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Benôıt Enaux2, Vincent Herbert2

1 CNRS LIMOS at Mines de Saint-Etienne, France
2 PSA 3 Prowler.io

December 2018
ONERA

Châtillon, France

R. Le Riche et al. (CNRS EMSE) Restricting ambitions in MOO 1/47 Dec 2018 1 / 47



Context: metamodels for the optimization of costly

functions (1)

Multi-objective optimization of costly functions

min
x∈X⊂Rd

(f1(x), . . . , fm(x)) (1)

fi()’s are costly functions: results of PDE solvers (e.g., finite
element/volume models, boundary elements), Monte Carlo
simulations, results of real experiments.

Issue: cannot call more than (say) 100 times each fi() ⇒ cannot
optimize, identify, propagate uncertainties.

R. Le Riche et al. (CNRS EMSE) Restricting ambitions in MOO 2/47 Dec 2018 2 / 47



Context: metamodels for the optimization of costly

functions (2)

Issue: cannot call more than (say) 100 times each fi() ⇒ cannot
optimize, identify, propagate uncertainties.

Solution (?): work with a metamodel i.e., a statistical model of
already obtained

(
xi , f(xi)

)
, i = 1, n.

Metamodels = neural nets, support vector machines, regression,
GAMs, kriging, random forests, splines . . . . A lot of
contributions, e.g., [17, 1, 13, 7, 3, 15, 14].

With the metamodels, you can perform multiobjective, robust,
global optimization?
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Context: metamodels for the optimization of costly

functions (3)

With the metamodels, you can perform multiobjective, robust,
global optimization?

Not that simple: the curse of dimensionality is still hidden under
the bed. You need many points to learn an accurate metamodel.

So, back to the start? Not really:

metamodels as a way to proportionate ambitions and
experimental budget.
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Background: conditional Gaussian processes (1)

Conditional Gaussian processes (GPs) will be our metamodels here as
they come with an uncertainty measure,
Y (x) := F (x) | f (x1) = f 1, . . . , f (xn) = f n ∼ N (µ(x),C (x, x′))
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µ() and C (, ) known analytically, x d-dimensional.
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Background: conditional Gaussian processes (2)

Trajectories (possible functions) can be sampled, allowing Monte
Carlo simulations
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A lot more to be said about GPs, cf. [18, 4].
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Background: multi-objective optimization (1)

In general there are many (even an infinite number of) trade-off
solutions to

min
x∈X⊂Rd

(f1(x), . . . , fm(x))

called the Pareto set (in X ) or front (in Y).
It is composed of Non-Dominated points,
{x ∈ X : @x′ 6= x ∈ X , ∀i fi(x′) ≤ fi(x) & ∃ j fj(x′) < fj(x)}.

C is dominated,
A and B non-
dominated

Notation:
A ≺ C, B ≺ C
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Background: multi-objective optimization (2)

True Pareto front vs. empirical Pareto front.

Examples from the metaNACA test bed [8], x :=

m = 2 objectives

The Pareto fronts can have holes.

m = 3 objectives
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Curse of dimensionality: number of variables

At a given budget, optimization performance degrades with the
number of variables:

d = 3 d = 22

(optimization algorithm: EHI with GPareto, [5, 2])
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Curse of dimensionality: number of objectives (1)

At a given budget, optimization performance degrades with the
number of objectives:

(optimization algorithm: EHI with GPareto, [5, 2])
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Curse of dimensionality: number of objectives (2)

As the number of objectives increases, a larger part of X becomes Pareto optimal:
m = 2 m = 3

Ex: sphere functions centered on C1, C2, C3. Pareto sets (in red) are all convex
combinations of the C’s. Blue triangles: points sampled by MO Bayesian
algorithm (GPareto). With 4 objectives at the corners of X , every point could be
a Pareto solution. As the Pareto set becomes larger, the optimization algorithm
degenerates in a space filling algorithm. Give up the utopian search for all of the
Pareto set.
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Content of the talk

Recently, we have explored ways to proportionate ambitions to search
budget:

1 Today’s talk: how to focus on specific regions of the Pareto
front. The C-EHI algorithm explained step by step. Details and
proofs in [8].

2 See also: how to select variables on which optimization is
performed (m = 1). Work with Adrien Spagnol and Sébastien
Da Veiga, Safran Tech, cf. [19].
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Bayesian multi-objective optimization (1)

Equipped with observations of the true functions and GPs, we can
simulate possible Pareto fronts at given x’s:
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Simulations points for the Pareto front (1)

The choice of the x’s where the simulations are performed matters.
Below, blue points are random, red points selected proportionally to
their probability of being non dominated by the empirical front P̂Y :

(d = 22)
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Simulations points for the Pareto front (2)

Choose x’s with a probability proportional to P
(
P̂Y � Y(x)

)
.

In the quadratic case, d = 2, m = 3, initial DoE

DoE & , Non Dominated , selected point , sampled Y ND
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Simulations points for the Pareto front (3)

Choose x’s with a probability proportional to P
(
P̂Y � Y(x)

)
.

In the quadratic case, d = 2, m = 3, after 20 iterations

DoE & & , Non Dominated , selected point , sampled Y ND

Simulation points are uniformly distributed near the Pareto set.
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Bayesian multi-objective optimization (2)
Where to put the next point, xn+1, where to call the costly f? At the
point that maximizes, on the average of the Y(x) samples, the

Hypercube Improvement (over the empirical Pareto front P̂Y):

H(A; R) =
⋃

y∈A

∫
y�z�R

dz

IH(f; R) = H(P̂Y ∪ {f}; R)− H(P̂Y ; R)

EHI(x; R) = E (IH(Y(x); R))

EHI favors Y(x) dominating the
empirical Pareto front and far from
already observed f(xi)s.
Notice: the omnipresence of R;
∀R � P̂Y , EHI generalizes the EI
criterion of EGO [11].EHI implementation from [16]
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Bayesian multi-objective optimization (3)

Algorithm 1 Multi-objective EHI Bayesian optimizer

Require: DoE = {(x1, f(x1)), . . . , (xn, f(xn))}, R, nmax

1: while n < nmax do
2: Build m independent GPs, Y() = (Y1(), . . . ,Ym()), from cur-

rent DoE
3: Find next iterate by solving xn+1 = arg maxx∈X EHI(x; R)

{internal optimization problem, no call to f()}
4: Calculate f(xn+1)
5: n← n + 1
6: end while

There are other acquisition criteria in addition to EHI [20] or EHI
which includes constraints [6].
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Targeting improvement regions with EHI

To find the entire Pareto front, R must be dominated by the Nadir
point, N: R1 is the default in the litterature.

But the entire Pareto front
is i) too large to be de-
scribed ii) not interesting
in general (e.g., extreme
solutions).
⇒ move R and control the
improvement region,

IR := {y ∈ Y : y � R}

(keeps the Pareto rank for
non comparable functions)

R1

N

I
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mEI, a computationally efficient proxy to EHI

Once R is freed from P̂Y , a new acquisition criterion is possible.
Definition:

mEI(x; R) :=
∏m

j=1 EIj(x;Rj) =
∏m

j=1 E (max(0 , Rj − Yj(x)))
Property:

If P̂Y � R, EHI(·; R) = mEI(·; R).

mEI(x; R) is analytical in mi (x) and Ci (x, x), computationally much more efficient
than EHI which involves Monte Carlo simulations when m > 2 (ms vs min).
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Example: targeted mEI versus EHI

Violet: mEI convergence with R at .
Green: EHI convergence with R at .
Note the more local and accurate convergence with mEI. (d = 8)
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The Pareto front center

Which point should be targeted through R? By default, the point
where objectives are “balanced”. Need a definition.
Definition: The center C is the point of the Ideal-Nadir line the
closest in Euclidean distance to the Pareto front.
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Properties of the Pareto front center

The Pareto front center is equivalent, in game theory, to the
Kalai-Smordinsky solution with a disagreement point at the
Nadir [12].
The Pareto front center is invariant w.r.t. a linear scaling of the
objectives either when the Pareto front intersects the Ideal-Nadir
line, or when m = 2 (not true in general though).
The Pareto front center is stable w.r.t. perturbations in Ideal
and Nadir: ‖∆C‖2 < ‖∆N‖2 and ‖∆C‖2 < ‖∆I‖2.
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Estimating the Pareto front center

Crude estimators:

Î = ( min
y∈DoE

(y1), . . . , min
y∈DoE

(ym)),

N̂ = (max
y∈P̂Y

(y1), . . . , max
y∈P̂Y

(ym)),

but they may be misleading early in the search. Take advantage of
the GPs uncertainties ⇒ estimate them from Pareto front simulations
(at carefully selected x’s, see next slides) and take their median.
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Simulation points for the Ideal and the Nadir (1)

(For the Pareto front, choose x’s with a probability proportional to

P
(

Y(x) � P̂Y
)

.) ← see earlier

For the Ideal, choose x’s with a probability proportional to

P
(

Y(x) ≤ min f ji

)
, j = 1, n, i = 1,m (analytical).

For the Nadir, choose x’s with a probability proportional to

P
(
Yi (x) > N̂i , Y(x) non dominated

)
+ P

(
Y(x) � arg N̂i

)
, i = 1,m

More details in [8]
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Simulation points for the Ideal and the Nadir (2)

In the quadratic case, d = 2, m = 3, initial DoE

DoE , Non Dominated , selected point , sampled Y ND ,
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Simulation points for the Ideal and the Nadir (3)

In the quadratic case, d = 2, m = 3, after 20 iterations

DoE & & , Non Dominated , selected point , sampled Y ND

Simulation points are grouped around the centers which make the Ideal and
Nadir.
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Partial progress report

Require: DoE = {(x1, f(x1)), . . . , (xn, f(xn))}, nmax

1: Build the m independent GPs;
2: repeat
3: estimate Î, N̂ and Ĉ;
4: xn+1 = arg max

x∈X
mEI(x; Ĉ);

5: evaluate f(xn+1) and update the GPs;
6: n ← n+1;
7: until n > nmax

but often Ĉ has converged to the true C before the end. Cannot be
further improved. Waste of computation. Need a better stopping
criterion.
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Uncertainty in center location (1)

Need a stopping criterion. mEI and EHI are too unstable: depend on
fi ’s scales and R.

Define the domination probability,

p(y) := P (∃x ∈ X : Y(x) � y)

Estimation: simulate nsim Pareto fronts (at well-chosen x’s), P̃Y
(i)

,
and

p̂(y) =
1

nsim

nsim∑
i=1

1(P̃Y
(i) � y)
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Uncertainty in center location (2)

If p̂(y) is near 1 or 0, we are quite sure that y is dominated or not.
The uncertainty is p(y)(1− p(y)), the variance of the Bernouilli
variable D(y) = 1(PY(·) � y).

Define the uncertainty in
center location as U(L̂) :=

1

|L̂|

∫
L̂
p(y)(1− p(y))dy .

(d = 8)

R. Le Riche et al. (CNRS EMSE) Restricting ambitions in MOO 30/47 Dec 2018 30 / 47



Targeted MO Bayesian optimization

Algorithm 2 First phase of the C-EHI algorithm

Require: DoE = {(x1, f(x1)), . . . , (xn, f(xn))}, ε1, nmax

1: Build the m independent GPs;
2: repeat
3: estimate Î, N̂ and Ĉ;
4: xn+1 = arg max

x∈X
mEI(x; Ĉ);

5: evaluate f(xn+1) and update the GPs;

6: compute U(L̂);
7: n ← n+1;
8: until U(L̂) ≤ ε1 or n > nmax
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Example of targeted MO Bayesian opt. vs EHI

MetaNACA, nmax = 40

(Statistically significant results can be found in [8]) (d = 8)
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Remaining budget

What if convergence to the center occurs before nmax?
⇒ widen the search around the center by moving R along L̂ towards
the Nadir by a distance that is compatible with the remaining budget,
nmax − n.
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Optimal final search region

For a given R, anticipate the future space filling of the algorithm
by virtual iterates (Kriging Believer, [10]) ⇒ YKB(x) built from
{(x1, f(x1)), . . . , (xn, f(xn))}⋃

{(xn+1,µ(xn+1)), . . . , (xnmax
,µ(xnmax

))}
Measure the remaining uncertainty in Pareto domination

U(R; Y) :=
1

Vol(I,R)

∫
I�y�R

p(y)(1− p(y))dy .

Optimal R defined through

R∗ = arg min
R∈L̂
‖R− N̂‖ such that U(R; YKB) ≤ ε2 (2)

by enumeration.
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Optimal final search region: illustration

The remaining uncertainty in Pareto domination can be seen by the sampled

fronts roaming (in grey). It is small enough on the left, too large on the right.

R∗ is in blue. d = 8.
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Budgeted and Targeted MO Bayesian Optimization

Algorithm 3 The C-EHI algorithm
Require: DoE = {(x1, f(x1)), . . . , (xn, f(xn))}, ε1, ε2, nmax

1: Build the m independent GPs;
2: repeat
3: estimate Î, N̂ and Ĉ;
4: xn+1 = arg max

x∈X
mEI(x; Ĉ);

5: evaluate f(xn+1) and update the GPs;

6: compute U(L̂);
7: n ← n+1;
8: until U(L̂) ≤ ε1 or n > nmax

9: if n < nmax then
10: Calculate R∗ solution of Eq. (2); # needs ε2

11: end if
12: while n < nmax do
13: xn+1 = arg max

x∈X
EHI(x; R∗);

14: evaluate fi (x(t+1)) and update the GPs;
15: n = n + 1;
16: end while
17: return final DoE, final GPs, and approximation front P̂Y
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C-EHI: illustration of the 2nd phase

The objective values added during the 2nd phase are circled in red. Compared to

the initial front obtained when searching for the center, the last approximation

front is expanded as highlighted by the blue hypervolumes. d = 8.
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C-EHI vs. EHI:

illustration m = 2
C-EHI (left) vs. EHI (right),

top after 20 iterations, bot-

tom after 40 iterations. C-EHI

local convergence has occured

at 22 iterations, a wider op-

timal improvement region (un-

der the red square) is targeted

for the 18 remaining iterations.

Compared to the standard EHI,

C-EHI searches in a smaller

balanced part of the objective

space, at the advantage of a

better convergence. d = 8
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C-EHI vs. EHI: illustration m = 3

(d = 8)

green, C-EHI; blue, EHI; black, initial front; red, true front, , true center.
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C-EHI vs. EHI: tests

Hypervolumes of the
C-EHI (continuous
line) and EHI (dashed)
averaged over 10 runs.
Initial DoE of size 20,
80 iterations. Blue, red and green correspond
to the improvement regions I0.1, I0.2 and
I0.3, respectively. d = 8.

m = 2

m = 3 m = 4

C-EHI > EHI, except when m = 4 and R0.3 because it is a large region.
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Conclusions

Summary We have seen with the C-EHI Bayesian multi-objective
algorithm how to

target a specific region of improvement,
target the center of the Pareto front,
search for a part of the Pareto front adapted to the
budget.

Perspectives Make it parallel. First steps in [9].
Account for couplings between the objectives.
Other ways to match ambitions to computational
constraints: variables selection for optimization, first
step with Hilbert-Schmidt sensitivity indices in [19].
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Comparisons of estimations for the Pareto front

center

Example, d = 8:
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