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Abstract. A tableau calculus is proposed, based on a compressed rep-
resentation of clauses, where literals sharing a similar shape may be
merged. The inferences applied on these literals are fused when possible,
which can reduce the size of the proof. It is shown that the obtained
proof procedure is sound, refutationally complete and can reduce the
size of the tableau by an exponential factor. The approach is compatible
with all usual refinements of tableaux.

1 Introduction

Tableau methods (see for instance [2] or [6]) always played a crucial role in the
development of new techniques for automated theorem proving. They are easy to
comprehend and implement, well-adapted to interactive theorem proving, and,
therefore, normally form the basis of the first proof procedure for any newly
defined logic [4]. Nonetheless, they cannot compete with resolution-based calculi
both in terms of efficiency and deductive power (i.e. proof length, see for instance
[3]). This is partly due to the ability of resolution-based methods to generate
lemmas and to simulate atomic cuts3 in a feasible way. There have been attempts
to integrate some restricted forms of cut into tableau methods, improving both
efficiency and proof size (see for instance [11,6]). But, for more general forms
of cuts, it is difficult to decide whether an application of the cut rule is useful
or not, thus the rule is not really applicable during proof search. Instead, cuts
may be introduced after the proof is generated, to make it more compact by
introducing lemmas and fusing recurring patterns [8,9].

In this paper, rather than trying to integrate cuts into the tableau calculus,
we devise a new tableau procedure in which a proof compression, that is sim-
ilar to the compressive power of a Π2-cut, is achieved by employing a shared
representation of literals. Formal definitions will be given later, but we now pro-
vide a simple example to illustrate our ideas. Consider the schema of clause sets:
{
∨n
i=1 p0(ai),∀y.¬pn(y)}∪{∀x.¬pi−1(x)∨pi(x) | i ∈ [1, n]}. A closed tableau can

? Funded by FWF project W1255-N23.
3 We recall that the cut rule consists in expanding a tableau by adding two branches

with ¬φ and φ respectively, where φ is any formula (intuitively φ can be viewed as
a lemma). A cut is atomic if φ is atomic.



be constructed by adding n copies of the clauses ¬pn(yj) and ¬pi−1(xji )∨ pi(x
j
i )

(for i, j ∈ [1, n]) and unifying all variables xji and yj with aj . One gets a tableau
of size O(n2). To make the proof more compact, we may merge the inferences
applied for each aj , since each of these constants are handled in the same way.
This can be done by first applying the cut rule on the formula ∃x.p0(x). The
branch corresponding the ¬∃x.p0(x) can be closed by using the first clause. In
the branch corresponding to ∃x.p0(x) a constant c is generated by skolemization
and the branch can be closed by unifying xi and y with c. This yields a tableau
of size O(n). Since it is hard to guess in advance whether such an application of
the cut rule will be useful or not, we investigate another solution allowing the
same proof compression. We represent the disjunction

∨n
i=1 p0(ai) by a single

literal p0(α), together with a set of substitutions {[α\ai] | i ∈ [1, n]}. Intuitively,
this literal states that p0(α) holds for some term α, and the given set of substi-
tutions specifies the possible values of α. In the following, we call such variables
α abstraction variables. The clauses are kept as compact as possible by grouping
all literals with the same heads and in some cases inferences may be performed
uniformly regardless of the value of α. In our example we get a tableau of size
O(n) by unifying xji and yj with α, this tableau may be viewed as a compact
representation of an ordinary tableau, obtained by making n copies of the tree,
with α = a1, . . . , an. If we find out that an inference is applicable only for some
specific value(s) of α (e.g., if one wants to close a branch by unifying p0(α)
with a clause ¬p0(a1)), then one may “separate” the literal by isolating some
substitution (or sets of substitutions) before proceeding with the inference.

In this paper, we formalize these ideas into a tableau calculus called M -
tableau. Basic inference rules are devised to construct M -tableaux and a strategy
is provided to apply these rules efficiently, keeping the tableau as compact as
possible. We prove that the procedure is sound and refutationally complete and
that it may reduce the size of the proofs by an exponential factor. Our approach
may be combined with all the usual refinements of the tableau procedure.4

2 Notations

We briefly review usual definitions (we refer to, e.g., [13] for details). Terms,
atoms and clauses are built as usual over a (finite) set of function symbols Σ
(including constants, i.e. nullary function symbols), an (infinite and countable)
set of variables V and a (finite) set of predicate symbols Ω. The set of variables
occurring in an expression (term, atom or clause) e is denoted by V(e). For
readability, a term f(t) is sometimes written ft. Ordinary (clausal) tableaux are
trees labelled by literals and built by applying Expansion and Closure rules, the
Expansion rule expands a leaf by n children labelled by literals l1, . . . , ln, where
a copy of l1∨· · ·∨ ln occurs in the clause set at hand, and the Closure rule closes
a branch by unifying the atoms of two complementary literals. A substitution

4 Due to the limited number of pages, we omit proofs that are not necessary for the
understanding of the method. A full version can be found in [10].
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is a function (with finite domain) mapping variables to terms. A substitution
mapping xi to ti (for i ∈ [1, n]) is written [(x1, . . . , xn)\(t1, . . . , tn)]. The identity
substitution (for n = 0) is denoted by id . The image of an expression e by a
substitution σ is defined inductively as usual and written eσ.

3 A Shared Representation of Literals

We introduce the notion of an M -literal, that is a compact representation of a
disjunction of ordinary literals with the same shape. The interest of this repre-
sentation is that it will allow us to perform similar inferences in parallel on all
these literals. We assume that V is partitioned into two (infinite) sets Vo and Va.
The variables in Vo are ordinary variables. They may be either universally quan-
tified variables in clauses, or rigid variables in tableaux. The variables in Va are
called abstraction variables. These are not variables in the standard sense, but
can been seen rather as placeholders for a term that may take different values
in different literals or branches. These variables will permit to share inferences
applied on different literals. The set of ordinary variables (resp. abstraction vari-
ables) that occur in a term t is denoted by Vo(t) (resp. Va(t)). A renaming is an
injective substitution σ such that x ∈ Vo ⇒ xσ ∈ Vo and α ∈ Va ⇒ ασ ∈ Va.

Definition 1 (Syntax of M-Clauses). An M -literal is either true or a triple
〈L, t̄,S〉, where:

– L is either a predicate symbol P or the negation of a predicate symbol ¬P ,
– t̄ is an n-tuple of terms, where n is the arity of P ,
– and S is a set of substitutions σ with the same domain D ⊆ Va(t̄) (by

convention D is empty if S = ∅) and such that V(t̄σ) ∩D = ∅.

An M -clause is a set of M -literals, often written as a disjunction.

With a slight abuse of words, we will call the set D in the above definition
the domain of S (denoted by dom(S)). The semantics of M -clauses is defined
by associating each M -literal with an ordinary clause (or true):

Definition 2 (Semantics of M-Clauses). For every M -literal l, we denote
by formula(l) the formula defined as follows (with the convention that empty
disjunctions are equivalent to false):

formula(〈L, t̄,S〉) def
=

∨
θ∈S L(t̄θ)

formula(true)
def
= true

For every M -clause C, we denote by formula(C) the clause
∨
l∈C formula(l). For

every set of M -clauses C, we denote by formula(C) the formula (in conjunctive
normal form)

∧
C∈C formula(C).

We write E ' E′ iff formula(E) = formula(E′) (up to the usual properties
of ∨ and ∧: associativity, commutativity and idempotence).
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Example 1. Let P be a unary predicate, Q be a binary predicate, c be a constant,
f be a unary function, x be an ordinary variable, and α, β, γ be abstraction
variables. The triples l1 = 〈P, α, {[α\f(c)]}〉 and

l2 = 〈Q, (β, f(γ)), {[(β, γ)\(f(c), c)], [(β, γ)\(c, f(c))]}〉

are M -literals, and

formula(l1) = P (f(c))
formula(l2) = Q(f(c), f(c)) ∨Q(c, f(f(c)))

The common shape Q(·, f(·)) is shared between the two literals in the second
clause.

Remark 1. Observe that if S = ∅ then formula(〈L, t̄,S〉) = false, i.e. 〈L, t̄,S〉
denotes an empty clause. Moreover, any ordinary literal may be encoded as an
M -literal where the set of substitutions is a singleton, e.g., the formula corre-
sponding to 〈P, (a, x), {[α\a]}〉 is P (a, x). Also, an M -literal 〈L, t̄, {σ}〉 is always
equivalent to 〈L, t̄σ, {id}〉.

The application of a substitution σ to an M -literal is defined as follows:

(true)σ
def
= true

〈L, t̄,S〉σ def
= 〈L, t̄σ′, {θσ | θ ∈ S}〉

where σ′ denotes the restriction of σ to the variables not occurring in dom(S).

Example 2. Let l = 〈P, (α, x), {[α\x], [α\y]}〉 and σ = [x\a]. Then:

lσ = 〈P, (α, a), {[α\a], [α\y]}〉

Let l′ = 〈Q, (α), {[α\a], [α\b]}〉 and θ = [α\a]. Then l′θ = l′.

Proposition 1. Let l = 〈L, t̄,S〉 be an M -literal. If dom(S) = ∅, then one of
the following conditions hold:

– S = ∅ and formula(l) = false;
– S = {id} and formula(l) = L(t̄).

Proof. The identity is the only substitution with empty domain.

A given ordinary clause may be represented by many different M -clauses,
for instance P (a) ∨ P (b) may be represented as 〈P, (a), {id}〉 ∨ 〈P, (b), {id}〉 or
〈P, (α), {[α\a], [α\b]}〉, or even 〈P, (α), {[α\a], [α\b]}〉∨ 〈Q, (β), ∅〉. In practice it
is preferable to start with a representation in which useless literals are deleted
and in which the remaining literals are grouped when possible. This motivates
the following:

Definition 3. An M -clause C is in bundled normal form (short: BNF) if it
satisfies the following conditions.
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– For every M -literal 〈L, t̄,S〉 ∈ C, S 6= ∅.
– If true ∈ C then C = {true}.
– For all distinct literals 〈L1, t̄1,S1〉, 〈L2, t̄2,S2〉 ∈ C, L1 is distinct from L2.

An M -clause set C is in BNF if all M -clauses of C are in BNF.

Example 3. Let

l1
def
= 〈P, α, {[α\f(c)]}〉,

l2
def
= 〈P, β, {[β\f(c)]}〉,

l3
def
= 〈Q, (β, fγ), {[(β, γ)\(f(c), c)], [(β, γ)\(c, f(c))]}〉,

and
l4

def
= 〈Q, (β, γ), {[(β, γ)\(f(c), c)], [(β, γ)\(c, f(c))]}〉

be M -literals. The M -clause {l3, l4} is not in BNF while the M -clauses {l1, l4}
and {l2, l4} are in BNF.

Definition 4. An M -clause C is well-formed if for all distinct literals l =
〈L1, t̄1,S1〉 and m = 〈L2, t̄2,S2〉 in C, dom(S1) ∩ dom(S2) = ∅.

Example 4. Consider the two M -clauses C1 := {l1, l4} and C2 := {l2, l4} of
Example 3. C1 is well-formed, C2 is not well-formed. By renaming, C2 can be
transformed into C1.

It is clear that every M -clause can be transformed into an equivalent well-
formed M -clause by renaming. In the following, we shall implicitly assume that
all the considered M -clauses are well-formed.

Lemma 1. Let F be a formula in conjunctive normal form. Then there is an
M -clause set C in BNF such that formula(C) ' F.

Example 5. Consider the clause {l3, l4} of Example 3. It can be written in BNF
as 〈Q, (β, γ),S〉, where S denotes the following set of substitutions:

{[(β, γ)\(f(c), f(c))], [(β, γ)\(c, f(f(c)))], [(β, γ)\(f(c), c)], [(β, γ)\(c, f(c))]}

4 A Tableaux Calculus for M -Clauses

In this section, we devise a tableaux calculus for refuting sets of M -clauses. This
calculus is defined by a set of inference rules, that, given an existing tableau T ,
allow one to:

1. Expand a branch with new children, by introducing a new copy of an M -
clause of the set at hand.

2. Instantiate some of the (rigid) variables occurring in the tableau.
3. Separate shared literals inside an M -clause, so that different inferences can

be applied on each of the corresponding branches. The rule can be applied
on nodes that are not leaves.
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Steps 1 and 2 are standard, but Step 3 is original.

Definition 5 (Pre-Tableau). A pre-tableau is a tree T where vertices are
labelled by M -literals or by false. We call the direct successors of a node its
children. The root is the (unique) node that is not a child of any node in T and
a leaf is a node with no child. A path P is a sequence of nodes (ν1, . . . , νn) such
that νi+1 is a child of νi for i ∈ [1, n − 1]. Furthermore, we call ν1 the initial
node of P and νn the last node of P . A branch is a path such that the initial
node is the root and the last node is a leaf. With a slight abuse of words we say
that a branch contains an M -literal l if it contains a node labelled by l.

The descendants of a node ν are inductively defined as ν and the descendants
of the children of ν. The subtree of root ν in T is the subtree consisting of all
the descendants of ν, as they appear in T .

If ν is a non-leaf node with exactly n > 0 children ν1, . . . , νn labelled by M -
literals l1, . . . , ln respectively, then the formula associated with ν is defined as:∨n
i=1 formula(li).

We say that an M -literal 〈L, t̄,S〉 (resp. a node ν labelled by 〈L, t̄,S〉) in-
troduces an abstraction variable α if α ∈ dom(S) (as shown in Proposition 2,
the abstraction variables are introduced by exactly one M -literal or node in an
M -tableau).

Definition 6. Let T be a pre-tableau and σ be a substitution. Then T σ denotes
the result of applying σ to all M -literals labelling the nodes of T .

Definition 7 (Tableau for a Set of M-Clauses). An M -tableau T for a
set of M -clauses C is a pre-tableau built inductively by applying the rules Ex-
pansion, Instantiation and Separation to an initial tableau containing only one
node, labelled by true (also called the initial M -literal).

In the following, the word “tableau” always refers to an M -tableau, unless spec-
ified otherwise (we use the expression “ordinary tableau” for standard ones).

The rules are defined as follows (in each case, T denotes a previously con-
structed tableau for a set of M -clauses C).

Expansion Rule. Let λ be a leaf of T , and C be an element of C not containing
true. Let C ′ be a copy of C where all variables that occur also in T are renamed
such that C ′ share no variable5 with T . The pre-tableau T ′ constructed by
adding a new child labelled by l to λ for each l ∈ C ′ is a tableau for C.

Instantiation Rule. Let t be a term and x ∈ Vo such that for all nodes ν, ν′, if ν
is labelled by an M -literal containing x and ν′ introduces an abstraction variable
α ∈ Va(t), then ν is a proper descendant of ν′. Then T [x\t] is a tableau for C.

Remark 2. Observe that if t contains no abstraction variables then the condition
always holds, since no node ν′ satisfying the above property exists. In practice,
the Instantiation rule should of course not be applied with an arbitrary variable

5 Note that both ordinary and abstraction variables are renamed.
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and term. Unification will be used instead to find the most general instantiations
closing a branch. A formal definition will be given later (see Definition 11).

Example 6. Let

T1
def
=

true

〈¬P, x, {id}〉

〈P, α, {[α\a], [α\b]}〉
T2

def
=

true

〈P, α, {[α\a], [α\b]}〉

〈¬P, x, {id}〉

be two tableaux for some set of M -clauses C. The pre-tableau T1[x\α] is not a
tableau, because x is substituted by a term containing an abstraction variable
α, and x occurs above the literal introducing α. On the other hand, T2[x\α] is a
tableau.

Separation Rule. The rule is illustrated in Figure 1 towards Figure 3. Let ν be
a non-leaf node of T . Let µ be a child of ν, labelled by l = 〈L, t̄,S〉. Let r̄ = t̄θ
be an instance of t̄, with dom(θ) = dom(S) and Va(t̄θ) ∩ dom(S) = ∅. Let S1
be the set of substitutions σ ∈ S such that there exists a substitution σ′ with
t̄σ = r̄σ′ and every variable in dom(σ′) is an abstraction variable not occurring

in T , and let S2
def
= S \ S1. Assume that S1 6= ∅. We define the new literal

l′
def
= 〈L, r̄, {σ′ | σ ∈ S1}〉. The Separation rule is defined as follows:

1. We apply the substitution θ to T 6 .
2. We replace the label l of µ by l′.
3. We add a new child to the node ν, labelled by a literal 〈L, t̄,S2〉.

Observe that if S2 = ∅ then formula(〈L, t̄,S2〉) = false hence the third step may
be omitted, since the added branch is unsatisfiable anyway. The rule does not
apply if S1 is empty.

Example 7. Let

l1 := 〈P, α, {[α\fc]}〉,
l2 := 〈¬P, α′, {[α′\fc]}〉,
l3 := 〈¬Q, (β′, γ′), {[(β′, γ′)\(fx, y)]}〉, and

l4 := 〈Q, (β, γ), {[(β, γ)\(fc, c)], [(β, γ)\(z, fc)], [(β, γ)\(fz, fc)]}〉

be M -literals and C = {{l1, l4}, {l2}, {l3}} be an M -clause set in BNF. Applying
three times the Expansion rule, we can derive the tableau

true

〈¬P, α′, {[α′\fc]}〉

〈Q, (β, γ), {[(β, γ)\(fc, c)], [(β, γ)\(z, fc)], [(β, γ)\(fz, fc)]}〉

〈¬Q, (β′, γ′), {[(β′, γ′)\(fx, y)]}〉

〈P, α, {[α\fc]}〉

6 Actually, due to the above conditions, the variables in dom(θ) only occur in the
subtree of root µ, hence θ only affects this subtree.
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Fig. 1. The initial subtree
in the Separation rule.
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.

m

l

T3

T2

T1

where m is the label of
node ν and T1, T2, and T3

are possibly empty
subtrees.

Fig. 2. The subtree after
an application of the Sep-
aration rule.

.

.

.

mθ

l′

T3θ

〈L, t̄,S2〉 T2θ

T1θ

where m is the label of
node ν and T1, T2, and T3

are possibly empty
subtrees.

Fig. 3. The subtree with-
out redundant substitu-
tions after an application
of the Separation rule.

.

.

.

m

l′

T3θ

〈L, t̄,S2〉 T2

T1

where m is the label of
node ν and T1, T2, and T3

are possibly empty
subtrees.

Now, we apply two times the Separation rule. First we choose m of Figure 1 to
be true and l to be 〈¬P, α′, {[α′\fc]}〉, where the substitution θ is [α′\fc] (hence
we get S1 = {id}). Afterwards, we choose analogously 〈¬P, fc, {id}〉 (which is
the result of the first application) and 〈P, α, {[α\fc]}〉, with the substitution
[α\fc]. Both times, the tuple r̄ of the Separation rule is fc (with S2 = ∅ in both
cases). This leads to the tableau:

true

〈¬P, fc, {id}〉

〈Q, (β, γ), {[(β, γ)\(fc, c)], [(β, γ)\(z, fc)], [(β, γ)\(fz, fc)]}〉

〈¬Q, (β′, γ′), {[(β′, γ′)\(fx, y)]}〉

〈P, fc, {id}〉

Afterwards, we again apply the Separation rule, to modify the node labelled
with l4 where r̄ = (fδ, γ∗) and S2 = {[(β, γ)\(z, fc)]}.

true

〈¬P, fc, {id}〉

〈Q, (fδ, γ∗), {[(δ, γ∗)\(c, c)], [(δ, γ∗)\(z, fc)]}〉

〈¬Q, (β′, γ′), {[(β′, γ′)\(fx, y)]}〉

〈Q, (β, γ), {[(β, γ)\(z, fc)]}〉 〈P, fc, {id}〉

After some further applications of the Separation and Expansion rules, we are
able to construct the following tableau by applying the Instantiation rule with
the substitutions [z\fx′], [y\fc], [x\δ], [y\γ∗].

true

〈¬P, fc, {id}〉

〈Q, (fδ, γ∗), {[(δ, γ∗)\(c, c)], [(δ, γ∗)\(fx′, fc)]}〉

〈¬Q, (fδ, γ∗), {id}〉

〈Q, (fx′, fc), {id}〉

〈¬Q, (fx′, fc), {id}〉

〈P, fc, {id}〉

8



5 Soundness

Definition 8. Let T be a pre-tableau or a tableau. A branch B of T is closed
if it contains false or two nodes labelled by literals 〈L1, t̄1,S1〉, 〈L2, t̄2,S2〉 such
that t̄1 = t̄2, L1 = P , L2 = ¬P for some predicate symbol P . The (pre)-tableau
T is closed iff all branches of T are closed.

Example 8. The final tableau of Example 7 contains three branches, i.e.

{〈¬P, fc, ∅〉, 〈Q, (fδ, γ∗), {[(δ, γ∗)\(c, c)], [(β, γ)\(c, ffx′)]}〉, 〈¬Q, (fδ, γ∗), ∅〉},
{〈¬P, fc, ∅〉, 〈Q, (fx′, fc), ∅〉, 〈¬Q, (fx′, fc), ∅〉}, and

{〈¬P, fc, ∅〉, 〈P, fc, ∅〉}.

All of them are closed and so the tableau is closed. Observe that the inferences
closing the branches corresponding to the literals Q(f(c), c) and Q(f(z), f(c))
in {l1, l4} are shared in the constructed tableau (both branches are closed by
introduced suitable instances of l3), whereas the literal Q(z, f(c)) is handled
separately (by instantiating z by f(x′) and using yet another instance of l3).

Proposition 2. Let T be a tableau. If ν1 and ν2 are distinct nodes in T , labelled
by the M -literals 〈L1, t̄1,S1〉 and 〈L2, t̄2,S2〉 respectively, then S1 and S2 have
disjoint domains.

Proposition 3. Let T be a tableau for a set of M -clauses C. For every non-leaf
node ν in T , the formula associated with ν (as defined in Definition 5) is an
instance of a formula formula(C), where C is a renaming of an M -clause in C.

Proof. It suffices to show that all the construction rules preserve the desired
property.

– Expansion. The property immediately holds for the nodes on which the
rule is applied, by definition of the rule. The other nodes are not affected.

– Instantiation. By definition, the formula associated with a node ν in the
final tableau is an instance of the formula associated with ν in the initial
one. Thus the property holds.

– Separation. The nodes occurring outside of the subtree of root µ are not
affected. By definition, the formula associated with the descendants of µ
in the new tableau are instances of formulas associated with nodes of the
initial tableau. Thus it only remains to consider the node ν. The formula
associated with ν in the final tableau is obtained from that of the initial
one by removing the formula corresponding to an M -literal l = 〈L, t̄,S〉 and
replacing it by formula(l′) ∨ formula(〈L, t̄,S2〉). Since l′ = 〈L, r̄, {σ′ | σ ∈
S1}〉, we have formula(l′) =

∨
σ∈S1

L(r̄σ′) =
∨
σ∈S1

L(t̄σ) (since t̄σ = r̄σ′ by
definition of the Separation rule). Thus formula(l′) ∨ formula(〈L, t̄,S2〉) =
formula(〈L, t̄,S〉) and the proof is completed.

Proposition 4. Let T be a tableau for C. Let α ∈ Va be a variable introduced
in a node ν and assume that α occurs in an M -literal labelling a node µ. Then
µ is a descendant of ν.
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Lemma 2. Let T be a closed tableau for C and let T ′ be the tableau after apply-
ing once the Separation rule to a node ν of T with a child µ labelled with l. Then
there is at most one branch B in T ′ that is not closed. Moreover, this branch
necessarily contains the node labelled by 〈L, t̄,S2〉 (see Figure 3). In particular,
if S2 is empty then 〈L, t̄,S2〉 is false and T ′ is closed.

Theorem 1 (Soundness). If a set of M -clauses C admits a closed tableau T
then C is unsatisfiable.

Proof. We prove soundness by transforming T into a closed tableau that contains
only M -literals where the substitution set is {id} or ∅. Due to Proposition 3,
the resulting tableau then corresponds to an ordinary tableau. The soundness of
ordinary tableau then implies the statement.

We transform the tableau T by an iterative procedure. We always take an
arbitrary topmost node ν labelled with an M -literal l = 〈L, t̄,S〉 where S 6= {id}
and S 6= ∅. Then we consider a substitution θ ∈ S and we apply the Separation
rule with the tuple t̄θ. We have t̄θ = t̄θid and if σ ∈ S \{θ}, then t̄σ 6= t̄θ, hence
there is no substitution σ′ with t̄σσ′ = t̄θ, such that dom(σ′) only contains
fresh variables. Consequently, the rule splits S into a singleton S1 = {θ} and
S2 = S1\{θ}. The literal l gets replaced by l′ = 〈L, t̄θ, {id}〉 and we add the node
µ labelled with 〈L, t̄,S2〉. By Lemma 2, there is at most one non-closed branch,
i.e. the branch ending with the node µ is the only open branch. We consider a
copy Tν of the subtree of root ν in T , renaming all variables introduced in Tν
by fresh variables. We replace the root node of Tν by 〈L, t̄,S2〉 and replace the
subtree of root µ in the tableau by Tν . It is easy to check that the obtained
tableau is a closed tableau for C. Furthermore, the length of the branches does
not increase, the number of non-empty substitutions occurring in the M -literals
does not increase, and it decreases strictly in l′ and 〈L, t̄,S2〉. This implies that
the multiset of multisets {|{σ ∈ S ′1 | σ 6= id}|, . . . , |{σ ∈ S ′n | σ 6= id}|} of natural
numbers, where {〈Li, t̄i,S ′i〉 | i ∈ [1, n]} is a branch in T is strictly decreasing
according to the multiset extension of the usual ordering. Since this ordering
is well-founded, the process eventually terminates, and after a finite number of
applications of this procedure we get a tableau only containing nodes labelled
with M -literals whose substitution set is equal to {id} or ∅.

Remark 3. As a by-product of the proof, we get that the size of the minimal
ordinary tableau for a clause set formula(C) is bounded exponentially by the
size of any closed tableau for C. Indeed, we constructed an ordinary tableau
from an M -tableau T in which every branch (l1, . . . , ln) in T is replaced by (at
most) kn branches, where k is the maximal number of substitutions in li. In
Section 7, we shall prove that this bound is precise, i.e. that our tableau calculus
allows exponential reduction of proof size w.r.t. ordinary (cut-free) tableaux.

6 Completeness

Proving completeness of M -tableau is actually a trivial task, since one could
always apply the Separation rule in a systematic way on all M -literals to trans-
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form them into ordinary literals (as it is done in the proof of Theorem 1), and
then get the desired result by completeness of ordinary tableau. However, this
strategy would not be of practical use. Instead, we shall devise a strategy that
keeps the M -tableau as compact as possible and at the same time allows one to
“simulate” any application of the ordinary expansion rules. In this strategy, the
Separation rule is applied on demand, i.e. only when it is necessary to close a
branch. No hypothesis is assumed on the application of the ordinary expansion
rules, therefore the proposed strategy is “orthogonal” to the usual refinements of
ordinary tableaux, for instance connection tableaux7 [12] or hyper-tableaux8 [1].
Thus our approach can be combined with any refutationally complete tableau
procedure [6].

The main idea denoted by simulate a strategy is to do the same steps as in
ordinary tableau, while keeping M -clauses as compressed as possible. If ordinary
tableau expands the tableau by a clause, we expand the tableau with the corre-
sponding M -clause, and if a branch is closed in the ordinary tableau, then the
corresponding branch is closed in the M -tableau. This last step is not trivial:
Given two ordinary literals P (t̄) and ¬P (r̄) the ordinary tableau might compute
the most general unifier (mgu) of t̄ and r̄. But in the presented formalism, the
two literals might not appear as such, i.e. there are no literals m = 〈P, t̄, {id}〉
and k = 〈¬P, r̄, {id}〉 . In general, there are only M -literals m′ = 〈P, t̄′,S1〉 and
k′ = 〈¬P, r̄′,S2〉 such that t̄′θ = t̄ and r̄′ϑ = r̄, where θ and ϑ denote the compo-
sitions of the substitutions occurring in the M -literals in the considered branch.
Note also that, although t̄′ and r̄′ are unifiable, the Instantiation rule cannot
always be applied to unify them and close the branch. Indeed, the domain of
the mgu may contain abstraction variables, whereas the Instantiation rule only
handles universal variables. For showing completeness, it would suffice to apply
the Separation rule on each ancestor of k′ and m′ involved in the definition of θ
or ϑ, to create a branch where the literals m and k appear explicitly. Thereby, we
would lose a lot of the formalisms benefit. Instead, we shall introduce a strategy
that uses the Separation rule only if this is necessary for making the unification
of t̄′ and r̄′ feasible (by mean of the Instantiation rule). Such applications of the
Separation rule may be seen as preliminary steps for the Instantiation rule. This
follows the maxim to stay as general as possible because a more general proof
might be more compact.

In the formalisation of the Instantiation rule we ensured soundness by al-
lowing abstraction variables only to occur in descendants of the literal that
introduced the variable. This has a drawback to our strategy: The unification
process that we try to simulate can ask for an application of the Instantiation
rule which would cause a violation of this condition for abstraction variables if

7 Connection tableaux can be seen as ordinary tableaux in which any application of
the Expansion rule must be followed by the closure of a branch, using one of the
newly added literals and the previous literal in the branch.

8 Hyper-tableaux may be viewed in our framework as ordinary tableaux in which the
Expansion rule must be followed by the closure of all the newly added branches
containing negative literals.
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we follow the procedure in the former paragraph. We thus have to add further
applications of the Separation rule to ensure that this condition is fulfilled.

Definition 9. Let B = (ν0, ν1, . . . , νn) be a path in a tableau T where ν0 is the
initial node of T and each node νi (with i > 0) is labelled by 〈Li, t̄i,Si〉.

An abstraction substitution for B is a substitution ηn . . . η1 with ηi ∈ Si, for
i = 1, . . . , n.

A conflict in a branch B is a pair (t̄i, t̄j) with i, j ∈ [1, n], Li and Lj are
dual and t̄i and t̄j are unifiable. A conflict is η-realizable if η is an abstraction
substitution for B such that t̄iη and t̄jη are unifiable.

In practice, we do not have to check that a conflict is realizable (this would
be costly since we have to consider exponentially many substitutions).

If (t̄, t̄′) is a conflict then t̄ and t̄′ are necessarily unifiable, with some mgu
θ. As mentioned before, this does not mean that a branch with conflict can
be closed. Moreover, according to the restriction on the Instantiation rule, a
variable x cannot be instantiated by a term containing an abstraction variable
α, if x occurs in some ancestor of the literal introducing α in the tableau. This
motivates the following:

Definition 10. A variable α ∈ Va is blocking for a conflict (t̄, t̄′), where θ =
mgu(t̄, t̄′) if α ∈ dom(θ) or α occurs in a term xθ, where x ∈ Vo and x occurs
in a literal labelling an ancestor of the node introducing α.

Finally, we introduce a specific application of the Separation rule which allows
one either to “isolate” some literals in order to ensure that they have a specific
“shape” (as specified by a substitution), or to eliminate abstraction variables
completely if needed.

Definition 11. If σ is a substitution, we denote by doma(σ) the set of variables
α ∈ Va such that ασ 6∈ Va.

A tableau is compact if it is constructed by a sequence of applications of the
tableau rule in which:

– The Instantiation rule is applied only if the tableau contains a branch with
a conflict (t̄, t̄′), with no blocking variable. Each variable x ∈ dom(σ) is
replaced by a term tσ, where σ = mgu(t̄, t̄′) (since there is no blocking variable
it is easy to check that the conditions on the Instantiation rule are satisfied).
Afterwards, it is clear that the branch is closed.

– The Separation rule is applied on a node labelled by 〈L, t̄,S〉, using a substi-
tution θ only if there exists a conflict (t̄, t̄′) with σ = mgu(t̄, t̄′) such that one
of the following conditions holds:
1. dom(S) contains a blocking variable in doma(σ) and θ is defined as fol-

lows: dom(θ) = dom(S)∩doma(σ), xθ = xσ if xσ is a variable, otherwise
xθ is obtained from xσ by replacing all variables by pairwise distinct fresh
abstraction variables.

2. Or dom(S) contains a blocking variable not occurring in doma(σ), and
θ ∈ S.
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The applications of the Separation rule in Definition 11 are targeted at mak-
ing the closure of the branch possible by getting rid of blocking variables, while
keeping the tableau as compact as possible (thus useless separations are avoided).

Example 9. For instance, assume that we want to close a branch containing two
literals l = 〈L, (α), {[α\f(a)], [α\f(b)], [α\a]}〉 and l′ = 〈¬L, f(x), {id}〉. To this
aim, we need to ensure that α is unifiable with f(x). This is done by applying
the separation rule (Case 1 of Definition 11) with the substitution [α\f(β)], so
that α has the desired shape. This yields: 〈L, (f(β)), {[β\a], [β\b]}〉 Afterwards,
if x does not occur before l in the branch then the branch is closed by unifying x
with β. If x occurs before l, then this is not feasible since this would contradict
the condition on the Instantiation rule, and we have to apply the Separation
rule again (Case 2) to eliminate β, yielding (for instance) 〈L, (f(a)), {id}〉. The
direct application of the Separation rule with, e.g., θ = [α\f(a)] is forbidden in
the strategy.

Theorem 2 (Completeness). Let C be a clause set and C be an M -clause set
with formula(C) ' C. If C is unsatisfiable, then there is a closed compact tableau
for C.

Proof. For an M -clause Ci ∈ C, we denote by Ci the ordinary clause in C with
formula(Ci) ' formula(Ci). W.l.o.g. we can assume that clauses do not appear
twice, neither in C nor in C. Now, we can perform a proof search based on ordinary
tableau starting with C (using any complete strategy) yielding a closed tableau,
built by applying the usual Expansion and Closure rules. In the following, T will
denote an already constructed ordinary tableau for C and T will represent the
corresponding M -tableau for C. More precisely, the tableau T is constructed in
such a way that there exists an injective mapping h from the nodes in T to those
in T, a function ν 7→ ην mapping each node ν in T labelled by some literal 〈L, t̄,S〉
to an abstraction substitution η and a substitution ϑ (with dom(ϑ) ⊆ Vo) such
that the following property holds (denoted by (?)):

1. The root of T is mapped to the root of T.
2. If ν is a child of ν′ then h(ν) is a child of h(ν′).
3. For any path (ν0, . . . , νn), if νn is labelled by an M -literal 〈L, t̄,S〉, then
h(νn) is labelled by a literal L(t̄)ηνn . . . ην1

ϑ.
4. If a branch of the form (h(ν0), . . . , h(νn)) is closed in T, then (ν0, . . . , νn) is

closed in T .

Note that the mapping is not surjective in general (T may be bigger than T ).
By (?), if T is closed then T is also closed, which gives us the desired result.
It is easy to check that applying the Separation rule on a node νi in a branch
(ν0, . . . , νn) in T preserves (?), provided it is applied using a substitution θ (as
defined in the Separation rule) that is more general than ηνn ◦ · · · ◦ ην1

.
The tableau T is constructed inductively as follows. For the base case, we

may take T = T = true and (?) trivially holds.
Expansion: The Expansion rule of ordinary tableaux allows one to expand

the tableau by an arbitrary clause Ci of C. We define the corresponding tableau
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for C as the tableau expanded by Ci. The mappings h and ην may be extended
in a straightforward way so that (?) is preserved (the unique new node ν in T
may be mapped to an arbitrary chosen new node in T).

Closure: Assume that a branch in T is closed by applying some substitu-
tion σ, using two literals L(t̄) and ¬L(r̄), where σ = mgu(t̄, r̄). If one of these
literals do not occur in the image of a branch of T then it is clear that the
operation preserves (?) (except that the substitution ϑ is replaced by ϑσ), hence
no further transformation is required on T . Otherwise, by (?), there is a branch
B = (ν0, . . . , νn) in T where for every i ∈ [1, n], νi is labelled by li = 〈Li, t̄′i,Si〉,
two numbers j, k ∈ N such that Lj = L, Lk = ¬L, t̄′jηϑ = t̄ and t̄′kηϑ = r̄, with
η = ηνn . . . ην1 .

By definition, (t̄′j , t̄
′
k) is an η-realizable conflict. Let σ′ be the mgu of t̄′j and

t̄′k. If there is no blocking variable for (t̄′j , t̄
′
k), then the Instantiation rule applies,

replacing every variable x ∈ dom(σ′) by xσ′, and the branch may be closed. By
definition ηϑσ is a unifier of t̄ and r̄, hence ηϑσ = σ′θ′, for some substitution
θ′. By definition, the co-domain of η contains no abstraction variables, thus
θ′ = ηϑ′, with dom(ϑ′) ⊆ Vo, and ϑσ = σ′ϑ′. The application of the rule
preserves (?), where ϑ is replaced by the substitution ϑ′. Indeed, consider a
node ν in T , initially labelled by a literal 〈L, t̄,S〉, where h(ν) is labelled by
L(t̄)ηνn . . . ην1ϑ. After the rule application, ν is labelled by 〈L, t̄σ′,Sσ′〉, h(ν)
is labelled by L(t̄)ηνn . . . ην1ϑσ, and the substitutions ηνi are replaced by ηνiσ

′.
Since dom(σ′) ∩ Va = ∅, it is clear that σ′ηνn . . . ην1

σ′ϑ′ = ηνn . . . ην1
σ′ϑ′ =

ηνn . . . ην1
ϑσ.

Otherwise, the set of blocking variables is not empty, and since all abstraction
variables occurring in the tableau must be introduced in some node, there exists
l ∈ [1, n] such that dom(Sl) contains a blocking variable. According to Definition
11, the Separation rule may be applied on νl (it is easy to check that all the
application conditions of the rule are satisfied). In Case 1 (of Definition 11), θ is
more general than σ′ by definition, and since ηνn ◦ · · · ◦ ην1ϑσ is a unifier of t̄′j
and t̄′k, the mgu σ′ must be more general than ηνn ◦ · · · ◦ ην1 . In Case 2, we can
take θ = ηνl , which is more general than ηνn ◦ · · · ◦ ην1

(since the substitutions
ην have disjoint domains). Thus the property (?) is preserved.

This operation is repeated until the set of blocking variables is empty, which
allows us to apply the Instantiation rule as explained before. The process nec-
essarily terminates since each application of the Separation rule either increases
the size of the tableau (either by adding new nodes, or by instantiating a variable
by a non variable term), or does not increase the size of the tableau but strictly
reduces the number of abstraction variables. Furthermore, by (?), the size of T
is smaller than that of T.

7 An Exponentially Compressed Tableau

In this section, we will show that the presented method is able to compress
tableaux by an exponential factor. This corresponds to an introduction of a
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single Π2-cut9 (see [9]). As a simplified measurement of the size of a tableau
we consider the number of nodes. Let us consider the schema of M -clause sets
Cn def

= {{ln1 }, {l2, l3}, {ln4 }} with

ln1 = 〈P, ᾱ, [ᾱ\(x, f1x)], . . . , [ᾱ\(x, fnx)]〉
l2 = 〈¬P, β̄, [β̄\(x, y)]〉
l3 = 〈P, γ̄, [γ̄\(x, fy)]〉
ln4 = 〈¬P, δ̄, [δ̄\(fx1, fx2)], . . . , [γ̄\(fxn−1, fxn)]〉

where ᾱ = (α1, α2), β̄ = (β1, β2), γ̄ = (γ1, γ2), and δ̄ = (δ1, δ2) for n ∈ N. Then
we can construct a closed tableau for Cn whose size is linear w.r.t. n:

〈P, (fx1, α
1
2), {[α1

2\f1fx1], . . . , [α1
2\fnfx1]}〉

〈¬P, (fx1, α
1
2), {id}〉 〈P, (fx1, fα

1
2), {id}〉

〈P, (fα1
2, α

2
2), {[α2

2\f1fα
1
2], . . . , [α2

2\fnfα
1
2]}〉

〈¬P, (fα1
2, α

2
2), {id}〉 〈P, (fα1

2, fα
2
2), {id}〉

〈P, (fαn−2
2 , α

n−1
2 ), {[αn−1

2 \f1fα
n−2
2 ], . . . , [α

n−1
2 \fnfα

n−2
2 ]}〉

〈¬P, (fαn−2
2 , α

n−1
2 ), {id}〉 〈P, (fαn−2

2 , fα
n−1
2 ), {id}〉

〈¬P, (fx1, fα
1
2), {id}〉 . . . 〈¬P, (fαn−2

2 , fα
n−1
2 ), {id}〉

The clause set schema Cn is a simplified variant of the example in [9, Section
3 and 9] and one can easily verify that an ordinary tableau method is of expo-
nential size of n. Just consider the term instantiations which are necessary for
an ordinary tableau:

x← {fx1, ffi1fx1, . . . , ffin−2
f . . . fi1fx1|i1, . . . , in−2 ∈ [1, n]} in ln1 ,

(x, y)← {(t, fit)|i ∈ [1, n] ∧ t is a substitution for x in ln1 } in l2 and l3, and

(x1, . . . , xn)← {(x1, fi1fx1, . . . , fin−1
f . . . fi1fx1)|i1, . . . , in−1 ∈ [1, n]} in ln4 .

Obviously, xn in ln4 is substituted with nn−1 terms. These correspond to the
instantiations defined in [9, Theorem 13].

8 Future Work

From a practical point of view, algorithms and data-structures have to be devised
to apply the above rules efficiently, especially to identify conflicts and blocking
substitutions in an incremental way. In the wake of this, experimental evaluations
based on an implementation are reasonable. While the procedure is described
for first-order logic, we believe that the same ideas could be profitably applied

9 In a Π2-cut, the cut formula is of the form ∀x∃yA where A is a quantifier-free
formula.
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to other logics, and even to other calculi, including saturation-based procedures.
It would also be interesting to combine this approach with other techniques for
reducing proof size, for instance variable splitting [7], or with techniques for the
incremental construction of closures [5].

A current restriction of the calculus is that no abstraction variables may occur
above their introduction (see the condition on the Instantiation rule in Section
4). This restriction is essential for soundness: without it, one could for instance
construct a closed tableau for the (satisfiable) set of M -clauses {{l}, {l′}}, with
l = 〈L, (x, α), {[α\a, α\b]}〉 and l′ = 〈L, (β, y), {[β\a, β\b]}〉, by replacing x by α
and y by β. We think that this condition can be relaxed by defining an order over
the abstraction variables. This would yield a more flexible calculus, thus further
reducing proof size. It would be interesting to know whether the exponential
bound of Remark 3 still holds for the relaxed calculus. An ambitious long-term
goal is to devise extensions of M -tableaux with the same deductive power of
cuts, i.e. enabling a non-elementary reduction of proof size.
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bay, Reiner Hähnle, and Joachim Posegga, eds. Journal of Logic, Language and
Information, 10(4):518–523, 2001.

3. E. Eder. Relative Complexities of First-Order Logic Calculi, 1990.
4. M. Fitting. First-Order Logic and Automated Theorem Proving. Texts and Mono-

graphs in Computer Science. Springer Verlag, 1990.
5. M. Giese. Incremental Closure of Free Variable Tableaux. In R. Goré, A. Leitsch,
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