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The three peripheral subspecies of the house mouse Mus musculus have fixed specific variants of the androgen-bind-
ing protein (ABP) that have been proposed to be part of a recognition mechanism that could participate in sexual iso-
lation between the subspecies. We tested for selection on Abpa by characterizing the pattern of Abpa introgression
across a transect of the hybrid zone between M. m. musculus and M. m. domesticus in Jutland. On the musculus side,
the cline for Abpa resembled that of a nearly neutral allozyme more than that of strongly selected X and Y chro-
mosome markers. However, the high central step which displaces the tail of introgression of Abpa to higher fre-
quencies was best accounted for by linkage to a locus under strong selection against hybrids. Still, we cannot exclude
that this pattern results from weak selection against Abpa in the tail of introgression, which would be compatible
with an assortative choice mechanism. On the domesticus side there was little introgression close to the hybrid zone,
presumably due to a geographical barrier to migration. However, substantial frequencies of musculus alleles
occurred further away, suggesting mixed colonization patterns as well as flow across the hybrid zone. © 2005 The
Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 447-459.

ADDITIONAL KEYWORDS: assortative mating — gene flow — genetic barrier — Mus musculus domesticus —
Mus musculus musculus.

INTRODUCTION behavioural studies (Laukaitis, Crister & Karn, 1997)
and odour preference tests (Talley, Laukaitis & Karn,
2001), which showed that female mice belonging to
inbred and outbred strains of mice derived from
M. m. musculus and M. m. domesticus made assorta-
tive mate choices based on their ABP genotypes.

The rapid evolution of the gene coding for the alpha
subunit of this dimeric protein (Abpa) is also consis-
tent with a role in mediating assortative mating. The
alleles found in the peripheral subspecies show a large
excess of non-synonymous differences and a lack of
both exon and intron polymorphism (Hwang et al.,
1997; Karn & Nachman, 1999; Karn et al., 2002). This
pattern of evolution suggests that the new ABP vari-
*Corresponding author. E-mail: dod@univ-montp2.fr ants were fixed in a series of selective sweeps. How-

Androgen-binding protein (ABP) is a member of the
secretoglobin family (Laukaitis & Karn, 2005, this
issue) and a major component of saliva that mice
transfer to their pelts and territories when grooming.
The role this protein plays is unknown, but, as it is
able to bind male sex steroid hormones and because
distinct structural variants have been fixed alterna-
tively in the peripheral subspecies of the house mouse
Mus musculus, it has been proposed to be part of a
mate recognition mechanism (Karn & Dlouhy, 1991).
This idea was reinforced considerably by the results of
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ever, the situation prevailing in the central parts of
the species range does not support this idea (Karn
et al., 2002). Not only is there extensive intron and
exon polymorphism, but there is also evidence for sec-
ondary admixture of subspecies-specific Abpa variants
in the regions of transition between the peripheral
subspecies and the central populations. Furthermore,
these authors also found phylogenetic evidence that
interspecific exchanges between M. musculus and
the three other Palaearctic species, M. spretus,
M. spicilegus and M. macedonicus, may have occurred
in the past.

Our aim was to investigate the role that selection
plays in shaping the introgression of Abpa in the
hybrid zone that results from the secondary contact
between M. m. domesticus and M. m. musculus in
Europe (for review see Boursot et al., 1993). Early
studies on three different transects of this zone in
Denmark, Germany and Bulgaria showed them all to
be characterized by narrow genetic transitions of sim-
ilar widths (Hunt & Selander, 1973; Sage, Whitney &
Wilson, 1986; Vanlerberghe et al., 1988a; Vanler-
berghe et al., 1988b; Prager et al., 1993). In the Danish
and Bavarian transects, the clines of both sex chromo-
some markers are much narrower compared with
those of the autosomal allozymes (Tucker et al., 1992;
Dod et al., 1993), which suggests that genes on both
sex chromosomes are more strongly affected by hybrid
dysgenesis than are the autosomal loci. The limited
introgression of the Y chromosome in Bulgaria (Van-
lerberghe et al., 1986) and East Holstein (Prager,
Boursot & Sage, 1997) also supports this idea. How-
ever, a preliminary study across a transect in Western
Bohemia (Munclinger et al., 2002) suggests that the
situation is more complex than originally supposed, as
here the centres of the clines for the two sex chromo-
somes are not concordant and the Y transition appears
to occur over a wide area. Raufaste et al. (2005, this
issue) showed that eight allozymes on six different
autosomal chromosomes could be characterized by a
series of concordant clines with central steps in fre-
quency flanked by smooth tails of introgression. This
is consistent with the idea that this hybrid zone is a
tension zone maintained by the balance between
migration and selection against hybrids (Barton &
Hewitt, 1985). The shapes of the allozyme clines sug-
gest that the loci themselves are only weakly selected
against but are submitted to an overall barrier to gene
flow created by selection against other loci in hybrid
genomes.

To test for selection on Abpa we compared its intro-
gression pattern across the Danish transect of the
hybrid zone in Jutland with those of an X and a Y chro-
mosome marker that are both strongly affected by
selection against hybrids, as well as with those of the
weakly selected allozymes mentioned above.
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Figure 1. Map showing the geographical position of the
Mus musculus musculus samples on the transect and the
centre of the hybrid zone. Latitude and longitude are given
as universal transverse mercator (UTM) grid coordinates
(in km). The estimated centre of the transect is shown as
a thick grey line. The position of the transect is indicated
on the map of the Jutland peninsula in the insert. The
filled triangles on the southernmost part of the map cor-
respond to the localities with the least overall introgres-
sion referred to in the text. Those that are introgressed for
Abpa are encircled.

METHODS

MicE

Mice were live-trapped inside buildings using multi-
capture traps along a transect of the hybrid zone in
Jutland, during seven field trips between 1984 and
2000. The localities sampled are shown in Figure 1. A
number of localities were sampled more than once and
were treated as independent samples. The list of sam-
ples with their geographical position in universal
transverse mercator (UTM) grid coordinates is given
in the Appendix.

GENETIC ANALYSIS

DNA from spleen or tail tissue was extracted using
standard phenol/chloroform procedures. An allele-spe-
cific PCR reaction was used to type the Abpa variants.
The two forward primers included the fixed non-
synonymous differences in the exon sequences of
Abpa® (M. m. domesticus) and Abpa® (M. m. musculus)
while the reverse primers fell in the following intronic
sequence and were not subspecies specific (Karn et al.,
2002). Two PCR reactions were performed in 10-uL
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SELECTION IN MOUSE HYBRID ZONE 449

aliquots in the presence of 25 ng DNA and 0.125 U Taq
polymerase with 2- and 2.5-mM MgCl, for the Abpa*
and Abpa® primer pairs, respectively. After an initial
incubation at 95 °C for 3 min the reactions were
amplified for 35 cycles. The annealing and elongation
conditions are given with the primer sequences in
Table 1. The two amplification products were analysed
on the same 1.5% agarose gels. The shorter one
(Abpa®, 192 bp) was loaded first and run for 15 min
before the longer one (Abpa®, 290 bp) was loaded.

The Zfy2 deletion in the M. m. musculus Y chromo-
some (Boissinot & Boursot, 1997) and a SINE (B1)
insertion in the Btk gene in the M. m. domesticus X
chromosome (Munclinger, Boursot & Dod, 2003) were
used to differentiate between the two subspecies.

The eight allozyme loci used to calculate the average
autosomal locus referred to in this study were: AmylI,
chromosome (chr.) 3; Esl, Es2, chr. 8; Es10, chr. 14;
Gpd, chr. 4; Mpi, chr. 9; Np, chr. 14 and Pgm, chr. 5.
None of these markers are on the same chromosome as
Abpa, which is 10 ¢cM from the centromere of chromo-
some 7.

CLINE ANALYSIS

The variations of allele frequencies were studied along
the direction of the maximum frequency gradient,
which was determined using the eight allozyme loci,
as described in detail in Raufaste et al. (2005, this
issue). The shapes of the clines describing the change
in allele frequencies of the different loci along a one-
dimensional representation of the transect were
determined by comparing the maximum likelihood
estimations of three single-locus cline models of
increasing complexity using the computer package
ANALYSE (by N. Barton and S. Baird, http:/
helios.bto.ed.ac.uk/evolgen/Mac/Analyse/). The sim-
plest was a symmetrical sigmoidal model in which
only the geographical position of the centre and width
were varied. The next was a symmetrical cline model
with a central step and two symmetrical tails of intro-
gression, described by two additional parameters. The
most complex model was asymmetrical with two fur-
ther parameters that allowed for different tails of
introgression on either side. Likelihood ratio tests

were then used to choose the best acceptable model
with a minimum number of parameters. The parame-
ters describing the most complex model were the posi-
tion of the cline centre, cline width (w), which is the
inverse of the maximum frequency gradient in the
central step, BO/w and B1/w, the ratios of the barrier
to gene flow to the width of the clines on the left and
right hand sides of the centre, respectively, and 6, and
6;, which correspond to the square of the rate of decay
of allele frequencies in the tails of introgression. B rep-
resents the barrier to gene flow and is the distance of
habitat that would have to be crossed by a neutral
allele in order to observe a change of frequency equiv-
alent to that caused by the central step. The value of 6
can be used to estimate the ratio of the selection on the
locus itself to the overall selection (Barton & Hewitt,
1985; Barton & Gale, 1993). A detailed description of
the procedures used to find the direction of maximum
gradient, to correct sample sizes for inbreeding and
random fluctuations, and to fit the cline shapes is
given in Raufaste et al. (2005, this issue). For the
haplo/diploid X chromosome locus the males and
females were first analysed separately and, as no sig-
nificant difference between the sexes was found, they
were then grouped.

RESULTS

The musculus allele frequencies of the Abpa, Zfy (on
the Y chromosome) and Btk (on the X chromosome) loci
were measured in a large number of samples along a
transect of the hybrid zone between M. m. musculus
and M. m. domesticus in Jutland. The musculus allele
frequencies of the three loci in the different samples
are given in the Appendix together with the effective
sample size, the name of the locality, the sampling
year, its geographical position and the derived coordi-
nate that defined its position on the one-dimensional
cline representation. The average musculus allele fre-
quency of the eight allozymes taken from Raufaste et
al. (2005, this issue) are also included.

The variations of the musculus allele frequencies of
Abpa, Zfy, Btk and the average frequency of eight
autosomal loci across the one-dimensional transect
are shown in Figure 2. The Y chromosome behaved

Table 1. Primer sequences and the annealing and elongation conditions used to amplify the Abpa fragments specific to
Mus musculus domesticus (Abpa®) and M. m. musculus (Abpa®)

Annealing Elongation
Primer
pair Forward Reverse °C S °C S
Abpa® GAAACAATTCAATGAAAACACTAAAG TGTGCCACTGCTCTGTATTC 55 30 72 30
Abpa® ACAATTCAATGAAAACCGTGA AAACTTGGGCAGGGATTTAG 60 90 72 90

© 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84, 447—459
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Figure 2. Variations of Mus musculus musculus allele fre-
quencies along the one-dimensional transect across the
hybrid zone. The grey spots correspond to the real data and
their area is proportional to the effective sample size. The
black spots give the best cline fit and the position of the
centre of the transect is represented by the vertical dotted
line.

very differently compared with the other three loci.
The transition from the domesticus to the musculus
variant was almost complete within a few km from the
centre of the hybrid zone. The Y chromosome is there-
fore clearly under very strong selection in the hybrid
genome.

The shapes of the clines for the Abpa and Btk loci
were fitted to the three classes of models and it can be
seen in Table 2 that in both cases the likelihood ratio
test showed that the most complex model, correspond-
ing to a stepped cline with asymmetrical tails of intro-
gression, was significantly better. The maximum
likelihood positions of the centre of both these loci
coincided with that determined for the eight allozymes
by Raufaste et al. (2005, this issue). Although the cline
models used for these two loci were not applicable to
the very abrupt Y transition it is obvious that it
occurred in much the same place as the other loci. The
shapes of the fitted clines are shown in Figure 2.

On the domesticus side of the transect, the intro-
gression of Btk was limited to a small number of local-
ities (7 of 52) spread over a wide geographical area. On
the other side of the zone, an extremely variable range
of musculus allele frequencies (from 0.2 to 1) was
found in the first 16 km, but then they increased rap-
idly so that all the populations further than 20 km
from the centre were fixed. This was modelled by a
steep frequency step of almost 0—0.5 on the domesticus
side followed by a rapid exponential decay on the mus-
culus side. In fact, most of the admixture occurred on
the musculus side of the inferred centre. Although this
atypical cline shape made the estimated selection
parameters unreliable, the Btk locus clearly showed
much less introgression compared with the average
autosomal locus, and is obviously under much stron-
ger selection.

The frequency changes of the Abpa alleles did not
follow the same pattern as those of Btk. Although
there was also a sharp step on the domesticus side, it
only continued for about 2 km beyond the centre. This
means that, although most of the intermixing also
occurred on the musculus side, it spanned a much nar-
rower spectrum of frequencies (mostly above 0.6) than
did Btk. Furthermore, this zone of admixture
stretched out as far as 58 km from the centre. As a
result the fitted cline had a high central frequency
step with a rather steep gradient that was flanked by
a right hand tail which decayed slowly but was clearly
displaced to higher musculus frequencies compared
with the average allozyme cline. The parameters
defining the best cline fits for these two loci (Table 2)
suggest that there is a stronger barrier to the intro-
gression of Abpa (BI =50 km) than there is for the
average autosomal locus (BI =20 km), even though
both had similar rates of decay (6, = 0.029 and 0.033,
respectively). Table 3 compares the cline parameters
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Table 2. Test of different cline models for the Abpa and Btk loci, and comparison with the best fit for the eight allozyme loci

Locus/model w (km) Centre BO/w 6, Bl/w 6 LL 2DLL df P
Abpa

Sigmoid (2 parameters) 48.2 6188.3 -129.89

Stepped symmetric (4 parameters) 7.3 6191.4 18.9 0.009 -93.50 72.77 2 2x 107

Stepped asymmetric (6 parameters) 6.3 6191.2 3590.4 4x107 7.1 0.029 -83.83 19.34 2 6x107°
Btk

Sigmoid (2 parameters) 19.8 6193.5 -103.83

Stepped symmetric (4 parameters) 12.9 6194.1 4.6 0.198 -90.73 26.20 2 2x107°

Stepped asymmetric (6 parameters) 3.0 6191.2 97.0 0.001 1.6 0.041 -81.41 18.63 2 9x107°
Eight allozymes

Stepped asymmetric (6 parameters) 8.9 6191.2 2.2 0.072 2.2 0.033

LL, log-likelihood; 2 DLL, twice the difference between the LLs of two models.

Table 3. Comparison of the parameters of the clines on the musculus side of the hybrid zone, for eight allozymes and Abpa

Locus w (km) (2LL limits) B1 (2LL limits) 0; (2LL limits)

Amyl 20.6 (15.2-26.4) 199.0 (64.4-2148.0) 0.037 (0.001-0.157)
Es1 11.0 (2.2-25.2) 7.2 (0.6-25.6) 0.172 (0.010-0.999)
Es10 6.4 (4.9-11.7) 25.3 (13.9-58.9) 0.016 (0.008-0.055)
Es2 3.8 (1.3-9.2) 24.2 (10.1-53.6) 0.003 (0.000-0.019)
Gpd 6.3 (3.4-13.0) 6.9 (4.2-16.8) 0.032 (0.009-0.135)
Mpi 6.2 (2.2-18.9) 18.7 (4.6-52.4) 0.041 (0.004-0.453)
Np 5.9 (3.8-44.6) 14.0 (5.9-137.3) 0.009 (0.002-0.715)
Pgm 6.8 (4.0-9.1) 16.3 (12.7-30.2) 0.035 (0.010-0.061)
Eight loci 8.9 (7.7-12.4) 19.9 (13.7-28.1) 0.033 (0.023-0.063)
Abpa 6.3 (3.7-10.2) 44.5 (16.0-103.7) 0.029 (0.009-0.104)

2LL limits, two log-likelihood support limits.

obtained for the eight allozyme loci individually
(taken from Raufaste et al., 2005, this issue), the aver-
age allozyme locus and Abpa on the musculus side of
the transect. Although there were variations across
loci, the width of the Abpa cline was comparable to
those of most of the allozyme loci, but its barrier
tended to be higher. The only locus with a higher bar-
rier was Amy which had a much wider atypical cline.
The rate of decay 6, for Abpa fell within the range of
values found for the other loci. However, one should
note that the two log-likelihood limits of these param-
eter estimates were quite wide, and most intervals
overlapped across loci.

The situation for Abpa on the domesticus side was a
bit more confusing. Although musculus alleles
appeared to decay rapidly immediately south of the
centre, they occurred again, sometimes at rather high
frequencies, in a large number of populations further
south. As a result, the best fit was a flat tail of intro-
gression that provided a very poor description of the
data. Btk also showed a rather flat decay on the

domesticus side and showed occasional sporadic intro-
gression, like several of the allozymes studied by Rau-
faste et al. (2005, this issue). As a consequence, the
cline parameters fitted on the domesticus side did not
appear to be very meaningful, and the model applied
did not provide a satisfactory representation of the
data. The possible reasons for this are discussed in
more detail in Raufaste et al. (2005, this issue). We
therefore did not attempt to compare the left hand
introgression tail parameters across loci but rather
examined the levels of sporadic introgression that
occurred at several of the loci. The distribution of the
musculus allele frequencies of Abpa in the samples
from the localities south of the Kolding Fjord more
than 20 km from the transect centre (the first 19 sam-
ples in the Appendix), differed significantly from that
of the average autosomal locus (Wilcoxon matched
pairs test, P <0.047). To investigate the reasons for
this difference we compared the frequency distribu-
tion of Abpa musculus alleles with those of Amy1, Esl1,
Es10, Mpi, Np and Pgm. Data were missing for Es2
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and Gpd in six and nine of these samples, respectively,
so they could not be included in the tests. A Friedman
two-way analysis of variance of the musculus allele
frequencies of the six allozyme markers in 16 samples
(samples 187, 189 and 92 were not considered because
of missing data) showed that only three of them were
introgressed for musculus alleles to a significantly dif-
ferent extent (with all 16 localities as variables,
P <0.00015, and when the samples with the three
highest ranks, 87, 88 and 174, were removed,
P <0.06382). A second Friedman test was done on the
13 samples with the lowest degree of allozyme intro-
gression with Abpa and the six allozyme loci taken as
variables (with all seven loci, P < 0.00127, with Abpa
removed, P <0.01648, and with Amyl removed,
P < 0.25057). These results showed the Abpa and Amy
musculus alleles to be significantly more widespread
compared with those of Es1, Es10, Mpi, Np and Pgm
in this region. The positions of these samples are indi-
cated as triangles on the map in Figure 1 with the
localities introgressed for Abpa encircled and it can be
seen that they are not all clustered in one particular
geographical area.

DISCUSSION

Two earlier studies on rather limited datasets sug-
gested that the sex chromosomes are under stronger
selection in the hybrid genome than is the average
autosomal locus (Tucker et al., 1992; Dod et al., 1993).
Our results on a much larger sample confirm that both
the Y chromosome and the X chromosome locus Btk
are under strong selection in the Jutland transect. We
have also shown that the Y chromosome transition in
the centre of the hybrid zone is even more abrupt than
our preliminary study suggested (Dod et al., 1993).
Very few localities harbour both variants or a Y vari-
ant that does not correspond to the overall local
genetic background. It should be noted that the sam-
ple with a high frequency of domesticus variants on
the musculus side of the zone, more than 10 km from
the centre, was from Givskud zoo. The introgression
found is almost certainly due to escapees from their
mouse-breeding colony which was closed soon after
this sample was caught (1991). None of the males
caught in 1987 and 1998 in the same place carried a
domesticus Y.

Assessing the involvement of selection in shaping
the Abpa cline is not straightforward. We have seen
that the central step of the Abpa cline is higher com-
pared with that of the average autosomal locus, which
means that the right hand tail of introgression is dis-
placed to higher musculus frequencies. The most
likely estimate of the cline parameter B1, given in
Table 3, suggests that Abpa is subjected to a stronger
barrier to gene flow than are most allozymes. How-
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Figure 3. Likelihood (LL) surface of the values of BI (A)
and 6, (B) that fall within the two log-likelihood support
limits. (C) envelope of the corresponding values of 6; and
B for all the models that fall within the confidence interval.

ever, the corresponding estimate of the parameter 6,
which reflects the ratio of the selection on the locus
itself to the overall selection caused by the rest of the
genome, suggests that Abpa itself is not submitted to
significantly stronger selection than are the alloz-
ymes. This situation could result from the linkage of
Abpa to a locus under strong selection in the centre of
the hybrid zone. However, we have seen that there is
considerable uncertainty with respect to these param-
eter estimates. Figure 3 gives graphical representa-
tions of the log-likelihood support limits for B1 and 0,
for the Abpa cline and it can be seen that they are neg-
atively correlated so that the Abpa data could also be
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described acceptably by a barrier as low as that found
for the average allozyme locus (around 20 km) but
with a higher value for the parameter 6, If this were
the case it would imply direct selection on Abpa in the
tail of introgression. Assuming a barrier for Abpa of
the order of 20 km, the maximum acceptable value for
parameter 6; would be around 0.1 (Fig.3), which
implies direct selection on Abpa of the order of 0.005 if
the intensity of the overall selection acting in the
hybrid zone is taken as 0.05, as estimated by Raufaste
et al. (2005, this issue). However, it is not certain that
such a small selection coefficient can be measured
with any confidence using this kind of approach.

The situation on the domesticus side of the zone can-
not be interpreted in the same way. The asymmetry of
the Abpa cline is due to a very abrupt frequency change
on the domesticus side of the estimated centre. This is
also the case for a number of the allozyme markers and
Raufaste et al. (2005, this issue) suggested that it is at
least partially due to the influence of a geographical
barrier to gene flow that occurs on the domesticus side
of the zone. Such a barrier would contribute to the
abruptness of the frequency change observed for Abpa
but it makes the high frequency of musculus Abpa alle-
les found further south even more surprising. Recent
long-distance migration from the musculus side of the
transect is unlikely to explain all the observed Abpa
introgression since it is not geographically aggregated
and in the majority of the localities concerned the only
other locus introgressed to a similar extent is Amy1. A
possible explanation is that the domesticus mice which
colonized south Jutland were already introgressed for
certain loci before they arrived. All the islands along
the eastern side of the Jutland peninsula have mus-
culus populations and secondary contact between the
two subspecies occurs further south in Holstein
(Prager et al., 1993) and in northern Germany, so
opportunities for introgression were multiple. It has
been shown that the takeover of M. m. musculus
mtDNA by a domesticus haplotype in Northern Jut-
land (Ferris et al., 1983) occurred at the time of colo-
nization, rather than by flow across the hybrid zone
(Vanlerberghe et al., 1988b). The settlement of farmers
within the last 150 years in large areas of previously
unoccupied land in Jutland could also have contrib-
uted to sporadic introgression. Whatever their origin,
the persistence of such high frequencies of musculus
Abpa alleles makes it unlikely that this variant is
selected against in a domesticus background.

In conclusion, we find that Abpa seems to be more
affected by selection in the hybrid zone than is the
average autosomal locus. The most likely explana-
tion is linkage to a gene under selection in the
hybrid genome. However, we cannot exclude the pos-
sibility that the pattern is due to weak selection on
Abpa itself in the musculus tail of introgression,

which would be consistent with the behavioural
results of Bimov4, Karn & Pialek (2005, this issue),
who found some evidence for weak preferences at
the edges of a Czech transect of the hybrid zone.
However, before considering the possibility that
behaviour at the edges of the cline influences the
shape of the introgression tails, as suggested earlier
by Laukaitis et al. (1997), we need better estimates
of selection than we were able to make in the com-
plex Jutland transect.
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