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Iterative Calculation of Sum Of Squares
Bruno Després∗and Maxime Herda†

Abstract
We propose an iterative algorithm for the calculations of sum of squares of polynomials, re-

formulated as positive interpolation. The method is based on the definition of a dual functional
G. The domain of G, the boundary of the domain and the boundary at infinity are analyzed
in details. In the general case, G is closed convex. For univariate polynomials in the context
of the Lukacs representation, G is coercive and strictly convex which yields a unique critical
point. Various descent algorithms are evoked. Numerical examples are provided, for univariate
and bivariate polynomials.

Keywords. Positive polynomials, sum of squares, convex programming, nonlinear program-
ming

AMS subject classifications. 90C30, 65K05, 90C25

1 Introduction
Let PrXs :“ PrX1, . . . Xds be the set of real polynomials with d variables. The subset of polynomials
of total degree less than or equal to n ě 1 is denoted by PnrXs. Let K Ă R be a closed and convex
semi-algebraic set defined through a finite number j˚ of polynomial inequalities

K “
 

x P Rd such that gjpxq ě 0 for gj P PrXs, 1 ď j ď j˚
(

. (1) eq:1

A fundamental question related to 17th Hilbert problem [8] concerns the characterization of the set
of non-negative polynomials of maximal degree n on K

PnK,`rXs “ tp P PnrXs such that ppxq ě 0 for any x P Ku , r˚ “ dim PnrXs. (2) eq:2

Famous examples of such characterizations as Sum Of Squares (SOS) are the Lukacs theorem [20]
or Putinar’s Positvstellensatz [18]: a recent state of the art can be found in the books of Lasserre
[12, 13]; some recent algorithmic issues in the context of optimal control can be found in [10] and
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therein. We focus on a version where the maximal number of squares is equal to a predefined value
i˚ ě 1 independent of j

p “

j
ÿ̊

j“1
gj

˜

i
ÿ̊

i“1
p2
ij

¸

“

i
ÿ̊

i“1

˜

j
ÿ̊

j“1
gjp

2
ij

¸

“

j
ÿ̊

j“1

i
ÿ̊

i“1
gjp

2
ij . (3) e:sos

In this work, we are interested in the effective calculation of such representations by means of
iterative methods. Our main motivation comes from scientific computing which, viewed as a
community and as a practice, needs fast algorithms which can be implemented many times with
reliable results, a general reference for the discretization of hyperbolic equations with high order
methods is in [19]. Some preliminary tests in this direction are in [6], but the methods were
inefficient in terms of the time of restitution. In a fully different direction, one can also mention
the theory of numerical approximation with splines, see [14, 1]: splines are widely used in scientific
computing and computer aided design (CAD) but often needs tensorisation in multi-dimension; this
limitation is not encountered by our methods. These examples are the primary explanation of our
interest in iterative calculation of SOS. To our knowledge, the approach developed in this work is,
at the algorithmic level, very different from SOS algorithms based on SemiDefinite Programming
(SPD) like SOLLYA [4], SOSTOOLS [17] and GLOBTIPOLY [12].

Our model problem below is an extension of the notion of positive interpolation which comes
from the recent work [3], which is nevertheless restricted to univariate polynomials. We use the
notion of unisolvence which comes from the Finite Element Method (FEM): a unisolvent set of
points pxrq1ďrďr˚ is such that any polynomial p P PnrXs is uniquely determined by its values
ppxrq “ yr for 1 ď r ď r˚. This notion is convenient for multivariate polynomials.

p:main Model problem 1.1 (Iterative positive interpolation on K). Take a unisolvent set pxrq1ďrďr˚ , p P
PnK,`rXs and consider the interpolated values yr “ ppxrq. From the sole knowledge of pxrq1ďrďr˚
and pyrq1ďrďr˚ , compute iteratively some polynomials ppijqij such that the SOS representation (3)
holds at the limit.

Using duality techniques from convex optimization [9], our main result solves the model problem.
It is based on the minimization of a dual function Gpλq defined for a Lagrange multiplier λ.

t:main Theorem 1.2. There exists an explicitly computable function G : Rr˚ Ñ RY t`8u depending
only on interpolation points and on the point values yr “ ppxrq with the properties:

1. The function G is a proper closed convex function on Rr˚ . The function G is C8 on its
non-empty open convex domain D “ tλ P Rr˚ such that Gpλq ă 8u which depends only on
the interpolation points.

2. Each λ P D explicitly defines computable polynomials ppijrλsq1ďiďi˚,1ďjďj˚ such that

BG

Bλr
pλq “ yr ´

j
ÿ̊

j“1
gjpxrq

i
ÿ̊

i“1
p2
ijrλspxrq, 1 ď r ď r˚. (4) eq:gragra

Therefore if λ˚ P D is a critical point of G, that is ∇Gpλ˚q “ 0, then the family ppijrλ˚sqij
is solution to (3), that is is a SOS.
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3. Assume that d “ 1, K is a segment and p is positive on K. Then G is strictly convex, coercive
and admits a unique critical point in D. By descent algorithms, it yields a constructive
iterative method to represent p as a SOS.

Despite the fact that the existence of the critical point is proved only for d “ 1 in the univariate
setting, our numerical results illustrate the efficiency of the descent method for multi-variate poly-
nomials as well. The proof of each claim in Theorem 1.2 can be found as follows: the function G
and its domain D are introduced in Definition 2.9; the identity (4) is a combination of (20), (21)
and the unisolvence; in the univariate setting d “ 1, coercivity and strict convexity of G are shown
in Theorem 4.4.

Near the boundary of its domain, the function G behaves very much like a logarithmic barrier
function [16, 2] for interior point methods, but it is not for two reasons. The first one is that it is a
rational function not a logarithm function (one can call it a rational barrier, see (18)), the second
one is this barrier does not introduce any kind of approximation as explained in [2][page 564]. In
our case the barrier is an exact one. This property is a strong algorithmic asset of G with respect
to more standard logarithmic barrier methods.

The outline of this paper is as follows. In Section 2, we propose a dual interpretation of
Problem 1.1. This leads us to the introduction of the function G. Then, in Section 3, we discuss
necessary and sufficient conditions characterizing asymptotic properties and strict convexity of G.
These conditions show the important role played by the Lagrange polynomials associated to the
interpolation points pxrq1ďrďr˚ . In Section 4, we show that for univariate positive polynomials
on a segment, the former conditions are satisfied yielding strict convexity and coercivity of the
associated function G. Besides we provide a more precise description the structure of the domain
D. In Section 5, we present the specific descent and Newton type methods we use to compute the
critical points of G. Finally in Section 6 we provide numerical illustrations of the efficiency of our
new approach both for computing SOS decomposition of polynomials in one variables on segments
and two variables on triangles.

Acknowledgements. Both authors are greatly indebted to Jean-Bernard Lasserre and Didier
Henrion for their kind explanations on the theory and state of the art of semi-definite programming
and sum of squares and would like to thank them for their invitation at LAAS and for their
hospitality. The authors would also like to acknowledge Simon Foucart, Swann Marx, Frédérique
Charles, Martin Campos-Pinto and Teddy Pichard for interesting discussions during the conception
of this work.

2 Dual reformulation
s:dual

We begin by recasting the model problem 1.1 as the convex dual of a Quadratically Constrained
Quadratic Program (QCQP). This approach is classical [2], however we detail the notations adapted
to the interpolation procedure. Original material begins at Definition 2.6. In any dimension, the
notation x¨, ¨y will denote the Euclidean dot product and } ¨ } will denote the associated norm.

We consider
pij P Pnj rXs with nj “

Z

n´ degpgjq
2

^

,

where t¨u denotes the integer part of a real number. In order to parametrize any polynomials one
can use the canonical basis made of monomials Xα1

1 . . . Xαd

d for αi P N. With the standard multi-
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index notation α “ pα1, . . . , αdq P Nd, |α| “ α1 ` ¨ ¨ ¨ ` αd and Xα “ Xα1
1 . . . Xαd

d , any polynomial
pij P Pnj rXs is expressed as a linear combination

pijpXq “
ÿ

|α|ďnj

cijαXα, (5) eq:pij

for some line vector of coefficients cij “ pcijα qα P Rrj where rj “ dimpPnj rXsq “
`

d`nj

d

˘

.

Remark 2.1. The monomials are convenient for the simplicity of the mathematical presentation.
But we immediately mention that we use other bases in numerical experiments in Section 6 in order
to optimize the robustness and accuracy of the algorithms. It only changes the definition of the
matrices introduced hereafter, and every result of this paper still hold.

Remark 2.2. Consider the formula (3). The dimension of the polynomial space for p is r˚. The
number of degrees of freedom involved in the right hand side is i˚r˚˚ with r˚˚ “

řj˚
j“1 rj. Since

the problem is to construct SOS which correspond to a given polynomial p, a reasonable assumption
is to find the solution in a space with more degrees of freedom than the number of constraints. It
means i˚r˚˚ ě r˚. The even more optimistic hypothesis i˚ “ 1 and r˚˚ “ r˚ is actually true in
dimension d “ 1, see the Lukács Theorem 4.1 (also called the Markov-Lukács Theorem in [11]). So
the minimal hypothesis is the equality

r˚˚ “ r˚, (6) eq:iur

which will be considered as true throughout this work (it can be modified as well, but it leads to
heavier notations with little gain in terms of generality). Comments about other possibility for
implementation will be made in the numerical section.

anc:lemma2.10 Remark 2.3. An interesting consequence of the Caratheodory Theorem ([9, Theorem III.1.3.6 page
98]) is that if a formula like (3) holds for i˚ ą r˚, then a similar one holds also for i˚ “ r˚ (but for
different polynomials pij). Indeed the set W “

řj˚
j“1 gjpXqPnj rXs2 is a closed convex set embedded

in p P PnrXs. Therefore any convex combination of i˚ ą r˚ elements of W can be expressed
as a convex combination of only r˚ “ dim PnrXs elements of W (the coefficients of the convex
combination can be set to 1 after proper rescaling). Some of our results below like Lemma 2.8
will explicitly use the minimal value i˚ “ r˚, however we prefer to use i˚ is a free parameter
independent of r˚. The two main reasons are that, on the one hand Lemma 2.11 will enlighten a
sharper estimate, and on the other hand the Lukàcs-Markov Theorem is even better since i˚ “ 1.

Then one gathers the coefficients ci1, ci2, ..., cij˚ in a single column vector

Ui “
`

ci1, ci2, . . . , cij˚
˘t
P Rr˚ where r˚ “

j
ÿ̊

j“1
rj . (7) eq:uuu

Set Dnj pXq P Rrjˆrj the matrix with polynomial coefficients

D
nj

α,βpXq “ XαXβ , |α|, |β| ď nj .

Define BpXq P Rr˚ˆr˚ which is a polynomial valued block matrix

BpXq “ diag
`

g1pXqDn1pXq, g2pXqDn2pXq, . . . , gj˚pXqDnj˚ pXq
˘

. (8) e:defB

This notation means that the first block on the diagonal is square r1ˆr1, the second block is square
r2 ˆ r2, . . . , until the last block which is square rj˚ ˆ rj˚ : all other terms are zero.
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Lemma 2.4. Let x P K. Then Bpxq is symmetric and non-negative, that is Bpxq “ Bpxqt ě 0.

Proof. Ii is a consequence of the identity

j
ÿ̊

j“1
gjpXq

i
ÿ̊

i“1
p2
ijpXq “

i
ÿ̊

i“1

˜

j
ÿ̊

j“1
gjpXqp2

ijpXq

¸

“

i
ÿ̊

i“1
xBpXqUi,Uiy (9) e:defB2

and the fact that gjpxq ě 0 for x P K.

We denote the evaluation at interpolation points is denoted as

Br “ Bpxrq P Rr˚ˆr˚ . (10) e:Br

If xr P K, the matrices Br are symmetric non-negative. Finally, we define the algebraic manifold

U “ tU “ pU1, . . . ,Ui˚q P pRr˚q
i˚ such that

i
ÿ̊

i“1
xBrUi,Uiy “ yr for all 1 ď r ď r˚u. (11) eq:aze2

With the unisolvence assumption, finding a SOS (3) holds amounts to finding one element U P U .

2.1 Lagrangian duality and definition of G

In order to find a U P U in a constructive manner, our strategy is to start at a given V (probably
outside U) and to project on U in the quadratic norm. It writes as follows.

prob:aze Problem 2.5. Given V “ pV1, . . . ,Vi˚q P pRr˚q
i˚

minimize
UPU

1
2

i
ÿ̊

i“1
}Ui ´Vi}

2. (12) e:QCQP

The vectors V “ pViqi may be thought of as a good initial guesses for the U “ pUiqi (if
they exist of course, namely if U ‰ H which we do not know yet). The optimal value of the cost
in problem (12) does not matter. But of course, at first glance, the optimization problem (12)
seems even harder to solve than the original problem we were concerned with. Our findings is that
the Lagrangian dual problem of (12) is endowed with good properties provided V is conveniently
chosen. In this case, the new problem 2.5 provides a way to determine an admissible U P U .

Still for any V, introduce the Lagrangian which is the sum of the functional (12) and of the
dualization of the constraint (11) with a Lagrange multiplier λ P Rr˚

LpU, λq “
1
2

i
ÿ̊

i“1

˜

}Ui ´Vi}
2 `

r
ÿ̊

r“1
λr xBrUi,Uiy

¸

´
1
2 xλ,yy where y “ pyrq1ďrďr˚ .

Both the objective and the constraints are quadratic, so the optimality constraints are linear. Define
the symmetric matrix Mpλq “Mpλqt P Rr˚ˆr˚

Mpλq “ I `

r
ÿ̊

r“1
λrBr (13) e:mlambda
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where I is the identity matrix in Rr˚ˆr˚ . The first order optimality condition in the U variable
write

MpλqUi “ Vi for 1 ď i ď i˚ ðñMpλqU “ V. (14) eq:vtou

If the multiplier λ P Rr˚ is such that the matrix Mpλq is invertible, then the candidate solution U
can be computed explicitly in terms of λ and V as the solution of the linear system (14).

It is therefore natural to concentrate on a condition on λ such thatMpλq is invertible. To obtain
convexity properties in the following we even restrict λ to the set of positive-definiteness of Mpλq,
that we eliminate non singular matrices which have negative eigenvalues. To our knowledge, this
at this stage that our analysis departures from the standard expository of dual QCQP [2, 9].

d:D Definition 2.6. The domain of positive definiteness of M is D Ă Rr˚

D “ tλ P Rr˚ such that Mpλq ą 0u . (15) def:D

It is an open set and it is non empty since 0 P D.

For a Lagrange multiplier λ P D, the inverse transformation of (14) is

Upλq “Mpλq´1V.

Then, one can evaluate the Lagrangian at Upλq. An elementary calculation yields

LpUpλq, λq “ 1
2

i
ÿ̊

i“1

`

}Vi}
2 ´

@

Vi,Mpλq
´1Vi

D˘

´
1
2 xλ,yy .

This motivates the introduction of the dual objective function GV : D ÝÑ R defined by

GVpλq “

i
ÿ̊

i“1

@

Vi,Mpλq
´1Vi

D

` xλ,yy (16) e:GV

Two basic properties are the following.

p:derivatives Lemma 2.7. The function GV is smooth on D. The first and second derivatives are

BGV

Bλr
pλq “ yr ´

i
ÿ̊

i“1
〈Uipλq, BrUipλq〉 ,

B2GV

BλrBλs
pλq “ 2

i
ÿ̊

i“1

〈
BrUipλq,Mpλq

´1BsUipλq
〉
.

(17) e:derivatives

In particular GV is convex on its domain D.

Proof. The proof stems from the identity Bλr
Mpλq´1 “ ´Mpλq´1BrMpλq

´1 and the symmetry of
the various matrices involved. Convexity follows from the positivity of Mpλq and the expression
of second derivatives yielding

@

∇2GVpλqµ, µ
D

“ 2
ři˚
i“1

@

Aipµ, λq,Mpλq
´1Aipµ, λq

D

ě 0 where
Aipµ, λq “

řr˚
r“1 µrBrUipλq for 1 ď i ď i˚.
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0

`8

f

x
0

`8

f

x

Figure 1: Graph of a convex function f with domain p0,8q. On the left, the function is not closed
because it has a finite limit at the boundary. On the right, the function is closed because it has an
asymptote. fig:1

Now let us address the behavior of GV near the boundary, as illustrated in Figure 1. A convex
function f : Rr˚ ÞÑ RY t`8u is said to be closed over its domain Df “ tx, fpxq ă 8u if and only
if the level sets tx, fpxq ď tu are closed for t ă `8: see [9] or [2, Appendix A.3.3.]. This property
is extremely important in our approach because it yields a strong control of the objective function
at finite distance and it rules out situations like the one on the left part of Figure 1.

For a good choice of V one can show that GV is infinite at BD and is indeed a closed convex
function.

p:closed Lemma 2.8. Take i˚ “ r˚ and V P Rr˚ˆr˚ an orthogonal matrix. Then one has the simpler
expression

GVpλq “ trpM´1pλqq ` xλ,yy . (18) eq:newgg

where trp¨q denotes the trace of a square matrix. Moreover the extension of GV with value `8
outside of D is a closed convex function

Proof. The formula is a direct consequence of (16). Thanks to the continuity on D, the closedness
of GV on Rr˚ amounts to showing that for any sequence pµkqk in D converging to a point of the
boundary of the domain

BD “

#

λ P D,det
˜

I `

r
ÿ̊

r“1
λrBr

¸

“ 0
+

,

then one has GVpµkq Ñ `8 as k Ñ `8. In the light of the representation formula (18) involving
the trace of Mpλq´1 it is the case since the minimal eigenvalue of Mpµkq goes to 0 as k Ñ `8.

From now on we consider only the closed convex extension. Since it is independent of the
orthonormal basis V, one can take V “ I the identity matrix. A special notation is used for the
dual function.

d:G Definition 2.9. Denote by G “ GI the closed convex function with domain D

Gpλq “

"

trpMpλq´1q ` xλ,yy , if λ P D,
`8 otherwise. (19)
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The only parameters are the vector y and the matrices pBrqrPt1,...,r˚u through (10)-(13).

2.2 Critical points of G

In this section, we formalize natural consequences of the formulas (17) for the derivatives of G.
These first properties are essentially a reformulation of the previous material. For each Lagrange

multiplier λ P D one defines the vectors pcijα rλsqα,j P Rrj which are the components of Uipλq (see
(7) for details on the notations), the latter being the ith column of Mpλq´1. With (5) and (7), it
defines the polynomials pijrλs P Pnj rXs

pijrλspXq “
ÿ

|α|ďnj

cijα rλsXα

With (9), these polynomials define a sum of square prλs P PnK,`rXs

prλspXq “
j
ÿ̊

j“1
gjpXq

˜

i
ÿ̊

i“1
p2
ijrλspXq

¸

. (20) e:plambda

Using (9), prλspxrq “
ři˚
i“1 〈BrUi,Ui〉. So (17) is rewritten as

BG

Bλr
pλq “ yr ´ prλspxrq. (21) e:partialG

Proposition below characterizes that Problem 1.1 is equivalent to finding critical points of G.

Proposition 2.10. Take p P PnK,`rXs and an unisolvent set of interpolation points pxrq1ďrďr˚ in
K. Consider yr “ ppxrq for 1 ď r ď r˚. The following properties are equivalents

• λ˚ P D is a critical point of G, namely ∇Gpλ˚q “ 0.

• λ˚ P D minimizes G.

• ppXq “ prλ˚spXq.
prop:main

Proof. Since G is closed convex, local minima coincide exactly with critical points, so the two first
points are equivalent. The equivalence between the first and third assertions follows from (21) and
the unisolvence assumption.

2.3 Number of squares
Let us now precise the number of squares involved in the SOS formula (20). At first sight it seems
indeed that each

ři˚
i“1 p

2
ijrλspXq might involve i˚ “ r˚ “ r1 ` ¨ ¨ ¨ ` rj˚ different polynomials.

Actually this is not the case.

lemma:nos Lemma 2.11. The number of non zero polynomials in
ři˚
i“1 p

2
ijrλspXq is less or equal to rj.

Proof. By construction
`

U1pλq, . . . ,Ui˚pλq
˘

“ Upλq “ Mpλq´1 is a block diagonal matrix. The
blocks have size r1 ˆ r1 until rj˚ ˆ rj˚ . So, for a given j, the polynomials pijrXs vanish for
1 ď i ď r1 ` ¨ ¨ ¨ ` rj˚´1 and for r1 ` ¨ ¨ ¨ ` rj˚´1 ` rj˚ ` 1 ď i ď i˚.
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Remark 2.12. The result of Lemma 2.11 is nevertheless non optimal in dimension d “ 1. Indeed
consider the Lukács Theorem (see Proposition 4.1) in the odd case n “ 2k` 1 and take g1pXq “ X
and g2pXq “ p1 ´Xq as in (31). So r˚ “ n and r1 “ r2 “ k. Assume that there exists a critical
point λ˚ to G. Then (20) yields a representation

ppXq “ X
k
ÿ

i“1
p2
i1rλ˚spXq ` p1´Xq

2k
ÿ

i“k`1
p2
i2rλ˚spXq.

In terms of the number of squares, here 2k, it is clearly non optimal with respect to the result of
the Lukács Theorem which involves only two polynomials whatever n.

In greater dimensions d ą 1, the non optimality with respect to the literature [12, 13] is less
evident so far. However, by comparison with the exponential bound of Theorem 2.16 in [12], one
can notice the SOS formula (20) is endowed with a strong control of the degree and therefore with
a strong control of the number of terms.

3 Coercivity of G
s:properties

Now that the function convex G is constructed with good properties at the boundary BD, we study
the existence and uniqueness of critical points of the function G. On the one hand, since the latter
function is closed convex (so is is infinite at BD), a sufficient condition for the existence of a critical
point is coercivity, namely if G is infinite at infinity

lim
}λ}Ñ`8

Gpλq “ `8. (22) eq:coco

On the other hand a sufficient condition for the uniqueness of the critical points is strict convexity.
In the following, we start in Section 3.1 by investigating the asymptotic behavior of G along rays

starting at 0. From this knowledge we derive conditions characterizing coercivity in Section 3.2.
Finally we shall characterize strict convexity in Section 3.3.

3.1 Lower boundedness in the asymptotic cone
s:boundedness

There are two types of directions in D. For d P Rr˚ with }d} “ 1, one defines the rays Rd :“
ttd, t ě 0u issued from the starting point 0 P Rd. Two possibility occur: either Rd intersects the
boundary BD either it does not. In the first case suptě0tt : Gptdq ă `8u ă `8, and we know
already that the function G is bounded from below and coercive along Rd: that is if one notes
td ą 0 the unique real number such that tdd P BD, then limtÑt´d

Gptdq “ `8.
In this section one is interested in the rest of the directions. They generate the so-called

asymptotic cone or recession cone of D. The asymptotic cone is closed, independent of the starting
point and is classically defined [9] by C8 “ tλ P Rr˚ such that @µ P D, t ě 0, µ` tλ P Du.

l:asympcone Lemma 3.1. The asymptotic cone of D is given by

C8 “

#

λ P Rr˚ ,
r
ÿ̊

r“1
λrBr ě 0

+

. (23) e:Cinf
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Proof. Let λ, µ such that
řr˚
r“1 λrBr ě 0 and I`

řr˚
r“1 µrBr ą 0. Then, I`

řr˚
r“1pµr` tλrqBr ą 0

for all t ě 0, so λ belongs to the asymptotic cone. Conversely let λ such that for all µ and t ě 0,
µ` tλ P D. If

řr˚
r“1 λrBr had a negative eigenvalue then for t large enough I ` t

řr˚
r“1 λrBr would

also have a negative eigenvalue which would contradict the fact that tλ P D.

The main question in the current and next section is the asymptotic behavior of G in directions
in C8. Several situations are illustrated in Figure 2.

x

`8

f

0 x

`8

f

0

x

`8

f

0

Figure 2: Graph of a closed convex function f which is convex over its domain p0,8q and asymp-
totically linear at infinity, that is Cf8 “ r0,8q. On the left, the function is not lower bounded
and not coercive. In the center the function is lower bounded but not coercive. On the right, the
function is lower bounded and coercive. fig:2

Let us derive a condition which rules out the behavior on the left, namely unboundedness from
below in the asymptotic cone. One introduces the polynomial valued vector LpXq with components
being the Lagrange polynomials associated with the set of points pxrq1ďrďr˚ evaluated at x, namely

LpXq “ plrpXqq1ďrďr˚ P R
r˚ , (24) e:lagrange

where the Lagrange interpolation polynomials lr P PnrXs are defined by lr pxsq “ δrs for 1 ď r, s ď
r˚, where δrs denotes the Kronecker symbol. The vector LpXq will be called a Lagrange vector.
The polynomial p which takes the value yr at xr satisfies the Lagrange interpolation formula

ppXq “
r
ÿ̊

r“1
yrlrpXq “ xy, LpXqy . (25) eq:plambda

One can show another interpolation property characteristics of our problem.

l:lagrangeCinf Lemma 3.2. One has

BpXq “
r
ÿ̊

r“1
lrpXqBr (26) e:interpB

In particular, for all x P K, Bpxq is non-negative and

Lpxq P C8. (27) e:lagrangeCinf

10



Proof. Let W,Z P Rr˚ which are, as in (7), the coefficients of some polynomials ppjq1ďjďj˚ and
pqjq1ďjďj˚ . By definition (8-9) of Bpxq which is symmetric one knows that

C

W,

˜

Bpxq ´
r
ÿ̊

r“1
lrpxqBr

¸

Z

G

“

j
ÿ̊

j“1

˜

gjpxqpjpxqqjpxq ´
r
ÿ̊

r“1
lrpxqgjpxrqpjpxrqqjpxrq

¸

“ 0.

Since W,Z are arbitrary, it yields (26). Also for x P K, one has that gjpxq ě 0. Therefore
xW1, BpxqW1y “

řj˚
j“1 gjpxqpjpxq2 ě 0 which yields that Bpxq ě 0. One gets the condition (23),

so Lpxq P C8.

One can state a first negative result on the lower boundedness of G.

l:nonegBound Lemma 3.3. Assume there exists z P K such that ppzq ă 0. Then the corresponding function G is
not bounded from below in C8 since

lim
tÑ`8

GptLpzqq “ ´8.

Proof. The half line generated by Lpzq is included in D by Lemma 3.2 and so all for t ě 0, one has
G ptLpzqq “ tr

`

MptLpzqq´1˘` tppzq. Since λ “ tLpzq P C8, one has Mpλq ě I so

Gptλq ď r˚ ` tppzq ÝÑ
tÑ8

´8

p:Farkas Proposition 3.4. Consider p P PnK,`rXs, a unisolvent set of interpolation points pxrq1ďrďr˚ in K
and define yr “ ppxrq for 1 ď r ď r˚. The following properties are equivalent.

• For any λ P C8, one has xλ,yy ě 0.

• There exists polynomials pij for 1 ď j ď j˚ and 1 ď i ď i˚ “ r˚ such that

ppXq “
j
ÿ̊

j“1
gjpXq

i
ÿ̊

i“1
p2
ijpXq.

Proof. For W P Rr˚ , define the vector sW “ pxBrW,Wyq1ďrďr˚ P Rr˚ . A definition of C8
equivalent to (23) is

C8 “ tλ P Rr˚ such that xsW, λy ě 0 for all W P Rr˚u .

To prove the result, one can invoke the Generalized Farkas Theorem ([9, Theorem III.4.3.4 page
131] with the correspondence y “ b). It already states that our first assertion is equivalent to y
being in the closed convex conical hull of the linear forms sW, that is y “

ři˚
i“1 αisWi where αi ě 0

for all i, and i˚ is sufficiently large. It is rewritten as y “
ři˚
i“1 sZi

for Zi “ pαiq
1
2 Wi. Following

Remark 2.3, one can take i˚ “ r˚. Using (11)-(9), the latter rewrites as our second assertion.

11



3.2 Coercivity
s:coercivity

Now we investigate the conditions yielding coercivity (22) of G. It corresponds to G being infinite
at infinity, as in the right part of Figure 2 and formally to (22). A first negative result about
coercivity is the following.

Lemma 3.5. Assume there exists z P K such that ppzq “ 0. Then G is not coercive since GptLpzqq
remains bounded as tÑ `8.l:touchzero

Proof. It can be easily adapted from the proof of Lemma 3.3.

Thus we can only hope for coercivity starting from strictly positive polynomials. Let us know
define a specific useful polynomial denoted as pB .

d:specialPoly Definition 3.6. Define the polynomial pBpXq “ tr pBpXqq P PnK,`rXs, where BpXq is the matrix
defined in (8).

A key property of this polynomial is the following.

l:specialp Lemma 3.7. Assume that the matrices tBru1ďrďr˚ are linearly independent. Then there exists a
constant c˚ ą 0 such that

c˚}λ} ď

r
ÿ̊

r“1
λrpBpxrq, @λ P C8. (28) eq:235

Proof. Let λ P C8. The matrix
ř

r λrBr is symmetric and non-negative. So its matrix norm can
be controlled by its largest eigenvalue and thus by its trace, namely

›

›

›

›

›

r
ÿ̊

r“1
λrBr

›

›

›

›

›

ď tr
˜

r
ÿ̊

r“1
λrBr

¸

“

r
ÿ̊

r“1
λrpBpxrq.

Second we also know that λÑ
řr˚
r“1 λrBr is injective thanks to the linear independence assumption.

Thus there a constant c˚ ą 0 such that c˚}λ} ď }
řr˚
r“1 λrBr}. Combining both inequalities ends

the proof.

The result of the next Proposition holds in any dimension. It shows that any SOS can be
approximated with our approach, provided one shifts positively the SOS by εpB where ε ą 0 is a
small as required.

p:coercive Proposition 3.8. Let p P PnK,`rXs which admits a SOS (3). Take a unisolvent set of interpo-
lation points pxrq1ďrďr˚ in K and assume that the corresponding matrices tBru1ďrďr˚ are lin-
early independent. Take ε ą 0 and set pε “ p ` εpB. Then the function Gε built from xr and
yεr “ pεpxrq “ yr ` εpBpxrq for 1 ď r ď r˚ is coercive.

Proof. The asymptotic cone C8 does not depend on y or yε and we desire to show firstly that Gε
grows linearly to infinity for directions in C8. One has the identity

r
ÿ̊

r“1
λry

ε
r “

r
ÿ̊

r“1
λryr ` ε

r
ÿ̊

r“1
λrpBpxrq.

12



Take λ P C8: proposition 3.4 yields
řr˚
r“1 λryr ě 0 because p is a SOS by assumption; then Lemma

3.7 shows that for any λ P C8
řr˚
r“1 λryr ě 0 ` εc˚}λ} which yields uniform coercivity in the

directions in the asymptotic cone.
To show coercivity (22) which is a stronger statement, the proof is by contradiction. Assume

it does not hold. Then there exists a constant K P R as well as a sequence ptm,dmqmPN such
that tm Ñ `8, }dm} “ 1 and Gunivptmdmq ď K. By convexity, and since Gp0q “ r˚, one has
Gptdmq ď maxpr˚,Kq for t P r0, tms. Up to the extraction of a sub-sequence there exists d˚ with
}d˚} “ 1, such that Gptd˚q ď maxpr˚,Kq for t P R`. In particular the ray with direction d˚
cannot intersect the boundary BD so it belongs to the asymptotic cone C8. By the first estimate
Gptd˚q ě εc˚t, so it cannot be bounded which yields the contradiction.

Remark 3.9. With the same strategy of proof, it is possible to show that any polynomial in a
neighborhood of pb, that is tq P PnrXs, }q ´ pb} ă εu, generates a function G which is coercive. It
yields that all polynomials in this neighborhood admits a representation as a SOS.

3.3 Strict convexity
s:strict

Strict convexity, if it holds, yields uniqueness of the critical point (if it exists).

p:strictconvex Proposition 3.10. Let p P PnK,`rXs be strictly positive on K. Take a unisolvent set of interpola-
tion points pxrq1ďrďr˚ in K and assume that the corresponding matrices tBru1ďrďr˚ are linearly
independent. Then G is strictly convex.

Proof. From (17) the Hessian ∇2G of G is such that for all µ P Rr˚

@

∇2Gpλqµ, µ
D

“ 2
i
ÿ̊

i“1

@

Aipµ, λq,Mpλq
´1Aipµ, λq

D

ě 0

where Aipµ, λq “ p
řr˚
r“1 µrBrqUipλq for 1 ď i ď i˚. Since Mpλq´1 is positive definite, its columns

Uipλq form a basis.
By contradiction, assume G is not strictly convex. There exists µ ‰ 0 such that

@

∇2Gpλqµ, µ
D

“

0. So the vectors Aipµ, λq vanish for all i. So
řr˚
r“1 µrBr “ 0, and µ “ 0 by linear independence of

the matrices pBrqr“1,...,r˚ . This is a contradiction so ∇2Gpλq ą 0 and G is strictly convex.

The strict convexity of G can be measured with the minimal eigenvalue of its Hessian

αpλq “ inf
µ‰0

@

∇2GVpλqµ, µ
D

}µ}2
ą 0,

for any λ P D. An important property which motivates the design of one of our numerical methods
is the following.

l:cubic Lemma 3.11. Under the assumptions of Proposition 3.10, then α has a cubic degeneracy at infinity
in the interior of the asymptotic cone of D. For all d P Rr˚ such that }d} “ 1 and

řr˚
r“1 drBr ą 0,

there is Cd ą 0 such that for all t ě 0

αptdq ď Cdp1` tq´3.
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Proof. Let λ “ td. Then for some constant C depending only on the data one has
@

∇2Gpλqµ, µ
D

ď C~Mpλq´1~3}µ}2.

Then just note that under the assumptions the minimal eigenvalue of Mpλq is given by 1`edt with
ed the minimal eigenvalue of

řr˚
r“1 drBr. Hence ~Mpλq´1~ behaves like Opp1` tq´1q.

4 Univariate polynomials on a segment
s:univariate

In this section, we focus on univariate polynomials, namely when d “ 1, over the segment K “ r0, 1s.
This case is interesting because one can easily prove the coercivity and the strict convexity. And
also a full description of the asymptotic cone is available. The notation is simplified by using the
real variable x P R, more adapted to the analytical methods and results in Section 4.2.

4.1 The function G for univariate polynomials
We check that the various assumptions granting coercivity and strict convexity are satisfied. In
view of Proposition 3.4, Proposition 3.8 and Proposition 3.10 of the previous section, it suffices to
exhibit an appropriate choice of functions pgjqj and of interpolation points such that

• Any non-negative polynomial admits a (possibly non-explicit) sum of squares decomposition;

• The matrices tBrur are linearly independent.

The first point follows from the Markov-Lukács Theorem, see [20, 6, 5, 11] for a proof.

Proposition 4.1 (Markov-Lukács). Let us consider p P Pnrxs and K “ r0, 1s.

• Even case: If n “ 2k, then p is non-negative on K if and only if there are polynomials a
and b with degree less or equal to k and k ´ 1 respectively such that

ppxq “ a2pxq ` xp1´ xqb2pxq. (29) eq:lukacseven

• Odd case: If n “ 2k ` 1, then p is non-negative on K if and only if there are polynomials a
and b with degree less or equal to k such that

ppxq “ xa2pxq ` p1´ xqb2pxq. (30) eq:lukacsodd

t:lukacs

Now let us precise the setting. One takes j˚ “ 2 and
#

for n is even : g1pxq “ 1 and g2pxq “ xp1´ xq,

for n is odd : g1pxq “ x and g2pxq “ 1´ x.
(31) eq:weights

Concerning the interpolation points, we choose any r˚ “ n` 1 distinct points pxrqr“1,...,n`1 on the
segment r0, 1s. The polynomials are represented along monomials so that the matrices Br have the
block structure

Br “

ˆ

g1pxrqwr
1 bwr

1 0
0 g2pxrqwr

2 bwr
2

˙

P Rpn`1qˆpn`1q (32) eq:Br1D
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where
$

&

%

for n “ 2k : wr
1 “

`

1, xr, . . . , xkr
˘t and wr

2 “
`

1, xr, . . . , xk´1
r

˘t
,

for n “ 2k ` 1 : wr
1 “ wr

2 “
`

1, xr, . . . , xkr
˘t
.

With these notations, the equalities (29) and (30) are equivalent to yr “ 〈BrU,U〉 for 1 ď r ď n`1.
In the odd case n “ 2k ` 1 one has U “ pa0, . . . , ak, b0, . . . bkq

t P Rn`1 with apxq “
řk
l“0 alx

l and
bpxq “

řk
l“0 blx

l. In the even case n “ 2k, U “ pa0, . . . , ak, b0, . . . bk´1q
t P Rn`1.

cor:Farkas Corollary 4.2 (of Proposition 3.4). Take p P Pn
r0,1s,` and set yr “ ppxrq. Then, for all λ P C8,

one has that xλ,yy ě 0.

Proof. Indeed the second statement of Proposition 3.4 holds with i˚ “ 1 by taking p11 “ a and
p12 “ b with a, b provided by Proposition 4.1.

Let λ P Rn`1. Using the structure (32) of the matrices Br, one has the Hankel matrices

n`1
ÿ

r“1
λrBr “

ˆ

H1 0
0 H2

˙

(33) e:hankel

where
$

’

’

’

’

&

’

’

’

’

%

for n “ 2k : xH1v,wy “
k
ÿ

i,j“0
si`j`1viwj , xH2v,wy “

k
ÿ

i,j“0
psi`j ´ si`j`1qviwj ,

for n “ 2k ` 1 : xH1v,wy “
k
ÿ

i,j“0
si`j`1viwj , xH2v,wy “

k´1
ÿ

i,j“0
psi`j`1 ´ si`j`2qviwj .

The si’s are given by si “
řn`1
r“1 λrx

i
r. The linear map λ ÞÑ ps0, . . . , snq is one to one, since

ps0, . . . , snq is obtained by multiplying λ by a Vandermonde matrix, which is invertible. A direct
consequence is the following.

lemma:ind Lemma 4.3. The matrices tBru1ďrďr˚ are linearly independent.

Proof. Assume
řn
r“0 λrBr “ 0. Then (33) and the definition of H1 and H2 yields that s0 “ ¨ ¨ ¨ “

sn “ 0. It yields λ “ 0. So the tBru1ďrďr˚ are linearly independent.

t:main1D Theorem 4.4. For any univariate polynomial p that is strictly positive on K “ r0, 1s, the associated
function G is strictly convex and coercive. As a consequence, it has a unique critical point λ˚ which
defines a sum of squares decomposition prλ˚s “ p.

Proof. Thanks to Corollary 4.2 and Lemma 4.3, the assumptions of Proposition 3.8 and Proposi-
tion 3.10 are satisfied which yields the result.

4.2 The asymptotic cone for univariate polynomials
s:asympcone

Given a subset S Ă Rn`1 we denote by conipSq the conical hull of S that is the set of linear
combinations with non-negative coefficients of elements of S. In this section the asymptotic cone
D (23) is constructed from the matrices (32) or (33) in the univariate case. The main result is the
following.
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t:CinfLagrange Theorem 4.5. The asymptotic cone of D is generated by the Lagrange vectors Lpxq for 0 ď x ď 1

C8 “ coniptLpxq P Rn`1, x P r0, 1suq.

We need some intermediate results in order to prove Theorem 4.5. First, let us define

C1
8 “ tλ P C8,

n`1
ÿ

r“1
λr “ 1u Ă C8. (34) eq:Cinf1

Since
řr˚
r“1 lrpxrq “ 1 for all 1 ď r ď r˚, one has

řr˚
r“1 lrpXq “ 1. Therefore, with Lemma 3.2,

we know that
 

Lpxq P Rn`1, x P r0, 1s
(

Ă C1
8. The main point of the proof is to show that C1

8 Ă
 

Lpxq P Rn`1, x P r0, 1s
(

.
To do so we identify C1

8 with a subset of Borel probability measures on r0, 1s using the theory
of the moment problem for which an comprehensive reference is [11]. The proof of the Theorem
invoked below in the proof is strongly related to the Lukacs decomposition of Theorem 4.1.

p:moment Proposition 4.6. Let λ P Rn`1. The following are equivalents

• The vector λ belongs to C1
8.

• There is a Borel probability measure σ on r0, 1s such that

n`1
ÿ

r“1
λrBr “

ż

r0,1s
Bpxqdσpxq. (35) e:measure

Proof. Using (33), one can say that λ P C1
8 ðñ ps0, . . . , snq are such that H1 and H2 are non-

negative matrices and s0 “ 1. By [11, Theorem 2.3, Theorem 2.4], this is equivalent to the existence
of a Borel probability measure σ such that (35) holds.

cor:compact Corollary 4.7. The set C1
8 is compact.

Proof. Since, by Proposition 4.6, the si’s are moments of a Borel probability measure on r0, 1s,
one has ps0, . . . , snq P r0, 1sn`1. Therefore, since λ ÞÑ ps0, . . . , snq is linear and invertible (see
Lemma 4.3), C1

8 is bounded.

We recall that a point λ of a convex set C is said to be an extreme point (see [9, III, Definition
2.3.1]) of C if for any λ1, λ2 P C such that λ “ pλ1 ` λ2q{2, one has λ “ λ1 “ λ2. We denote by
extpCq the set of extreme points of C.

p:extreme Proposition 4.8. The set of extreme points of C1
8 is given by

extpC1
8q “ tLpxq, x P r0, 1su.

Proof. Let λ P extpC1
8q. Since extreme points of a convex set are located on its boundary there is

a vector V ‰ 0 such that
A

řn`1
r“1 λrBrV,V

E

“ 0. Let σ be a Borel measure satisfying (35) and
define qpXq “ xBpXqV,Vy ě 0. One has

ż

r0,1s
qpxqdσpxq “ 0.
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Since q is not identically zero, the measure σ must be supported on a subset of the finite set of
roots of q intersected with r0.1s. Since q has degree n, σ has the form

σ “
n
ÿ

k“1
αkδxk

,
n
ÿ

k“1
αk “ 1, 0 ď αk ď 1, xk P r0, 1s,

for some distinct x1, . . . , xn and where δxk
is the Dirac measure at xk. Now assume that for

some index k, αk P p0, 1q. Then there is k1 ‰ k such that αk1 P p0, 1q. Then let 0 ď ε ă
minpαk, αk1 , 1 ´ αk, 1 ´ αk1q and define σ1 “ σ ´ εδxk

` εδxk1
and σ2 “ σ ` εδxk

´ εδxk1
. The

measures σ1 and σ2 are two Borel probability measures generating different sets of moments for
at least some ε in the range. Since λ ÞÑ ps0, . . . , snq is linear and invertible there are distinct
λ1, λ2 P C

1
8 satisfying (35) for the respective measures σ1 and σ2 and one has λ “ pλ1 ` λ2q{2.

There is a contradiction. Therefore either αk “ 0 or αk “ 1 so σ must be a dirac measure at some
point x˚ P r0, 1s. Hence

řn`1
r“1 λrBpxrq “ Bpx˚q so in particular

n`1
ÿ

r“1
λrx

k
r “ xk˚ for any 0 ď k ď n

which yields λ “ Lpx˚q.
Conversely if λ “ Lpx˚q and λ “ pλ1 ` λ2q{2, then there are probability measures σ1 and σ2

such that δx˚ “ pσ1 ` σ2q{2. Therefore σ1 and σ2 are supported at x˚ and since they have the
same mass one has δx˚ “ σ1 “ σ2, so λ P extpC1

8q.

Now we can prove the main result of the section.

Proof of Theorem 4.5. We denote by copSq the convex hull of S that is the set of linear combinations
of elements of S with non-negative coefficients whose sum equals 1. By the Minkowski (or Krein-
Milman) theorem [9, III, Theorem 2.3.4] we know that any compact convex set is the convex hull
of its extreme points, therefore C1

8 “ copextpC1
8qq. Then we remark that C8 “

Ť

tě0 tC
1
8 and the

result follows.

5 Numerical algorithms
s:methods

Now we introduce several numerical methods employed to compute sum of squares decompositions.
They are based on the minimization of the dual function G either by a descent type algorithm,
either by the direct search of a critical point with a Newton type methods. All the methods enter
the generic iterative framework

λm`1 “ λm ´ τmH
´1
m ∇Gpλmq, λ0 “ 0, (36) e:iterativemeth

with Hm and τm to be defined. The latter is an adaptive time step ensuring the decay of }∇Gpλmq}
at each step. We recall that this quantity actually measures the euclidean norm between the
current sum of squares pprλmspxrqqr and y. The adaptive time step τm is defined as follows. Let
us define λpkqm “ λn ´ 2´kτ pkqm H´1

m ∇Gpλmq. Then we denote by km the smallest integer such that
}∇Gpλpkqm q} ă }∇Gpλm`1q}. From there we define

τm`1 “

#

2´kmτm if km ą 0,
2τm if km “ 0.
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These algorithms can be understood as the discretization of a convenient gradient flow ordinary
differential equation ODE.

5.1 An ODE
We exhibit an simple ODE which builds up a sum of squares decomposition of a positive polynomial
p at the limit of large time.
Proposition 5.1. Let p be a positive polynomial on r0, 1s and let G be the associated dual function.
Consider the gradient flow

$

&

%

dλ
dt ptq “ ´∇Gpλptqq,

λp0q “ 0 P D.
(37) e:gradflow

Then λptq converges to a critical point λ˚ P D, and limtÑ8 prλptqs “ prλ˚s “ p.p:gradflow

Proof. First G decays along the trajectory since d
dtGpλptqq “ ´}∇Gpλptqq}

2 ď 0. Since G is coercive
and smooth, (37) has a unique global solution λptq P D for all t ě 0. Since G is bounded from
below Gpλptqq has a limit when tÑ `8. Then t ÞÑ Gpλptqq is convex along the flow since

d2

dt2Gpλptqq “ 2
@

∇Gpλptqq,∇2Gpλptqq∇Gpλptqq
D

ě 0.

Therefore, by convexity, one has d
dtGpλptqq Ñ 0 which turns into limtÑ8 }∇Gpλptqq} “ 0. Since G

has a unique critical point λ˚, λptq Ñ λ˚ when tÑ8.

5.2 Descent methods
Descent methods (36) can be seen as a discretization in time of the gradient flow (37).

Forward descent method
s:Descent

The first method we use is the classical descent method which consists in taking

Hm “ I, (38) e:descent

where I is the identity matrix.

Backward descent method
s:eulerimp

This second numerical method is based on the gradient flow defined in Proposition 5.1. Given a
sequence of positive time steps τm, the following iterative scheme

λ̃m`1 “ arg min
λPD

Gpλq `
1

2τm
}λ´ λ̃m}

2, λ̃0 “ 0.

is well defined since G is convex. It corresponds exactly to the implicit Euler discretization of the
gradient flow with variable time steps. At step m we look for the critical point of the strictly convex
objective function by making one step of a Newton method starting at λm, yielding the scheme
(36) with

Hm “ I ` τm∇2Gpλmq. (39) e:gradflowmeth

The adaptive time step is chosen as in Section 5.2.
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5.3 Newton-Raphson methods
Newton-Raphson methods can be understood as acceleration techniques for descent methods. We
also threshold the maximal time τm ď 1, since it is the theoretical value of the Newton-Raphson
method.

Newton-Raphson method
s:Newt

A straightforward method for a direct search of the critical point of G is the classical Newton
method

Hm “ ∇2Gpλmq, (40) e:Newt

with ∇2G the Hessian of G. The time step τm is computed as in Section 5.2.

Modified Newton-Raphson method
s:quasiNewt

The Hessian of G degenerates far from its minimum as showed in Lemma 3.11. In practice, a
classical Newton-Raphson method for solving ∇Gpλq “ 0 can be inaccurate at the first iterations
in some cases. Instead one may notice that λ˚ is a critical point of Gpλq if and only if it is a critical
point of pGpλq ´ Cq2 where C is a constant which is smaller than the infimum of G. One expect
the latter function to grow quadratically at infinity thus improving the conditioning of the Hessian.
This suggests the modified Newton method (36) with

Hm “ αm∇Gpλmq b∇Gpλmq `∇2Gpλmq. (41) e:quasinewtmeth

The time step τm is chosen as in the previous sections. Several choices are possible for αm. Following
the heuristic one could impose αm “ pGpλmq´Kq´1. In practice, we found out that the (empirical)
choice αm “ }∇Gpλmq}{p}∇Gpλmq} ` }∇Gp0q}q yields good results.

6 Numerical experiments
s:numerics

In this section, we perform various numerical experiments in order to illustrate the theoretical
results and to explore the behavior of the numerical algorithms.

6.1 Univariate polynomials on a segment
We consider with univariate SOS polynomials. We proceed as explained in Section 4, except that
the monomial basis is replaced here by the orthogonal basis of shifted Chebychev polynomials
pTipxqqi“1,...,k satisfying Tipcospθq ` 1q{2q “ cospiθq, for all θ P R. The only modification of the
method presented earlier concerns the definition of the Dr matrices which become Dr “ wt

rwr P

Rrkˆrk with wr “ pT0pxrq, T1pxrq, . . . , Tkpxrqq
t
P Rrk . The reason is that shifted Chebychev

polynomials have much better behavior in terms of numerical approximation, since they produce
"uniformly distributed" polynomials in r0, 1s, see [7] for comprehensive mathematical treatment.
Of course this is better than monomials xi which concentrate at x “ 1 for i Ñ `8. One can
refer to [6] for a comparison between the use of Chebychev polynomials and monomials. In the
following we propose different test cases to illustrate the various properties of the various descent
and Newton-Raphson type methods proposed in Section 5. For univariate polynomials, the tests
0-1-2-3 are performed with the odd order option (31) of the weights: similar results are observed
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with g1pxq “ 1 and g2pxq “ xp1 ´ xq, and so are not reported. Test 5 is performed with both the
odd and even options.

Test case 0. The starting point of the iterative algorithm, the Lagrange multiplier λ “ 0, defines
a sum of square polynomial pr0spxq which depends on the degree n (r˚ “ i˚ “ n` 1), the weights
in the sum of square ansatz (here given in (31) following the Markov-Lukács theorem, for n odd)
so j˚ “ 2 and the polynomial basis. These SOS are represented on Figure 3. One observes
a concentration near the boundaries which is characteristic of the properties of the Chebychev
polynomials.
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Figure 3: Sum of squares pr0spxq (corresponding to the Lagrange multiplier λ “ 0) for differentfig:initial
degrees n. They depend only the matrices Br and thus on the interpolation points, weight functions
and the polynomial basis (here shifted Chebychev).

Test case 1. We compare the convergence of the methods for an easy objective polynomial, that
is a polynomial with low degree and far above 0: we take n “ 5, r˚ “ i˚ “ n` 1 “ 6, ppxq “ x5` 1
and the weights g1pxq “ x with g2pxq “ 1´ x (so j˚ “ 2).
We observe on Figure 4 that the Newton type methods both reach the threshold precision of 10´8

after only 6 iterations. The implicit Euler and gradient descent methods need respectively 573 and
2727 iterations to reach the same error: this low convergence has been observed for many other test
problems. This is why we continue the tests with the Newton methods only.

Test case 2. In this second test case, we illustrate the better performance of the modified Newton-
Raphson method compared to the standard Newton-Raphson method. We choose a highly oscillat-
ing objective polynomial with lower bound equal to 0. It is given by n “ 21, r˚ “ i˚ “ n` 1 “ 22,
ppxq “ T21pxq ` 1 and the weights g1pxq “ x with g2pxq “ 1´ x (so j˚ “ 2).
We observe on Figure 5 that the modified Newton-Raphson method reaches a precision of around
10´8 in 40 iterations. In the case of the standard Newton-Raphson method, the adaptive time
step quickly reduces to a very small value in order to keep decreasing the error at each iteration.
A similar phenomena happens near convergence for the modified Newton-Raphson method. These
behaviors can be interpreted thanks to the evolution of the condition number of the matrix Hm also
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Figure 4: Test case 1. Sum of square interpolation of ppxq “ x5 ` 1. (Top left) Error }∇Gpλmq}2fig:test1
vs. iteration m; (Top right) Step size τm vs. iteration m; (Bottom) Data pyr “ ppxrqqr and sum of
squares prλspxq satisfying }∇Gpλq} ă 10´8.

showed on Figure 5. Let us recall that this matrix needs to be inverted at each iteration. On the
first hand, for the Newton-Raphson method, Hm is the Hessian of G which degenerates when λ is
far from the minimizer of G, as explained in Lemma 3.11. The modified Newton-Raphson method
seems to prevent a bad condition number of the tweaked Hessian in the first few iterations. On the
second hand, since the objective polynomial has 0 lower bound, strict convexity and coercivity of G
are not granted and it may explain the bad conditioning of Hm near convergence in the case of the
modified Newton-Raphson method. Indeed recall that when ∇Gpλmq is small Hm almost coincides
with the Hessian in the modified Newton-Raphson method.
Nonetheless we found in many numerical experiments that the latter numerical methods is the most
robust and efficient of the four. This the reason why we only use the modified Newton-Raphson
method in the following series of tests.

Test case 3. Now, we illustrate the influence of the lower bound of p on the convergence of
the method. To proceed, we compute a sum of squares approximation of the polynomial ppxq “
T11pxq ` 1` α for various lower bounds α (n “ 5, r˚ “ i˚ “ n` 1 “ 6, j˚ “ 2).
The results are displayed on Figure 6. We observe that the number of iterations required to reach a
precision of 10´8 seems to increase proportionally with |logpαq|. The condition number of Hm and
the norm of λm at convergence decays like some negative power of α. Interestingly enough, one
also sees that the quadratic convergence of the (modified) Newton method seems to degenerate to
linear convergence when α goes to 0. All these behaviors can be interpreted thanks to the results
of Lemma 3.5 and Lemma 3.11. We know from Lemma 3.5 that for α “ 0, p has a root x0 in
r0, 1s, and thus the coercivity of G is lost in some direction of the asymptotic cone of D (that of
the Lagrange vector Lpx0q). Thus as α Ñ 0, the minimizer λ˚α may go to `8 in the asymptotic
cone which would explain here the explosion of the norm of λ and of the condition number of Hm

as predicted by Lemma 3.11 and shown on Figure 6.

Test case 4. In this fourth test case we illustrate the influence of the degree n of the objective
polynomial ppxq “ xn ` 1 on the convergence of our method, with g1pxq “ x and g2pxq “ 1´ x for
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Figure 5: Test case 2. Sum of square interpolation of ppxq “ T21pxq`1. (Top left) error }∇Gpλmq}2fig:test2
vs. iteration m; (Top right) Step size τm vs. iteration m; (Bottom left) Condition number of
Hm vs. iteration m; (Bottom right) Data pyr “ ppxrqqr and sum of squares prλspxq satisfying
}∇Gpλq} ă 10´6.

n odd and g1pxq “ 1 and g2pxq “ xp1´ xq for n even.
The result are displayed on Figure 7. We observe that the number of iterations required to reach
an error of 10´8 increases with the degree, but weakly. We also observe that the condition number
condpHmq “ }Hm}}H

´1
m } near convergence deteriorates with n, approximatively quadratically.

6.2 Bivariate polynomials on a triangle
In this part we use our algorithm for the computation of a sum of squares representation of some
positive polynomial p P PnrX,Y s on the triangle.
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Figure 6: Test case 3. Influence of the lower bound α in the sum of square interpolation offig:test3
ppxq “ pT11pxq ` 1q ` α. (Top left) Number of iterations to converge vs. α; (Top right) Condition
number of Hm at the last iteration vs. α; (Bottom) Error }∇Gpλmq}2 vs. iteration m for different
lower bounds α.
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Numerical setting. The barycentric coordinates corresponding to the vertices S1, S2 and S3 of
the triangle are denoted as µj for j “ 1, 2, 3

µ1px, yq “ 1´ x´ y , µ2px, yq “ x , µ3px, yq “ y ,

The triangle is
K “ tx “ px, yq P R2, µ1pxq ě 0 , µ2pxq ě 0 , µ3pxq ě 0u.

The interpolation points are xr “ pxr, yrq for 1 ď r ď r˚ “ pn` 1qpn` 2q{2 are the distinct points
of a cartesian grid intersected with the triangle. For a given polynomial p P PnrXs of a given
degree, the data is z P Rr˚ which is the vector with components zr “ ppxr, yrq. An illustration of
the geometry is provided in Figure 8 where the degree is n “ 4.
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Figure 8: fig:simplexThe simplex K and interpolation points for n “ 4.

We consider the ansatz

prλspxq “

rj
ÿ

i“1
g1px, yq pi1rλspx, yq

2`g2px, yq pi2rλspx, yq
2`g3px, yq pi3rλspx, yq

2`g4px, yq pi4rλspx, yq
2,

(42) e:sos2d
where, arbitrarily with respect to the literature [12], the weights are

"

for n “ 2k ` 1, gi “ µi for i “ 1, 2, 3 and g4 “ µ1µ2µ3,
for n “ 2k, g1 “ µ2 µ3, g2 “ µ3 µ1, g3 “ µ1 µ2 and g4 “ 1. (43) e:sos2drab

With this choice we recover in every cases r˚ “ r1`r2`r3`r4. All polynomials are parametrized
on the basis of bivariate monomials since Chebychev polynomials are not available on the triangle.

Test case 5. We approach the polynomial ppx, yq “ pT4pxq ` 1qpT4pyq ` 1q{4 ` 10´3 on the 2D
simplex with the modified Newton method. The numerical parameter are n “ 8, r˚ “ i˚ “ 45 and
j˚ “ 4.

24



We observe on Figure 9 that our method converges in this multivariate setting and reaches a
precision of less than 10´8 in 210 iterations. We observe that the error decays slowly during the first
200 iterations before reaching usual quadratic speed of convergence of the Newton method near the
minimizer of G. This result illustrates the ability of our algorithms to provided a computational
strategy for the calculation of positive polynomials on bi-dimensional sets.
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Figure 9: Test case 5. Bivariate sum of square interpolation of the degree 8 polynomial ppx, yq “fig:test5
pT4pxq`1qpT4pyq`1q{4`10´3 on the 2D simplex. (Left) error }∇Gpλmq}2 vs. iteration m; (Right)
surface plot of the converged sum of square.

Test case 6. In this last test case we are interested in the SOS approximation of the Motzkin
polynomial [15]

ppx, yq “ x2y4 ` y2x4 ´ 3x2y2 ` 1 .

This polynomial is non-negative over R2 and famous for not being a sum of square in the sense
that it admits no decomposition (3) with weigths rg1 “ ¨ ¨ ¨ “ rgj˚ “ 1 (whatever the choice of i˚
or, equivalently in this particular case, j˚). The parameters are n “ 6, r˚ “ i˚ “ 28 and j˚ “ 4.
We use our method to approach this polynomial with the sum of square ansatz (42) but with two
different weights: on the one hand we use the weights gi (43) for which we expect some convergence
of the algorithm; on the other other hand we use the weights rgi “ 1 for i “ 1, 2, 3, 4.

In the latter case the non convergence of the method would not converge in coherence with
the non-existence of a sum of square decomposition for the Motzkin polynomial. This is indeed
confirmed by our experiment as shown on Figure 10. The algorithm with weights gi converges while
the algorithm with weights rgi does not converge (Bottom right illustration in the Figure).

6.3 Concluding algorithmic remarks
All our numerical results show that the modified Newton-Raphson algorithm is able to compute
polynomials which respect a sign condition on a given simple semi-algebraic set. Much more needs to
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Figure 10: Test case 6. Bivariate sum of square approximations (of degree n “ 6) of the Motzkinfig:test6
polynomial. (Top left) error }∇Gpλmq}2 vs. iteration m; (Top right) time step τm vs. iteration m;
(Bottom left) The Motzkin polynomial; (Bottom center) Sum of square approximation with weights
g1 “ µ2 µ3, g2 “ µ3 µ1, g3 “ µ1 µ2 and g4 “ 1, the algorithm has converged; (Bottom right) Sum
of square approximation without weights (g1 “ g2 “ g3 “ g4 “ 1), the algorithm has not converged;

be investigated to evaluate the full potential of such methods. Here we detail to possible domains
of research which are consequences of the multiple connections of our methods with the ones of
Scientific Computing.
‚ The first one concerns the acceleration of the different methods. We have in mind that a C``
implementation needs to be tested.
‚ On this basis it will be possible to couple with codes in scientific computing (such as the ones
evoked in [19] and the references therein) to evaluate the gain in robustness provided by the new
algorithms.
‚ Finally we mention that an implementation of the gradient algorithms with absolute guarantee
of the condition λm`1 P D is possible. Indeed start from λm P D. Since λm`1 “ λm ´∆tdm for a
given direction dm “ pdmr q, the condition λm`1 P D is satisfied provided Mpλmq´∆t

ř

r d
n
rBr ě 0.

It is satisfied under the sufficient condition ρ p
ř

r d
n
rBrq∆t ă ρ pMpλmqq

´1: here ρpAq denotes the
spectral radius of a given square matrix A. This condition is very much a CFL stability condition.
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