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THE EQUIVALENCE BETWEEN MANY-TO-ONE POLYGRAPHS
AND OPETOPIC SETS

CÉDRIC HO THANH

Abstract. From the polynomial approach to the definition of opetopes of
Kock et al., we derive a category of opetopes, and show that its set-valued
presheaves, or opetopic sets, are equivalent to many-to-one polygraphs. As an
immediate corollary, we establish that opetopic sets are equivalent to multi-
topic sets, introduced and studied by Harnick et al, and we also address an
open question of Henry.
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1. Introduction

Opetopes were originally introduced by Baez and Dolan in [1] as an algebraic
structure to describe compositions and coherence laws in weak higher dimensional
categories. They differ from other shapes (such as globular or simplicial) by their
(higher) tree structure, giving them the informal designation of “many-to-one”.
Pasting opetopes give rise to opetopes of higher dimension (it is in fact how they
are defined!), and the analogy between opetopes and cells in a free higher category
starts to emerge. On the other hand, polygraphs (also called computads) are higher
dimensional directed graphs used to generate free higher categories by specifying
generators and the way they may be pasted together (by means of source and
targets).

In this paper, we relate opetopes and polygraphs in a direct way. Namely, we
define a category O whose objects are opetopes, in such a way that the category of its
Set-valued presheaves, or opetopic sets, is equivalent to the category of many-to-one
polygraphs. This equivalence was already known from [7, 8, 10], however the proof
is very indirect. The recent work of Henry [9] showed the category of many-to-one
polygraphs (among many others) to be a presheaf category, but left the equivalence
between “opetopic plexes” (serving as shapes for many-to-one polygraphs in his
paper) and opetopes open. We establish this in our present work.

The notion of multitope [11, 8] is related to that of opetope, and has been
developed based on similar motivations. However the approaches used are different:
opetopes are based on operads [14], while multitopes are based on multicategories.
It is known that multitopic sets are equivalent to many-to-one polygraphs [8, 7],
and thus together with our present contribution, we obtain an equivalence between
multitopic sets and opetopic sets.

We begin by recalling elements of the theory of polygraphs and polynomial trees
in section 2, and of the theory of polygraphs in section 3. We then give the definition
of polynomial opetopes from [13] in section 4. Lastly, we outline the proof of the
equivalence in section 5, by introducing the “opetal” functor O[−] ∶ O Ð→ Pol▽
from opetopes to many-to-one polygraphs, and the auxiliary notion of shape of a
generator in a many-to-one polygraph.

2. Polynomial trees

We give elements of the theory of polynomial functors and polynomial trees, and
point the reader to e.g. [12] for a more detailed reference.

2.1. Trees. A polynomial endofunctor1 F is a Set-diagram of the form:

I E B I.
s p t (2.1)

Elements of B are called nodes, elements of the fiber p−1(b) are the inputs of b, and
elements of I are colors. For b ∈ B, let E(b) ∶=p−1b, and if e ∈ E(b), let se(b) ∶= s(e).
We will sometimes refer to I, B and E as F0, F1, and F2, respectively.

1The denomination “functor” comes from the fact that such a diagram induces a functor
Set/I s∗Ð→ Set/E

ΠpÐÐ→ Set/B ΣtÐ→ Set/I by composition of the pullback along s, dependent product
along p, and dependent sum along t, respectively.
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A morphism f ∶ F Ð→ F ′ of polynomial functors is a diagram of the form

E B

I E′ B′ I

I ′ I ′,

f0

f2 f1

f0

⌟

where the middle square is cartesian. We call PolyEnd the category of polynomial
endofunctors and morphisms.

A polynomial functor T = (T0
s←Ð T2

pÐ→ T1
tÐ→ T0) is a polynomial tree [12] if:

(1) the sets T0, T1 and T2 are finite (in particular, each node has finitely many
inputs);

(2) the map t is injective;
(3) the map s is injective, and the complement of its image T0 − im s consists

of a single element, called the root;
(4) let T0 = T2 + {r}, with r the root, and define the walk-to-root function σ by

σ(r) = r, and otherwise σ(e) = tp(e); we ask that for all x ∈ T0, there exists
k ∈ N such that σk(x) = r.

Let T ree be the full subcategory of PolyEnd consisting of trees. A morphism of
trees is simply a morphism in T ree, i.e. a morphism of polynomial functor between
two trees. We sometimes refer to the colors of a polynomial tree as edges.

Proposition 2.2 ([12]). Morphisms in T ree are embeddings, i.e. if f ∶ T Ð→ U is
a tree morphism, then fi ∶ Ti Ð→ Ui is injective, for i = 0,1,2.

Let F ∈ PolyEnd. Define the category of F -trees trF to be a chosen skeleton of
the slice T ree/F . Then T ∈ trF corresponds to a (isomorphism class of) morphism
from a tree to F , and we shall denote that tree by ⟨T ⟩ so that T ∶ ⟨T ⟩ Ð→ F .
We point out that in the latter case, ⟨T ⟩1 is the set of nodes of ⟨T ⟩, while T1 ∶
⟨T ⟩1 Ð→ F1 is a map of sets, and likewise for i = 0,2. Nodes of ⟨T ⟩ are thought of
as “decorated” by B via T , and likewise for edges.

If f ∶ F Ð→ G is a morphism of polynomial endofunctors, then it induces an
obvious functor f∗ ∶ trF Ð→ trG by postcomposition2.

2.2. Addresses. Let T ∈ T ree be a polynomial tree, and let σ be its walk-to-root
function. We define the address function & on edges as follows:

(1) if r is the root edge, let &r ∶=[ε],
(2) if e ∈ T0 − {r}, write &σ(e) = [x], and define &e ∶=[xe].

This extends to an address function on nodes: if b ∈ T1, let its address be &b ∶=&t(b).
Let T ● be the set of node addresses of T . A leaf is an edge e ∈ T0 that is not the
target of any node, i.e. there is no b ∈ T1 such that t(b) = e, and let T ∣ be the set of
leaf addresses of T .

Assume now that T ∶ ⟨T ⟩ Ð→ F is an F -tree, for F a polynomial endofunctor
as in equation (2.1). If b ∈ ⟨T ⟩1 has address &b = [p], write s[p] T ∶=T1(b). For
convenience, we let T ● ∶= ⟨T ⟩●, and T ∣ ∶= ⟨T ⟩∣.

2This kind of functor between slices is often called a dependent sum.



4 C. HO THANH

The prefix order on T ● and T ∣ is the minimal order such that [ε] is the minimal
element, and such that the right concatenation maps are increasing. If each fiber
⟨T ⟩2 (b) is ordered (as will often be the case in the sequel), write ⪯ the lexicograph-
ical order on T ● and T ∣. If the fibers ⟨T ⟩2 (b) do not have a preferred ordering,
we let ⪯ be the prefix order, which still gives a sense of lexicographical ordering,
despite not being total.

2.3. Grafting. Let F be a polynomial endofunctor as in equation (2.1). For i ∈ I,
define Ii ∈ trF as having underlying tree

{∗} ∅ ∅ {∗},

and where Ii maps the unique edge ∗ to i. This corresponds to a tree with no node
and a unique edge, decorated by i. Let now b ∈ B, and assume that its set of input
E(b) is implicitly totally ordered 3. Write n = #E(b), and define Yb ∈ trF , the
corolla at b, as having underlying tree

n + {∗} n {∗} n + {∗},

where n ∶={1, . . . , n}, and where Yb maps the only node ∗ to b, and is increasing on
the set of inputs. This corresponds to a tree with a unique node, decorated by b.

For T ∈ trF , giving a morphism Ii Ð→ T is equivalent to specifying the address
[p] of an edge address of T decorated by i. Likewise, morphisms of the form
Yb Ð→ T are in bijection with addresses of nodes of T decorated by b.

For S,T ∈ trF , [l] ∈ S ∣ such that the leaf of S at [l] and the root of T are
decorated by the same i ∈ I, define the grafting S ○[l] T of S and T on [l] by the
following pushout:

Ii T

S S ○
[l]
T.

⌜

[ε]

[l] (2.3)

Proposition 2.4 ([12]). (1) Every F -tree is either of the form Ii, for some
i ∈ I, or obtained by iterated graftings of corollas.

(2) If f ∶ F Ð→ G is a morphism of polynomial endofunctors, then f∗ ∶ trF Ð→
trG preserves graftings.

We denote by tr∣ F the set of F -trees with a marked leaf. Similarly, we denote
by tr● F the set of F -trees with a marked node.

Take T,U1, . . . , Uk ∈ trF , where the leaves of T are [l1], . . . , [lk], and assume
the grafting T ○[li]Ui is defined for all i. Then the total grafting will be denoted
concisely by

T◯
[li]

Ui = (⋯(T ○
[l1]

U1) ○
[l2]

U2⋯) ○
[lk]

Uk.

It is easy to see that the result does not depend on the order in which the graftings
are performed.

3In the sequel, this order will be the lexicographical order ⪯.
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2.4. Tree contexts. For a polynomial endofunctor F ∈ PolyEnd as in equation
(2.1), a context over F is a tree C = C[◻] over the extended functor

I E +E′ B + {◻} I
s p t (2.5)

for a chosen fiber E′ sÐ→ I of ◻, and a value of t◻ ∈ I, such that exactly one node of
C is decorated by ◻, i.e. such that there exists a unique [p] ∈ C● with s[p]C = ◻.
Likewise, a bicontext D[◻,◻] is a tree over (2.5) where the ◻ decoration occurs
exactly twice.

If T is a F -tree or another F -context (over a possibly different box symbol),
parallel to ◻ (i.e. endowed with a bijection ℘ over I between the leaves [l1], . . . , [lk]
of T and E(◻)), then we define C[T ] to be C where ◻ has been replaced by T : for
C as on the left, the substitution C[T ] is given as on the right

C = A ○
[p]

⎛
⎝
◻ ◯
℘[li]

Bi
⎞
⎠

Ô⇒ C[T ] ∶=A ○
[p]

⎛
⎝
T◯
[li]

Bi
⎞
⎠
.

2.5. The polynomial Baez–Dolan construction.

2.5.1. Free polynomial monads. A polynomial monad is a strong cartesian monad
whose underlying endofunctor is polynomial. Equivalently, a polynomial F as in
(2.1) is a polynomial monad if it is endowed with a unit η ∶ B Ð→ trF and a partial
law µ ∶ E ×I B Ð→ B, subject to adequate laws [5, 13]. We shall write PolyMnd
the category of polynomial monads and morphisms of polynomial functors that are
also morphisms of monads. Any polynomial endofunctor F as in equation (2.1)
admits a free polynomial monad F ⋆, whose underlying polynomial endofunctor is
given by

I tr∣ F trF I
s p t (2.6)

where s maps an F -tree with a marked leaf to the decoration of that leaf, p forgets
the marking, and t maps a tree to the decoration of its root. Remark that for
T ∈ trF we have p−1T = T ∣.

Theorem 2.7 ([12], [13]). The polynomial functor F ⋆ has a canonical structure of
polynomial monad. Moreover, the (−)⋆ construction extends as a functor that is
left adjoint to the forgetful functor PolyMndÐ→ PolyEnd.

(sketch). The unit Y(−) ∶ F Ð→ F ⋆ maps b ∈ B to the corolla Yb ∈ trF , and an
element e ∈ E(b) to the leaf [e] of Yb. Let ((T, [l]), S) ∈ tr∣ F ×I trF , so that the
leaf of T at address [l] has the same decoration as the root edge of S. The partial
law ○ of F ⋆ maps ((T, [l]), S) to T ○[l] S. □

The adjunction (−)⋆ ∶ PolyEnd ⊣←→ PolyMnd ∶ U is monadic, and we abuse
notation by letting (−)⋆ be the associated monad on PolyEnd. For a polynomial
functor F as in (2.1), the unit Y(−) ∶ F Ð→ F ⋆ of (−)⋆ at F is given by b ∈ B z→ Yb ∈
trF (as in the proof of the previous theorem), and the multiplication ⊚ ∶ F ⋆⋆ Ð→ F ⋆

by

⊚Ii ∶= Ii, ⊚
⎛
⎝
YT ◯

[[li]]
Xi

⎞
⎠
∶=T◯

[li]
⊚Xi,

for i ∈ I, T ∈ trF , [l1], . . . , [lk] the leaves of T , and X1, . . . ,Xk ∈ trF ⋆.



6 C. HO THANH

2.5.2. The (−)+ construction. Let M = (M,µ, η) ∈ PolyMnd be a polynomial
monad, where the underlying polynomial functor is as in equation (2.1). As such,
it is a (−)⋆-algebra, and write its structure map M⋆ Ð→M as

tr∣M trM

I E B I

I I

℘ t
⌟

For T ∈ trM , we call ℘T ∶ T ∣
≅Ð→ E(tT ) the reindexing function of T , and the

node tT ∈ B is called the target of T . If we think of the element of B as corollas,
with leaves (or input edges) indexed in the relevant fiber in E, then M -trees are
indeed trees obtained by coherent graftings of those corollas. The target map t then
“contracts” a tree to a corolla, and since the middle square is cartesian, the number
of leaves is preserved. The map ℘ establishes a coherent correspondence between
the leaf addresses of a tree, and the node addresses of its target. The relevance of
this map will show up in theorem 2.10.

Lemma 2.8. For T,U ∈ trM , [l] a leaf of T such that the grafting T ○[l]U is
defined, we have

t(T ○
[l]
U) = t(YtT ○

[℘T [l]]
YtU) .

Proof. This is a special case of the fact that the following square commutes

M⋆⋆ M⋆

M⋆ M

t⋆

⊚ t

t

since M is a (−)⋆-algebra. □

Define M+ to be

B tr●M trM B
s p t (2.9)

where s maps an M -tree with a marked node to the label of that node, p forgets
the marking, and t is the target map. If T ∈ trM , remark that p−1T = T ● is set of
nodes addresses of T . If [p] ∈ T ●, then s[p] ∶= s[p] T .

Theorem 2.10 ([13]). The polynomial functor M+ has a canonical structure of a
polynomial monad.

(sketch). The unit η+ ∶ B Ð→ trM maps a node b to Yb. The partial law µ+ ∶
tr●M ×B trM Ð→ trM is given by substitution as we now explain. Take U ∈ tr●M ,
T ∈ trM such that sU = b = tT , i.e. (U,T ) ∈ tr●M ×B trM . We may think of U
as a context corresponding to the selected node: U = C[Yb], for some M -context
C[◻]. The readdressing map ℘T of T gives a bijection between Y

∣
b and T ∣, and



THE EQUIVALENCE BETWEEN MANY-TO-ONE POLYGRAPHS AND OPETOPIC SETS 7

thus specifies “rewiring instructions” to replace Yb by T in U , i.e. evaluate C at T :
µ+(U,T ) ∶=C[T ]. □

3. Polygraphs

3.1. Reminders. We review some elements of the theory of polygraphs. For a
more complete introduction, we refer to [15] or [8].

A polygraph (also called a computad) P consists of a small ω-category P ∗ and
sets Pn ⊆ P ∗n for all n ∈ N, such that P0 is the set of objects of P ∗, and such that the
underlying (n + 1)-category P ∗∣n+1 is freely generated by Pn+1 over its underlying
n-category P ∗∣n, for all n ≥ 1. Write P ∗n the set of n-cells of P , and

s, t ∶ P ∗n+1 Ð→ P ∗n

the source and target maps, respectively. For n ≥ 1, two n-cells x, y ∈ P ∗n are parallel,
denoted by x ∥ y, if sx = s y and tx = t y. By convention, 0-cells are pairwise parallel.
A morphism of polygraphs is an ω-functor mapping generators to generators. Let
Pol be the category of polygraphs and morphisms between them.

A polygraph P is an n-polygraph if Pk = ∅ whenever k > n. For n ≥ 1, an n-cell
x ∈ P ∗n is said many-to-one of tx ∈ Pn−1 (instead of P ∗n−1), and we write P▽n the set
of many-to-one n-cells of P . By convention, all 0-cells are many-to-one. In turn,
the polygraph P is many-to-one if all its generators are, or equivalently if the target
of a generator is also a generator. Let Pol▽ be the corresponding full subcategory.

Lemma 3.1. The category Pol▽ is cocomplete. Moreover, if P = colimi∈J Pi, then
Pn = colimi∈J Pi,n.

Let P be an arbitrary n-polygraph, and take k ≤ n. Define a k-category N by

0
s,t←Ð ⋯ s,t←Ð 0

s,t←Ð N,

where all compositions correspond to the addition of integers. For x ∈ Pk, define
a function #x ∶ Pk Ð→ N that maps x to 1, and all other generators to 0. This
extends to a k-functor P ∗ Ð→ N, and let #x ∶ P ∗k Ð→ N be its k-th component.
Similarly, let # ∶ Pk Ð→ N be the map sending all generators to 1, and extend it as
# ∶ P ∗k Ð→ N.

Recall the definition of the category of n-contexts CtxnQ of a n-polygraph Q
from e.g. [6]: its objects are the n-cells of Q, and a morphism C ∶ x Ð→ y is an
n-context C = C[◻] such that C[x] = y. Let Ctx▽n P be the full subcategory of
CtxnP generated by many-to-one cells. Necessarily, the morphisms of Ctx▽n P are
many-to-one contexts.

Let P be a polygraph (not necessarily many-to-one), x, y ∈ P ∗n be n-cells, and
C ∶ t y Ð→ sx be a context. The partial composition x ○D y is defined as follows:

x ○
C
y ∶=x ○

n−1
C[y],

where ○n−1 is the (n − 1)-composition, and C[y] is the C-whisker of y.

Lemma 3.2 ([8]). With x, y, and C as above, we have

s(x ○
C
y) = C[s y], t(x ○

C
y) = tx.

Assume now that P is many-to-one, and take z ∈ P▽n . For Ci ∶ gi Ð→ s z,
1 ≤ i ≤ k, all the contexts from a generator to s z, and w1, . . . ,wk ∈ P▽n cells such
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that twi = gi (so that the partial composition z ○Ci
wi is well-defined), define the

total composition
z◯
Ci

wi = (⋯(z ○
C1

w1) ○
C2

w2⋯) ○
Ck

wk.

The result does not depend in the order in which the partial compositions are
computed.

3.2. The ▽ construction. For P ∈ Pol▽, and n ≥ 1, Let ▽nP be the following
polynomial endofunctor:

Pn−1 P ●n Pn Pn−1,
s p t

where
P ●n(x) ∶= ⊔

a∈Pn−1

(Ctx▽n−1P )(a, sx),

where for C ∶ a Ð→ sx in P ●n(x), sC ∶=a, pC ∶=x, and t is the target map of P .
Remark that #P ●n(x) =#x, and in particular, P ●n(x) is finite.

Proposition 3.3. A morphism of polygraphs f ∶ P Ð→ Q induces morphism ▽nf ∶
▽nP Ð→▽nQ for all n ≥ 1, such that (▽nf)1 = fn ∶ Pn Ð→ Qn.

Proof. Consider

P ●n Pn

Pn−1 Q●n Qn Pn−1

Qn−2 Qn−2,

s

p

t

s

p

t
fn−1

f●n fn

fn−1

where f●n ∶ (C ∶ a → sx) z→ (fn−1C ∶ fn−1a Ð→ fn−1 sx). Clearly, all squares
commute, and it remains to check that the middle one is cartesian, i.e. that f●n is
a fiberwise bijection. Take (D ∶ b→ fn−1 sx) ∈ Q●n(fnx). Then since fn−1 sx ∈ im f ,
all generators occurring in fn−1 sx are in the image too, so that b and generators in
D are in the image of f . Hence f●n is surjective. Moreover, #P ●n(x) =#x =#fnx =
#Q●n(fnx), so that f●n is injective as well. □

Thus, we have for each n ≥ 1 a functor ▽n ∶ Pol▽ Ð→ PolyEnd.

3.3. The composition tree duality. For P ∈ Pol▽, we define the compositor
functor (−)○ ∶ tr▽nP Ð→ Ctx▽n P inductively as follows.

(1) For i ∈ Pn−1, let I○i ∶= idi.
(2) For x ∈ Pn, let Y○x ∶=x.
(3) Let T ∈ tr▽nP , and [l] ∶ Ii Ð→ T be a leaf of T . We construct a (n − 1)-

context [l]○ ∶ iÐ→ s(T ○) inductively as follows.
(a) If T is a trivial tree, then it is necessarily Ii and [l] = [ε] is the identity,

and we let [l]○ ∶=◻ ∶ iÐ→ i.
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(b) If T = Yx for x ∈ Pn, then the morphism [l] ∶ ⟨Ii⟩Ð→ ⟨Yx⟩maps ∗ ∈ ⟨Ii⟩0
to a non-root edge e ∈ ⟨Yx⟩0, thus corresponding to an elements e′
in ⟨Yx⟩2, which in turn is mapped by Yx to C[l] ∈ P ●n(x), which is
necessarily of the form C[l] ∶ iÐ→ sx. We let [l]○ ∶=C[l].

(c) If T decomposes as T = S ○[k]Yx, for [k] ∈ S ∣, then one of two cases
occurs. If [l] ∈ S ∣, then by induction we have a context [l]○ ∶ iÐ→ s(S○)
and a context [k]○ ∶ tx Ð→ s(S○). By construction, since [l] ≠ [k], we
have [l]○ ≠ [k]○, and so there is a bicontext C such that s(S○) =
C[i, tx]. Let l○ ∶=C[◻, sx]. If [l] decomposes as [l] = [k[h]], then by
induction, we have contexts [[h]]○ ∶ i Ð→ sx and [k]○ ∶ tx Ð→ s(S○).
Finally, let [k[h]]○ ∶=([k])○[([[h]])○[◻]].

We complete the definition of (−)○ by letting (T ○[l] S)○ ∶=T ○ ○[l]○ S○, for
appropriate S,T ∈ tr▽nP , and [l] ∈ T ∣. It is straightforward to prove that
for U a tree, U○ does not depend on the choice of decomposition of U .

We now define (−)○ on morphisms. Let f ∶ S Ð→ T be a ▽nP -tree mor-
phisms. Then in particular it is an embedding, hence T decomposes as T =
A ○[a] (S◯[bi]Bi), where [a] is the address of the image of the root edge of S.
Taking a ◻ symbol parallel to S○, we obtain a context

f○ ∶=A○ ○
[a]○

⎛
⎝
◻ ◯
[bi]○

B○i
⎞
⎠
,

and clearly, f○[S○] = T ○, whence f○ ∶ S○ Ð→ T ○.
Conversely, we now define the composition tree functor ct ∶ Ctx▽n P Ð→ ▽nP

inductively as follows.
(1) For i ∈ Pn−1, let ct idi ∶= Ii.
(2) For x ∈ Pn, let ctx ∶=Yx.
(3) Let α ∈ P▽n , i ∈ Pn−1, and C ∶ iÐ→ sα. We construct a leaf ct∣C ∶ Ii Ð→ ctα

inductively as follows:
(a) If α is an identity, then it is necessarily idi, and C = ◻. We let

ct∣C ∶= idIi .
(b) If α ∈ Pn is a generator, then C ∈ P ●n(α), so that e = (Yα)−12 (C) ∈
⟨Yα⟩2, and let ct∣C be the address of the corresponding edge, which is
necessarily a leaf.

(c) If α decomposes as α = β ○D x, for x ∈ Pn and D ∶ tx Ð→ sβ,
then sα = D[sx], and one of two cases occurs. If there is a bi-
context E such that C[◻] = E[◻, sx] and D[◻] = E[i,◻], then let
ct∣C ∶=(ctE[◻, tx]) ○ctD Yx. If not, then there is a context F ∶ i Ð→
sx, and sα =D[F [i]]. Let then ct∣C ∶=(ctβ) ○ctD(ct∣ F ).

We complete the definition of ct by letting ct(α ○C β) ∶=(ctα) ○ct∣C(ctβ),
for α,β ∈ P▽n and C ∶ tβ Ð→ sα. It is straightforward to prove that for γ
a many-to-one cell, ctγ does not depend on the choice of decomposition of
γ.

We now define ct on morphisms. Let C ∶ α Ð→ β be a context. Then C decomposes
as C = u ○U (◻◯Vi

vi), and we set

ctC ∶=(ctu) ○
ctU
(◻◯

ctVi

(ct vi)) .
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Proposition 3.4. The functors (−)○ and ct are mutually inverse isomorphisms of
categories.

Corollary 3.5. For n ≥ 2 and x ∈ Pn, the functor ct induces a natural bijection
over Pn−1:

P ●n(x) ≅ ⊔
i∈Pn−1

(tr▽n−1P )(Yi, ct sx).

Notation 3.6. Let x ∈ Pn, and [p] an address of ct sx. Then we write s[p] x ∶= s[p] ct sx ∈
Pn−1.

4. Opetopes

4.1. Polynomial approach. We make use of the polynomial functor approach to
the definition of opetopes as presented in [13]: let Z0 be the identity polynomial
monad on Set = Set/{∗}, and Zn = (Zn−1)+. Expand Zn as

On O●n+1 On+1 On.
s p t

An n-opetope is by definition an element of On, or equivalently a Zn−2-tree, if
n ≥ 2. In the latter case, an n-opetope is then a tree whose nodes are (labeled by)
(n−1)-opetopes, and edges are (labeled by) (n−2)-opetopes. Note that for ω ∈ On
with n ≥ 2, an element of O●n(ω) is a morphism of Zn−2-trees of the form Yψ Ð→ ω,
where ψ ∈ On−1.

Let ω ∈ On with n ≥ 2, [p] ∈ ω●, and ψ = s[p] ω ∈ On−1. Then by construction,
there is a bijection between the input edges of the node at address [p] in ω and
ψ●. If [q] ∈ ψ●, we call [q] the associated input edge, so that the address of that
specific edge in ω is [p[q]]. Moreover, the (n − 2)-opetope decorating that edge is
by construction s[q] s[p] ω = s[q] ψ.

An opetope ω ∈ On with n ≥ 2 is called degenerate if it is of the form ω = Iϕ for
some ϕ ∈ On−2. We call an edge inner if it is neither the root nor a leaf. Inner
edges of ω are exactly those whose address is of the form [p[q]], with [p] ∈ ω●,
[q] ∈ (s[p] ω)●, and [p[q]] ∈ ω●.

4.2. The category of opetopes. Akin to the work of Cheng [2], we define a
category of opetopes by means of generators and relations. The difference with
the aforementioned reference is our use of polynomial opetopes (also equivalent to
Leinster’s definition [14, 13]), while Cheng uses an approach by multicategorical
slicing, yielding “symmetric” opetopes.

Theorem 4.1 (Opetopic identities). Let ω ∈ On with n ≥ 2.
(1) (Inner edge) For [p[q]] ∈ ω● we have

t s[p[q]] ω = s[q] s[p] ω. (4.2)
(2) (Globularity 1) If ω is non degenerate, we have

t s[ε] ω = t tω. (4.3)

(3) (Globularity 2) If ω is non degenerate, and [p[q]] ∈ ω∣, we have
s[q] s[p] ω = s℘ω[p[q]] tω. (4.4)

(4) (Degeneracy) If ω is degenerate, we have
s[ε] tω = t tω. (4.5)
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Proof. (1) By definition of a Zn−2-tree.
(2) The monad structure on Zn−2 amounts to a structure map (Zn−2)⋆ Ð→ Zn−2

which gives the following commutative square:

trZn−2 On−2

On−1 On−2,

r

t

t

where for a tree T ∈ trZn−2, the opetope rT is the decoration of the root edge
of T , i.e. s[ε] tT .

(3) By definition, ℘ω is a bijection ω∣ Ð→ (tω)● over On−2.
(4) Let ω = Iϕ, for ϕ ∈ On−2. Then tω = Yϕ, and s[ε]Yϕ = s[ε] µYϕ = tYϕ where

µ is the monad law of Zn−2. □

With those identities in mind, we define the category O of opetopes by generators
and relations as follows.

(1) Objects: We set obO = ⊔n∈NOn.
(2) Generators: Let ω ∈ On with n ≥ 1. We introduce a generator, called target

embedding: t ∶ tω Ð→ ω. If [p] ∈ ω●, then we introduce a generator, called
source embedding: s[p] ∶ s[p] ω Ð→ ω. A face embedding is either a source or
target embedding.

(3) Relations: We impose 4 relations described by commutative squares, that
are well defined thanks to theorem 4.1. Let ω ∈ On with n ≥ 2
(a) [Inner] for [p[q]] ∈ ω● (forcing ω to be non degenerate), the following

square must commute:

s[q] s[p] ω s[p] ω

s[p[q]] ω ω

s[q]

t s[p]

s[p[q]]

(b) [Glob1] if ω is non degenerate, then the following square must com-
mute:

t tω tω

s[ε] ω ω.

t

t t
s[ε]

(c) [Glob2] if ω is non degenerate, and for [p[q]] ∈ ω∣, then the following
square must commute:

s℘ω[p[q]] tω tω

s[p] ω ω.

s℘ω[p[q]]

s[q] t
s[p]
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(d) [Degen] if ω is degenerate, then the following square must commute:

t tω tω

tω ω.

t

s[ε] t

t

Let us explain this definition a little more. Opetopes are trees whose nodes (and
edges) are decorated by opetopes. The decoration is now interpreted as a geomet-
rical feature, namely as an embedding of a lower dimensional opetope. Further,
the target of an opetope, while not an intrinsic data, is also represented as an
embedding. The relations can be understood as follows.

(1) [Inner] The inner edge at [p[q]] ∈ ω● is decorated by the target of the
decoration of the node “above” it (here s[p[q]] ω), and in the [q]-source of the
node “below” it (here s[p] ω). By construction, those two decorations match,
and this relation makes the two corresponding embeddings s[q] s[p] ω Ð→
ω match as well. On the left is an informal diagram about ω as a tree
(reversed gray triangle), and on the right is an example of pasting diagram
represented by an opetope, with the relevant features of the [Inner] relation
colored or thickened.

t s
[p
[q
]]

ω
s [
q
]
s [
p
]
ω

s[p] ω

s[p[q]] ωω

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

(2) [Glob1-2] If we consider the underlying tree of ω (which really is ω itself)
as its “geometrical source”, and the corolla Ytω as its “geometrical target”,
then they should be parallel. The relation [Glob1] expresses this idea by
“gluing” the root edges of ω and Ytω together, while [Glob2] glues the
leaves according to ℘ω.

t
s[ε]

ω

⋯

ω

t
t
ω

⋯

tω

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓

⋯

s[q]
s[p
]
ω

ω

⋯

s℘
ω
[p
[q]]

ω

tω .

. .

.

⇓
⇓ ⇛

.

. .

.
⇓
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(3) [Degen] If ω is a degenerate opetope, depicted as on the right, then its
target should be a “loop”, i.e. its only source and target should be glued
together.

s[ε]
t
ω

t
t
ω

tω

●

⇓

5. The equivalence between many-to-one polygraphs and opetopic
sets

We now aim to prove that the category of opetopic sets, i.e. Set-presheaves
over the category O defined previously, is equivalent to the category of many-to-
one polygraphs Pol▽. We achieve this by first constructing the opetal4 functor
O[−] ∶ O Ð→ Pol▽ in subsection 5.1. This functor “realizes” an opetope as a
polygraph, in that it freely implements all its tree structure by means of adequately
chosen generators in each dimension. Secondly, writing Ô = SetO

op (as per French
tradition), we consider the “polygraphic realization” ∣− ∣ ∶ ÔÐ→ Pol▽, which is the
left Kan extension of O[−] along the Yoneda embedding. This realization has a
right adjoint, the “opetopic nerve” N ∶ Pol▽ Ð→ Ô, and we prove this adjunction
to be an adjoint equivalence. This is done using the shape function, defined in
subsection 5.2, which to any generator x of a many-to-one polygraph P associates
an opetope x♮ along with a canonical morphism x̃ ∶ O[x♮]Ð→ P .

5.1. The opetal functor. An opetope ω ∈ On, with n ≥ 1, has one target tω, and
sources s[p] ω laid out in a tree. If the sources s[p] ω happened to be generators in
some polygraph, then that tree would describe a way to compose them. With this
in mind, we define a many-to-one polygraph O[ω], whose generators are essentially
iterated faces (i.e. sources or targets) of ω (hypothesis [IND1] below). Moreover,
O[ω] will be “maximally unfolded” (or “free”) in that two (iterated) faces that
are the same opetope, but located at different addresses, will correspond to dis-
tinct generators. The opetal functor O[−] is defined inductively, together with its
boundary ∂O[−].

For ⧫ the unique 0-opetope, let ∂O[⧫] be the polygraph with no generator in
any dimension, and O[⧫] be the polygraph with a unique generator in dimension
0, which we denote by ⧫.

For ◾ the unique 1-opetope, let ∂O[◾] ∶=O[⧫]⊔O[⧫], and let O[◾] be the cellular
extension (∂O[◾] s,t←Ð {◾}), where s and t map ◾ to distinct 0-generators. There are
obvious functors O[s[ε]],O[t] ∶ O[⧫]Ð→ O[◾], mapping ⧫ to s ◾ and t ◾, respectively.

Let n ≥ 2 and assume by induction that ∂O[−] and O[−] are defined on O<n,
the full subcategory of O spanned by opetopes of dimension strictly less than n.
Assume further that the following induction hypothesis hold.

(1) [IND1] For k < n, ψ ∈ Ok, and l ∈ N, we have O[ψ]l ≅ Ol/ψ.
(2) [IND2] For k < n and ψ ∈ Ok, we have that in O[ψ], ⟨ct sψ⟩ = ⟨ψ⟩.

4The name intends to follow the unofficial “-al” convention e.g. cubical, dentroidal, oriental,
simplicial, etc.



14 C. HO THANH

Let ω ∈ On and start by defining

∂O[ω] ∶= colim
O<n/ω

O[−].

This extends as a functor ∂O[−] ∶ O≤n Ð→ Pol▽, mapping a k-opetope to a (k−1)-
polygraph, for k ≤ n. By hypothesis [IND1], for k < n, we have ∂O[ω]k ≅ Ok/ω.

We now take a break to explain the subsequent developments of this subsection.
In ∂O[ω], the target tω and all sources s[p] ω are (n − 1)-generators. On the other
hand, ω itself is a tree whose nodes are its sources. Thus ω should correspond
to the composition tree of some cell in ∂O[ω]▽n−1 (this holds for lower-dimensional
opetopes by hypothesis [IND2]), which will be denoted ω̄○. Then, in proposition
5.2, it is shown that this cell is parallel to the generator corresponding to the target
tω. The subsection concludes by defining O[ω] as the induced cellular extension of
∂O[ω].

Let us resume. There is an obvious “forgetful morphism” u ∶ ▽n−1∂O[ω] Ð→
Zn−2, mapping an (n− 1)-cell (ψ → ω) to ψ. We now construct a factorization ω̄ of
ω along u, so that ω̄ really is a composition tree in ∂O[ω] whose underlying tree is
⟨ω⟩:

⟨ω⟩

▽n−1∂O[ω] Zn−2.

ω̄ ω

u

(1) Let i ∈ ⟨ω⟩0 be an edge.
(a) If i is not a leaf, let ω̄0(i) ∶= (t s&i ω

t s&iÐÐ→ ω) ∈ On−2/ω = (▽n−1∂O[ω])0.
(b) If i is not the root, then &i = [p[q]] for some p and q, and let

ω̄0(i) ∶=(s[q] s[p] ω
s[q] s[p]ÐÐÐÐ→ ω).

Remark that if i is neither a leaf nor the root (i.e. an inner edge), then the
two definitions of ω̄0(i) agree by relation [Inner].

(2) For b ∈ ⟨ω⟩1, let ω̄1(b) ∶= (s&b ω
s&bÐÐ→ ω).

(3) Take b ∈ ⟨ω⟩1 and let ω̄1(b) ∶=(ψ
jÐ→ ω), for some face embedding j. We know

that ω2 is a fiberwise isomorphism, in this case ω2 ∶ ⟨ω⟩2 (b)
≅Ð→ O●n−1(ψ).

Let C ∈ ⟨ω⟩2 (b). Then it corresponds to an address in ⟨ψ⟩ = ⟨ct sψ⟩ =
⟨ct s(ψ jÐ→ ω)⟩, where the first equality comes from [IND2], and we let
ω̄2(C) ∶=C be that same address.
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Proposition 5.1. The following displays a morphism of polynomial functors ω̄ ∶
⟨ω⟩Ð→▽n−1∂O[ω]:

⟨ω⟩2 ⟨ω⟩1

⟨ω⟩0 ∂O[ω]●n−1 On−1/ω ⟨ω⟩0

On−2/ω On−2/ω.

s

p

t

s

p

t
ω̄0

ω̄2 ω̄1

ω̄0

Proof. (1) We show that the left square commutes. For b ∈ ⟨ω⟩1 and C ∈
⟨ω⟩2 (b), we have ω̄0(sC) = (sC s&b ω

sC s&bÐÐÐ→ ω) = sC ω̄1(b) = s ω̄2(C).
(2) We show that the middle square commutes. For b ∈ ⟨ω⟩1 and C ∈ ⟨ω⟩2 (b),

we have pω̄2(C) = pC = ω̄1(b) = ω̄1p(C).
(3) We show that the middle square is cartesian. By definition, ω̄2 maps an

address of a polynomial tree to the same address of the same polynomial
tree, and is thus a fiberwise isomorphism.

(4) We show that the right square commutes. For b ∈ ⟨ω⟩1, we have that
ω̄0(tb) = (t s&tb ω

t s&tbÐÐÐ→ ω) = t (s&tb ω
s&tbÐÐ→ ω) = t ω̄1(b). □

Thus, ω̄ is a ▽n−1∂O[ω]-tree, and so by applying the compositor we obtain a
many-to-one cell ω̄○ ∈ ∂O[ω]▽n−1.

Proposition 5.2. In ∂O[ω] we have ω̄○ ∥ (tω tÐ→ ω).

Proof. (1) If ω = Iϕ is degenerate, for ϕ ∈ On−2, then ω̄○ = id
(ϕ

t tÐ→ω), while

(tω tÐ→ ω) = (Yϕ
tÐ→ ω). By [Degen], those two cells are parallel.

(2) For the rest of the proof, we assume that ω is not degenerate. We have
t ω̄○ = t s[ε] ω̄ = t(t s[ε] ω

t s[ε]ÐÐ→ ω) = (t tω t tÐ→ ω) = t (tω tÐ→ ω).

Then, in order to show that s ω̄○ = s(tω tÐ→ ω), we show that the (n− 2)-
generators occurring both sides are the same, and that the way to compose
them is unique.
(a) Generators in s ω̄○ are of the form (ϕ

[q]
Ð→ ψ

[p]
Ð→ ω), for [p[q]] a leaf

of ω. By [Glob2], those are equal to (ϕ
℘ω[p[q]]ÐÐÐÐÐ→ tω

tÐ→ ω), which are

exactly the generators in s (tω tÐ→ ω).

(b) To show that the composite of all (n−2)-generators of the form (ϕ
s[q]ÐÐ→

ψ
s[p]ÐÐ→ ω), for [p[q]] ∈ ⟨ω⟩∣, is unique, it is enough to show that no two

have the same target. Assume (ϕi
s[qi]ÐÐ→ ψi

s[pi]ÐÐ→ ω), with i = 1,2, are
(n−2)-generators in s ω̄○ with the same target. Consider the following
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diagram:

ϕ1 ψ1

ρ tω ω

ϕ2 ψ2

t

s[q1]

s[p1]

t

s[q2]

s[p2]

s℘ω[p1[q1]]

s℘ω[p2[q2]]

t

The outer hexagon commutes by assumption, the two squares on the
right are instances of [Glob2], and the left square commutes as t ∶
tω Ð→ ω is a mono, since ω is non degenerate. By inspection of the
opetopic identities, the only way for the left square to commute is the
trivial way, i.e. ℘ω[p1[q1]] = ℘ω[p2[q2]]. Since ℘ω is a bijection, we
have [p1[q1]] = [p2[q2]], thus [p1] = [p2] and [q1] = [q2]. □

By the previous proposition, there is a well defined cellular extension

O[ω] = (∂O[ω] s,t←Ð {ω})

where s and t map ω to ω̄○ and (tω tÐ→ ω), respectively. The induction hypothesis
holds by definition.

5.2. The shape function. This subsection is devoted to define the shape function
(−)♮. We first sketch the idea. Take P ∈ Pol▽ and define (−)♮ ∶ Pn Ð→ On by
induction. The cases n = 0,1 are trivial, since there is a unique 0-opetope and a
unique 1-opetope. Assume n ≥ 2, and take x ∈ Pn. Then the composition tree
of sx is a coherent tree whose nodes are (n − 1)-generators, and edges are (n − 2)-
generators. Replacing those (n−1) and (n−2)-generators by their respective shape,
we obtain a coherent tree whose nodes are (n− 1)-opetopes, and edges are (n− 2)-
opetopes, in other words, we obtain an n-opetope, which we shall denote by x♮.

g1

g2

g3

g4

e
1

e
2

e
3 e 4

e 5

e
6 e 7

x
z→

g♮1

g♮2

g♮3

g♮4

e
♮ 1

e ♮
2

e ♮
3 e

♮
4

e
♮
5

e
♮ 6 e

♮
7

x♮

The fact that x♮ corresponds to the intuitive notion of “shape” of x is justified by
theorem 5.6. The rest of this subsection makes this sketch formal. We first define
a many-to-one polygraph 1, that will turn out in proposition 5.4 to be terminal
in Pol▽. We then proceed to define the shape function for 1, before stating the
general case.

We set 10 ∶={⧫}, and 1n+1 ∶={(u, v) ∈ 1▽n × 1n ∣ u ∥ v}, with s(u, v) ∶=u and t(u, v) ∶= v.

Lemma 5.3. If x, y ∈ 1n are two parallel generators, then they are equal.

Proof. We have x = (sx, tx) = (s y, t y) = y. □
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Proposition 5.4. The polygraph 1 is terminal in Pol▽.

Proof. Let P ∈ Pol▽, we show that there exists a unique ! ∶ P Ð→ 1.
(1) (Existence) For x ∈ P0 let !0x = ⧫, and for x ∈ Pn with n ≥ 1, let !nx =
(!n−1 sx, !n−1 tx). The source and target compatibility is trivial.

(2) (Uniqueness) Let f ∶ P Ð→ 1 be another functor. Then necessarily f0 =!0
as 10 is a singleton. Let x ∈ Pn be such that fnx ≠!nx, with n mini-
mal. By previous remark, n ≥ 1, and we have !nx = (!n−1 sx, !n−1 tx) =
(fn−1 sx, fn−1 tx) ∥ fnx. Hence by previous lemma, !nx = fnx, a contradic-
tion. □

Proposition 5.5. For x ∈ 1n there exists a unique x♮ ∈ On such that the terminal
morphism !x

♮
∶ O[x♮]Ð→ 1 maps x♮ to x.

Proof. (1) (Uniqueness) Assume ϕ,ϕ′ ∈ Ok, ϕ ≠ ϕ′, are such that !ϕk(ϕ) =!
ϕ′

k (ϕ
′),

with k minimal for this property. Then necessarily, k ≥ 2. On the one
hand, we have ⟨ϕ⟩ = ⟨ct sϕ⟩ = ⟨ct sϕ′⟩ = ⟨ϕ′⟩. On the other hand, for [p] ∈
ϕ● = (ϕ′)●, we have !

s[p] ϕ

k−1 s[p] ϕ =!ϕk−1 s[p] ϕ = s[p]!
ϕ
kϕ = s[p]!

ϕ′

k ϕ
′ =!ϕ

′

k−1 s[p] ϕ
′ =

!
s[p] ϕ

′

k−1 s[p] ϕ
′, and by minimality of k, we have s[p] ϕ = s[p] ϕ′, for all address

[p]. Consequently, ϕ = ϕ′, a contradiction.
(2) (Existence) The cases n = 0,1 are trivial, so assume n ≥ 2, and that by

induction, the result holds for all k < n. For g ∈ Pk, there is a unique
opetope g♮ ∈ Ok such that !g

♮

k g
♮ = g. In particular the following two triangles

commute:

O[s[p] g♮] O[g♮]

P,

O[s[p]]

!s[p] g
♮ !g

♮

O[t g♮] O[g♮]

P,

O[t]

!tg
♮ !g

♮

where [p] ∈ (g♮)●. Consequently, (s[p] g)♮ = s[p] g♮ and (t g)♮ = t g♮, and the
following displays an isomorphism ▽n−11

≅Ð→ Zn−2:

1●n−1 1n−1

1n−2 O●n−1 On−1 1n−2

On−2 On−2.

s

p

t

s

p

t
(−)♮

(−)♮

(−)♮

⌟

Hence, the composite x♮ = (⟨ct sx⟩ ct sxÐÐ→▽n−11
(−)♮
ÐÐ→ Zn−2) defines an n-

opetope with ⟨x♮⟩ = ⟨ct sx⟩.
We claim that !x

♮

n x
♮ = x. We first show that !x

♮

n−1 sx
♮ = sx. We have

⟨ct sx⟩ = ⟨x♮⟩ = ⟨ct sx♮⟩ = ⟨ct!x
♮

n−1 sx
♮⟩. Then, for any address [p] in ⟨ct sx⟩,
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we have s[p] x =!x
♮

n−1(s[p] x)♮ =!x
♮

n−1 s[p] x
♮ = s[p]!x

♮

n x
♮. Then t!x

♮

n x
♮ =!x

♮

n−1 tx
♮ ∥

!x
♮

n−1 sx
♮ = sx ∥ tx, thus t!x

♮

n x
♮ = tx, and finally, as !x

♮

n x
♮ ∥ x, we have

!x
♮

n x
♮ = x. □

In the light of this proposition, we identify 1n = On. This identification is
compatible with faces, i.e. s[p] and t. Then, !ω ∶ O[ω] Ð→ 1 maps a generator
(ϕ→ ω) to ϕ.

Theorem 5.6. For P ∈ Pol▽ and x ∈ Pn, there exists a unique pair

(x♮,O[x♮] x̃Ð→ P) ∈ O[−]/P

such that x̃n(x♮) = x. Moreover, x♮ =!Pn x. Thus, the map

(̃−) ∶ Pn Ð→ ⊔
ω∈On

Pol▽(O[ω], P )

is an isomorphism.

Proof. (1) (Uniqueness) Assume O[ω] fÐ→ P
f ′←Ð O[ω′] are such that fn(ω) =

x = f ′n(ω′). Then !ωn(ω) =!P fn(ω) =!P f ′n(ω′) =!ω
′
(ω′), hence ω = ω′. Let

(ϕ aÐ→ ω) ∈ O[ω]k be such that fk (ϕ
aÐ→ ω) ≠ f ′k (ϕ

aÐ→ ω), with k minimal

for this property. Then k < n, and a factorizes as (ϕ jÐ→ ψ
bÐ→ ω), where j

is a face embedding, i.e. either t or s[p] for some p. Then by assumption,
fk (ϕ

aÐ→ ω) = j fk+1 (ψ
bÐ→ ω) = j f ′k+1 (ψ

bÐ→ ω) = f ′k (ϕ
aÐ→ ω), a contradic-

tion.
(2) (Existence) The cases n = 0,1 are trivial, so assume n ≥ 2, and that by

induction, the result holds for all k < n. Let x♮ =!Pn x ∈ On. We wish to
construct a morphism O[x♮] x̃Ð→ P having x in its image. For (ψ jÐ→ x♮)

a face of x♮ (i.e. s[p] for some [p], or t), we have (jx)♮ = ψ, so that by

induction, there exists a morphism O[ψ] j̃xÐ→ P having jx in its image,
yielding a commutative square

O[ψ] P

O[x♮] 1.

j̃x

O[j] !P

!x
♮

To alleviate upcoming notations, write j̄ ∶= j̃x. Let (ϕ aÐ→ x♮) ∈ O<n/x♮. If a
is a face embedding, define ā as before. If not, then it factors through a
face embedding as (ϕ jÐ→ ψ

bÐ→ ω), and let ā ∶= b̄ ○O[j]. Then the left square
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commutes, and passing to the colimit O<n/x♮ we obtain the right square:

O[ϕ] P

O[x♮] 1,

ā

O[a] !P

!x
♮

∂O[x♮] P

O[x♮] 1.

f

!P

!x
♮

We want a lift of the right square, and by the universal property of the
cellular extension, it is enough to check that fn−1 sx♮ = sx, and fn−1 tx

♮ =
tx. The second equality is clear, as f extends t̄, and fn−1 tx♮ = t̄n−1 tx♮ = tx
by definition. We now proceed to prove the first one. First, ⟨ct sx♮⟩ = ⟨ct sx⟩
since both are mapped to the same element of 1n. Then, for [p] an address
in ct sx♮, we have fn−1 s[p] x

♮ = s[p]n−1 s[p] x
♮ = s[p] x. Hence fn−1 sx

♮ =
sx. □

5.3. The adjoint equivalence. We have the opetal functor O[−] ∶ O Ð→ Pol▽.
This gives rise to an adjunction

∣ − ∣ ∶ Ô ⊣←→ Pol▽ ∶ N,

where ∣−∣ ∶=LanyO[−] is the left Kan extension of O[−] along the Yoneda embedding
y ∶ OÐ→ Ô, and N is given by

NP ∶=Pol▽(O[−], P ) ∶ Oop Ð→ Set,

for P ∈ Pol▽. We note η ∶ idÔ Ð→ N ∣ − ∣ the unit, ε ∶ ∣N ∣ Ð→ idPol▽ the counit, and
Φ ∶ Ô(−,N) ≅Ð→ Pol▽(∣ − ∣,−) the natural hom-set isomorphism.

For X ∈ Ô, its realization can be written as

∣X ∣ =
⊔
ω∈O

Xω ×O[ω]

(
f∗x

ϕ
hÐ→ ψ
) ∼ (

x

ϕ
hÐ→ ψ

fÐ→ ω
) with x ∈Xω, h ∶ ϕ→ ψ, f ∶ ψ → ω

.

In particular, all classes have a representative of the form [ yidθ
], for some y ∈Xθ.

Proposition 5.7. Take X ∈ Ô, P ∈ Pol▽, and f ∶ X Ð→ NP . The unit η at X,
the transpose Φf of f , and the counit ε at P are respectively given by:

η ∶Xω Ð→ N ∣X ∣ω Φf ∶ ∣X ∣ω Ð→ Pω ε ∶ ∣NP ∣ω Ð→ Pω

xz→
̃[ x
idω

], [ x
idω

]z→ f(x)(ω), [ x̃
idω

]z→ x.

Proof. (1) (Unit and transpose) We have to check that the following diagram
commutes

X N ∣X ∣

NP,

η

f
NΦf
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and that f is unique for that property. For x ∈Xω we have

(NΦf)η(x) = (NΦf)
⎛
⎝

̃[ x
idω

]⎞
⎠
= (Φf)

̃[ x
idω

],
which maps ω to f(x)(ω). Since a map O[ω]Ð→ P is uniquely determined
by the image of ω, we have (NΦf)η = f . Let g ∶ ∣X ∣ Ð→ P be another
morphism such that (NΦg)η = f . Then for x ∈Xω we have

g(x)(ω) = (Φg)([ x
idω

]) = (Φg)̃[ x
idω

](ω) = f(x)(ω)
whence f = g.

(2) (Counit) The counit is given by ε = Φ(idNP ), so that

ε[ x̃
idω

] = (ΦidNP )[ x̃
idω

] = x̃(ω) = x.
□

Theorem 5.8. The unit and counit are natural isomorphisms. Consequently, the
opetopic “nerve – realization” adjunction displays an adjoint equivalence between
Ô and Pol▽.

Proof. (1) (Unit) Remark that for x, y ∈ Xω, if [ x
idω

] = [ y
idω

], then x = y, which
shows that η is injective. Take f ∈ N ∣X ∣ω. Then f(ω) is of the form [ x

idω
],

hence f = η(x), and η is surjective.
(2) (Counit) The following triangle identity shows that Nε is a natural isomor-

phism:
N N

N ∣N − ∣.
ηN Nε

It is easy to check that the following square commutes, and since (̃−) is a bi-
jection by theorem 5.6, ε is a natural isomorphism:

∣NP ∣ P

N ∣NP ∣ NP.

ε

(̃−) (̃−)
Nε

□

Many-to-one polygraphs have been the subject of other work [7, 8], and proved
to be equivalent to the notion of multitopic sets. This, together with our present
contribution, proves the following:

Corollary 5.9. The category Ô of opetopic sets is equivalent to the category of
multitopic sets.

In [9], Henry shows that Pol▽ a presheaf category: Pol▽ ≃ Ôplex, where Oplex
is the category of “opetopic plexes”.
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Corollary 5.10. The category Oplex of opetopic plexes is equivalent to O.

Proof. Opetopic plexes are proved to be generators of the terminal many-to-one
polygraph 1 in [9, Proposition 2.2.3], and so together with proposition 5.5, we
have that opetopic plexes are exactly opetopes. On the other hand, morphisms of
opetopic plexes are by definition morphisms of polygraphs between the representa-
bles they induce, which by the Yoneda lemma are exactly morphisms of opetopes.

□

6. Conclusion

We proved the equivalence between opetopic sets (where “opetope” is understood
in the sense of Leinster [14, 13]) and many-to-one polygraphs. Along the way, we
introduced formal tools and notations to ease the manipulation of opetopes.
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