
HAL Id: hal-01946893
https://hal.science/hal-01946893

Submitted on 17 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Time-accurate calculation and bifurcation analysis of the
incompressible flow over a square cavity using

variational multiscale modeling
Philippe Meliga, Elie Hachem

To cite this version:
Philippe Meliga, Elie Hachem. Time-accurate calculation and bifurcation analysis of the incompress-
ible flow over a square cavity using variational multiscale modeling. Journal of Computational Physics,
2019, 376, pp.952-972. �10.1016/j.jcp.2018.09.036�. �hal-01946893�

https://hal.science/hal-01946893
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Time-accurate calculation and bifurcation analysis of

the incompressible flow over a square cavity using

variational multiscale modeling

P. Meligaa,b, E. Hachemb,∗

aAix-Marseille Univ., CNRS, Centrale Marseille, M2P2, Marseille, France
bMINES ParisTech, PSL Research University, Centre de mise en forme des matériaux

(CEMEF), CNRS UMR 7635, 06904 Sophia Antipolis Cedex, France

Abstract

A thorough variational multiscale (VMS) modeling of the Navier–Stokes

equations is used to compute numerical solutions of the incompressible flow

over an open cavity. This case features several competing instabilities, and is

highly challenging for VMS methods with regard to frequency and pattern se-

lection, because of the non-normality of the linearized Navier–Stokes operator.

The relevance of the approach is thus carefully assessed by comparing to direct

numerical simulation (DNS) data benchmarked at several Reynolds numbers,

and highly accurate time advancing methods are shown to predict relevant evo-

lutions of the transient and saturated solutions. The VMS reduces substantially

the computational cost, by ∼ 35% (resp. ∼ 60%) in terms of CPU time using

a semi-implicit discretization scheme based on backward differentiation formula

(resp. the implicit Crank–Nicholson scheme), and by ∼ 80% in terms of mem-

ory requirement. Eventually, the highly efficient semi-implicit VMS numerical

framework is used to unravel the onset of the flow oscillations and the selection of

the limit cycle frequency, that happens to involve a subcritical Neimark–Sacker

bifurcation.
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1. Introduction

The variational multiscale (VMS) modeling of the Navier–Stokes equations [1–

5] has been widely developed for the numerical simulation of turbulent flows in

several benchmarking and applicative context [6–8]. While the direct numeri-

cal simulation (DNS) requires a complete representation of the whole range of5

spatial and temporal turbulent scales at the discrete level (which may be un-

tractable for several problems of practical interest, even at moderate Reynolds

numbers), the VMS introduces an a priori decomposition of the solution into

coarse and fine scale components, that correspond to different scales (or levels)

of resolution. The general idea is that only the large scales of the flow field are10

fully represented and resolved at the discrete level, while the effect of the small

unresolved scales is taken into account by means of consistently derived source

terms proportional to the residual of the resolved scale solution, hence a more

affordable computational cost.

In the context of finite elements (that remain widely used to simulate en-15

gineering relevant scenarios from computational fluid dynamics, because of the

ability to handle complex geometries), the DNS solves boundary problems de-

rived from a weak formulation of the Navier–Stokes equations (the so-called

Galerkin method). The VMS add integrals over element interiors whose benefit

is twofold. First, it allows relaxing the Babuska—Brezzi condition and thus ac-20

comodating equal-order interpolations for the velocity and the pressure [9, 10].

Second, it prevents the numerical instabilities developing in advection regimes

at high Reynolds numbers, that induce numerical oscillations quickly spreading

in the shear regions and polluting the entire solution domain. In short, the

finite element VMS method provides a flexible and consistent framework for25

defining stable spatial approximation schemes, while also suitably representing

the turbulence, which is now supported by an extensive body of work [11–15].

The question raised in this research is whether it can be similarly accurate

at lower Reynolds numbers. This may seem uncanny at first glance, but such

regimes can prove challenging because the linearized Navier–Stokes operator30

is very non-normal. In return, the stabilization terms can thus accidentally

displace its eigenvalues by a substantial amount, even though their amplitude

is small [16–18]. While this is not necessarily visible at high Reynolds num-
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bers, where the induced variations remain small with respect to the leading

growth rates, the effect can be dramatic close to the instability threshold. This35

is especially true under concurring linear instability mechanisms, since small

eigenvalues variations lead to inaccurate instability thresholds, which may feed

through the nonlinear interaction between unstable modes, and eventually affect

the pattern and frequency selection. Just as with the DNS, we shall see that

the key lies in highly efficient and accurate time advancing methods capable of40

predicting relevant evolutions of the transient and saturated solutions, a topic

that has only recently become a focus of research among in the field of VMS

modeling [19, 20].

The retained configuration is the open cavity flow documented in [21], that

becomes unstable at Reynolds number Re = 4140 (based on the free-stream ve-45

locity and the cavity height), then exhibits a well-defined oscillatory behavior up

to Re ∼ 7000. This case is especially relevant for the intended purpose, insofar

as there are three concurring instabilities, whose nonlinear interactions trigger a

poorly understood change in the limit cycle frequency [22]. It also ensures that

the stabilization is, by design, active, as the instability threshold happens to be50

much higher than in other classically benchmarked configurations, e.g., cylinder

flows, whose critical Reynolds number Re ∼ 50 (based on the free-stream veloc-

ity and the cylinder diameter) is smaller by two orders of magnitude [23–26], or

backwards facing step flows, whose critical Reynolds number Re ∼ 800 (based

on the centerline velocity and the step height) is smaller by almost one order55

of magnitude [27, 28]. The objective is twofold: first, we assess the ability of

the VMS to perform accurate calculations of the limit cycle oscillations while

retaining the advantages of linear approximations (P1 finite elements) for both

the velocity and the pressure (which we recall breaks the Babuska–Brezzi con-

dition). Then, we use efficient and accurate VMS methods to shed new light on60

the sequence of bifurcations triggering the onset of unsteadiness and the change

in the limit cycle frequency.

The paper is organized as follows. The open cavity flow is described in

Sec. 2. Exhaustive details regarding the numerical schemes used to perform

the DNS and VMS computations are provided in Sec. 3. The statistics of the65

limit cycle oscillations are benchmarked in Sec. 4 using several DNS and VMS
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Figure 1: (a) Schematic of the cavity flow. (b) Structure of the computational mesh. The

thick and thin solid lines have vertex densities n1 = 350 and n2 = 300. The dashed, dash-

dotted and dash-dot-dotted lines have densities n3 = 200, n4 = 150 and n5 = 50. The red,

green and blue circles mark the position of the sensors S1, S2 and S3 used for benchmarking

purposes.

discretizations. Physical interpretations for the obtained results are given in

Sec. 5, together with a discussion on the numerical cost, as well as on the best

compromise between numerical accuracy and time efficiency. Finally, the VMS

is used in Sec. 6 to tackle the sequence of bifurcation triggering the onset of the70

limit cycle oscillations.

2. A numerical experiment: the open cavity flow

We consider the two-dimensional flow over the open square cavity sketched

in Fig. 1. This case has received substantial attention in the past decade as

a prototypal example of supercritical Hopf bifurcation leading to a periodic75

limit cycle [21, 22, 29, 30]. The general picture is as follows: a boundary layer

develops upstream of the cavity from the position marked by the leftmost yellow

circle in Fig. 1(a). It separates at the upstream cavity edge, and rolls up into

large-scale vortices that plow into the downstream edge, after which a new

boundary layer develops up to the position marked by the rightmost yellow80

circle. The break up of the large-scale vortices generates a pressure wave that

travels upstream via the recirculating flow in the cavity, excites the shear layer

at the upstream edge, and causes new perturbations to grow again into large-

scale vortices via Kelvin–Helmholtz instability. For sufficiently large Reynolds

numbers, this feedback loop leads to a linear global instability, whose nonlinear85

saturation yields periodic limit cycle oscillations.
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In the sequel, we use Cartesian coordinates with x horizontally along the

cavity walls and y vertically upwards. The governing equations to be solved

numerically are the incompressible Navier–Stokes equations

∇ • u = 0 , ∂tu + u • ∇u + ∇ • [ pI − 2

Re
ε(u) ] = 0 , (1)

with u = (u, v) the velocity field of component u (resp. v) in the x (resp. y)

direction, p the pressure, I and ε(u) the identity and the rate of deformation

tensors, and Re the Reynolds number. We use the free-stream velocity and

the cavity height to make all quantities non-dimensional. The upstream and90

downstream edges of the cavity are thus at (x, y) = (0, 0) and (1, 0), and a

uniform velocity (u, v) = (1, 0) is prescribed at the inlet boundary, located at

x = −1.2. A free-stress condition −pn + 2Re−1
ε(u) · n = 0 is applied at the

outlet boundary, located at x = 2.5. A free-slip condition with zero tangential

stress ∂yu = v = 0 is prescribed on the cavity walls defined by y = 0 and95

x ∈ [−1.2, −0.4]∪[1.75, 2.5], as well as on the upper boundary located at y = 0.5.

Finally, a no-slip condition u = v = 0 is imposed on the remainder of the cavity

walls.

3. Numerical schemes

The above computational domain is denoted by Ω, with V ⊂ H1(Ω)2 and100

Q = L2(Ω) proper functional spaces for the velocity and the pressure, respec-

tively, chosen according to the above boundary conditions (we shall use the same

notation for the continuous spaces and for their finite dimensional, discrete ap-

proximations, as the intending meaning is clear from the context).

3.1. Finite elements discretization105

The Delaunay–Voronoi algorithm is used to generate a triangulation of the

computational domain. The mesh refinement is controlled by vertex densities,

imposed on external and internal boundaries, as depicted in Fig. 1(b). The

highest vertex density n1 = 350 is used along the thick solid line (i.e., the size

of each triangle side is 1/n1 = 2.85×10−3) to capture the small scales typical of110

the boundary and shear layers. For the range of Reynolds numbers from 4000

to 6500 considered herein, this allows distributing at least 15 triangles across
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the boundary layer at the upstream cavity edge.1 The mesh is progressively

stretched along the other fine lines arranged on either side of the shear region.

Namely, the thin solid line has the second highest density n2 = 200, while the115

dashed, dash-dotted and dash-dot-dotted lines have densities n3 = 150, n4 =

100 and n5 = 50, respectively. These values are identical to those in [21, 22],

and yield a mesh made of 194, 447 triangles.

The relevance of the VMS for the cavity flow is established in Sec. 4 by cross-

analyzing VMS and DNS data benchmarked at several Reynolds numbers. The

DNS solves the weak form of (1), as obtained by integrating by parts the pressure

and viscous terms, to give

(∂tu + u • ∇u, w) +
2

Re
(ε(u), ε(w)) − (p, ∇ • w) + (∇ • u, q) = 0 , (2)

with w (resp. q) an arbitrary test function in V (resp. Q), and ( • , • ) the L2

inner product on Ω. The Babuska—Brezzi condition imposes to discretize V and120

Q with different interpolation orders, which is done here with Taylor–Hood P2 -

P1 elements, i.e. continuous piecewise linear P1 elements for Q and continuous

piecewise quadratic P2 elements for V . This yields three degrees of freedom per

triangle for the pressure (at the edges) and six for each velocity component (at

the edges and at the middle of each side), hence 879, 037 degrees of freedom for125

the present two-dimensional case. For proof of spatial accuracy, the reader is

referred to [21], where the effect of refining the mesh up to 418, 330 triangles

(hence 1, 888, 003 degrees of freedom) on the flow linear and weakly nonlinear

bifurcation parameters is reported to affect only the third decimal place.

The VMS conversely solves a stabilized formulation of (2) meant to circum-

vent the Babuska—Brezzi condition. We use here the simplest P1 -P1 elements

(i.e., P1 elements for both the velocity and the pressure) yielding 294,087 de-

grees of freedom, hence a reduction by nearly 70% with respect to the DNS.

We shall not go into the extensive details about the derivation of the stabilized

formulation itself, for which the reader is referred to [31]. Suffice it to say here

1We define the boundary layer thickness as the distance from the cavity wall to the point

across the boundary layer where the x-velocity has reached 99% of its maximum velocity,

which is because the velocity profile exhibits an overshoot in the near-wall region on behalf

of a pressure gradient in the outer flow [21].
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that the flow quantities are split into coarse and fine scale components, that

correspond to different scales (or levels) of resolution. The fine scales are solved

in an approximate manner to allow modeling their effect into the large-scale

equations, which gives rise to additional terms in the right-hand side of (2).

In practice, this requires overlooking the self advection of the small scale mo-

mentum. Also, the advection time scale of the small scale is taken to be much

smaller than that of the large scale, resulting in steady small scale equations

using a quasi-static argument [31]. Ultimately, this yields a weak form for the

large scale

(∂tu + u • ∇u, w) +
2

Re
(ε(u), ε(w)) − (p, ∇ • w) + (∇ • u, q) =

∑

K∈Th

[(τ1RM , u • ∇w)
K

+ (τ1RM , ∇q)
K

+ (τ2RC , ∇ • w)
K

] , (3)

where ( • , • )
K

is the inner product on element K, RC,M being the residuals

defined by

−RC = ∇ • u , −RM = ∂tu + u • ∇u + ∇p , (4)

and τ1,2 are ad-hoc mesh-dependent stabilization parameters defined in [11, 15]130

from a Fourier analysis of the small scale problem; see also [9] for a review on the

various ways to calculate these parameters in terms of the ratios of the norms of

relevant matrices or vectors, as well as of local length scales and element-level

Reynolds numbers.

3.2. Time discretization135

The viscous, pressure and divergence terms are integrated implicitly with the

backward Euler scheme. The discretization of the material time derivative and

VMS stabilization terms is addressed in Secs. 3.2.1–3.2.2. All linear systems are

preconditioned with a block Jacobi method supplemented by an incomplete LU

factorization, and solved with the GMRES algorithm. The tolerance threshold140

is set to 10−6 in terms of both the absolute and relative norm of the residual.

Decreasing the tolerance to 10−8 has been found to lead to a significant increase

of the computational cost without any noticeable improvement of the numerical

results, as also reported in [20].
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3.2.1. Implicit Crank–Nicholson145

We consider first the implicit Crank–Nicholson (CN) scheme

∂tu + u • ∇u =
ui − ui−1

∆t
+

1

2
(ui • ∇ui + ui−1 • ∇ui−1) , (5)

where the i superscript refers to the solution at time ti = i∆t. A Newton root

finding algorithm is used to handle the nonlinearity of (5) in ui: at the j-th

Newton iterate, the implicit component of the convective derivative is linearized

about the last computed solution ui,j−1 (hence, ui,0 = ui−1 and ui,ni = ui with

ni the number of iterations needed to achieve convergence), to give

ui • ∇ui = ui,j−1 • ∇ui,j + ui,j • ∇ui,j−1 − ui,j−1 • ∇ui,j−1 . (6)

All VMS stabilization terms in (3) are integrated explicitely with the forward

Euler scheme. This yields the fully discretized stabilized weak form

(
1

∆t
ui,j +

1

2
(ui,j • ∇ui,j−1 + ui,j−1 • ∇ui,j), w) +

2

Re
(ε(ui,j), ε(w))

− (pi,j , ∇ • w) + (∇ • ui,j , q)

− (
1

∆t
ui−1 +

1

2
(ui,j−1 • ∇ui,j−1 − ui−1 • ∇ui−1), w) =

∑

K∈Th

[(τ i,j−1
1 Ri,j

M , ui,j−1 • ∇w)
K

+ (τ i,j−1
1 Ri,j

M , ∇q)
K

+ (τ i,j−1
2 Ri,j

C , ∇ • w)
K

]

−
∑

K∈Th

(τ i,j−1
1 Ri,j−1

M , ui,j−1 • ∇w + ∇q)
K

, (7)

with residuals defined as

−Ri,j
C = ∇ • ui,j , (8)

−Ri,j
M =

ui,j

∆t
+

1

2
(ui,j • ∇ui,j−1 + ui,j−1 • ∇ui,j) + ∇pi,j , (9)

−Ri,j−1
M =

ui−1

∆t
+

1

2
(ui,j−1 • ∇ui,j−1 − ui−1 • ∇ui−1) , (10)

and the weak form for the DNS deduces by forcing τ i,j−1
1,2 to zero.

3.2.2. Semi-implicit BDF

Alternatively, we consider the semi-implicit scheme

∂tu + u • ∇u =
ασui − ui−1

BDFσ

∆t
+ ui−1

BNGσ
• ∇ui , (11)

where the time and convective derivatives are approximated with backward dif-

ferentiation formulas (BDF) and backward Newton–Gregory polynomials (BNG)
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Table 1: Properties of the optimized, multi-time-level BDF3† and BDF4† schemes.

σ† χ2 χ3 χ4

3 1 1 0

4 5 − 3
√

2 −5 + 4
√

2 2 −
√

2

of same order σ, respectively. This yields

ασ =
σ

∑

k=1

1

k
, ui−1

BDFσ =
σ

∑

k=1

βkui−k , ui−1
BNGσ =

σ
∑

k=1

γkui−k , (12)

where {βk, γk} are sequences defined recursively after [32, 33] by β1 = γ1 = σ

and

βk≥2 = βk−1

k(k − σ)

k2
, γk≥2 =

k − σ

k + 1
γk−1 , (13)

hence βk>σ and γk>σ are trivially zero. Again, the VMS stabilization terms are

integrated explicitly with the forward Euler scheme. This gives rise to the fully

discretized stabilized weak form

(
ασ

∆t
ui + ui−1

BNGσ
• ∇ui, w) +

2

Re
(ε(ui), ε(w))

− (pi, ∇ • w) + (∇ • ui, q)

− (
1

∆t
ui−1

BDFσ , w) =
∑

K∈Th

[(τ i−1
1σ Ri

M , ui−1
BNGσ

• ∇w)
K

+ (τ i−1
1σ Ri

M , ∇q)
K

+ (τ i−1
2σ Ri

C , ∇ • w)
K

]

−
∑

K∈Th

(τ i−1
1σ Ri−1

M , ui−1
BNGσ

• ∇w + ∇q)
K

, (14)

with residuals defined as

−Ri
C = ∇ • ui , (15)

−Ri
M =

ασ

∆t
ui + ui−1

BNGσ
• ∇ui + ∇pi , (16)

−Ri−1
M =

1

∆t
ui−1

BDFσ , (17)

and the weak form for the DNS deduces by forcing τ i,j−1
1,2 to zero.

It is worth mentioning that only BDF1 and BDF2 are unconditionally stable,

a result known as the second Dahlquist barrier. Without anticipating the results

of the upcoming sections, this is an issue because both schemes perform quite
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poorly on the cavity flow, and we did run into numerical instabilities with BDF3

and BDF4; see also [34]. We thus circumvent the difficulty using modified

schemes combining linearly BDF2, BDF3 and BDF4, i.e.,

α
σ† =

1

2

σ
∑

σ′=2

χσ′ασ′ , ui
BDFσ† =

1

2

σ
∑

σ′=2

χσ′u
i
BDFσ′ , (18)

where the χσ′ coefficients reported in Table 1 for σ† = 3 and 4 are computed

analytically in [35] to minimize the leading-order truncation error at each time150

step. These so-called optimized schemes, denoted by BDF3† and BDF4† in

the following, are shown in the aforementioned reference to formally maintain

the second-order accuracy of BDF2 but decrease the truncation error by a fac-

tor 2/χ2 (hence, 2 for BDF3† and ∼ 2.65 for BDF4†) while maintaining the

numerical stability.155

4. Benchmark results

This section reports VMS and DNS data pertaining to several Reynolds

numbers in the periodic regime. For a given numerical framework, it assesses the

accuracy from the statistics of the limit cycle oscillations measured by a sensor

labeled S2, whose position xS2 = (0.75, 0.05) in the shear layer is marked by160

the green circle in Fig. 1. For benchmarking purposes, we also report the values

measured by two additional sensors S1 and S3, whose positions xS1 = (0.6, 0.05)

and xS3 = (0.9, 0.05) are marked by the red and blue circles, respectively. The

time step ∆t = 10−2 is the same as in [22], and allows sampling between ∼ 55

and 85 points over a period, depending on the Reynolds number. We consider a165

time span of 25 oscillation periods, which allows determining the mean velocity

u, the root mean square (rms) of the velocity fluctuations u′ and the fundamental

Strouhal number St (checked to be independent of the sensor position) to a

numerical accuracy of 0.5%, as has been assessed comparing to results obtained

from a doubled time span.170

4.1. Case I - Re = 5000

First, we examine the results obtained at Re = 5000 with the Crank–

Nicholson scheme described in Sec. 3.2.1, for VMS and DNS computations

starting from the exact same (albeit generated randomly) initial condition. As

10



Table 2: Statistics of the limit-cycle oscillation at Re = 5000.

Discretization ∆t
u (×10−1) u′ (×10−2)

St

S1 S2 S3 S1 S2 S3

CN

DNS 10−2 9.965 9.730 9.315 2.380 4.065 4.443 1.692

VMS 10−2 9.959 9.724 9.312 2.350 4.018 4.404 1.692

VMS 5×10−3 9.960 9.726 9.316 2.345 4.007 4.394 1.694

BDF1

DNS 10−2 9.984 9.848 9.634 0.375 0.726 1.016 1.177

VMS 10−2 9.978 9.841 9.627 0.403 0.778 1.084 1.178

VMS 5×10−3 9.978 9.821 9.560 0.932 1.812 2.509 1.204

BDF2

DNS 10−2 9.955 9.683 9.225 2.751 4.550 4.659 1.703

VMS 10−2 9.948 9.677 9.224 2.728 4.516 4.628 1.703

VMS 5×10−3 9.958 9.716 9.297 2.428 4.117 4.450 1.698

BDF3†

DNS 10−2 9.967 9.736 9.329 2.322 3.984 4.401 1.694

VMS 10−2 9.960 9.730 9.327 2.299 3.947 4.362 1.694

VMS 5×10−3 9.961 9.729 9.322 2.325 3.979 4.377 1.695

BDF4†

DNS 10−2 9.967 9.735 9.326 2.333 3.999 4.404 1.694

VMS 10−2 9.960 9.729 9.325 2.309 3.961 4.370 1.694

VMS 5×10−3 9.961 9.728 9.322 2.328 3.981 4.377 1.695

evidenced in Fig. 2(a) showing the time evolution of uS2 (i.e., the x-component175

of the velocity measured by the S2 sensor, here computed by VMS), well-defined

oscillations emerge after roughly 25 time units, and the solution subsequently

slowly converges to its limit cycle within 50 time units. The VMS predicts espe-

cially well the transient evolution in Fig. 2(b) (CN data are shown as the grey

lines, with solid and dashed patterns for VMS and DNS results). There are lim-180

ited discrepancies at each time step, that trigger a small phase shift in the limit

cycle solution2, but the latter is erased in Fig. 2(c) to ease the presentation.

Other than that, the limit cycle statistics in Table 2 clearly assess the accuracy

2The latter is arbitrary in the sense that a slight phase advance or delay of the order of one

tenth of the oscillation period is observed depending on the scheme and the Reynolds number.
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Figure 2: (a) Time evolution of the x-velocity at the S2 sensor, computed at Re = 5000 by

VMS with the Crank–Nicholson scheme. (b,c) Focus on the (b) transient and (c) periodic

regimes, as computed by VMS (solid lines) and DNS (dashed lines) with the Crank–Nicholson

(grey lines) and BDF4† (black lines) scheme. The considered time intervals are marked in (a)

as the grey boxes.

of the VMS solution. The oscillation amplitude is especially well predicted, the

discrepancy by 0.2% being of the same order as the statistical error.185

We now take the above CN data as reference, and compare against the values

obtained with the BDF schemes described in Sec. 3.2.2. We compare VMS-BDF

against VMS-CN and DNS-BDF against DNS-CN, considering that all com-

putations start from the same initial condition. We quickly pass over BDF1,

found in Table 2 to yield irrelevant limit cycle oscillations, whether it be in190

terms of frequency or amplitude. This is true regardless of the numerical frame-

work, and is ascribed to an excessive dissipativity, as will be further discussed

in Sec. 5. BDF2 restores limit cycle oscillations of the proper frequency but

performs poorly overall, as the oscillation amplitude is widely overestimated,

by 12.4% using VMS and 13.3% using DNS. The data in Table 2 indicate that195

the optimized BDF schemes improve significantly the accuracy, namely BDF3†
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Figure 3: (a,b) Isocontours of the fluctuating x-velocity, computed at Re = 5000 by (a) VMS

and (b) DNS with the Crank–Nicholson scheme. (c,d) Same as (a,b) using the BDF4† scheme.

All results pertain to the same phase in the limit cycle, corresponding to a peak velocity at

the S2 sensor.

cuts the VMS error to 1.7% and BDF4† cuts it further down to 1.3% (which

incidentally assesses the convergence in terms of the approximation order). The

VMS therefore has a residual (albeit small) error associated with it, whereas the

DNS results obtained with the same schemes are accurate to 0.5%. Again, this200

is a matter to which we return later. If we now pay a closer attention to BDF4†,

a relevant evolution of the transient sensor velocity is computed by VMS; see

the solid and dashed lines in Fig. 2(b). Note, there are subtle discrepancies

with respect to the CN results (in grey), owing to the fact that we initially

time-march the system with BDF1 and progressively upgrade to BDF4† during205

the first three time units.

The high accuracy of the VMS-CN and VMS-BDF4† numerical frameworks

is further illustrated in Fig. 3 showing the spatial distribution of the x-velocity

at the same phase in the limit cycle, corresponding to a peak velocity at the S2

sensor, together with the mean shear layer position (as marked by the superim-210

posed grey line showing the time-averaged streamline issuing from the upstream

cavity edge). The roll-up mechanism yields counter-rotating vortical structures
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Figure 4: Cuts of the x-velocity at (a) y = 0.05, (b) x = 0.6, (c) x = 0.75 and (d) x = 0.9,

computed at Re = 5000 by VMS (solid lines) and DNS (dashed lines) using the Crank–

Nicholson (grey lines) and BDF4† (black lines) schemes, respectively. The sensor positions

considered in Table 2 are marked by the coloured circles. All results pertain to the same phase

in the limit cycle, corresponding to a peak velocity at the S2 sensor.

traveling and strengthening across the shear layer. The VMS captures especially

well the number of vortices, the peak vorticity at the downstream cavity edge,

but also the finest structures developing in the inner cavity and the downstream215

boundary layer. A more quantitative indication of the agreement is displayed in

Fig. 4(a) showing the related horizontal cuts at y = 0.05, where the footprint of

the vortices is visible through the succession of peaks and troughs resembling a

wave distribution (again, CN and BDF4† data are shown as the grey and black

lines, with solid and dashed patterns for VMS and DNS results). The same220

level of agreement is reported in Figs. 4(c) and 4(d) showing the evolution of

the shear layer velocity through vertical cuts at x = 0.6, 0.75 and 0.9. The latter

case unveils a severe distortion corresponding to the trail left by the vortices

traveling upstream via the recirculating flow.
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Table 3: Statistics of the limit-cycle oscillation at Re = 6000.

Discretization ∆t
u (×10−1) u′ (×10−2)

St

S1 S2 S3 S1 S2 S3

CN

DNS 10−2 10.04 9.600 9.012 4.184 6.314 5.530 1.781

VMS 10−2 10.04 9.595 9.011 4.162 6.296 5.517 1.781

VMS 5×10−3 10.04 9.601 9.013 4.150 6.247 5.504 1.782

BDF1

DNS 10−2 10.12 9.934 9.593 2.047 3.494 4.049 1.655

VMS 10−2 10.11 9.928 9.591 2.051 3.499 4.042 1.647

VMS 5×10−3 10.20 9.811 9.309 3.043 4.818 4.921 1.712

BDF2

DNS 10−2 10.00 9.503 8.948 4.764 6.919 5.313
1.792

2.095

VMS 10−2 10.00 9.502 8.947 4.705 6.869 5.312 1.791

VMS 5×10−3 10.03 9.580 8.997 4.285 6.384 5.459 1.786

BDF3†

DNS 10−2 10.05 9.615 9.026 4.123 6.214 5.515 1.781

VMS 10−2 10.04 9.610 9.024 4.116 6.212 5.498 1.781

VMS 5×10−3 10.04 9.605 9.018 4.154 6.242 5.499 1.783

BDF4†

DNS 10−2 10.05 9.612 9.020 4.141 6.250 5.534 1.781

VMS 10−2 10.04 9.606 9.019 4.133 6.247 5.516 1.781

VMS 5×10−3 10.04 9.604 9.017 4.156 6.244 5.500 1.783

4.2. Case II - Re = 6000225

We examine now the results obtained at Re = 6000 with the Crank–Nicholson

scheme, starting from the exact same initial condition as at Re = 5000. As

evidenced in Fig. 5(a) showing the time evolution of the uS2 velocity (here com-

puted by VMS), well-defined oscillations emerge after only 10 time units, but it

takes about 350 times units for the solution to converge to its limit cycle, as the230

transient exhibits persistent modulations resulting from a non-normal competi-

tion between instabilities (this point will be addressed later). Also, the periodic

velocity in Fig. 5(c) significantly departs from a pure wave because the nonlin-

earity now produces a substantial second harmonic responsible for a complex

frequency selection mechanism [22]. As already noted at Re = 5000, the VMS235
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Figure 5: (a) Time evolution of the x-velocity at the S2 sensor, computed at Re = 6000 by

VMS with the Crank–Nicholson scheme. (b,c) Focus on the (b) transient and (c) periodic

regimes, as computed by VMS (solid lines) and DNS (dashed lines) with the Crank–Nicholson

(grey lines) and BDF4† (black lines) scheme. The considered time intervals are marked in (a)

as the grey boxes.

predicts well the transient and periodic evolutions of the sensor velocity, up to

a small phase factor deliberately erased in Fig. 5(c), and the VMS oscillation

amplitude is accurate to 0.3%, which is of the same order as the statistical error.

If we now take the CN data as reference and compare against the BDF re-

sults, we observe the same trends as for Re = 5000, namely BDF1 keeps yielding240

off-topic limit cycle oscillations (although this is to a far lesser extent than at

Re = 5000, for instance the oscillation amplitude is widely underestimated by

25% but the frequency is somehow accurate to 7.5%), and BDF2 keeps overes-

timating the amplitude (9% by VMS, vs. 9.6% by DNS). The accuracy again

improves dramatically with the optimized BDF† schemes, namely BDF3† cuts245

the error to 1.5%, and BDF4† further cuts it down to 0.7% (as a comparison, the

DNS is perfectly accurate to the statistical error). Note, for this case, BDF2 has

another drawback, that has to do with the very nature of the computed solution.
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Figure 6: (a,b) Isocontours of the fluctuating x-velocity, computed at Re = 6000 by (a) VMS

and (b) DNS with the Crank–Nicholson scheme. (c,d) Same as (a,b) using the BDF4† scheme.

All results pertain to the same phase in the limit cycle, corresponding to a peak velocity at

the S2 sensor.

On the one hand, the VMS-BDF2 solution is periodic, as evidenced by the ve-

locity fluctuations in Fig. 8(a), whose single-sided amplitude spectrum is shown250

in Fig. 8(c). The DNS however settles on a quasi-periodic orbit because the

transient modulations never die out, hence the two frequencies featured in the

amplitude spectrum (Fig. 8(d)) and reported in Table 3. While the dominant

peak is identical to its VMS-BDF2 counterpart, there is a small, secondary peak

at a slightly larger frequency that yields the parasitic, low-frequency modulation255

of the sensor velocity in Fig. 8(b). This inconsistency (to which we come back

in Sec. 5) stresses again the need for highly accurate time-integration schemes,

namely CN and BDF4†, whose accuracy is further illustrated in Fig. 6 depicting

isocontours of the fluctuating velocity. The same level of agreement is reported

in Fig. 7 showing several cuts of the shear layer velocity; see especially the ver-260

tical cuts at x = 0.9 in Fig. 7(d) for which the shear layer velocity is strongly

distorted by the inner vortices.
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Figure 7: Cuts of the x-velocity at (a) y = 0.05, (b) x = 0.6, (c) x = 0.75 and (d) x = 0.9,

computed at Re = 6000 by VMS (solid lines) and DNS (dashed lines) using the Crank–

Nicholson (grey lines) and BDF4† (black lines) schemes, respectively. The sensor positions

considered in Table 3 are marked by the coloured circles. All results pertain to the same phase

in the limit cycle, corresponding to a peak velocity at the S2 sensor.

4.3. Case III - Re = 4350

Finally, we consider the results obtained at Re = 4350 with the Crank–

Nicholson scheme, starting again from the exact same initial condition as at265

Re = 5000. As shown in Figure 9(a) showing the time evolution of the uS2

velocity (here computed by VMS), well-defined oscillations emerge after 50 time

units (which is because the Reynolds number is close to the instability threshold,

and the linear growth rate of the disturbances is accordingly smaller), and the

solution settles on its limit cycle after 100 time units. As already noted at Re =270

5000 and 6000, the VMS predicts well the transient and periodic evolutions of

the sensor velocity, up to a small phase factor again deliberately erased in Fig. 9

(c). Other than that, the limit cycle statistics in Table 4 assess the accuracy of

the VMS solution, whose only noticeable shortcoming is an overestimation of the
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Figure 8: (a,b) Time evolution of the x-velocity at the S2 sensor, computed at Re = 6000 by

(a) VMS and (b) DNS with the BDF2 scheme. (c,d) Single-sided amplitude spectrum of the

corresponding (c) VMS and (d) DNS x-velocity fluctuations.

rms by 1.9%. Regarding the BDF results, we shall again overlook BDF1, whose275

excessive dissipativity now yields an erroneous steady solution. BDF2 restores

limit cycle oscillations of the proper frequency but keeps performing poorly

overall, as the oscillation amplitude remains widely overestimated (13.8% by

VMS, vs. 15.2% by DNS). The accuracy again improves significantly using the

optimized BDF† schemes, namely BDF3† cuts the error to 4.1%, and BDF4†
280

further cuts it down to 3.5% (which is comparable to the accuracy of the DNS,

found to be to 4.3%). Although the residual error is substantially larger than

at Re = 5000 and 6000, the VMS-CN and VMS-BDF4† numerical frameworks

still predict the unsteady cavity flow to a high accuracy, as an especially close

agreement is emphasized Fig. 10 displaying the isocontours of the fluctuating285

velocity. Again, the VMS captures well the number of vortices, that happens

to be substantially smaller than at Re = 5000 and 6000, hence the reduced

oscillation frequency. A more quantitative indication of the agreement is also
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Table 4: Same as Table 2 at Re = 4350.

Discretization ∆t
u (×10−1) u′ (×10−2)

St

S1 S2 S3 S1 S2 S3

CN

DNS 10−2 9.844 9.686 9.433 0.773 1.503 1.998 1.202

VMS 10−2 9.836 9.677 9.424 0.789 1.532 2.032 1.202

VMS 5×10−3 9.837 9.678 9.426 0.780 1.512 2.007 1.203

BDF1

DNS 10−2 9.847 9.703 9.484 – – – –

VMS 10−2 9.839 9.695 9.477 – – – –

VMS 5×10−3 9.840 9.696 9.478 – – – –

BDF2

DNS 10−2 9.843 9.680 9.416 0.890 1.732 2.301 1.204

VMS 10−2 9.835 9.671 9.406 0.915 1.777 2.355 1.205

VMS 5×10−3 9.837 9.677 9.423 0.807 1.563 2.075 1.204

BDF3†

DNS 10−2 9.844 9.688 9.438 0.735 1.428 1.904 1.202

VMS 10−2 9.836 9.678 9.428 0.757 1.469 1.953 1.203

VMS 5×10−3 9.837 9.679 9.428 0.766 1.485 1.972 1.203

BDF4†

DNS 10−2 9.844 9.687 9.437 0.739 1.437 1.914 1.202

VMS 10−2 9.836 9.678 9.428 0.762 1.478 1.964 1.203

VMS 5×10−3 9.837 9.679 9.428 0.766 1.486 1.973 1.203

unveiled in the various cuts shown in Fig. 11.

The larger residual error is ascribed to the fact that the Reynolds number is

only closely above the instability threshold [21, 30]. For this case of supercritical

Hopf bifurcation [21], the limit cycle oscillation amplitude varies as the square-

root of the departure from criticality, i.e.,

u′ = ξ

√

1

Rec

− 1

Re
, (19)

with Rec the critical Reynolds number and ξ an amplitude coefficient accounting290

for the saturation of the instability. It is thus very nonlinear in Re, which in turn

magnifies the small inaccuracies inherent to the VMS (and also those inherent to
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Figure 9: Same as Figs. 2 and 5 at Re = 4350.

(a)

y

x

-1 0 1 2
-1

-0.5

0

0.5
-0.06 0.06

(b)

y

x

-1 0 1 2
-1

-0.5

0

0.5
-0.06 0.06

(c)

y

x

-1 0 1 2
-1

-0.5

0

0.5
-0.06 0.06

(d)

y

x

-1 0 1 2
-1

-0.5

0

0.5
-0.06 0.06

Figure 10: Same as Figs. 3 and 6 at Re = 4350.
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Figure 11: Same as Figs. 4 and 7 at Re = 4350.

the time integration scheme, as evidenced by the increased variance between the

DNS-CN and DNS-BDF4† data). For all that, the effect on the near-critical

unsteady dynamics remains remarkably small, as has been assessed carefully295

from the energy of the x-velocity fluctuations at the sensor position, i.e., u′2
S2.

As illustrated in Fig. 12 showing the results obtained for several values of Re in

the range [4100; 4200], the latter exhibits the expected linear increase with Re.

This allows extrapolating the instability threshold Rec from the intersection of

the linear regression (performed here on the 6 most near-critical values) with300

the horizontal axis, and the amplitude coefficient ξ from the square root of

the slope (after the results have been recast in terms of the departure from

threshold Re−1
c − Re−1). For the record, the theoretical values shown as the

grey lines/symbols in Fig. 12 are Rec = 41303 and ξ = 4.18. Without going

3Note, there is a slight difference with the value Re
c

= 4140 reported in [21], which is

because the aforementioned reference assumes the instability threshold to be determined to

a sufficient accuracy when the growth rate of the most unstable disturbances is smaller than
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Figure 12: Energy of the x-velocity fluctuations at the S2 sensor, computed against Re with

(a) VMS -CN, and (b) VMS -BDF4†. The circles are the actual data points, and the solid line

is the linear regression of the 6 most near-critical values. The black vertical dots mark the so-

determined instability threshold. The solid grey line is the energy computed from (19), using

the theoretical instability threshold (grey vertical dots) and amplitude coefficient stemming

from a multiple time scale analysis, using the same solver as in [36]. The dashed grey line is

the energy corrected for the discrepancy in the instability thresholds.

into the technical details, those are free from time-discretization errors, P2 -305

P1 values computed by multiple time-scale analysis for the exact same mesh as

in the present study, using the same solver as in [36]. By way of comparison,

VMS-CN yields an instability threshold Rec = 4108 accurate to 0.5% (which is

is smaller than the error on the amplitude by one order of magnitude) and an

amplitude coefficient ξ = 4.24 overestimating the theoretical value by as few as310

1.43%. VMS-BDF4† conversely yields a threshold Rec = 4128 perfectly accurate

to the statistical error, and an amplitude coefficient ξ = 4.27 overestimated by

2.15%. Despite the overall high accuracy, this suggests that, BDF4† predicts

more accurately the linear features of the instability, while CN captures more

accurately the nonlinear saturation mechanism.315

5. Discussion

5.1. Physical interpretations

The base cavity flow (i.e., the solution to the steady Navier–Stokes equation)

undergoes two Hopf bifurcations in a row, at Reynolds numbers RecA
= 4130

10−3. The present study conversely uses a value 10−6.
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and RecB
= 4349. Interestingly, the first eigenmode to bifurcate, termed A,320

remains more linearly unstable up to RecAB
= 4553, after which mode B takes

over. Those thresholds (just as all eigenfrequencies ω/2π to follow) are again

free from time-discretization errors, P2 -P1 values computed by linear stability

analysis for the exact same mesh as in the present study, using the same solver

as in [36]. The above bechmark results can thus be interpreted as follows:325

• At Re = 4350, both modes are unstable but mode B is almost exactly

neutrally stable. The limit cycle oscillations therefore proceed from the

nonlinear saturation of mode A (hence, the LCA moniker), whose eigen-

frequency ω
A
/2π = 1.20 is indistinguishable from the limit cycle frequency

St
A
. This is because the growth rate of mode A is small enough for the330

nonlinear dynamics to follow the linear theory. Somehow, it is too small

to sustain the high dissipativity of BDF1, whose effect is to artificially

reduce the Reynolds number (which amounts to assuming that all unsta-

ble modes are somehow damped to the same extent), hence the erroneous

steady solution computed with this scheme.335

• At Re = 5000, the limit cycle oscillations now proceed from the nonlinear

saturation of mode B (LCB). The latter has taken over as the dominant

instability mode, and its eigenfrequency ω
B
/2π = 1.67 is almost identi-

cal to the limit cycle frequency St
B

= 1.69. The BDF1 solution is now

periodic but erroneously settles on LCA (whose frequency St
A

= 1.18340

matches well the eigenfrequency ω
A
/2π = 1.21 of mode A computed at

this Reynolds number) because the excessive dissipation requires a larger

Reynolds number for LCB to take over. This illustrates how a lack of

accuracy in the numerical integration can alter the way competing linear

instability mechanisms interact with one another, which in turn alters the345

outcome of the limit cycle selection.

• At Re = 6000, the limit cycle oscillations continue to proceed from the

nonlinear saturation of mode B (LCB). The latter remains the dominant

instability mode, and its eigenfrequency ω
B
/2π = 1.70 agrees well with the

limit cycle frequency St
B

= 1.78. Note, the statistics of the BDF1 limit350

cycle are close to those computed at Re = 5000 with CN/BDF4†, which
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supports the idea that the excessive dissipation of this scheme acts by arti-

ficially reducing the Reynolds number (only the latter is now large enough

for the solution to settle on LCB). As for the quasi-periodic oscillations

computed with DNS-BDF2, they are related to the occurrence of a third355

Hopf birfurcation at RecC
= 5685, as the eigenfrequency ω

C
/2π = 2.15

computed at this Reynolds number is very close to the secondary funda-

mental St
C

= 2.10. Even though a rigorous proof is lacking, this likely

yields a Neimark–Sacker bifurcation, i.e. a Hopf bifurcation for the limit

cycles, and thus a quasi-periodic T2 torus on which modes B and C os-360

cillate with finite amplitudes. The mechanism itself is relevant, in the

sense that the same quasi-periodic behavior has been observed at a larger

Reynolds number Re = 7500 [37]. Still, the presence of such oscillations at

a Reynolds number as low as 6000 is spurious, and results from the lack of

accuracy of BDF2, that widely underestimates the onset of this secondary365

bifurcation. This again illustrates the dramatic effect of an insufficiently

accurate numerical integration in the presence of competing linear insta-

bility mechanisms. As for the fact that VMS-BDF2 recovers the proper

periodic regime, it is fortuitous and likely originates from the VMS sta-

bilization terms delaying the miscalculated instability threshold, so both370

errors somehow cancel in the end. This further stresses the quality of the

VMS-CN and VMS-BDF4† numerical frameworks, that both accurately

predict the main features of the flow oscillations despite the sensitivity of

the selection mechanism.

5.2. CPU cost375

We have mentioned in Sec. 3 that using P1 -P1 elements instead of P2 -

P1 elements scales down the number of degrees of freedom (by nearly 70% for

this case, from 879, 037 with P2 -P1 to 294, 087 with P1 -P1). It also considerably

cuts the numerical cost, as has been assessed by benchmarking the total memory

requirement and CPU time needed to compute 1 time unit of the periodic cavity380

flow at Re = 5000. The required memory is essentially independent of the time

discretization and drops by 80%, from 2.6 Gb (DNS) to 0.5 Gb (VMS). In order

to smooth over performance differences, the CPU time has been measured from

the average over 15 independent runs, with Table 5 (also Fig. 13) providing all
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results in arbitrary units to erase the dependency on the hardware resources385

(e.g., type and number of CPUs). For the DNS, the cost of BDF4† is smaller

than that of CN by 38%. This is because the semi-implicit nature of the BDF

schemes allows (i) assembling the Jacobian matrix, (ii) preconditioning, and

(iii) solving the linear system only once per time step, while Crank–Nicholson

requires all operations to be performed at each Newton iterate (which amounts390

to about 4 times per time step for this case). Moreover, switching from BDF2 to

BDF4† comes with little to no extra cost, as the detrimental effect of computing

the velocities uBDFσ and uBNGσ at each time step is essentially paid once BDF1

has been dismissed. Here, the variation is by 4%, which is of the same order as

the statistical error (see the vertical bars in Fig. 13 representing the coefficient395

of variation). The same trends are observed for the VMS, for which the cost of

BDF4† is smaller by 39% than that of CN, and barely larger (by 4%) than that

of BDF2. More interestingly, if we now compare side-by-side, the cost of VMS-

BDF4† is smaller than that of DNS-BDF4† by 32%, and the cost of VMS-CN is

smaller than that of DNS-CN by a tremendous 57%. In closing this section, we400

draw the reader’s attention to the fact that the above values are relevant to the

present 2D case only. The cost reduction triggered by the VMS in large-scale,

3D problems depends on code-dependent, numerical scalability considerations,

and should thus be assessed carefully on a case by a case basis.

5.3. Effect of the time step405

In the course of the discussion, we have reported additional VMS data ob-

tained with a refined time step ∆t = 5 × 10−3. Tables 2–4 shows that they

remain identical within ∼ 1% to those computed with ∆t = 10−2, which is a

needed proof of accuracy as the time step is featured in the VMS stabilization

parameter τ1 [15] (for the record, the DNS results exhibit the same level of410

convergence, but are not reported to ease the reading). The only noticeable

difference is with BDF2, whose accuracy improves significantly with a reduced

time step, for instance the discrepancy with the VMS-CN results drops to 2.2%

at Re = 5000 and 6000, and 3.3% at Re = 4350. This raises the question about

the best interplay between time step and time integration scheme, for which415

CPU cost is a main point of concern. As seen in Table 5, halving the time

step more than doubles the time needed to compute 1 time unit of the periodic
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Table 5: CPU time (in arbitrary units) needed to compute 1 time unit of the periodic cavity

flow on 1 processor by VMS at Re = 5000. All values proceed from the average over 15

independent runs.

∆t CN BDF1 BDF2 BDF3† BDF4†

DNS 10−2 1.00 0.28 0.38 0.36 0.38

VMS 10−2 0.42 0.17 0.25 0.25 0.26

VMS 5×10−3 0.85 0.40 0.51 0.54 0.55

CN BDF1 BDF2 BDF3† BDF4†
0

0.5

1

Figure 13: Same as Table 5. The black and dark grey bars denote DNS and VMS results com-

puted with time step 10−2. The light grey bars conversely pertain to VMS results computed

with.a refined time step 5 × 10−3. The vertical error bars stand for the coefficient of variation

computed over the 15 independent runs.
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cavity flow at Re = 5000, regardless of the time discretization, which makes the

cost of a BDF2 run with ∆t = 5 × 10−3 twice as large as that of a BDF4† run

with ∆t = 10−2. Even worse, it is larger by 20% than that of using CN with420

∆t = 10−2, so the advantage of the semi-explicit discretization is essentially

lost, and we eventually retain BDF4† with ∆t = 10−2 as the best compromise

between numerical accuracy and time efficiency.

6. Limit cycle selection

In this section, it is proposed to use the VMS-BDF4† numerical framework425

to shed some light on the sequence of bifurcation responsible for the limit cycle

selection. We report in Fig. 14 the amplitude and frequency of the periodic

cavity oscillations, that have been determined by monotonically increasing the

Reynolds number from the instability threshold, up to Re = 6500. The change

in the dominant mode leads to a quick increase of the oscillation amplitude in430

Fig. 14(a), but the transition is even more visible in Fig. 14(b), where the oscil-

lation frequency undergoes a discontinuity at Re = 4525 (±25). The latter value

is almost identical to that RecAB
= 4553 at which both modes exchange linear

dominance (vertical dots in Fig. 14), which suggests that the mode selection

essentially proceeds from a ’largest growth rate’ criterion.435

Matters are not quite so simple, however, because the transition from LCA

to mode LCB happens to be sensitive to the initial condition (we recall that all

results proceed so far from the same, randomly generated condition). This is

further examined using from now on controlled initial conditions

u0 + �{ε
A
û

A
+ ε

B
û

B
} , (20)

where u0 is the base cavity flow, i.e., the steady solution to the steady Navier–

Stokes equations whose linear instability gives rise to the observed limit cycle

oscillations, û
A

and û
B

are the first two (complex) eigenmode to bifurcate,

computed at the current Reynolds number and normalized to (û, û) = 1, �{ }
denotes the real part of a complex quantity, and the α coefficients are (real)440

perturbation amplitudes chosen small enough for a phase of linear growth to

take place before the nonlinear competition between modes sets in. In practice,

we use the same solver as in [36] to compute the P2 -P1 initial condition, and
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Figure 14: (a) Amplitude of the x-velocity fluctuations at the S2 sensor, computed against

Re with VMS -BDF4†. The symbols (circles and squares for LCA and LCB oscillations,

respectively) are the actual data points, and the solid line is the value obtained from (19)

after the instability threshold and the amplitude coefficient have been computed by linear

regression of the 6 most near-critical squared amplitudes. (b) Oscillation frequency. The

vertical dots mark the theoretical threshold value Re
cAB

= 4553 at which modes A and B

exchange linear dominance [22].

deduce the P1 -P1 approximation without any interpolation, by retaining the

velocity and the pressure at each triangle edge.445

Figure 15(a) shows the time evolution of the sensor velocity computed at

Re = 4400 for a pure A initial perturbation of amplitude ε
A

= 5 × 10−3 (hence,

ε
B

= 0). Its counterpart for a pure B initial perturbation with ε
B

= 5 × 10−3

and ε
A

= 0 is provided for comparison in Fig. 15(b). The difference in the initial

condition seemingly triggers different transient in Fig. 15(c), as it takes about 75450

times units for the periodic regime to emerge starting from mode A, but nearly

twice as much starting from mode B. Eventually, both solutions settle on the

same limit cycle (up to a phase factor erased in Fig. 15(d)) that proceeds from

the saturation of mode A, as can be seen from the detailed statistics in Table 6.

The results obtained at Re = 4700 are shown in Fig. 16, where both solutions455

again settle on the same limit cycle, only it now proceeds from the saturation

of mode B. Those results obtained at Re = 4550 are shown in Fig. 17, where

we notice that a pure A initial perturbation selects LCA oscillations, while

a pure B initial perturbation selects LCB oscillations. The difference, albeit

hardly visible in terms of the oscillation amplitude, is unambiguous in terms460

of the frequency, as evidenced by the close-up in Fig. 17(d) emphasizing the
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Table 6: Statistics of the limit cycle oscillations at Re = 4400, 4550 and 4700.

Re ε
A

ε
B

uS2 (×10−1) u′
S2 (×10−2) St

4400

5×10−3 0 9.688 1.618 1.205

5×10−3 5×10−3 9.688 1.618 1.205

0 5×10−3 9.688 1.618 1.205

4550

5×10−3 0 9.716 1.948 1.212

5×10−3 5×10−3 9.721 1.989 1.658

0 5×10−3 9.721 1.989 1.658

4700
5×10−3 0 9.730 2.781 1.668

5×10−3 5×10−3 9.730 2.781 1.668

0 5×10−3 9.730 2.781 1.668

related periods τ = 1/St. The selection proceeds from both linear and nonlinear

considerations, which is best seen in Fig. 18 showing the results pertaining to

various combinations of A/B initial disturbances. The general picture is that

LCA is selected if the initial amplitude of mode B is smaller than that of mode465

A by at least an order of magnitude, otherwise LCB is selected even though the

initial amplitude of mode B is as small as 5 × 10−5 and mode A is more linearly

unstable at this Reynolds number.

The lower and upper bounds of the hysteresis domain have been determined

numerically to be RecA→B
= 4455 ± 5 and RecB→A

= 4635 ± 5. These val-470

ues proceed from about 50 runs performed at several Reynolds in the range

[4400; 4700]. A particular attention has been paid to assessing systematically

that the system ultimately selects LCA or LCB. No other oscillation pattern

has been found, which is best exemplified in Fig. 19(a) showing the time evo-

lution of the sensor velocity computed at Re = 4650, starting from a pure A475

initial disturbance with ε
A

= 5 × 10−3. The system exhibits a long transient

reflecting a complex competition between modes, and we show in Fig. 19(b)

that the single-sided amplitude spectrum, computed at Re = 4650 over the

first 300 time units does feature both modes oscillating with finite amplitude

at their incommensurate frequencies. This quasi-periodic solution is not stable,480
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Figure 15: (a,b) Time evolution of the x-velocity at the S2 sensor, computed at Re = 4400

with VMS -BDF4†, starting from (a) a pure A initial disturbance with ε
A

= 5×10−3 (ε
B

= 0),

and (b) a pure B initial disturbance with ε
B

= 5 × 10−3 (ε
A

= 0). (c,d) Close-ups on the (c)

transient and (d) periodic regimes. The results pertaining to modes A and B are reported

from (a,b) as the black and grey lines, respectively. The considered time intervals are marked

in (a,b) by the grey boxes.

however, as the spectrum computed over the next 300 time units are pure LCB

oscillations; see Fig. 19(c). Such transients can last close to 1000 time units

if the Reynolds number approaches the cusp of the hysteresis domain; see the

results obtained at Re = 4640 in Fig. 19(d), hence the need for a highly efficient

numerical framework.485

In the terminology of the normal form theory, the observed hysteretic be-

havior is typical of a subcritical Neimark–Sacker bifurcation. The subcritical

nature has especially been confirmed by perturbing numerically the limit cycle

solution. In Fig. 20(a), we start from the same pure B initial disturbance with

ε
B

= 5 × 10−3 as above, that eventually selects LCB. At t = 150, we substitute

uLCB + εũ , (21)
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Figure 16: Same as Fig. 15 at Re = 4700.

for the limit cycle velocity, where ũ is a random velocity field with controlled

amplitude ε, hence normalized to (ũ, ũ) = 1, and we time march the system until

it settles again on a limit cycle. The nominal, unperturbed results are displayed

in black, and the perturbed results in grey. For a small value ε = 5×10−3 of the

amplitude, the LCB oscillations are promptly restored. More surprisingly, the

same behavior is observed with an amplitude as large as ε = 10−1, as we show

in Figs. 20(c) and 20(d) that LCB is restored after a short transient of about

20 time units. We have also considered perturbing with a pure A disturbance

of controlled amplitude ε
A
, as achieved substituting instead

uLCB + ε
A
û

A
, (22)

for the limit cycle velocity. For small perturbation amplitudes, the LCB os-

cillations are again promptly restored, as evidenced in Figs. 21(a) and 21(b)

for ε
A

= 5 × 10−3. A different behavior is observed using a large amplitude

ε
A

= 10−1, as Figs. 21(c) and 21(d) exhibit a long transient of about 150 time

units during which both modes compete against one another, before the even-490
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Figure 17: Same as Fig. 15 at Re = 4550.
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Figure 18: Limit cycle computed at Re = 4550 with VMS -BDF4†, starting from various

blends of A/B initial disturbances. The circle and square symbols denote LCA and LCB

oscillations, respectively, with the grey shade to visually enhance the LCB domain.

tual outbreak of LCA. Similar results have been obtained perturbing LCA with

either random or pure B disturbances, meaning that LCB (resp. LCA) is desta-

bilized only if mode A (resp. mode B) is applied to the system with a sufficiently

large amplitude, otherwise the small amount of mode A (resp. mode B) present

in a random disturbance is quickly damped nonlinearly by the Reynolds stress495

of the saturated mode B (resp. mode A).
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Figure 19: (a) Time evolution of the x-velocity at the S2 sensor, computed at Re = 4650 with

VMS -BDF4†, starting from a pure A initial disturbance with ε
A

= 5 × 10−3. (c,d) Single-

sided amplitude spectrum of the velocity fluctuations, computed over the time intervals (c)

t ∈ [0; 300], and (d) t ∈ [300; 600]. (d) Same as (a) at Re = 4640.

7. Conclusion

This research uses the VMS modeling of the Navier–Stokes equations to com-

pute numerical solutions of the periodic flow over an open cavity. The space

discretization uses linear approximations (P1 finite elements) for both the ve-500

locity and the pressure, which breaks the Babuska–Brezzi condition and is thus

bound to fail in a DNS. The solution is marched in time with two discretiza-

tion schemes, a semi-implicit BDF scheme based on backward differentiation

formulas, and the implicit Crank–Nicholson scheme.

A detailed comparison with DNS data shows that the VMS-BDF4† and505

VMS-CN numerical frameworks accurately compute the limit cycle oscillations

at several Reynolds numbers Re = 4350, 5000 and 6000 above the instability

threshold, as well as the near-critical dynamics. By doing so, the CPU cost is

reduced by ∼ 35% using BDF4† (resp. ∼ 60% using CN), while the memory load
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Figure 20: (a) Time evolution of the x-velocity at the S2 sensor, computed at Re = 4550

with VMS -BDF4†. The black line is for the pure B initial disturbance with ε
B

= 5 × 10−3,

found in Fig. 17(a) to yield LCB oscillations. The grey line is for perturbed results obtained

by superimposing at t = 150 (vertical dots) a random velocity field of controlled amplitude

ε = 5 × 10−3. (b) Close-up on the periodic regime. The considered time interval is marked in

(a) as the grey box. (c,d) Same as (a,b) with ε = 10−1.

is alleviated by ∼ 80%, regardless of the time-discretization scheme. This is all510

the more remarkable given that the cavity flow undergoes two Hopf bifurcations

close one to the other, at RecA
= 4130 and RecB

= 4349, in a way such that

there exist two competing instabilities (termed here A and B) in this range

of Reynolds numbers. In these circumstances, even a small miscalculation of

the related eigenvalues (whether it be because the time discretization scheme515

lacks accuracy or because the VMS stabilization terms can accidentally shift the

eigenspectrum of the linearized Navier–Stokes operator) can affect the linear

instability thresholds, the nonlinear interaction between unstable modes, and

eventually, the frequency selection.

Finally, the highly efficient VMS-BDF4† framework is used to analyze the520

mechanism underlying the selection of the limit cycle frequency. Using con-
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Figure 21: Same as Fig. 20 superposing at t = 150 pure A disturbances of controlled amplitude

(a,b) ε
A

= 5 × 10−3 and (c,d) ε
A

= 10−1.

trolled initial conditions built from the unstable modes, we show that the latter

involves a hysteresis (and thus a discontinuity of the frequency curve against

Re) reflecting the occurrence of a subcritical Neimark–Sacker bifurcation. The

lower and upper bounds of the hysteresis domain are determined numerically to525

be RecA→B
= 4455 ± 5 and RecB→A

= 4635 ± 5. The system is shown to switch

from one limit cycle to another (say from LCB to LCA) only if the competing

mode (hence, mode A) is applied with a sufficiently large amplitude.
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