = |µ|(Rd)

for the total variation of µ. We also assume that the distribution G of the marks belongs to
the normal domain of attraction of the α-stable distribution Sα(σ, b, 0) with α ∈ (1, 2]. Here,
following the terminology of [11], σ is a scale parameter and b is a skewness parameter while
the translation parameter is zero. Since α > 1, we have

∫

R

|m|G(dm) < +∞. (1.6)

Moreover, like in previous studies of random ball models [1, 2, 3], we assume also the following
power-law hypothesis on the radius behaviour: for d < β < αd,

f(r) ∼
r→+∞

Cβ

rβ+1
, f(r) ≤

C0

rβ+1
, (1.7)

for finite positive constant C0 and Cβ.
Observe in particular that since β > d, the mean volume of the ball is finite:

∫

Rd

rdf(r)dr < +∞. (1.8)

For this Cox process, we show now that the quantity (1.5) is indeed well defined for µ ∈ Z(Rd):
using Fubini-Tonelli theorem, we have

E [|M(µ)|] = E

[∣∣∣∣
∫

Rd×R+×R

mµ(B(x, r))C(dx, dr, dm)

∣∣∣∣
]
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= E

[
E

[∣∣∣∣
∫

Rd×R+×R

mµ(B(x, r))C(dx, dr, dm)

∣∣∣∣
∣∣∣∣Λ
]]

= E

[∣∣∣∣
∫

Rd×R+×R

mµ(B(x, r))Λ(dx, dr, dm)

∣∣∣∣
]

≤ E

[∫

Rd

∫

Rd×R+×R

|m||µ(B(x, r))|k(x, y)dxf(r)drG(dm)Φ(dy)

]

=

∫

Rd

∫

Rd×R+×R

|m||µ(B(x, r))|k(x, y)dxf(r)drG(dm)dy

=

(∫

R

|m|G(dm)

)(∫

Rd×R+

|µ(B(x, r))|dxf(r)dr

)

≤ vd‖µ‖

∫

R

|m|G(dm)

∫

R+

rdf(r)dr < +∞

thanks to (1.6) and (1.8), where vd stands for the volume of the unit Euclidean ball of Rd.

2 Rescaled model

Our asymptotics are obtained by zooming-out in the model. This is obtained by performing
a scaling in the model. To that purpose, we introduce a zooming-out rate ρ ∈]0, 1[ to shrink
the radii of the balls. In order to compensate the shrinking of the balls, the random intensity
measure Z(dx) in (1.1) is changed into Zρ(dx) with

Zρ(dx) =
∑

y∈Φρ

kρ(x, y)dx,

where Φρ is a Poisson point process on R
d with intensity measure κ(ρ)dy and kρ is a density

kernel satisfying:

kρ(x, y) ∼
ρ→0

λ(ρ)k(x, y) and kρ(x, y) ≤ C1λ(ρ)k(x, y). (2.1)

The parameters κ(ρ) and λ(ρ) will compensate the zooming-out effect (i.e. the balls become
smaller when ρ goes to 0). Heuristically, λ(ρ) gives the order of the mean number of balls in
a cluster and κ(ρ) gives that of the clusters.
Let Cρ be the resulting scaled version of the Cox process C on R

d×R+×R given in (1.4) i.e.
Cρ is directed by the scaled intensity measure

Λρ(dx, dr, dm) = Zρ(dx)f

(
r

ρ

)
dr

ρ
G(dm)

(it is an analogous scaling as in [1, 3, 6]) and we are interested in the corresponding rescaled
quantity as in (1.5):

Mρ(µ) =

∫

Rd×R+×R

mµ(B(x, r))Cρ(dx, dr, dm). (2.2)

In the Poissonian case, the fluctuations of Mρ(µ) with respect to its mean value are inves-
tigated. Since Cox processes can be seen as Poisson processes but with random intensity
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measure, it is relevant in the present Cox setting to study the fluctuations of Mρ(µ) in (2.2)
with respect to its conditional mean. In this situation, the centering is thus not deterministic
and we investigate the limit in law when ρ→ 0 of

Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)
(2.3)

for a proper normalization n(ρ).

The fluctuations of Mρ(µ) given in (2.3) are ruled by the mean number of large balls in
the model. By large balls, we mean balls, say, with radius larger than one and containing the
origin 0. Let compute this key quantity. Setting #A for the cardinal of A,

E

[
#
{
(x, r,m) ∈ Cρ

∣∣0 ∈ B(x, r), r > 1
} ]

= E

[ ∫

Rd×R+×R

1{0∈B(x,r), r>1}Cρ(dx, dr, dm)

]

= E

[
E

[∫

Rd×R+×R

1{0∈B(x,r), r>1}Cρ(dx, dr, dm)

∣∣∣∣Λρ

]]

= E

[ ∫

Rd×R+×R

1{0∈B(x,r), r>1}Λρ(dx, dr, dm)

]

= E

[ ∫

Rd×R+×R

1{0∈B(x,r), r>1}Zρ(dx)f

(
r

ρ

)
dr

ρ
G(dm)

]

= E

[ ∫

Rd

∫

Rd×R+×R

1{0∈B(x,r), r>1}kρ(x, y)dxf

(
r

ρ

)
dr

ρ
G(dm)Φρ(dy)

]

=

∫

Rd

∫

Rd×R+×R

1{0∈B(x,r), r>1}kρ(x, y)dxf

(
r

ρ

)
dr

ρ
G(dm)κ(ρ)dy

= κ(ρ)

∫

Rd

∫

Rd

∫ +∞

1
1{x∈B(0,r)}kρ(x, y)f

(
r

ρ

)
dxdy

dr

ρ
.

The dominated convergence theorem gives the behaviour of this last integral:

• lim
ρ→0

1

λ(ρ)ρβ
× 1x∈B(0,r)kρ(x, y)f

(
r

ρ

)
1

ρ
= 1x∈B(0,r)k(x, y)Cβr

−β−1

•

∣∣∣∣
1

λ(ρ)ρβ
× 1x∈B(0,r)kρ(x, y)f

(
r

ρ

)
1

ρ

∣∣∣∣ ≤ 1x∈B(0,r)C1k(x, y)C0r
−β−1

which is independent of the parameter ρ and integrable on R
d × R

d×]1,+∞[ since:

∫

Rd

∫

Rd

∫ +∞

1
1x∈B(0,r)C1k(x, y)C0r

−β−1dxdydr = C0C1

∫

Rd

∫ +∞

1
1x∈B(0,r)r

−β−1dxdr

= C0C1vd

∫ +∞

1
rd−β−1dxdr

=
C0C1vd
β − d

< +∞.
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Thus we have:

lim
ρ→0

∫

Rd

∫

Rd

∫ +∞

1

1

λ(ρ)ρβ
× 1x∈B(0,r)kρ(x, y)f

(
r

ρ

)
1

ρ
dxdydr =

Cβvd
β − d

,

which finally gives:

E

[
#
{
(x, r,m) ∈ Cρ

∣∣0 ∈ B(x, r), r > 1
}]

∼
ρ→0

Cβvd
β − d

κ(ρ)λ(ρ)ρβ . (2.4)

This computation shows that the mean number of large balls in the model is of order
κ(ρ)λ(ρ)ρβ . We can also interpreted this result as follows: κ(ρ) represents the mean number
of clusters in the model, so the mean number of large balls in each cluster is of order λ(ρ)ρβ .
These two interpretations will give two different studies of the model, as explained at the
beginning of Section 3.

The limit in law of (2.3) when ρ goes to 0 will be identified by the asymptotics of its
characteristic function for which we dispose of the expression (A.3) for the shot-noise Cox
process given in the Appendix. Applying Proposition A.5 and Fubini-Tonelli theorem:

E

[
exp

(
iθ

(
Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

))]

= E

[
exp

(∫

Rd×R+×R

ψ

(
θmµ(B(x, r))

n(ρ)

)
Λρ(dx, dr, dm)

)]

= E

[
exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
Zρ(x)dxf

(
r

ρ

)
dr

ρ

)]

= E

[
exp

(∫

Rd×R+

∫

Rd

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)Φρ(dy)dxf

(
r

ρ

)
dr

ρ

)]

= E

[
exp

(∫

Rd

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

)
Φρ(dy)

)]
,

where ψG(u) =

∫

R

ψ(mu)G(dm) and ψ(x) = eix − 1− ix.

In order to apply Proposition A.2, we check that (A.2) holds true, with:

g̃(y) = −i

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ
.

We have |ψ(u)| ≤ 2|u| (see Lemma 1 in [7] for details) which gives the following control for
ψG:

|ψG(u)| ≤ 2

(∫

R

|m|G(dm)

)
|u|. (2.5)

Also using (2.1), we have the following domination:

∫

Rd

(1 ∧ |g̃(y)|)κ(ρ)dy ≤ κ(ρ)

∫

Rd

|g̃(y)|dy

= κ(ρ)

∫

Rd

∣∣∣∣
∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∣∣∣∣ dy

6



≤ κ(ρ)

∫

Rd

∫

Rd×R+

∣∣∣∣ψG

(
θµ(B(x, r))

n(ρ)

)∣∣∣∣ kρ(x, y)dxf
(
r

ρ

)
dr

ρ
dy

≤ 2κ(ρ)

(∫

R

|m|G(dm)

)∫

Rd

∫

Rd×R+

|θµ(B(x, r))|

n(ρ)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ
dy

≤
2C1|θ|λ(ρ)κ(ρ)

n(ρ)

(∫

R

|m|G(dm)

)∫

Rd

∫

Rd×R+

|µ(B(x, r))|k(x, y)dxf

(
r

ρ

)
dr

ρ
dy.

By Fubini-Tonelli theorem, using (1.3), we get:

∫

Rd

∫

Rd×R+

|µ(B(x, r))|k(x, y)dxf

(
r

ρ

)
dr

ρ
dy

=

∫

Rd×R+

|µ(B(x, r))|

=1︷ ︸︸ ︷(∫

Rd

k(x, y)dy

)
dxf

(
r

ρ

)
dr

ρ

=

∫

Rd×R+

|µ(B(x, r))|dxf

(
r

ρ

)
dr

ρ

≤ C1‖µ‖vdρ
d

∫

R+

rdf(r)dr.

Finally:

∫

Rd

|g(y)|κ(ρ)dy ≤
2C1|θ|λ(ρ)κ(ρ)

n(ρ)

(∫

R

|m|G(dm)

)∫

Rd×R+

|µ(B(x, r))|dxf

(
r

ρ

)
dr

ρ

=
2C1|θ|‖µ‖vdλ(ρ)ρ

dκ(ρ)

n(ρ)

(∫

R

|m|G(dm)

)∫

R+

rdf(r)dr < +∞.

As a consequence Proposition A.2 applies and gives the characteristic function of (2.3):

Proposition 2.1 Assume (1.3), (1.7) and (2.1) and let µ ∈ Z(Rd). Then the characteristic
function of (2.3) is given by

E

[
exp

(
iθ

(
Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

))]

= exp

(
−

∫

Rd

(
1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

))
κ(ρ)dy

)
. (2.6)

In order to investigate the behaviour of (2.3) when ρ → 0, i.e. the limit of (2.6), it is
necessary to consider a restricted class of measures µ that we introduce now (see also [2, 3]).

Definition 2.2 The set Mα,β consists of signed measures µ ∈ Z(Rd) such that there exists
two real numbers p and q with 0 < p < β < q ≤ 2d and a positive constant Cµ such that

∫

Rd

|µ
(
B(x, r)

)
|α dx ≤ Cµ

(
rp ∧ rq

)
, (2.7)

where a ∧ b = min(a, b).
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The control in (2.7) by both rp and rq is required to ensure that the integral in Proposition 2.3-
(i) below is indeed well defined. This integral is actually of constant use in our argument,
so the introduction of the space Mα,β is crucial. This definition is reminiscent of M2,β in
[2]. In particular, absolutely continuous measures with respect to the Lebesgue measure, with
density ϕ ∈ L1(Rd) ∩ Lα(Rd), do belong to Mα,β for d < β < αd and will play an important
role in the small-balls scaling. Recall the following properties on Mα,β from Propositions 2.2
and 2.3 from [2]:

Proposition 2.3 (i) The set Mα,β is a linear subspace of Z(Rd) and, for all µ ∈ Mα,β,

∫

Rd×R+

|µ
(
B(x, r)

)
|αr−β−1 dxdr < +∞.

(ii) If d < β < αd, then L1(Rd) ∩ Lα(Rd) ⊂ Mα,β and for all µ ∈ L1(Rd) ∩ Lα(Rd):

∫

Rd

|µ
(
B(x, r)

)
|α dx ≤ Cµ

(
rd ∧ rαd

)
.

In the sequel, we investigate the behaviour of (2.3) when ρ −→ 0 in various situations.

3 Asymptotic results

In order to investigate the limit of (2.6) when ρ→ 0, we consider two main scaling scenarios:
the so called local and global scenarios.

In the local scenario, the scaling is properly balanced by adjusting the model parameter
in the local structure of the model, i.e. in each cluster λ(ρ) → +∞. In this context, the key
quantity driving the different regimes appears to be the mean number λ(ρ)ρβ of large balls
in each cluster (see (2.4)).

In this local scaling, we scale both the radii (ρ → 0) and the number of balls in each cluster
(i.e. λ(ρ) → +∞), but not scale the mean number of clusters (i.e. κ(ρ) = 1) (see Section
3.1). Heuristically, each cluster Xc is a Poissonian ball model as in [7] and the asymptotics
are obtained as in Theorem 2 in [7] in each such model. The whole limit of the Cox model
is then a mixture of the limit random fields obtained in each Poissonian cluster Xc hence the
randomized Poissonian limit obtained (see Theorems 3.3, 3.4 and 3.5).

Next we consider a global scenario where the scaling is now balanced by adjusting the model
parameter of the global cluster structure of the Cox model κ(ρ) → +∞. In this context, the
key quantity driving the different regimes is the global mean number of large balls κ(ρ)λ(ρ)ρβ

(see (2.4)). In this case, we will assume that κ(ρ) → +∞ but we will not suppose necessarily
that λ(ρ) → +∞. According to the behaviour of κ(ρ)λ(ρ)ρβ , three different regimes appear,
and the cluster structure is erased at the limit ρ→ 0 (see Section 3.2).

A natural first step for these different scenarios is to specify the behaviour of the inner
integral in (2.6): ∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ
. (3.1)
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We study (3.1) in the three different normalization settings considered:

(1) : n(ρ) → +∞, (2) : n(ρ) = 1, (3) : n(ρ) → 0.

Note that in the third point of the following Proposition 3.2, we consider smooth measures
µ ∈ L1(Rd)∩ Lα(Rd). Heuristically, in the third point, large balls will disappear at the limit
and it will just remain small balls, that can be seen as points on the space. To identify the
limit, we need more precision on the measure, and so we consider measures with intensity
in L1(Rd) ∩ Lα(Rd). In the sequel, we shall use the technical result from [2] (Lemma 3.1
therein):

Lemma 3.1 Suppose X is in the domain of attraction of an α-stable law Sα(σ, b, 0) for some
α > 1. Then

E [ψ(θX)] ∼
0
−σα|θ|α

(
1− iǫ(θ) tan(πα/2)b

)
,

where ǫ(θ) = 1 if θ > 0, ǫ(θ) = −1 if θ < 0 and ǫ(0) = 0.
Furthermore, there is some K > 0 such that for any θ ∈ R,

∣∣E [ψ(θX)]
∣∣ ≤ K|θ|α.

With our previous notations, we have ψG(θ) = E [ψ(θX)]. The behaviour of (3.1) is given in
the following proposition.

Proposition 3.2 Assume (1.2), (1.7) and (2.1) hold true.

1. If n(ρ) → +∞, then for µ ∈ Mα,β, we have:

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∼
ρ→0

−σα|θ|α
λ(ρ)ρβ

n(ρ)α

∫

Rd×R+

|µ(B(x, r))|α
(
1− iǫ(θµ(B(x, r)) tan(πα/2)b

)

× k(x, y)dxCβr
−β−1dr.

2. If n(ρ) = 1, then for µ ∈ Mα,β, we have:

∫

Rd×R+

ψG

(
θµ(B(x, r))

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∼
ρ→0

λ(ρ)ρβ
∫

Rd×R+

ψG

(
θµ(B(x, r))

)
k(x, y)dxCβr

−β−1dr.

3. If n(ρ) → 0 and ρd = o(n(ρ)), then for µ ∈ L1(Rd) ∩ Lα(Rd), we have:

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∼
ρ→0

λ(ρ)ρβ

n(ρ)γ

∫

Rd×R+

ψG

(
θϕ(x)rd

)
k(x, y)dxvγdCβr

−β−1dr.

where µ(dx) = ϕ(x)dx and γ = β/d ∈]1, α[.
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Proof: These results are proved with the dominated convergence theorem. In the sequel,
we consider a fixed y in R

d.
1. Let n(ρ) → +∞ and µ ∈ Mα,β. To prove the first equivalence, we show that:

lim
ρ→0

n(ρ)α

λ(ρ)ρβ

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

= −σα|θ|α
∫

Rd×R+

|µ(B(x, r))|α
(
1− iǫ(θµ(B(x, r)) tan(πα/2)b

)
k(x, y)dxCβr

−β−1dr.

(3.2)

(i) Convergence: Thanks to Lemma 3.1, we have immediately together with (1.7) and (2.1):

lim
ρ→0

n(ρ)α

λ(ρ)ρβ
ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)f

(
r

ρ

)
1

ρ

= −σα|θ|α|µ(B(x, r))|α
(
1− iǫ(θµ(B(x, r)) tan(πα/2)b

)
k(x, y)Cβr

−β−1.

(ii) Domination: Using Lemma 3.1 and (1.7), (2.1) we have:

∣∣∣∣
n(ρ)α

λ(ρ)ρβ
ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)f

(
r

ρ

)
1

ρ

∣∣∣∣

≤ K|θ|α|µ(B(x, r))|αC1k(x, y)C0r
−β−1

≤ K|θ|α|µ(B(x, r))|αC1‖k‖∞C0r
−β−1 (3.3)

which is independent of the parameter ρ and integrable on R
d × R+ when µ ∈ Mα,β

thanks to Proposition 2.3.

The dominated convergence theorem then applies and (3.2) is obtained.
2. Let n(ρ) = 1 and µ ∈ Mα,β . To prove the second equivalence, we show that:

lim
ρ→0

1

λ(ρ)ρβ

∫

Rd×R+

ψG

(
θµ(B(x, r))

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

=

∫

Rd×R+

ψG

(
θµ(B(x, r))

)
k(x, y)dxCβr

−β−1dr. (3.4)

(i) Convergence: With (1.7) and (2.1), we have:

lim
ρ→0

1

λ(ρ)ρβ
ψG

(
θµ(B(x, r))

)
kρ(x, y)f

(
r

ρ

)
1

ρ
= ψG

(
θµ(B(x, r))

)
k(x, y)Cβr

−β−1.

(ii) Domination: Using Lemma 3.1 and (1.7), (2.1), we have:

∣∣∣∣
1

λ(ρ)ρβ
ψG (θµ(B(x, r))) kρ(x, y)f

(
r

ρ

)
1

ρ

∣∣∣∣ ≤ K|θ|α|µ(B(x, r))|αC1k(x, y)C0r
−β−1

≤ K|θ|α|µ(B(x, r))|αC1‖k‖∞C0r
−β−1 (3.5)

which is independent of the parameter ρ and integrable on R
d × R+ when µ ∈ Mα,β

thanks to Proposition 2.3.
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The dominated convergence theorem applies again and we obtain (3.4).
3. Let n(ρ) → 0 and ρd = o(n(ρ)). Let µ ∈ L1(Rd) ∩ Lα(Rd) with µ(dx) = ϕ(x)dx. To prove
the last equivalence, we show that:

lim
ρ→0

n(ρ)γ

λ(ρ)ρβ

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

=

∫

Rd×R+

ψG

(
θϕ(x)rd

)
k(x, y)dxvγdCβr

−β−1dr.

(3.6)

First, the change of variable r = n(ρ)1/ds gives:

n(ρ)γ

λ(ρ)ρβ

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

=
n(ρ)γ

λ(ρ)ρβ

∫

Rd×R+

ψG

(
θµ(B(x, n(ρ)1/ds))

n(ρ)

)
kρ(x, y)dxf

(
n(ρ)1/ds

ρ

)
n(ρ)1/d

ρ
ds,

and we study the limit of this latter expression like in 1 and 2:

(i) Convergence: First, since ϕ ∈ L1(Rd), Lemma 4 in [7] applies and for all y ∈ R
d we

have:

lim
ρ→0

n(ρ)γ

λ(ρ)ρβ
ψG

(
θµ(B(x, n(ρ)1/ds))

n(ρ)

)
kρ(x, y)f

(
n(ρ)1/ds

ρ

)
n(ρ)1/d

ρ

= ψG

(
θϕ(x)vds

d
)
k(x, y)Cβs

−β−1.

where vd is the Lebesgue measure of the unit ball of Rd.

(ii) Domination: Like in [7], set ϕ∗(x) = sup
v>0

µ(B(x, v))

vd
.

Thanks to Lemma 3.1, we have |ψG(u)| ≤ K|u|α and combining with (2.5), we have

|ψG(u)| ≤M (|u| ∧ |u|α) (3.7)

for some constant M > 0.
Let ε > 0 such that 1 < γ − ε < γ + ε < α. Thanks to (3.7), we have

|ψG(u)| ≤M
(
|u|γ−ε ∧ |u|γ+ε

)
. (3.8)

Since ϕ ∈ L1(Rd)∩Lα(Rd), ϕ ∈ Lq(Rd) for all 1 ≤ q ≤ α so that Lemma 4 in [7] ensures
ϕ∗ ∈ Lq(Rd) for all 1 < q < α which entails ϕ∗ ∈ Lγ−ε(Rd) ∩ Lγ+ε(Rd).
Thanks to (1.2), (1.7), (2.1) and (3.8), for ρ > 0 and θ ∈ R we have the following
domination:
∣∣∣∣∣
n(ρ)γ

λ(ρ)ρβ
ψG

(
θµ(B(x, n(ρ)1/ds))

n(ρ)

)
kρ(x, y)f

(
n(ρ)1/ds

ρ

)
n(ρ)1/d

ρ

∣∣∣∣∣

≤M
n(ρ)γ

λ(ρ)ρβ

{∣∣∣∣∣
θµ(B(x, n(ρ)1/ds))

n(ρ)

∣∣∣∣∣

γ−ε

∧

∣∣∣∣∣
θµ(B(x, n(ρ)1/ds))

n(ρ)

∣∣∣∣∣

γ+ε}
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× C1λ(ρ)‖k‖∞C0
ρβ

n(ρ)γ
s−β−1

≤MC1C0‖k‖∞

∣∣∣θϕ∗(x)s
d
∣∣∣
γ−ε

∧
∣∣∣θϕ∗(x)s

d
∣∣∣
γ+ε

s−β−1

≤M
(
|θ|γ−ε + |θ|γ+ε

)
C1C0‖k‖∞

(
|ϕ∗(x)|

γ−ε + |ϕ∗(x)|
γ+ε
) (
s−εd−1 ∧ sεd−1

)
(3.9)

which is independent of the parameter ρ > 0 and integrable on R
d × R+.

Finally, the dominated convergence theorem applies one more time and we obtain:

lim
ρ→0

n(ρ)γ

λ(ρ)ρβ

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

=

∫

Rd×R+

ψG

(
θϕ(x)vds

d
)
k(x, y)dxCβs

−β−1ds

which gives (3.6), up to the change of variable r = v
1/d
d s. �

In the sequel, we establish convergences of finite-dimensional distributions by proving one-
dimensional convergences of the distributions and using the Cramér-Wold device combined
with the linear structure of Mα,β .

3.1 Local scaling

In this section, we investigate the so called local scenario where the radii together with the
mean number of large balls in each cluster is rescaled. However, here, the mean number of
clusters remains constant, i.e. κ(ρ) = 1, and in this case the intensity of the shot-noise Cox
process specifies as

Zρ(x) =
∑

y∈Φ

kρ(x, y),

where Φ is a Poisson point process on R
d with intensity measure dy. We assume that

lim
ρ→0

λ(ρ) = +∞ i.e. while we zoom-out (ρ → 0), the clusters are bigger and bigger (λ(ρ) →

+∞) but the mean number of clusters does not change.

Theorem 3.3 Assume (1.2), (1.3), (1.7) and (2.1) hold true. Suppose λ(ρ)ρβ −→
ρ→0

+∞ and

set n(ρ) =
(
λ(ρ)ρβ

)1/α
. Then the following limit holds when ρ→ 0:

Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

Mα,β
=⇒
fdd

∫

Rd×R+

µ(B(x, r))Mα(dx, dr) (3.10)

where conditionally to Lα,Mα is a α-stable random measure with control measure Lα(dx, dr) =
σαZ(x)dxCβr

−β−1dr, where Z is given in (1.1)-(1.3), and constant skewness function b.

Proof: We apply the dominated convergence theorem to take the limit when ρ→ 0 in (2.6).
From (1) in Proposition 3.2, we have:

lim
ρ→0

1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

)
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= 1− exp

(
− σα|θ|α

∫

Rd×R+

|µ(B(x, r))|α
(
1− iǫ(θµ(B(x, r)) tan(πα/2)b

)

× k(x, y)dxCβr
−β−1dr

)
.

In order to prove the domination, let h(u) = 1 − eu, u ∈ C. By the mean value theorem, we
have |h(u)| = |eu − 1| ≤ eA|u| for all |u| ≤ A, where A is a fixed positive constant. In our
context we take:

u =

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

and

A := K‖k‖∞C0C1|θ|
α

∫

Rd×R+

|µ(B(x, r))|αr−β−1dxdr < +∞.

Using the same domination as (3.3) in the proof of (1) in Proposition 3.2, we have indeed
|u| ≤ A and consequently:

∣∣∣∣1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

)∣∣∣∣

≤ eA
∣∣∣∣
∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∣∣∣∣

≤ eAKC0C1|θ|
α

∫

Rd×R+

|µ(B(x, r))|αk(x, y)r−β−1dxdr

again with Lemma 3.1. Since the bound is independent of the parameter ρ and is integrable
on R

d with respect to the Lebesgue measure thanks to Fubini theorem, condition (1.3) and
Proposition 2.3, the dominated convergence theorem applies.

As a consequence, under the condition of Theorem 3.3 the limit in (2.6) writes:

lim
ρ→0

E

[
exp

(
−θ

(
Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

))]

= exp

(
−

∫

Rd

(
1− exp

(
− σα|θ|α

∫

Rd×R+

|µ(B(x, r))|α

× (1− iǫ(θµ(B(x, r)) tan(πα/2)b)k(x, y)dxCβr
−β−1dr

))
dy

)
.

We identify the obtained limit as the characteristic function of

∫

Rd×R+

µ(B(x, r))Mα(dx, dr)

whereMα is as described in Theorem 3.3 (we refer [11] for basics on stable measure and stable
random variable). Indeed, for θ ∈ R and µ ∈ Mα,β, we have:

E

[
exp

(
iθ

∫

Rd×R+

µ(B(x, r))Mα(dx, dr)

)]
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= E

[
E

[
exp

(
iθ

∫

Rd×R+

µ(B(x, r))Mα(dx, dr)

)∣∣∣∣Lα

]]

= E

[
exp

(
− σα|θ|α

∫

Rd×R+

|µ(B(x, r))|α (1− iǫ(θµ(B(x, r)) tan(πα/2)b)

× Z(x)dxCβr
−β−1dr

)]

= E

[
exp

(∫

Rd

(∫

Rd×R+

−σα|θ|α|µ(B(x, r))|α (1− iǫ(θµ(B(x, r)) tan(πα/2)b)

× k(x, y)dxCβr
−β−1dr

)
Φ(dy)

)]

= exp

(
−

∫

Rd

(
1− exp

(
− σα|θ|α

∫

Rd×R+

|µ(B(x, r))|α

× (1− iǫ(θµ(B(x, r)) tan(πα/2)b)k(x, y)dxCβr
−β−1dr

))
dy

)

by Proposition A.2 since Φ is a Poisson point process on R
d with intensity measure dy.

Finally, we have:

lim
ρ→0

E

[
exp

(
iθ

(
Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

))]

= E

[
exp

(
iθ

∫

Rd×R+

µ(B(x, r))Mα(dx, dr)

)]

which proves (3.10). �

Theorem 3.4 Assume (1.2), (1.3), (1.7) and (2.1) hold true.
Suppose λ(ρ)ρβ −→

ρ→0
a ∈]0,+∞[ and set n(ρ) = 1. Then the following limit holds when ρ→ 0:

Mρ(µ)− E [Mρ(µ) |Λρ]
Mα,β
=⇒
fdd

Nρ(µ)− E
[
Nρ(µ) |Λ

′
ρ

]

where Nρ(µ) =

∫

Rd×R+×R

mµ(B(x, r))C ′(dx, dr, dm), C ′ is a Cox process on R
d × R+ × R

directed by Λ′(dx, dr, dm) = Z(x)dxaCβr
−β−1drG(dm), and Z is given in (1.1)-(1.3).

Proof: Using (2) in Proposition 3.2, for all y ∈ R
d, we have:

lim
ρ→0

1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

)

= 1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

)
k(x, y)dxaCβr

−β−1dr

)
.

Consider like in the proof of Theorem 3.3 h(u) = 1 − eu, u ∈ C. Let ρ1 > 0 such that
λ(ρ)ρβ ≤ 2a for all 0 < ρ < ρ1. In our context, take:

u =

∫

Rd×R+

ψG

(
θµ(B(x, r))

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ
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and set

A := aK‖k‖∞C0C1|θ|
α

∫

Rd×R+

|µ(B(x, r))|αr−β−1dxdr < +∞.

Using the very same domination (3.5) as in the proof of (2) in Proposition 3.2, we have indeed
|u| ≤ A when 0 < ρ < ρ1. Thereby, for all 0 < ρ < ρ1:

∣∣∣∣1− exp

(∫

Rd×R+

ψG (θµ(B(x, r))) kρ(x, y)dxf

(
r

ρ

)
dr

ρ

)∣∣∣∣

≤ eA
∣∣∣∣
∫

Rd×R+

ψG (θµ(B(x, r))) kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∣∣∣∣

≤ eAaKC0C1|θ|
α

∫

Rd×R+

|µ(B(x, r))|αk(x, y)r−β−1dxdr.

Using again Lemma 3.1, since the bound is independent of the parameter ρ ∈]0, ρ1[ and is
integrable on R

d with respect to the Lebesgue measure thanks to Fubini, (1.3) and Proposi-
tion 2.3, the dominated convergence theorem applies and the limit in (2.6) writes

lim
ρ→0

E

[
exp

(
iθ (Mρ(µ)− E [Mρ(µ) |Λρ])

)]

= exp

(
−

∫

Rd

(
1− exp

(∫

Rd×R+

ψG (θµ(B(x, r))) k(x, y)dxaCβr
−β−1dr

))
dy

)

which is the characteristic function of Nρ(µ) − E
[
Nρ(µ) |Λ

′
ρ

]
(see Proposition A.5). This

proves Theorem 3.4. �

Theorem 3.5 Assume (1.2), (1.3), (1.7) and (2.1) hold true.

Suppose λ(ρ)ρβ −→
ρ→0

0 and set n(ρ) =
(
λ(ρ)ρβ

)1/γ
, where γ = β/d ∈]1, α[. Then the following

limit holds when ρ→ 0:

Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

L1(Rd)∩Lα(Rd)
=⇒
fdd

∫

Rd

ϕ(x)Mγ(dx),

for µ(dx) = ϕ(x)dx, where conditionally to S, Mγ is a γ-stable measure with control measure
S(dx) = σγZ(x)dx for

σγ =
Cβv

γ
d

d

(∫ +∞

0

1− cos(r)

r1+γ
dr

)(∫

R

|m|γG(dm)

)

with constant skewness function equals to

bγ = −

∫
R
ǫ(m)|m|γG(dm)∫
R
|m|γG(dm)

and Z given in (1.1)-(1.3).

Proof: We apply the dominated convergence theorem. Using (3) in Proposition 3.2, for all
y ∈ R

d, we have:

lim
ρ→0

1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

)
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= 1− exp

(∫

Rd×R+

ψG

(
θϕ(x)rd

)
k(x, y)dxvγdCβr

−β−1dr

)
.

In order to derive the domination, let ε > 0 be such that 1 < γ − ε < γ + ε < α. Consider
again h(u) = 1− eu, u ∈ C and, in our context, take

A =M
(
|θ|γ−ε + |θ|γ+ε

)
‖k‖∞C0C1

×

∫

Rd×R+

(
ϕ∗(x)

γ−ε + ϕ∗(x)
γ+ε
) (
r−εd−1 ∧ rεd−1

)
dxdr < +∞,

and

u =

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ
.

Using the very same domination (3.9) as in the proof of (3) in Proposition 3.2, we have |u| ≤ A
and for all ρ > 0:
∣∣∣∣1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

)∣∣∣∣

≤ eA
∣∣∣∣
∫

Rd×R+

ψ

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∣∣∣∣

≤MeA
(
|θ|γ−ε + |θ|γ+ε

)
C0C1

×

∫

Rd×R+

(
ϕ∗(x)

γ−ε + ϕ∗(x)
γ+ε
)
k(x, y)

(
r−εd−1 ∧ rεd−1

)
dxdr.

Like for (3.9), the bound is finite, and independent of the parameter ρ > 0 and integrable on
R
d with respect to the Lebesgue measure thanks to Fubini theorem and condition (1.3). The

dominated convergence theorem applies and the limit in (2.6) writes:

lim
ρ→0

E

[
exp

(
−θ

(
Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

))]

= exp

(
−

∫

Rd

(
1− exp

(∫

Rd×R+

ψG

(
θϕ(x)rd

)
k(x, y)dxvγdCβr

−β−1dr

))
dy

)
.

We identify the obtained limit as the characteristic function of

∫

Rd

ϕ(x)Mγ(dx) where Mγ is

described in Theorem 3.5. Indeed, for θ ∈ R and µ ∈ L1(Rd) ∩ Lα(Rd), we have:

E

[
exp

(
iθ

∫

Rd

ϕ(x)Mγ(dx)

)]

= E

[
E

[
exp

(
iθ

∫

Rd

ϕ(x)Mγ(dx)

)∣∣∣∣S
]]

= E

[
exp

(∫

Rd×R+

ψG

(
θϕ(x)rd

)
Z(x)dxvγdCβr

−β−1dr

)]

= E

[
exp

(∫

Rd

(∫

Rd×R+

ψG

(
θϕ(x)rd

)
k(x, y)dxvγdCβr

−β−1dr

)
Φ(dy)

)]

= exp

(
−

∫

Rd

(
1− exp

(∫

Rd×R+

ψG

(
θϕ(x)rd

)
k(x, y)dxvγdCβr

−β−1dr

))
dy

)
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since Φ is a Poisson point process on R
d with intensity measure dy.

Finally, we have:

lim
ρ→0

E

[
exp

(
iθ

(
Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

))]
= E

[
exp

(
iθ

∫

Rd

ϕ(x)Mγ(dx)

)]
,

proving Theorem 3.5. �

Remark 3.6 In this section, the results obtained are somehow a randomnization of the cor-
responding results in the Poissonian case. Actually, the results are the same but with random
intensity. This is due to the considered shot-noise model that exhibits a clusters structure,
and with this scenario of scaling, we do not scale the mean number of cluster. We perform
a zoom-out in each cluster, and the result is heuristically the mixture of the different limits
obtained, where the location of the limits are, here, random.

3.2 Global scaling

In this section, we perform a global scaling on the model. Heuristically, as in the Poissonian
model, we focus on the mean number of large balls in the whole model. In the Poissonian
or determinantal case, this key quantity is λ(ρ)ρβ . In the shot-noise Cox model described
below, a similar computation shows that the mean number of large balls is of order κ(ρ)λ(ρ)ρβ

(see (2.4)). The behaviour of this quantity drives the fluctuations of our Cox model.
In this context, we assume that κ(ρ) −→ +∞ but do not impose that λ(ρ) −→ +∞.

In the sequel, we use the following elementary observation: if uρ ∼
ρ→0

vρ and vρ −→
ρ→0

0 then:

1− euρ ∼
ρ→0

−vρ. (3.11)

Theorem 3.7 Assume (1.2), (1.3), (1.7) and (2.1) hold true.

1. Suppose κ(ρ)λ(ρ)ρβ −→
ρ→0

+∞ and set n(ρ) =
(
κ(ρ)λ(ρ)ρβ

)1/α
. Then the following limit

holds when ρ→ 0:

Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

Mα,β
=⇒
fdd

∫

Rd×R+

µ(B(x, r))M̃α(dx, dr)

where M̃α is a α-stable random measure with control measure σαdxCβr
−β−1dr and

constant skewness function b.

2. Suppose κ(ρ)λ(ρ)ρβ −→
ρ→0

a ∈]0,+∞[ and set n(ρ) = 1. Then the following limit holds

when ρ→ 0:

Mρ(µ)− E [Mρ(µ) |Λρ]
Mα,β
=⇒
fdd

∫

Rd×R+×R

mµ(B(x, r))Π̃(dx, dr, dm)

where Π̃ is a centered Poisson random measure with control measure
aCβr

−β−1dxdrG(dm).
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3. Suppose κ(ρ)λ(ρ)ρβ −→
ρ→0

0 and κ(ρ)λ(ρ) −→ +∞.

Set n(ρ) =
(
κ(ρ)λ(ρ)ρβ

) 1

γ with γ = β/d ∈]1, α[. Then the following limit holds when
ρ→ 0:

Mρ(µ)− E [Mρ(µ) |Λρ]

n(ρ)

L1(Rd)∩Lα(Rd)
=⇒
fdd

∫

Rd

ϕ(x)Mγ(dx)

for µ(dx) = ϕ(x)dx, where Mγ is a γ-stable measure with control measure σγdx and
constant unit skewness bγ given in Theorem 3.5.

Remark 3.8 Results 1. and 2. are very closed to the Poissonian case in [1]. It is important
to note that for the third result, given that we do not necessarily have λ(ρ) −→ +∞, we must
impose the constraint κ(ρ)λ(ρ) −→ +∞ that allows us to adjust the speed of increase of the
cluster number according to the speed at which the number of balls in a cluster varies. Of
course, if λ(ρ) −→ +∞, this condition is necessarily verified, but if the number of balls in a
cluster remains constant or goes to 0, this condition tells us how fast the number of clusters
should increase to have a non trivial limit.

Proof: In this proof, we skip the major part of the details. The proofs of the previous
theorems contain all the elements to justify the following results. Here we just give the limit
when ρ→ 0 in (3.1) in the different cases.
1. From (1) in Proposition 3.2, for µ ∈ Mα,β, we have:

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∼
ρ→0

−σα|θ|α
λ(ρ)ρβ

n(ρ)α

∫

Rd×R+

|µ(B(x, r))|α
(
1− iǫ(θµ(B(x, r)) tan(πα/2)b

)

× k(x, y)dxCβr
−β−1dr

= −σα|θ|α
1

κ(ρ)

∫

Rd×R+

|µ(B(x, r))|α
(
1− iǫ(θµ(B(x, r)) tan(πα/2)b

)

× k(x, y)dxCβr
−β−1dr.

Since lim
ρ→0

κ(ρ) = +∞, (3.11) gives with (1.7) and (2.1):

lim
ρ→0

(
1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

))
κ(ρ)

= σα|θ|α
∫

Rd×R+

|µ(B(x, r))|α
(
1− iǫ(θµ(B(x, r)) tan(πα/2)b

)

× k(x, y)dxCβr
−β−1dr.

2. From (2) in Proposition 3.2, for µ ∈ Mα,β, we have:

∫

Rd×R+

ψG

(
θµ(B(x, r))

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

∼
ρ→0

λ(ρ)ρβ
∫

Rd×R+

ψG

(
θµ(B(x, r))

)
k(x, y)dxCβr

−β−1dr.
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Because κ(ρ)λ(ρ)ρβ −→
ρ→0

a ∈]0,+∞[ and κ(ρ) −→ +∞, necessarily we have λ(ρ)ρβ −→ 0.

Hence, from (3.11), and using (1.7), (2.1), we have:

lim
ρ→0

(
1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

))
κ(ρ)

= −

∫

Rd×R+

ψG

(
θµ(B(x, r))

)
k(x, y)dxaCβr

−β−1dr.

3. Point (3) in Proposition 3.2 writes

∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
k(x, y)dxf

(
r

ρ

)
dr

ρ

∼
ρ→0

λ(ρ)ρβ

n(ρ)γ

∫

Rd×R+

ψG(θϕ(x)r
d)k(x, y)dxvγdCβr

−β−1dr

=
1

κ(ρ)

∫

Rd×R+

ψG(θϕ(x)r
d)k(x, y)dxvγdCβr

−β−1dr

if the two conditions n(ρ) −→ 0 and ρd = o(n(ρ)) are satisfied.
The first condition is clearly satisfied and for the second one we have:

n(ρ)γ

ργd
=
κ(ρ)λ(ρ)ρβ

ρβ
= κ(ρ)λ(ρ) −→ +∞

which implies
n(ρ)

ρd
−→ +∞

and the result follows.
Since lim

ρ→0
κ(ρ) = +∞, (3.11) gives, with (1.7) and (2.1):

lim
ρ→0

(
1− exp

(∫

Rd×R+

ψG

(
θµ(B(x, r))

n(ρ)

)
kρ(x, y)dxf

(
r

ρ

)
dr

ρ

))
κ(ρ)

= −

∫

Rd×R+

ψG(θϕ(x)r
d)k(x, y)dxvγdCβr

−β−1dr.

�

A Appendix: Generalities about Cox process

Let (E, E) a measurable space. For a random measure C on (E, E), we set ΥC for its charac-
teristic function given by

ΥC(g) = E

[
exp

(
i

∫

E
g(x)C(dx)

)]
(A.1)

for g : E −→ C such that the quantity in (A.1) exists, see [4].
In this appendix, we specify (A.1) whose use is crucial in our argument, for Cox point process.
First, we recall (A.1) for the classical case of Poisson point process on (E, E):
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Definition A.1 Let λ be a σ-finite measure on (E, E) and N be a point process on E. We
say that N is a Poisson point process on E with intensity measure λ if:

1. For all A ∈ E such that λ(A) < +∞, N(A) is a Poisson random variable with parameter
λ(A).

2. For all n ≥ 1 and all A1, . . . , AN ∈ E with no intersection, N(A1), . . . , N(An) are
mutually independent.

Then (A.1) specializes as follows for a Poisson point process.

Proposition A.2 Let N be a Poisson random measure on E with intensity measure λ. Then
we have:

E

[
exp

(
i

∫

E
g(x)N(dx)

)]
= exp

(
−

∫

E

(
1− eig(x)

)
λ(dx)

)

for all g : E −→ C such that
∫

E
(1 ∧ |g(x)|)λ(dx) < +∞. (A.2)

The distribution of a Poisson point process is characterized by its deterministic intensity
measure as appears from Proposition A.2. A natural extension of a Poisson process is to
consider a random intensity measure. From a modelling point of view, considering random
intensity measure rather than deterministic ones allows to consider random constraints for
the repartition of the points in the space. This forms the class of so-called Cox processes more
specifically defined as follows.

Definition A.3 A point process C is a Cox process directed by the random intensity function
Λ if, conditionally to Λ = λ, C is a Poisson process with intensity measure λ.

In the sequel, we shall use the notation C both for the locally finite collection of points X ∈ C
and for the associated random measure

∑
X∈C δX .

Like for the Poisson point process, the characteristic function appears to be a suitable tool
to investigate Cox process. In several particular cases, for instance in the shot-noise model,
explicit expression of the characteristic function is available.
Now, we specify the characteristic function of a Cox process.

Proposition A.4 Let C be a Cox process on E directed by Λ. For all g such that the quantity
below is well defined we have:

ΥC(g) = E

[
exp

(
−

∫

E

(
1− eig(x)

)
Λ(dx)

)]
.

Proof: Since conditionally to Λ, C is a Poisson point process with intensity Λ, Proposi-
tion A.2 ensures:

E

[
exp

(
i

∫

E
g(x)C(dx)

)∣∣∣∣Λ
]
= exp

(
−

∫

E

(
1− eig(x)

)
Λ(dx)

)

and

ΥC(g) = E

[
exp

(
i

∫

E
g(x)C(dx)

)]
= E

[
E

[
exp

(
i

∫

E
g(x)C(dx)

)∣∣∣∣Λ
]]
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= E

[
exp

(
−

∫

E

(
1− eig(x)

)
Λ(dx)

)]
.

�

Proposition A.5 Let C be a Cox process on E directed by Λ. Then we have:

E

[
exp

(
i

(∫

E
g(x)C(dx) − E

[∫

E
g(x)C(dx)

∣∣∣∣Λ
]))]

= E

[
exp

(∫

E
ψ(g(x))Λ(dx)

)]
(A.3)

where ψ(u) = eiu − 1− iu, for all g : E −→ C such that (A.3) is well defined.

Proof: Since conditionally to Λ, C is a PPP with intensity Λ we have:

E

[
exp

(
i

(∫

E
g(x)C(dx) − E

[∫

E
g(x)C(dx)

∣∣∣∣Λ
]))∣∣∣∣Λ

]

= exp

(
−i

∫

E
g(x)Λ(dx)

)
E

[
exp

(
i

∫

E
g(x)C(dx)

)∣∣∣∣Λ
]

= exp

(
−i

∫

E
g(x)Λ(dx)

)
exp

(
−

∫

E

(
1− eig(x)

)
Λ(dx)

)

= exp

(∫

E
ψ(g(x))Λ(dx)

)
.

Finally, we have:

E

[
exp

(
i

(∫

E
g(x)C(dx) − E

[∫

E
g(x)C(dx)

∣∣∣∣Λ
]))]

= E

[
E

[
exp

(
i

(∫

E
g(x)C(dx) − E

[∫

E
g(x)C(dx)

∣∣∣∣Λ
]))∣∣∣∣Λ

]]

= E

[
exp

(∫

E
ψ(g(x))Λ(dx)

)]
.

�
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