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ABSTRACT

Recent years have witnessed an exponential growth in the number of identi-
fied interactions between biological molecules. These interactions are usually
represented as large and complex networks, calling for the development of ap-
propriated tools to exploit the functional information they contain. Random
walk with restart is the state-of-the-art guilt-by-association approach. It ex-
plores the network vicinity of gene/protein seeds to study their functions, based
on the premise that nodes related to similar functions tend to lie close to each
others in the networks.

In the present study, we extended the random walk with restart algorithm
to multiplex and heterogeneous networks. The walk can now explore different
layers of physical and functional interactions between genes and proteins, such
as protein-protein interactions and co-expression associations. In addition, the
walk can also jump to a network containing different sets of edges and nodes,
such as phenotype similarities between diseases.

We devised a leave-one-out cross-validation strategy to evaluate the algo-
rithms abilities to predict disease-associated genes. We demonstrate the in-
creased performances of the multiplex-heterogeneous random walk with restart
as compared to several random walks on monoplex or heterogeneous networks.
Overall, our framework is able to leverage the different interaction sources to
outperform current approaches.

Finally, we applied the algorithm to predict genes candidate for being in-
volved in the Wiedemann-Rautenstrauch syndrome, and to explore the network
vicinity of the SHORT syndrome.

The source code and the software are freely available at: https://github.
com/alberto-valdeolivas/RWR-MH.
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1 INTRODUCTION

Recent years have witnessed the accumulation of physical and functional inter-
actions between biological macromolecules. For instance, protein-protein inter-
actions (PPI) are nowadays screened at the proteome scale for many organisms,
including humans, revealing thousands of physical interactions between pro-
teins. Interaction data are commonly represented as networks, in which the
nodes correspond to genes or proteins, and the edges to their interactions. The
availability of large-scale PPI networks led to the application of graph theory-
based approaches for their exploration, with the ultimate goal of extracting
the knowledge they contain about cellular functioning. These methods exploit
the tendency of functionally-related proteins to lie in the same network neigh-
borhood. For instance, clustering algorithms allow identifying communities of
proteins participating in the same biological processes (Brohée and van Helden,
2006; Katsogiannou et al., 2014; Chapple et al., 2015; Arroyo et al., 2015) and
guilt-by-association strategies explore topological relationships to predict pro-
tein cellular functions (Schwikowski et al., 2000).

Network-based guilt-by-association strategies, in particular, have been widely
used to identify new disease-associated genes. The first approaches were pars-
ing the direct interactors of disease proteins in a PPI network (Oti et al., 2006).
Then, more elaborated algorithms were developed, computing the shortest path
distances between candidates and known disease proteins (Franke et al., 2006;
George et al., 2006). But algorithms able to exploit the global topology of net-
works, such as network propagation or random walk algorithms, were finally
shown to largely outperform initial methods to identify disease genes (Vanunu
et al., 2010; Köhler et al., 2008).

Random walks were indeed first developed to explore the global topology
of networks. They simulate a particle that iteratively moves from a node to a
randomly selected neighboring node (Lovász, 1993). The idea of restart, which
led to the Random Walk with Restart (RWR) algorithm, was first introduced
for internet search engines. The objective was to rank the relevance of web
pages by reproducing the behavior of a simulated Internet user. The user surfs
randomly from a web page to another thanks to the hyper-links, but he can
also restart the navigation in a new arbitrary web page. Thereby, depending
on the topological structure of the pages and hyper-links, some pages will be
visited more frequently than others. The number of visits is considered as a
proxy measure of each web page relevance (Brin and Page, 1998). Moreover, if
one forces the particle to always restart in the same node or set of nodes - called
seed(s) -, RWR can be used to measure a proximity between the seed(s) and all
the other nodes in the network (Pan et al., 2004).

RWR became the state-of-the-art guilt-by-association algorithm in network
computational biology. It was initially applied, as commented above, to prior-
itize candidate disease genes. All the network nodes are ranked by the RWR
algorithm according to their proximity to known disease-associated nodes taken
as seeds (Köhler et al., 2008). Several extensions of the RWR algorithm further
improved the prediction of candidate disease-associated genes, mainly by con-
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sidering also phenotype data (Li and Patra, 2010; Li and Li, 2012; Xie et al.,
2015; Zhao et al., 2015). For instance, Li and Patra (2010) described a RWR
on a heterogeneous network, built by connecting a PPI network with a disease-
disease network using known gene-disease associations.

However, a common feature and limitation of these approaches is that they
perform the walks in a single network of relationships between genes and pro-
teins. Doing so, these approaches ignore a rich variety of information on phys-
ical and functional relationships between biological macromolecules. Indeed,
not only PPI are nowadays described on a large-scale: immuno-precipitation
experiments followed by mass-spectrometry can inform on the in vivo molec-
ular complexes (Ruepp et al., 2009), pathways interaction data are cured and
stored in dedicated databases such as Reactome (Fabregat et al., 2016) and
Kegg (Kanehisa et al., 2008). In addition, other functional interactions can be
derived, for instance from transcriptomics expression data by constructing a co-
expression network, or from gene ontology annotations (Ashburner et al., 2000)
by constructing a co-annotation network.

Each interaction source has its own meaning, relevance and bias: some net-
works contain links of high relevance (e.g., curated signaling pathways), while
others contain thousands or even millions of interactions prone to noise (e.g.,
co-expression networks) (Didier et al., 2015). The combination of the different
sources is expected to provide a complementary view on genes and protein cellu-
lar functioning (Menche et al., 2015). But networks can be combined in different
ways. Generally, the different networks are merged into an aggregated mono-
plex network. For instance, Li and Li (2012) adapted the RWR algorithm to
a network in which PPI and co-annotation interactions were aggregated. How-
ever, aggregating interactions networks sources as a single networks dismisses
the individual networks topologies and features. In this context, the multiplex
framework offers an interesting alternative. Collections of networks sharing the
same nodes, but in which the edges belong to different categories or represent in-
teractions of a specific nature are called multiplex (alt. multi-slice, multi-layer)
networks (Battiston et al., 2014). In a biological multiplex network, each layer
contains a different category of physical and functional interactions between
genes or proteins, with its own topology.

We present here two extensions of the RWR algorithm to explore multi-
plex networks (RWR-M) and multiplex-heterogeneous networks (RWR-MH).
We constructed a multiplex network composed of three layers of physical and
functional interactions between genes and proteins, and a disease-disease net-
work based on phenotype similarities. We applied a leave-one-out cross-validation
(LOOCV) strategy to compare the RWR-M and RWR-MH algorithms to al-
ternatives, including RWR on monoplex networks, aggregated networks and
heterogeneous-only networks. We showed that considering many interaction
sources through a multiplex-heterogeneous network framework enhances re-
markably the performances of disease-gene prioritization. Finally, we applied
the RWR-MH algorithm to predict candidate genes for being implicated in the
Wiedemann-Rautenstrauch syndrome (WRS), whose responsible gene(s) remain
unknown. We also explored the network vicinity of the SHORT syndrome (SS)
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and its associated gene, PIK3R1, and unveiled associated syndromes and path-
ways.

2 MATERIALS AND METHODS

2.1 Random walks on graphs

Let us consider an undirected graph, G = (V,E). An imaginary particle starts a
random walk at an initial node v0 ∈ V . Considering the time is discrete, t ∈ N,
at the t-th step the particle is at node vt. Then, it walks from vt to vt+1, a
randomly selected neighbor of vt, in the graph G (Lovász, 1993). Therefore, we
can write: ∀x, y ∈ V,∀t ∈ N

P(vt+1 = y | vt = x) =

{ 1
d(x) if (x, y) ∈ E
0 otherwise,

where d(x) is the degree of x in the graph G. Defining pt(v) as the probability
for the random walk to be at node v at time t, we can describe the evolution of
the probability distribution, pt = (pt(v))v∈V , with the equation:

pTt+1 = MpTt (1)

where M denotes a transition matrix that is the column normalization of the
adjacency matrix of the graph G.

The stationary distribution, solution of the equation pT? = MpT? , represents
- if it exists - the probability for the particle to be located at a specific node for
an infinite amount of time.

In order to explore the web, Brin and Page (1998) extended the classical
random walk by introducing the possibility for the walk to restart. In this case,
at each step, the particle can walk from its current node to either any of its
neighbors or restart by jumping to any randomly selected node in the graph.
This avoids the walk to be trapped in a dead end node, and assures the existence
of the stationary distribution (Langville and Meyer, 2004).

Moreover, we can restrict the restart of the particle to specific set of node(s),
called seed(s). At each iteration of the algorithm, the particle can restart in the
seed(s) with a defined restart probability, r ∈ (0, 1) (Pan et al., 2004). Doing so,
the particle will explore the graph focusing on the neighborhood of the seed(s).
The stationary distribution is considered as a measure of the proximity between
the seed(s) and all the other nodes in the graph. Formally, based on (1), RWR
equation can be defined as:

pTt+1 = (1− r)MpTt + rpT0 (2)

The vector p0 is the initial probability distribution. Therefore, in p0, only
the seed node(s) have values different from zero. After several iterations, the
difference between the vectors pt+1 and pt becomes negligible, the stationary
probability distribution is reached and the elements in these vectors represent
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a proximity measure from every graph node to the seed node(s). In this work,
iterations are repeated until the difference between pt and pt+1 falls below
10−10, as in Li and Patra (2010); Erten et al. (2011); Zhao et al. (2015).

We set here the global restart parameter to r = 0.7, as in previous studies
(Köhler et al., 2008; Li and Patra, 2010; Li and Li, 2012; Smedley et al., 2014;
Zhao et al., 2015). This value of the restart parameter is kept in all the RWR
algorithms.

2.2 Random walks on multiplex graphs

2.2.1 Definition

A multiplex graph is a collection of L undirected graphs, considered as layers,
sharing the same set of n nodes (Kivelä et al., 2014). Each layer α, α = 1, . . . , L,
is defined by its n × n adjacency matrix A[α] = (A[α](i, j))i,j=1,...,n, where
A[α](i, j) = 1 if node i and node j are connected on layer α, and 0 otherwise
(Battiston et al., 2014). We do not consider auto-interactions (A[α](i, i) =
0 ∀ i = 1, . . . , n), and vαi stands for the node i in layer α. A multiplex graph is
characterized by its adjacency matrix:

A = A[1], . . . , A[L] . (3)

and is defined as GM = (VM , EM ), where:

VM = {vαi , i = 1, . . . , n, α = 1, . . . , L} ,

EM =
{

(vαi , v
α
j ), i, j = 1, . . . , n, α = 1, . . . , L, A[α](i, j) 6= 0

}⋃
{

(vαi , v
β
i ), i = 1, . . . , n, α 6= β

}
.

2.2.2 The RWR-M algorithm: Extension of RWR to multiplex graphs

A multiplex graph contains the same set of nodes in its different layers, thereby
enabling us to navigate between the layers (De Domenico et al., 2014). The
particle can walk from its current node vαi to any of its neighbors within a layer,

or jump to any node vβi with β 6= α (De Domenico et al., 2013), and thereby
change from one to another layer, as schematically displayed in Fig. 1A.

We can thus extend the classical RWR algorithm to multiplex graph (RWR-
M) by building a nL×nL matrix, A. The matrix A contains the different types
of transitions that the simulated particle can follow at each step, and is defined
as:

A =


(1− δ)A[1] δ

(L−1)I · · · δ
(L−1)I

δ
(L−1)I (1− δ)A[2] · · · δ

(L−1)I
...

...
. . .

...
δ

(L−1)I
δ

(L−1)I · · · (1− δ)A[L]

 (4)
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where I is the n×n identity matrix and A[α] is the adjacency matrix of the layer
α, as described in (3). The elements in the diagonal represent the potential intra-
layer walks, whereas the off-diagonal elements account for the possible jumps
between different layers. The parameter δ ∈ [0, 1] quantifies the probability of
staying in a layer or jumping between the layers: if δ = 0 the particle will always
stay in the same layer after a non-restart step. In addition, since A[α](i, i) = 0,
we avoid jumps to the same node in the same layer.

Let us denote the transition matrix M obtained by a column normalization
of A. Eq. (2) in the multiplex case becomes:

pTt+1 = (1− r)MpTt + rpTRS (5)

where pt = [p1
t , . . . ,p

L
t ] and pt+1 = [p1

t+1, . . . ,p
L
t+1], t ∈ N, are n × L vectors

representing the probability distribution of the particle in the multiplex graph.
These vectors are composed of the probability distributions in every layer. The
restart vector, pRS , represents the initial probability distribution. We define
it as pRS = τ · p0, where the vector parameter τ = [τ1, . . . , τL] measures the
probability of restarting in the seed node(s) of each layer in the multiplex graph.
It is to note that it is possible to tune the importance of each layer by modifying
the parameter τ .

As said previously, we set the global restart parameter to r = 0.7 for all
versions of the RWR algorithm. We established an equal restart probability
in all the layers, τ = (1/L, 1/L, . . . , 1/L), and we also considered an equal
probability for staying in a layer or jumping between the layers, δ = 0.5.

The RWR-M algorithm performs iterations in Eq. (5) until the difference
between pt and pt+1 falls below 10−10. The stationary probability distribution
is then reached, and every node is associated to L proximity measures, one for
each layer of the multiplex graph. We computed the global score for every node
as the geometrical mean of its L proximity measures.

For the sake of simplicity, we have considered unweighted graphs. However,
the extension of the algorithms to weighted graphs is straightforward. It can be
achieved by replacing the adjacency matrices (A[α](i, j))i,j=1,...,n, by matrices
composed of the weighted intra-layer edges (W [α](i, j))i,j=1,...,n.

2.3 Random walk with restart on heterogeneous graphs

2.3.1 Definition

A heterogeneous graph contains two graphs with different types of nodes and
edges, as well as a bipartite graph containing bipartite associations between
them (Lee et al., 2013). Let us consider the graphs GV = (V,EV ) with V =
{v1, . . . , vn}, GU = (U,EU ) with U = {u1, . . . , um}, and the bipartite graph
GB = (V ∪ U,EB) with EB ⊆ V × U . The edges of the bipartite graph only
connect pairs of nodes from the different sets of nodes, V and U . We can now
define a heterogeneous graph, GH = (VH , EH), as:
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Figure 1: Multiplex, Heterogeneous and Multiplex-Heterogeneous graphs. A)
A multiplex graph composed of three layers. The particle can navigate within
each layer or jump to the same node in another layers. B) A heterogeneous
graph composed of two graphs. The particle can navigate within each graph
or jump to the other graph according to bipartite associations between the two
different types of nodes. C) A multiplex-heterogeneous graph.

VH = {V ∪ U}
EH = {EV ∪ EU ∪ EB}

2.3.2 The RWR-H algorithm: Extension of RWR to heterogeneous
graphs

Li and Patra (2010) proposed a random walk with restart on a heterogeneous
graph. This heterogeneous graph was composed of a PPI network, a disease-
disease similarity network, and bipartite graph containing protein-disease associ-
ations. The particle walks on the PPI network, on the disease-disease similarity
network, and is also allowed to jump between the two networks following the
bipartite associations, as schematically displayed in Fig. 1B.

Following the approach proposed by Li and Patra (2010), let us consider the
graphs defined in the previous section, GV , GU and GB . We define AP (n×n),
AD(m×m) and B(n×m) as their respective adjacency matrices. These matrices
are here the adjacency matrices of the PPI network, the disease-disease similar-
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ity network and the bipartite network, respectively. Therefore, the adjacency

matrix of the heterogeneous network can be represented as: A =

[
AP B
BT AD

]
,

with BT the transpose of the matrix B.
We then compute the different transition probabilities of the random walk

with restart on heterogeneous graphs (RWR-H). Let H =

[
HPP HPD

HDP HDD

]
de-

notes the matrix of transitions on the heterogeneous graph, where HPP and
HDD describe the walks within a network, and HPD, HDP describe the jumps
between networks. For a given node, if a bipartite association exists, the particle
can either jump between graphs or stay in the current graph with a probability
given by the parameter λ ∈ [0, 1]. The closer λ is to one, the higher is the
probability of jumping between networks.

Let a particle be located at the protein node pi ∈ V . At the next step,
the particle can either walk to a protein pj ∈ V with the following transition
probability:

HPP (i, j) =

{
AP (i, j)/

∑n
k=1AP (i, k), if

∑m
k=1B(i, k) = 0

(1− λ)AP (i, j)/
∑n
k=1AP (i, k), otherwise

(6)

or jump through a bipartite association to the disease db ∈ U with a proba-
bility:

HPD(i, b) =

{
λB(i, b)/

∑m
k=1B(i, k), if

∑m
k=1B(i, k) 6= 0

0, otherwise
(7)

The same situation arises if a particle is located at the disease da ∈ U . It
can walk to the disease db ∈ U :

HDD(a, b) =

{
AD(a, b)/

∑m
k=1AD(a, k), if

∑n
k=1B(k, b) = 0

(1− λ)AD(a, b)/
∑m
k=1AD(a, k), otherwise

(8)

or jump to the protein pj ∈ V :

HDP (a, j) =

{
λB(j, a)/

∑n
k=1B(k, a), if

∑n
k=1B(k, a) 6= 0

0, otherwise
(9)

Therefore, we can write the RWR-H equation on a heterogeneous graph as:

p̃Tt+1 = (1− r)Hp̃Tt + rp̃TRS (10)

The vectors p̃t+1, p̃t and p̃RS are now of dimension n+m, since the RWR-
H algorithm is ranking proteins and diseases at the same time. Importantly,
after a restart step, the particle can go back either to a seed protein or to a
seed disease. It is to note that it is possible to tune the importance of each
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network by defining p̃RS =

[
(1− η)v0

ηu0

]
, where v0 and u0 represent the initial

probability distributions on the PPI and the disease-disease similarity networks
given by their seed nodes. The parameter η ∈ [0, 1] controls the probability of
restarting in each network (PPI or disease-disease). If η < 0.5 the particle will
be more likely to restart in one of the seed proteins than in one of the seed
diseases. In our work, we set both parameters λ and η to 0.5.

2.4 Random walk with restart on multiplex-heterogeneous
graphs

2.4.1 Definition

Let us consider a L-layers multiplex graph, GM = (VM , EM ), with n×L nodes,
VM = {vαi , i = 1, . . . , n, α = 1, . . . , L}. Let GU = (U,EU ) be a graph with m
nodes, U = {u1, . . . , um}. In order to build a heterogeneous graph composed of
GM and GU , we need to link the nodes in every layer of the multiplex graph GM
to their associated nodes in the other graph GU , according to their bipartite
association, EB . Since the same nodes are present in every layer of the multiplex

graph, it is necessary to have L identical bipartite graphs, G
[α]
B = (VM ∪U,E[α]

B )
to define the multiplex-heterogeneous graph. We can then describe a multiplex-
heterogeneous graph, GMH = (VMH , EMH), as:

VMH = {VM ∪ U}

EMH =
{
∪α=1,...,LE

[α]
B ∪ EM ∪ EU

}
2.4.2 The RWR-MH algorithm: Extension of RWR to multiplex-

heterogeneous graph

We finally extended the RWR algorithm to multiplex-heterogeneous networks
(RWR-MH). At a given step, let the particle be at a specific node within a layer
of the multiplex graph. At the next non-restart step, the particle can either i)
walk within the same layer or ii) jump to the same node in a different layer or
iii) jump to the other graph if a bipartite association exists (Fig. 1C).

Let consider a multiplex graph composed of n gene/protein nodes and L
layers, with an adjacency matrix AM(nL×nL), like the one described in (4). Let
also consider a disease-disease similarity graph characterized by its adjacency
matrix, AD(m×m), where m is the total number of diseases. The bipartite graphs

with adjacency matrix B1,...,L
(n×m) associates the gene/protein nodes in each layer

of the multiplex graph to diseases. These bipartite graphs are identical for every
layer of the multiplex graph, as explained previously. Therefore, we can define
all of them as B(n×m), and construct the bipartite adjacency matrix of the
multiplex-heterogeneous graph by sticking L times the single bipartite graph
B(n×m):
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BMH =


B(n×m)

B(n×m)

...
B(n×m)

 (11)

Then, we can define the global adjacency matrix of the multiplex-heterogeneous

graph as A =

[
AM BMH

BTMH AD

]
, where BTMH represents the transpose of BMH .

From this point, we can proceed in a analogous way to the one presented in
section 2.3.2. We define a global transition matrix for the multiplex-heterogeneous
network and calculate its components using the same equations. We just have
to replace the adjacency matrix of the PPI network, AP (n×n), by the adja-
cency matrix of the multiplex network AM(nL×nL), and the bipartite adjacency
matrix, B(n×m), by the adjacency matrix of the bipartite graph of the multiplex-
heterogeneous graph, BMH(nL×m).

In order to apply the Eq. (10), we have to consider that the vectors p̃t+1,
p̃t and p̃RS are now of dimension ((n×L) +m), since the RWR-MH algorithm
is ranking n proteins in L different layers and m diseases at the same time. It
is to note that it is possible to tune the importance of each network by defining

p̃RS =

[
(1− η)u0

ηv0

]
, where u0 defines the initial probability distribution of the

multiplex graph, as described in section 2.2.2, and v0 the initial probability
distribution of the disease-disease similarity network.

2.5 Network sources

2.5.1 Physical and Functional interactions between genes and pro-
teins

We constructed three biological networks containing genes or proteins as nodes
(genes and proteins are here considered equally): a protein-protein interaction
(PPI) network, a network connecting proteins according to pathway interaction
data, and a network in which the links correspond to co-expressed genes. They
are obtained as described in (Didier et al., 2015), but updated from downloads
on 23rd and 24th November, 2016. The PPI network contains 12 621 nodes
and 66 971 edges. The Pathway network contains 10 534 nodes and 254 766
edges, and the Co-expression network is composed of 10 534 nodes connected by
1 337 347 edges (Table 1).

These networks are considered either i) independently as monoplex networks,
ii) merged as an aggregated network, with nodes and edges corresponding to
the union of the monoplex networks, i.e., a total of 17 559 nodes and 1 659 084
edges, or iii) as a multiplex network composed of 3 layers. In the multiplex
network, the layers share the same set of nodes, also corresponding to the union
of all network nodes, 17 559 nodes. The genes/proteins absent in a layer are
added as isolated nodes in this layer.
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2.5.2 Disease-disease similarity network

We downloaded the annotation file phenotype annotation.tab, containing dis-
eases and their associated phenotypes from the Human Phenotype Ontology
(HPO), together with the HPO ontology graph structure (Köhler et al., 2014)
on November, 2016. We kept only disease records from OMIM (Hamosh et al.,
2005), and for each disease, we extracted its minimal set of HPO terms. A set
of phenotypes is minimal if it describes a disease without redundancy: we con-
sidered only the deepest (i.e., the most precise) nodes in the directed ontology
structure, as described by Greene et al. (2016).

The phenotype similarity between a pair of diseases can be computed by
counting the number of shared phenotypes. However, some phenotypes are
more relevant than others. We indeed want to consider as more similar two
diseases sharing a very rare phenotype, than two diseases sharing a very common
phenotype, as proposed by Westbury et al. (2015). To this goal, we estimated
the relevance of each phenotype based on its frequency in the HPO database,
and used the relative information content (IC), defined as follows:

IC(i) = −log(fi) (12)

where fi is the frequency of the phenotype i within our set of HPO diseases.
The similarity between phenotypes i and j is then computed as:

sim(i, j) = max
t∈anc(i)∩anc(j)

IC(t) (13)

where anc(i) indicates the ancestors of the phenotype i in the ontology graph.
Finally, the phenotype similarity between a pair of diseases Da and Db, corre-
sponding to two sets of HPO phenotypes, is measured by the total IC of their
shared phenotypes, as described in Resnik (1999):

sim(Da, Db) =
1

|Da|
∑
i∈Da

max
j∈Db

(sim(i, j)) +
1

|Db|
∑
j∈Db

max
i∈Da

(sim(j, i)) (14)

The similarity score between all pairs of diseases is computed according to
Eq. (14). The disease-disease similarity network is built by linking every disease
to its five nearest diseases according to this similarity score, as in Li and Patra
(2010). The resulting disease-disease similarity network is composed of 6 947
diseases connected by 28 246 edges.

2.5.3 Gene-Disease bipartite associations

We connected the genes in each layer of the multiplex network with the disease-
disease similarity network thanks to bipartite gene-diseases associations ex-
tracted from OMIM (Hamosh et al., 2005), using BiomaRt (Durnick et al.,
2012). The data were downloaded on December, 2016. The nodes in each layer
of the multiplex network are connected to their related diseases, leading to L
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Network Number of nodes Number of edges

Pathways 10 534 254 766
PPI 12 621 66 971

Co-expression 10 458 1 337 347
Aggregated (unique) 17 559 1 659 084

Disease-disease similarity 6 947 28 246

Table 1: Networks used in this study, number of nodes and edges.

identical bipartite graphs. For each layer, we obtained 4 496 edges between
genes/proteins and diseases.

2.6 Leave-one-out cross validation

In order to evaluate the performances of the different RWR algorithms, we de-
signed a Leave-One-Out Cross-Validation (LOOCV) strategy. We downloaded
diseases and associated genes from OMIM (Hamosh et al., 2005) (downloaded
on December, 2016) and DisGeNET v4.0 (Piñero et al., 2016) (associations with
a score greater than or equal to 0.15, downloaded on December, 2016). Only
diseases associated to at least two genes are considered. Each gene is removed
one-by-one and considered as the left-out gene. The remaining genes are used as
seed(s) in the RWR algorithms. Depending on the RWR algorithms to be tested,
different subsets of these disease and associated genes datasets are extracted as
explained on the results sections.

All the network nodes are then scored and ranked according to their proxim-
ity to the seed(s). The rank of the disease-gene that was left-out in the current
run is recorded. This rank is always between one and the total number of scored
genes, minus the number of seeds used for the disease under evaluation. Finally,
the Cumulative Distribution Function (CDF) of the ranks of the left-out genes
is plotted, as in Mordelet and Vert (2011). It displays the percentage of left-out
genes that are ranked within the top k genes. CDFs are used to evaluate and
compare the performance of the different algorithms. The plots are focused on
the top 60 ranked genes.

2.6.1 Leave-one-out cross-validations on monoplex, aggregated and
multiplex networks

For these networks, the seeds used in the RWR algorithms are the gene/protein
nodes only. To maximize the size of the test set, we ran the LOOCV with
gene-disease associations extracted from DisGeNET v4.0 (Piñero et al., 2016).
The DisGeNET dataset contains 6 565 gene-disease associations, corresponding
to 4 148 different diseases.
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2.6.2 Leave-one-out cross-validation on heterogeneous and multiplex-
heterogeneous networks

For these heterogeneous networks, the seeds used in the RWR algorithms are
the gene/protein nodes, but also the disease nodes. Given that the nodes in
the disease-disease network are OMIM diseases (Hamosh et al., 2005) (material
and methods), it is mandatory to use gene-disease associations from OMIM
for the LOOCV. The OMIM dataset contains 4 996 gene-disease associations,
corresponding to 4 188 different diseases. As in previous applications of the
LOOCV, for every disease, each known disease-associated gene is left-out one
by one. The remaining disease genes and the disease itself are used as seed nodes.
It is to note that in order to simulate an unknown gene-disease association, we
also removed the bipartite association linking the left-out gene and the disease
of the current run. Doing so, we avoid the artificial top ranking of the left-out
genes.

3 RESULTS

The main goal of the research presented here was to design a RWR algorithm
able to exploit multiple biological interaction sources. We first constructed three
biological networks: a protein-protein interaction (PPI) network, a Pathway-
derived network and a Co-expression network. We can consider these three
networks isolated as monoplex networks. The three monoplex networks can
also be merged into an aggregated network. In this case, two proteins A and B
can be connected by up to three edges (PPI, Pathways and Co-expression). The
aggregated network is composed of 17 559 nodes and 1 659 084 edges (Table 1).
In addition, we also considered the 3 networks as layers of a multiplex network.
A multiplex network is a collection of networks considered as layers, sharing the
same set of nodes, but in which edges belong to different interaction categories.

We also constructed a disease-disease similarity network, in which the nodes
correspond to diseases, and the edges to the most significant phenotype similari-
ties between the diseases (materials and methods). Finally, in order to construct
a multiplex-heterogeneous network, we linked the disease-disease similarity net-
work to the multiplex network thanks to bipartite gene-disease associations.

We next devised different RWR algorithms, which each leverage the different
networks and combinations thereof, and we compared their efficiencies.

3.1 Random walk with restart on multiplex networks are
more efficient than on monoplex networks

The classical RWR algorithm takes as input a monoplex network. Here, we
first adapted the RWR algorithm to navigate a multiplex network (RWR-M).
Basically, at each step, the particle can walk from one node to another in the
same layer, as in a monoplex network, but it can also move to the same node in
another layer of the multiplex network (materials and methods). We compared
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the performances of the classical RWR and multiplex RWR-M algorithms in
retrieving disease-associated genes, thanks to a leave-one-out cross validation
(LOOCV) strategy (materials and methods). For that, we created a test set
composed of diseases associated to at least two genes in the set of 4 529 protein
nodes common to the three networks. This test set contains 273 diseases and
1 312 gene-disease associations. For every disease, each of its associated genes
is iteratively left-out, and the remaining gene(s) are considered as seed(s) to
run the algorithms. We then compared the ability of the different algorithms to
retrieve the left-out gene. Results are displayed in Fig. 2.

Figure 2: Cumulative distribution functions representing the ranks obtained
for the left-out disease genes in the LOOCV with different RWR algorithms.
Classical RWR algorithm is applied to the protein-protein (PPI), Pathway
(PATH) and Co-expression (COEX) monoplex networks. RWR-M algorithm
is applied to combinations of 2 or 3 of these networks, considered as layers of a
multiplex network.

Focusing first on monoplex networks, the worst performance is observed for
the classical RWR algorithm applied to the Co-expression network. It seems
difficult to retrieve known disease-associated genes from a network built from
correlations of mRNA expression data alone. The Pathway-derived network
achieves the best performance among the monoplex networks, probably because
pathways databases are usually built on established biological knowledge and
curated.

The RWR-M algorithm, exploiting more than one interaction source in a
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multiplex framework, performs better than the classical RWR. In particular,
despite the low ranking capacities of the co-expression network alone, its inte-
gration as a layer in a multiplex framework of two or three layers enhances the
performance of the algorithm. Overall, the best ranking result is obtained with
the integration of the three network layers (Fig. 2).

3.2 Random walk with restart on multiplex networks are
more efficient than on aggregated networks

In a second step, we compared the performances of the random walk with restart
on multiplex network (RWR-M) with the classical RWR run on the three net-
works aggregated as a single monoplex network. In the aggregated network, two
proteins can be linked by up to three edges (corresponding to the three network
sources), and the random walk particle can choose between these different edges
to move from its current node to one of its neighbors, as in Li and Li (2012).
The ranking ability of RWR-M and classical RWR on the aggregated network
are again tested by LOOCV (materials and methods). In this case, we created
the test set with diseases associated to at least two nodes in the total of 17 559
nodes corresponding to the union of the nodes of the three networks. The test
set contains 537 diseases and 2 892 gene-disease associations.

The ranks of the left-out disease genes with the RWR-M are better than
the classical RWR on the aggregated network (Fig. 3). The aggregated and
multiplex networks use the same biological data and interaction network sources,
but the multiplex framework further keeps tracks of the individual topological
structures in each network layer.

3.3 Random walk with restart on multiplex-heterogeneous
networks are more efficient than on multiplex or het-
erogeneous networks alone

We previously compared the performances of RWR algorithms on different com-
binations of networks containing the same nodes but edges belonging to different
interaction categories. The nodes were genes/proteins, and the edges PPI, Path-
way and Co-expression interactions. We now wish to extend these comparisons
to heterogeneous networks, i.e., networks containing different sets of nodes, such
as genes/proteins and diseases.

We first coded the heterogeneous RWR-H algorithm as proposed by Li and
Patra (2010) (materials and methods). The RWR-H algorithm takes as in-
put a heterogeneous network composed of a PPI network and a disease-disease
similarity network. We constructed the disease-disease similarity network by
computing the phenotype similarity between a pair of diseases as the relative
information content of their common phenotypes, and linking each disease to
its five most similar ones (materials and methods). The PPI and the disease-
disease similarity networks are connected by bipartite gene-disease associations.
In the RWR-H algorithm, the particle can move from the PPI network to the
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Figure 3: Cumulative distribution functions representing the ranks obtained
for the left-out disease genes in the LOOCV with different RWR algorithms.
Classical RWR algorithm is applied on the 3 networks aggregated as a single
monoplex network, and RWR-M algorithm is applied to combinations of the 3
networks as layers of a multiplex network.

disease-disease similarity network thanks to these bipartite associations. The
conclusion from Li and Patra (2010) was that the RWR-H algorithm on the
heterogeneous network performs better than the classical RWR on a monoplex
network.

We here compared the ranking capacities of RWR-M and RWR-H by LOOCV.
In this case, we created a test set of diseases associated to at least two genes in
the set of 12 621 proteins present in the PPI network. The test set contains 242
diseases and 880 gene-disease associations. We can observe first that RWR-M
and RWR-H perform better than the classical RWR on the monoplex PPI net-
work (Fig. 4). In addition, the RWR-M algorithm performs slightly better than
RWR-H algorithm, since it is able to rank within the top 20 a larger percentage
of known gene-disease associations (Fig. 4).

In this context, an algorithm able to execute a random walk with restart on
both multiplex-heterogeneous networks is expected to have better performances.
Therefore, we extended our RWR-M approach to heterogeneous networks, defin-
ing a random walk with restart on multiplex-heterogeneous networks, RWR-MH
(materials and methods). The RWR-MH displays a remarkable amelioration of
performances in the prioritization task, since over 45% of the left-out genes are
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Figure 4: Cumulative distribution functions representing the ranks obtained
for the left-out disease genes in the LOOCV with different RWR algorithms.
Classical RWR algorithm is applied to the monoplex PPI network, RWR-M is
applied to the combinations of the 3 monoplex networks as layers of a multiplex
network, RWR-H algorithm is applied to the heterogeneous network composed
of the PPI network and the disease-disease similarity network, and RWR-MH
algorithm is applied the multiplex-heterogeneous network composed of the 3-
layers multiplex network and the disease-disease similarity network.

ranked within the top 20 (Fig. 4).

3.4 Effect of parameters on the RWR-MH

Finally, we checked the influence of the parameters involved in the RWR-MH
algorithm, using again the LOOCV strategy. In this case, we created the test
set with diseases associated to at least two genes in the total of 17 559 nodes
corresponding to the union of the nodes of the three networks. The test set
contains 276 diseases and 1 101 gene-disease associations.

In the applications of the RWR algorithms described previously, the restart
parameter was set as r = 0.7, as in earlier publications (Li and Patra, 2010;
Li and Li, 2012; Zhao et al., 2015; Blatti and Sinha, 2016). Changes in this
parameter only slightly affect the results (Fig. 5A).

We then studied the effect of the parameters related to the random walks in
multiplex networks, δ and τ . The parameter δ quantifies the probability that
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the particle jumps from the current node to the same node in a different layer,
after a non-restart step. If δ = 0 the particle will always stay in the same layer,
and if δ = 1 the particle will jump to a different layer at each step. However, we
did not observe notable changes with variations in this parameter, as displayed
in Fig. 5B. The parameter τ controls the probability of restart in the different
layers of the multiplex network. Theoretically, this would allow exploiting our
knowledge about the performance of the RWR on the monoplex networks. For
instance, it could seem reasonable to favor the restart in the Pathway network
and to hinder it in the Co-expression network. However, Fig. 5C does not show
notable differences in the performances of the LOOCV with modifications of
this parameter.

The parameters used for RWR-H on heterogeneous networks are λ and η.
The parameter λ quantifies the probability of jumping between the multiplex
and the disease-disease similarity network, using the bipartite gene-disease as-
sociations. The larger the value of λ, the higher the probability of jumping.
If λ = 0, the particle does not exploit the bipartite associations between the
disease-disease similarity network and the multiplex network. Contrarily, if
λ = 1, the bipartite gene-disease associations dominate the walks, and the par-
ticle is not allowed to deeply explore the topology of each individual network.
But variations in this parameter shows only small variations in the performances
(Fig. 5D). The parameter η quantifies the probability of restart in the multi-
plex or in the disease-disease similarity network. If η = 0, the particle will
always restart in the multiplex network. In this case, variations in the parame-
ter slightly influence the performances of the algorithm (Fig. 5E). Overall, the
RWR-MH is a very robust algorithm since variations in the parameters do not
lead to large variations in the ranking performances.
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Figure 5: Cumulative distribution function (CDF) of the rank position re-
trieved for each tested gene by LOOCV when running RWR-MH with varia-
tions of the parameters. When one parameter changes, the other parameters
remain set on their default value. Variations are tested in: A) parameter r, B)
parameter δ, C) parameter τ D) parameter λ and E) parameter η .
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3.5 Examples of application

To illustrate our approach, we applied the RWR-MH algorithm to two different
case-examples. We first used the algorithm to predict candidate genes that could
be involved in the Wiedemann-Rautenstrauch syndrome, and then explored the
network of genes and diseases related to the SHORT syndrome.

3.5.1 Candidate genes for the undiagnosed Wiedemann-Rautenstrauch
syndrome

The Wiedemann-Rautenstrauch neonatal progeroid syndrome (WRS; MIM code:
264090) is characterized by intrauterine growth retardation with subsequent fail-
ure to thrive and short stature (Toriello, 1990). Patients also display a progeroid
appearance, decreased subcutaneous fat, hypotrichosis and macrocephaly (Ki-
raz et al., 2012). Only a few published cases have been documented, and to our
knowledge no gene has been described as causative of the syndrome yet.

To illustrate the application of our approach for disease-associated gene pre-
diction, we applied the RWR-MH algorithm using as seed only the WRS dis-
ease node. We then considered the top 25 ranked genes as putative candidates
for playing a role in WRS (Fig 6). Many of these top predicted candidate
genes, such as FIG4, RNF113A or LMNA, are implicated in diseases directly
connected to WRS from phenotype similarities. Mutations in LMNA are re-
sponsible for the Hutchinson-Gilford Progeria Syndrome (MIM code: 176670)
and other premature aging syndromes such as Mandibuloacral Dysplasia with
type A Lipodystrophy (MIM code: 248370). However, the targeted sequencing
of LMNA in few WRS patients did not identify mutations (Kiraz et al., 2012;
Hou, 2008). The RWR-MH algorithm also top ranked ZMPSTE24, which is
known to cause severe progeroid syndromes such as Restrictive Dermopathy
(MIM code: 275210) (Navarro et al., 2006). But here also, no mutations were
found in 5 WRS patients for this gene (Hou, 2008).

Another set of interesting candidates is given by the subnetwork composed
of the four genes IGF2, INS, INSR and RPS6KA3. All these genes participate
in the insulin pathway, and are associated to diseases sharing phenotypes with
WRS (i.e., Donohue Syndrome (MIM code: 147670), hyperproinsulinemia (MIM
code: 176730), and severe growth restriction (MIM code: 147470)). The insuline
pathway is suspected to play a role in WRS (Arboleda et al., 2007). Similarly,
a cluster of proteins related to the cell cycle and DNA repair is connected to
WRS through the Wolf-Hirschhorn syndrome (MIM code: 194190), and DNA
repair defects are also suspected to be involved in WRS (Hou, 2008).

3.5.2 Exploring network vicinity of PIK3R1 and SHORT Syndrome

SHORT Syndrome (SS; MIM code: 269880) is a rare disease with clinical fea-
tures defined by its acronym: Short stature, Hyperextensibility of joints and/or
inguinal hernia, Ocular depression, Rieger abnormality and Teething delay (Gor-
lin, 1975). However, these phenotypes do not describe the full range of SS phe-
notypes, and other clinical features include for instance partial lipodystrophy
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Figure 6: Network representation of the top 25 ranked genes and diseases when
the RWR-MH algorithm is executed using WRS as seed (yellow node). Grey
elliptical nodes are diseases; Turquoise rectangles are genes/proteins. Black
edges are bipartite gene-disease associations from OMIM (Hamosh et al., 2005);
Grey edges are the similarity links in the disease-disease network; Blue edges
are PPI interactions; Yellow edges are co-expression relationships; Red edges are
pathway interactions. The illustration was created using Cytoscape (Shannon
et al., 2003). It is to note that results are represented as an aggregated network
only for visualization purposes.

and insulin resistance (Avila et al., 2016). Mutations in the PIK3R1 gene are
described as the main cause of SS (Dyment et al., 2013; Chudasama et al., 2013;
Thauvin-Robinet et al., 2013).

We applied the RWR-MH algorithm using the PIK3R1 gene and the SS dis-
ease as seed nodes, and explored the top 25 ranked diseases and genes, along with
their interactions and associations (Fig 7). Many of the top ranked diseases reca-
pitulate phenotypes associated to SS. For instance, permanent neonatal diabetes
mellitus (MIM code: 606176) accounts for SS phenotypes associated to insulin
resistance. Mandibuloacral dysplasia with type B lipodystrophy (MIM code:
608612) and other diseases associated to lipodystrophy are also top ranked, as
well as the growth hormone insensitivity syndrome (MIM code: 262500) that
share with SS the phenotypes related to short stature, among others.

Some of the identified subnetworks are very appealing. For instance, we
can observe a loop linking the SS, its associated gene, PIK3R1, the Lowe ocu-
locerebrorenal syndrome (MIM code: 309000) and its associated gene OCRL.
These two diseases share a noticeable amount of phenotypes, including growth
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retardation and glucose intolerance. The PIK3R1 and OCRL genes are coding
proteins involved in the same pathway: synthesis of phosphatidylinositol phos-
phates at the plasma membrane (Reactome code: R-HSA-1660499). Therefore,
we can hypothesize a common deregulation of this pathway in the two diseases,
leading to shared phenotypes.

Similarly, we can point to the subnetwork containing the ELN gene, impli-
cated in the Williams-Beuren Syndrome (MIM code: 194050). Many pheno-
types associated to this syndrome are similar to SS and Lowe oculocerebrorenal
syndrome. In this case, the ELN gene is linked to the PDGFRB gene by a
co-expression relationship. PDGFRB is highly connected to many nodes in the
subnetwork, including to PIK3R1, by pathway interactions. The co-expression
interaction between PDGFRB and ELN is intriguing because the two genes are,
to our knowledge, not described to be involved in the same pathway or process.
However, they seem to be regulated by the same microRNA-29 family (Zhang
et al., 2012; Cushing et al., 2015).

Overall, these results could also allow pointing to other candidate genes,
predicted to be involved in the SS. This is interesting as, for instance, Dyment
et al. (2013) did not find any mutation in the PIK3R1 gene in one of the seven
tested patients.

4 DISCUSSION

Physical and functional relationships between genes and proteins are diverse.
They are identified or derived from various approaches, each having its own
features, strengths and weaknesses. In this context, the integration of differ-
ent sources of interaction, exploiting data pluralism, is expected to outperform
current approaches dealing with single networks. Indeed, the combination of
different large-scale interaction datasets increases the available biological infor-
mation, and potentially reduce the bias and incompleteness of isolated sources
(Menche et al., 2015).

We and others also hypothesized that the multiplex framework, which re-
tains information on the topology of the individual networks, would perform
better as compared to the aggregation of the different interaction sources, (Ku-
rant and Thiran, 2006; Kivelä et al., 2014; Battiston et al., 2014; Didier et al.,
2015). We have shown previously, for instance, that the multiplex framework
is more efficient than network aggregations to extract communities from bio-
logical networks (Didier et al., 2015). We extended here the RWR algorithm
by designing the RWR-M algorithm able to leverage multiplex networks. The
performances of the RWR-M algorithm are clearly improved as compared to
previous algorithms navigating monoplex networks, such as RWR on PPI net-
works (Köhler et al., 2008), or RWR on aggregated networks (Li and Li, 2012).
It is particularly interesting to note that even if a monoplex network, such as the
co-expression network, displays poor ranking performances isolated, its integra-
tion as a layer of a multiplex network leads to an increase of the performance,
thereby demonstrating the potential of the RWR-M strategy.
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Figure 7: Network representation of the top 25 ranked genes and diseases
when RWR-MH is executed using SS as seed disease and PIK3R1 as seed gene
(yellow nodes). Grey elliptical nodes are diseases; Turquoise rectangles are
genes/proteins. Black edges are bipartite gene-disease associations from OMIM
(Hamosh et al., 2005); Grey edges are the similarity links in the disease-disease
network; Blue edges are PPI interactions; Yellow edges are co-expression re-
lationships; Red edges are pathway interactions. The illustration was created
using Cytoscape (Shannon et al., 2003). It is to note that results are represented
as an aggregated network only for visualization purposes.

Moreover, we extended our algorithm to integrate multiplex-heterogeneous
networks. To this goal, we first built a disease-disease similarity network based
on the information content (IC) of the shared phenotypes between every pair
of diseases. Previous approaches building disease-disease networks, such as the
ones proposed by Li and Patra (2010); Li and Li (2012), were based on Mim-
Miner (van Driel et al., 2006). MimMiner mines OMIM full-text and clinical
synopsis to compute similarity between diseases. Contrarily, our approach is
based on the controlled classification of phenotypes in an ontology, and consid-
ers both the ontological structure and the frequencies of phenotypes.

We evaluated the algorithms with a Leave-One-Out Cross Validation (LOOCV)
strategy, using a cumulative distribution function (CDF) to display the results.
As compared to a more classical Receiver Operating Curve (AUC), as detailed
for instance in Mordelet and Vert (2011), the CDF ranks all the nodes in the
networks. In our case, this means that the total of 17 559 nodes are ranked, even
if the plots focus on the top 60. Contrarily, previous approaches were ranking
a subset of genes related to the left-out gene, for instance the top 100 closest
genes in the genome (Köhler et al., 2008; Li and Patra, 2010; Li and Li, 2012;
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Zhao et al., 2015). CDF thereby results in a more general validation than other
methods.

Thanks to the LOOCV, we demonstrated that when the RWR algorithm
is applied on this complex multiplex-heterogeneous network, an approach that
we called RWR-MH, the prioritization results are far better than those of all
other versions of the algorithm. We have also demonstrated that the RWR-MH
algorithm displays a robust behavior upon variations of the different parameters,
which are globally inducing no or only few changes in the results. This was
previously observed for variations in the parameters of a RWR-H algorithm (Li
and Patra, 2010; Zhao et al., 2015). However, it is to note that, although the
global curves of the LOOCV CDF do not change significantly when parameters
vary, a focused analysis and network representation of the top 25 ranked genes
and diseases in a real-case applications would reveal variations. In these applied
cases, changes in parameters can be used to tune the output. For instance, the
parameter τ would allow giving more emphasis on some input network layers,
based on prior knowledge related to their biological relevance.

Random walks with restart in biology have been applied to predict disease-
associated genes (Köhler et al., 2008; Li and Patra, 2010; Li and Li, 2012; Zhao
et al., 2015; Xie et al., 2015), but also to predict drug-target interactions (Chen
et al., 2012; Liu et al., 2016) and adverse drug reactions (Chen et al., 2016),
and to identify clusters from PPI Networks (Macropol et al., 2009). Smedley
et al. (2014, 2015) developed Exomiser, where RWR is applied to prioritize
genes and variants in the context of whole-exome sequencing. We applied here
our advanced version of the random walk with restart algorithm, RWR-MH,
to two real-case biological examples. In the first one, we predicted candidate
genes that could be associated to the WSR syndrome, whose responsible gene(s)
remain to be described. We hereby demonstrate the usefulness of the approach
to study disease etiology and help diagnose patients. The next step will be to
validate these predictions, for instance using exome-sequencing data. We also
applied the RWR-MH algorithm to study the network vicinity of a disease, the
SHORT syndrome, and its associated gene, PIK3R1. We show that the disease
is sharing phenotype with other syndromes, which are caused by genes in the
neighborhood of PIK3R1 when multiple interaction types are considered. This
is an additional example of the fact that mutations in genes participating to
the same pathway, or more generally biological processes, lead to diseases with
similar phenotypes (Oti et al., 2006).

The main underlying hypothesis of the work presented here is that the inte-
gration of multiple interaction sources, each having its own features and biases,
will improve the results of the random walks by providing complementary data.
For instance, in the application of the RWR-MH to the WRS syndrome, we re-
trieved as top candidates the LMNA and ZMPSTE24 genes. The ZMPSTE24
gene codes a peptidase acting during the post-translation modifications of the
prelamin A, coded by LMNA, to undergo the complete maturation to lamin
A. It is interesting to note that the direct interaction between the products of
LMNA and ZMPSTE24 is missing in the databases we used to construct the
multiplex network. However, the ZMPSTE24 node is retrieved through different
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trajectories in the random walk. Hence, the combination of multiple network
sources in this case allow completing missing interaction data.

We focused our applications on a multiplex network composed of a PPI,
a Pathway and a Co-Expression network. Other biological networks could be
collected or constructed from -omics data, and integrated into our multiplex-
heterogeneous framework. Functional interactions can be derived, for instance,
by connecting genes annotated for the same Gene Ontology (GO) terms (Ash-
burner et al., 2000). It would also be valuable to include networks with transcrip-
tion factors - targets genes, non-coding RNAs, as well as drug and therapeutic
targets.

The highly connected nodes, called hubs, can be genes or proteins highly
connected and central in the cells, but can also result from biased biological
experiments studying ”fashion” proteins, such as TP53 in cancer or APP in
Alzheimer. RWR algorithms and other network propagation algorithms are bi-
ased towards highly connected proteins, as demonstrated by Erten et al. (2011).
In this context, poorly-connected and unwell-known nodes, which are also poten-
tially relevant for diseases, are more complicated to find than highly-connected
and well-known proteins. To address this issue, biased random walks have been
developed to favor the walk of the particle according to network topological
features (Battiston et al., 2016). In the simplest case, the transition probability
depends on the degree of the neighbors of the current node: the walk of the
particle can be tuned towards less connected nodes (Bonaventura et al., 2014).
Such a degree-biased random walk could be applied to the RWR-MH algorithm
in the future.

In addition, for the sake of simplicity, all the networks considered in this
study are unweighted. Nevertheless, the extension to weighted networks is
straightforward, as pointed out in the material and methods. The use of
weighted networks could improve the prioritization results because we can as-
sign larger transition probabilities to the most confident interactions or to the
more similar diseases. For instance, STRING database stores scored protein-
protein interactions indicating its confidence based on the evidences (Szklarczyk
et al., 2015). The edges in our Co-expression network are established based on
threshold imposed on the value of the computed correlation coefficient. This
coefficient can be included into the Co-expression network to favor the transi-
tions between the proteins whose expressions are more correlated. In addition,
we built the disease-disease similarity network according to the similarity scores
between every pair of diseases. This score could be introduced into the corre-
sponding edges.
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