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Abstract
A procedure is proposed to efficiently generate sets
of ground implicates of first-order formulas with
equality. It is based on a tuning of the superposition
calculus [Nieuwenhuis and Rubio, 2001], enriched
with rules that add new hypotheses on demand dur-
ing the proof search. Experimental results are pre-
sented, showing that the proposed approach is more
efficient than state-of-the-art systems.

1 Introduction and Motivations
Abductive reasoning is the process of inferring, given a set of
axioms A and a formula φ, a set of assertions H such that
A ∪ H |= φ. The set H may be viewed as a set of hy-
potheses that are sufficient to ensure the validity of the en-
tailment A |= φ, or as a set of explanations of φ. Such hy-
potheses must be economical and plausible, in particular H
must be minimal w.r.t. logical entailment and A ∪ H must
be satisfiable. Abductive reasoning has many applications
in artificial intelligence, verification and debugging, e.g. for
computing missing pre-conditions, spotting and correcting er-
rors in a logical specification, or for dealing with approxima-
tive, incomplete or spurious information. The problem has
been thoroughly investigated in propositional logic [Marquis,
2000], and very efficient algorithms have been proposed [Si-
mon and Del Val, 2001; Previti et al., 2015], but only a few
approaches handle more expressive logics [Knill et al., 1993;
Marquis, 1991; Mayer and Pirri, 1993; Nabeshima et al.,
2010]. In particular, none of them is able to deal with the
equality predicate in an efficient way.

In the present paper, we tackle the problem of generating
such a set H, when A ∪ {φ} is a set of first-order formulas
with equality and H is a set of ground unit clauses. In this
case, by duality, ¬H is a clausal logical consequence of A ∪
{¬φ}, i.e., an implicate of A∪ {¬φ}, and the problems boils
down to efficiently generating sets of (entailment-minimal)
implicates or prime implicates.

We illustrate our approach by an example in verification.
Consider the following toy program, redirecting the tail of a
∗This paper is an extended abstract of an article in the Journal of

Artificial Intelligence Research [Echenim et al., 2017].

Algorithm 1: Example(List l1, List l2)
1 requires length(l1) 6= 0;
2 requires length(l2) = 1;
3 let l1.tail = l2 ;
4 ensures length(l1) = 2;

nonempty list l1 to a list l2 of length 1. Assume we want to
check that l1 is of length 2 after the program is executed. This
post-condition does not hold, which may come as a surprise
for some programmers. Indeed, if l1 = l2, then the tail of
l1 is redirected to l1 yielding a cyclic list (hence length(l1)
is either 1 or undefined, depending on the definition). The
problem can be stated in first-order logic with equality as the
following set of clauses S, where the tail function is repre-
sented by a function tail : heap× list→ list, and where
h, h′ : heap are constant symbols denoting the initial and fi-
nal states of the heap and x, y : list, z : heap are universally
quantified variables.

% Definition of the tail redirection operation
% The tail of x is redirected to y:

x ' nil ∨ tail(SetTail(z, x, y), x) ' y
% The tail of the other lists is not affected by the redirection:

x ' nil ∨ x′ ' nil ∨ x′ ' x
∨tail(SetTail(z, x, y), x′) ' tail(z, x′)

% Definition of length
length(z, nil) ' 0

x ' nil ∨ length(z, x) ' s(length(z, tail(z, x)))
% Pre-conditions
length(h, l1) 6' 0
length(h, l2) ' s(0)

% Negation of the post-condition
length(h′, l1) 6' s(s(0))

% Translation of the program
h′ = SetTail(h, l1, l2)

The set S is satisfiable, the problem is to show that S is
unsatisfiable under the hypothesis l1 6' l2, or equivalently
that l1 ' l2 is an implicate of S.

2 Normalized Ground Clauses
Terms, atoms, literals and clauses are defined inductively as
usual over a set of function symbols Σ and variables V . We



assume, w.l.o.g., that the equality' is the only predicate sym-
bol. We use the symbol ./ to denote either ' or 6'. Substi-
tutions are functions mapping variables to terms, extended to
any expression (terms, atoms, clauses, etc.) in the natural way
and written in postfix notation. We assume given a reduction
order �, i.e., an order among terms that is closed under sub-
stitution and context embedding, and contains the subterm
ordering (this entails that ≺ is well-founded). The order ≺ is
extended to atoms or literals by interpreting them as multisets
of terms, and to clauses by the usual multiset extension. For
any expression E, we denote by Ec the nnf of the negation of
E, formally defined as follows: (s ' t)c = s 6' t, (s 6' t)c =
t ' s, (

∨n
i=1 li)

c
=

∧n
i=1 li

c and (
∧n
i=1 li)

c
=

∨n
i=1 li

c.

Definition 1 Given a clause C, we define the relation ≡C
on terms as follows: for all terms s, t, s ≡C t iff
Cc |= s ' t. The C-representatives of a term s, lit-
eral l and clause l1 ∨ · · · ∨ ln are respectively defined by:
s�C

def
= min≺{s | t ≡C s}

(s ./ t)�C
def
= s�C ./ t�C

(l1 ∨ · · · ∨ ln)�C
def
= l1�C ∨ · · · ∨ ln�C

Definition 2 A ground clause C is normalized if:

1. every literal l in C is such that l�C\l = l;

2. there are no two distinct positive literals l, m in C such
that m�lc∨C− is a tautology;

3. C contains no literal of the form t 6' t.
A conjunction of literals X is normalized if the clause X c is
normalized.

Proposition 3 Any ground falsifiable clause C admits a
unique equivalent normalized clause C↓, which is the ≺-
smallest clause equivalent to C. Consequently, two clauses
are equivalent iff either they are both tautological or they
have the same normalized form.

3 A Constrained Superposition Calculus
This section contains the definition of the calculus for gen-
erating implicates, named cSP . It is based on the Superpo-
sition Calculus SP (see for instance [Nieuwenhuis and Ru-
bio, 2001]) which is the most successful proof procedure for
first-order logic with equality. The principle underlying cSP
consists in applying the inference rules of SP to the set of
clauses under consideration along with ground unit clauses
that are added during proof search and that act as hypotheses.
To keep track of the hypotheses that were used to derive a
clause, the former are attached to the clauses as constraints.
This yields the following definition:

Definition 4 A constraint is a conjunction (or set) of ground
literals. The empty (tautological) constraint is denoted by >.

A constrained clause (or c-clause) is a pair [C | X ] where
C is a clause and X is a constraint. The c-clause [C | >] is
simply represented asC, and referred to as a standard clause.

Intuitively X denotes the set of hypotheses used to derive C.
If C is empty, then [C | X ] is equivalent to X c, and X c is an
implicate of the clause set under consideration.

c-Superposition

(i), (ii), (iii)

[t ' s ∨ C |X ] [u[t′] ./ v ∨D |Y]

[u[s] ./ v ∨ C ∨D |X ∪ Y]σ

c-Factoring

(iv), (ix)

[t ' u ∨ t′ ' v ∨ C |X ]

[t ' u ∨ u 6' v ∨ C |X ]σ

c-Reflection

(v), (ix)

[t 6' t′ ∨ C |X ]

[C |X ]σ

Positive Assertion

(vi), (vii)

[u[t] ./ v ∨ C |X ]

[u[s] ./ v ∨ C |X ∧ t′ ' s]σ

Negative Assertion

(ii), (viii), (x)

[t ' s ∨ C |X ]

[u[s] ./ v ∨ C |X ∧ u[t′] ./ v]σ

where the following conditions hold:

For all rules: σ = mgu(t, t′);

(i): (u[t′] ./ v)σ ∈ sel((u[t′] ./ v ∨D)σ) and vσ 6� u[t′]σ;

(ii): (t ' s)σ ∈ sel((t ' s ∨ C)σ) and sσ 6� tσ;

(iii): X ∪ Y ∈ X;

(iv): (t ' u)σ ∈ sel((C ∨ t ' u ∨ t′ ' v)σ);
(v): (t ' t′)σ ∈ sel((t ' t′ ∨ C)σ);

(vi): s ≺ t′, vσ 6� u[t]σ and (u[t] ./ v)σ ∈ sel((u[t] ./
v ∨ C)σ);

(vii): X ∧ t′ ' s ∈ X;

(viii): v ≺ u[t′];
(ix): X ∈ X; and (x): X ∧ u[t′] ./ v ∈ X.

Figure 1: Inference Rules for cSP .

The set of inference rules defining cSP are given in Fig-
ure 1. The notation u[t] is used to denote a term contain-
ing a subterm t (u denotes the context). We may then write
u[s] to denote a term obtained from u[t] by replacing t by
s. The symbol ./ (' or 6') must denote identical symbols in
the premise and in the conclusion of the rule. The rules are
parameterized by the order ≺ and by:

• A selection function sel that maps every clause C to a
set of selected literals in C. The set sel(C) must contain
all �-maximal literals or at least one negative literal.

• A set of normalized constraints X, closed under subset.
Intuitively X denotes the set of abductible formulas, i.e.,
formulas that are allowed to be added as hypotheses.

The use of� and sel is standard, it aims at pruning the search
space by restricting inferences, whereas the set X allows one
to control the addition of hypotheses into the search space.
The reader may consult [Nieuwenhuis and Rubio, 2001] for
missing definitions and more details about the superposition
calculus.

A crucial feature of the Superposition calculus is the avail-
ability of a general criterion for detecting redundant clauses.
In SP , a clause is considered redundant if all its instances
are entailed by ≺-smaller instances of existing clauses. The
definition for cSP is similar, with two differences: first the



constraints of the entailing clauses must be included in that
of the considered clause, and second the literals occurring in
this constraint can also be used in the entailment test, pro-
vided they are smaller than the considered clause. Formally:
Definition 5 IfX is a constraint andC is a clause, we denote
byX|�C the set of literals inX that are smaller than or equal
to C.

A c-clause [C | X ] is redundant w.r.t. a set of c-clauses S
if either X is unsatisfiable or for every ground substitution
σ of the variables in C, there exist c-clauses [Di | Yi] ∈ S
(1 ≤ i ≤ n) and ground substitutions θi (1 ≤ i ≤ n) such
that:
• ∀i ∈ {1 . . . n}, Cσ � Diθi and Yi ⊆ X , and
• X |�Cσ, D1θ1, . . . , Dnθn |= Cσ.

A set of c-clauses S is cSP-saturated if every c-clause de-
ducible by the rules of cSP in one step is redundant w.r.t. S.
A cSP-saturation of a set of c-clauses S is a set of c-clauses
S∗ such that: (i) every c-clause in S is redundant w.r.t. S∗,
(ii) every c-clause in S∗ is obtained from those in S by a fi-
nite number of applications of the rules in cSP , (iii) S∗ is
cSP-saturated.

The following theorem states the soundness and deductive
completeness of cSP .
Theorem 6 Let S be a set of standard clauses and S∗ be a
cSP-saturation of S. For every X ∈ X, X c is an implicate of
S iff S∗ contains a c-clause of the form [2 |X ′] with X ′ ⊆ X .

4 On the Storage of Implicates
Sets of implicates are huge, thus being able to store those
sets in a compact way and to detect redundant implicates effi-
ciently is a critical feature. We begin by devising an efficient
algorithm for testing entailment between ground equational
clauses.

Definition 7 Let C,D be two falsifiable ground clauses. The
clause D E-subsumes C, written D ≤E C, iff the two follow-
ing conditions hold:

1. for every negative literal t 6' s ∈ D, t�C− = s�C− ;
2. for every positive literal l ∈ D, there exists a positive

literal m ∈ C such that m�C−∨lc is a tautology.

Theorem 8 Let C and D be two ground clauses. If C and D
are falsifiable, then D |= C iff D ≤E C.

Based on the entailment test of Definition 7, we define
a trie-like data structure to store implicates and algorithms
to remove redundancy inspired from [De Kleer, 1992]. A
clausal tree is a tree whose edges are labeled by literals and
whose leaves are labeled by either ⊥ or >. Each path from
the root of the tree to a leaf can be associated with a clause
defined as the disjunction of all the literals labeling the edges
along the path. The set of clauses associated with the tree
is the set of clauses associated with a path from the root to
a >-leaf. This representation ensures that the prefixes of the
clauses will be shared, thus reducing the amount of consumed
memory. Note that the edges pointing to a ⊥-leaf are useless
and may be deleted (a node with no successor may be labeled
by ⊥).

We consider a total ordering<π on ground literals, defined
as follows: if l1 is a negative literal and l2 is a positive lit-
eral then l1 <π l2, and if l1, l2 are literals with same polarity
then l1 <π l2 iff l1 ≺ l2. To enforce maximal sharing and
minimize the size of the tree, we assume that the literals oc-
curring along a path in the tree are ordered w.r.t. <π , i.e., for
any path e1, . . . , en in the tree, if e1, . . . , en are edges labeled
by literals l1, . . . , ln respectively, then l1 <π . . . <π ln.

When a new implicate C is generated, we need to test
whether it is a consequence of a previously generated impli-
cate (forward subsumption). If this is the case, then C is re-
dundant and can be dismissed, otherwise we need to delete
in the clausal tree all branches corresponding to an impli-
cate that is a logical consequence of C (backward subsump-
tion). We briefly sketch algorithms for performing these two
tasks. The formal definitions of the algorithms can be found
in [Echenim et al., 2017] together with detailed proofs of their
properties.

Forward Subsumption. Beside the new generated clause
C and the clausal tree T , we also consider two input clauses
N andM that are both initially empty. The clauseN contains
the literals occurring in the parent nodes in the recursive calls
and the clauseM permits to keep track of the negative literals
of C in recursive calls after having used them a first time to
rewrite literals in the tree.

The algorithm is based on a depth-first traversal of the tree
which is best described as a non-deterministic recursive algo-
rithm. The algorithm returns true if the tree contains a single
node labeled by > (representing the empty clause) and back-
tracks if the tree is not> and C = 2 (base cases). Otherwise,
an edge e starting from the root of the tree is chosen. Let l be
the literal labeling e and let T ′ be the subtree pointed by e:

• If it is clear that l |= M ∨ C, then we add l into N and
we proceed to T ′. This entailment condition is tested by
checking that l�M is a contradiction (if l is negative) or
that C�M∨lc contains a tautological literal (if l is posi-
tive).

• If the relation between l andM∨C is not currently deter-
mined (because l is <π-greater than the literal currently
considered in C and thus may entail literals that remain
to be examined), then the minimal literal of C is added
to M before restarting the exploration of the branch cor-
responding to e.

• Lastly, if it is clear that l 6|= C, which is the case e.g.
when l is ≤π-smaller than all the literals in C, then the
algorithm backtracks.

Backward Subsumption. This handles the removal from a
clausal tree T of all the clauses D that are E-subsumed by a
given c-clause C, under the assumption that C itself is not
subsumed by a clause stored in T . As the previous one, the
algorithm performs a depth-first traversal of T with a rewrit-
ing of literals. The main difference is that the roles of C and
T are switched: the literals of a branch of T are rewritten
using the negative literals of C. When the subsumption test



succeeds, the algorithm cuts the corresponding branch in T
before exploring the remaining branches.

5 Experimental Results
Our prime implicate generation method has been imple-
mented in a research prototype called cSP, written in OCaml,
based on the LogTk library [Cruanes, 2014] for term order-
ing and congruence closure. We also implemented another
version of the program, called cSP flat, that only handles
flat clauses, i.e., clauses not containing function symbols of
an arity strictly greater than 0, with additional refinements
that only apply to this fragment.

We compared cSP and cSP flat with the most efficient
available systems for generating implicates of logical formu-
las, namely primer [Previti et al., 2015] and Zres [Simon
and Del Val, 2001], two propositional prime implicate gen-
eration tools based on satisfiability encoding and resolution
respectively, and SOLAR [Iwanuma et al., 2009], a prime im-
plicate generation tool for first order logic based on semantic
tableaux. Equality is not built-in in these systems, thus the
equality axioms had to be added into the considered formula:
reflexivity, commutativity, transitivity and substitutivity. For
Zres and primer, these axioms must also be grounded and
transformed into propositional logic by flattening.

We compared the systems on two randomly generated sets
of (flat and non-flat respectively) equational ground clauses
of small size. Figure 2 compares the execution time of cSP
on the random flat benchmark with that of cSP flat and
primer. It shows that cSP flat is the most suitable tool
to handle such problems.

successes SOLAR successes Zres successes
fail. time(s) inf. PIs fail. time(s) inf. PIs

SOLAR 15% 0% 11.842 663190 506 74% 13.608 767160 455
Zres 52% 13% 0.695 X 2986 0% 12.474 X 13804

primer 53% 13% 0.794 X 2986 0% 3.770 X 13847
cSP flat 63% 4% 6.622 2275 74 2% 0.500 1737 159

cSP 76% 0% 0.042 99 21 2% 3.576 755 49

primer successes cSP flat successes
fail. time(s) inf. PIs fail. time(s) inf. PIs

SOLAR 75% 13.608 767160 455 76% 12.360 694523 460
Zres 2% 12.474 X 13804 19% 7.073 X 10405

primer 0% 8.016 X 18949 17% 7.590 X 15779
cSP flat 2% 1.480 2347 180 0% 14.290 6730 348

cSP 2% 4.296 851 49 3% 7.556 1004 62

cSP successes timeouts
fail. time(s) inf. PIs inf. PIs?

SOLAR 79% 11.842 663191 506 2452908 28152
Zres 33% 10.391 X 11338 X X

primer 31% 7.671 X 16687 X X
cSP flat 19% 8.795 5418 313 X X

cSP 0% 10.193 1209 79 14714 538

Table 1: Test results summary; random non-flat benchmark

Table 1 compares Zres, primer and SOLAR with
cSP flat and cSP on the random non-flat benchmark. For
each system, we isolate the benchmarks for which the system
is able to generate all implicates, and we specify for all sys-
tems the failure rate on those benchmarks (i.e., the percentage
of formulas for which the system is not capable of generating
all implicates in the allocated time, namely 5 min.), the time
needed to generate all prime implicates in case of success, the
number of inferences and the number of implicates generated.
As shown in the ’successes’ column, cSP is the obvious win-
ner in terms of the number of tests handled before timeout.

(a) cSP vs. cSP flat

(b) primer vs. cSP flat

(c) primer vs. cSP

Figure 2: Time comparison of cSP, cSP flat and primer; ran-
dom flat benchmark

More detailed experimental results are presented in [Echenim
et al., 2017].
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