
HAL Id: hal-01946365
https://hal.science/hal-01946365v1

Submitted on 6 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Tree-Based Approach to locate Object Replicas in a
Fog Storage Infrastructure

Bastien Confais, Adrien Lebre, Benoît Parrein

To cite this version:
Bastien Confais, Adrien Lebre, Benoît Parrein. A Tree-Based Approach to locate Object Replicas in
a Fog Storage Infrastructure. GLOBECOM 2018 : IEEE Global Communications Conference, Dec
2018, Abu Dhabi, United Arab Emirates. pp.1-6, �10.1109/GLOCOM.2018.8647470�. �hal-01946365�

https://hal.science/hal-01946365v1
https://hal.archives-ouvertes.fr

A Tree-Based Approach to locate Object Replicas
in a Fog Storage Infrastructure

Bastien Confais
CNRS, LS2N, UMR 6004,

Polytech Nantes,
rue Christian Pauc, BP 50609,
44306 Nantes Cedex 3, France

Adrien Lebre
INRIA, LS2N, UMR 6004,

Institut Mines Télécom Atlantique,
4 rue Alfred Kastler,

44307 Nantes Cedex 3, France

Benoît Parrein
Université de Nantes, LS2N, UMR 6004,

Polytech Nantes,
rue Christian Pauc, BP 50609,
44306 Nantes Cedex 3, France

Abstract—Fog Computing infrastructures have been proposed
as an alternative to Cloud Computing to provide computing
with low latency for the Internet of Things (IoT). A few storage
systems have been proposed to store data in those infrastructures.
Most of them are relying on a Distributed Hash Table (DHT) to
store the location of objects which is not efficient because the node
storing the location of the data may be placed far away from
the object replicas. In this paper, we propose to replace the DHT
by a tree-based approach mapping the physical topology. Servers
look for the location of an object by requesting successively their
ancestors in the tree. Location records are also relocated close
to the object replicas not only to limit the network traffic when
requesting an object, but also to avoid an overload of the root
node. We also propose to modify the Dijkstra’s algorithm to
compute the tree used. Finally, we evaluate our approach using
the object store InterPlanetary FileSystem (IPFS) on Grid’5000
using both a micro experiment with a simple network topology
and a macro experiment using the topology of the French
National Research and Education Network (RENATER). We
show that the time to locate an object in our approach is less
than 15 ms on average which is around 20% better than using a
DHT.

I. INTRODUCTION

While largely adopted, the Cloud Computing relies on few
datacenters located far from the users. This model cannot
satisfy the new constraints of the Internet of Things (IoT), es-
pecially in terms of latency and reactivity. The Fog Computing
approach proposed by Cisco in 2012 [1] consists in deploying
from micro to femto datacenters geographically distributed, at
the Edge of the network. The proximity to the users enables
the Fog infrastructure to provide low latency computing.

Although object stores provide locality and scalability
which are two good properties for Fog Computing infrastruc-
tures [2], the records containing the location of all objects
replicas are often stored without any locality. Most of the time,
a Distributed Hash Table (DHT) is used for this purpose [3],
[4], [5]. When an object is requested, two sites have to be
reached: a first one to determine the object location and a
second one to actually retrieve the requested object. Finally, a
local replica is created to improve the performance for future
accesses and the location record in the DHT is updated to
reflect this new location. All objects are replicated where they
are accessed but the location record is not relocated, we claim
that locating an object may be expensive.

In this paper, we propose a location management approach
in which the location of objects is replicated on the fly
in a tree. Our approach is inspired by the Domain Name
System (DNS) [6] and by some Content Network Delivery [7]
protocols. Its main characteristic is to take into account the
physical network topology to relocate the location record along
the routing path to the object’s replicas. To achieve this, our
proposal also includes a method to generate a tree from a
network topology adapted to Fog environment. Evaluations
using the object store InterPlanetary FileSystem (IPFS) [5] on
the Grid’5000 testbed [8] shows our approach reduces the time
to locate an object by 20% on average.

The remaining of the paper is organised as follows. In
Section II, we describe why a DHT is not adapted for Fog
infrastructures. We give a technical background to understand
our protocol and we present the assumptions we made in our
work. In Section III, we describe our protocol and discuss
our method to build the tree. Our approach is then evaluated
in Section IV, and finally, related works are presented in
Section V before concluding in Section VI.

II. TECHNICAL BACKGROUND

Writing objects on the closest Fog site is a valuable property
for an object store working in a Fog infrastructure in order
to reduce the access times [2]. A global DHT spread among
all nodes is used to store the relation between each object’s
name and the location of its replicas. Accessing a DHT to
find the location of an object has many drawbacks. Soliciting
a remote site to get the location of an object impacts the
reading performance because the network latency to reach the
site storing the location record may be high. The performance
of the remote site is also impacted because answering external
queries increases the load of the servers. Finally, it prevents
the system from working in case of network partitioning: if a
site is isolated from the others, nodes cannot locate the objects
stored on it. This approach is used in storage solutions such
as IPFS, which is an object store relying on a BitTorrent like
protocol to exchange the objects between the nodes and on a
Kademlia DHT to store the location of these objects.

Two properties are expected from an efficient location
management system in a Fog infrastructure. First, location
records should be found close to the site accessing the object

Site 4
(Rennes)

Site 3
(Paris)4.5 ms

Site 6
(Lyon)

10.0 ms

Site 8
(Bordeaux)

5.0 ms
4.0 ms

Site 2
(Nice)

Site 5
(Marseille) 5.0 ms

9.0 ms4.0 ms

Site 7
(Toulouse) 2.5 ms

Site 1
(Strasbourg)

4.0 ms

7.0 ms5.0 ms

5.0 ms

3.0 ms

Fig. 1: Part of the French National Research and Education
Network physical topology.

and secondly we should benefit from data movements between
sites to improve the locality: when a site accesses an object
and relocates it, other sites should be able to locate this new
replica by reaching a closer site than the original one. We
illustrate these properties using Figure 1 showing different
points of presence of the French NREN (RENATER) topology
but also their physical connections with their network link
latencies (see https://renater.fr for more details). We consider
this network latency as the distance between the sites. This
locality cannot be provided by a DHT where the site storing
the location of the object is determined by a hash function.

Because the DHT is not able to provide physical locality and
to relocate the records storing the location of object replicas
close to where they are needed, we propose a protocol inspired
by the Domain Name System (DNS). In the DNS protocol, a
resolver who wants to perform a query, first requests a root
node and if the root node cannot answer to the query directly,
it indicates to the resolver which server is the most able to
answer. This mechanism is similar to the hops performed in a
DHT but with a major difference: it is possible to choose the
node storing the location of object replicas instead of using a
hash function. It is also possible to control the servers that a
node needs to reach to perform a query.

In addition to managing the location through a hierarchical
approach, we build a tree overlay on top of the graph shown
in Figure 1. We propose in Section III-B, to use a modified
version of the Dijkstra’s algorithm that generates the tree
shown in Figure 2.

III. A TREE BASED APPROACH FOR OBJECT LOCALISATION

This section first describes how our protocol works, then
proposes an algorithm to generate the tree we rely on.

In our work, we make several assumptions. First, we work
in a context where objects are immutable and therefore all
replicas have the same content and are consistent. Second,
the requests are sent in an iterative way. In other words, the
node that looks for an object, sends the queries to the different
nodes. Although the recursive approach is more efficient, most
DHT works in an iterative manner [9]. In this study, we kept
this approach for fairness reason even if a recursive approach
may be easily implemented in next version of our protocol.
Finally, we point out that a request does not lead to know the
location of all object replicas but only the closest ones in order
to reduce access time at its minimum.

Site 1 (Strasbourg)

Site 2 (Nice)

Site 5 (Marseille)

5.0 ms

Site 7 (Toulouse)

2.5 ms

Site 3 (Paris)
object�on "site4"

Site 4 (Rennes)
object�on "site4"

4.5 ms

Site 6 (Lyon)
object�on "site4"

7.0 ms 4.0 ms 5.0 ms

Site 8 (Bordeaux)

5.0 ms

Fig. 2: Tree overlay generated from the French NREN
topology, showing the location records of an object stored on

Site 4.

A. Protocol description

We propose to distribute the records storing the location
of object replicas inside a tree. Like in the DNS protocol,
the different names are spread over different servers organised
in a hierarchical way. The tree is composed of the different
sites of Fog and is browsed from the current site to the root.
If the location of a replica of the object is not found at a
given level, the parent node is requested. Contrary to the DNS
where a resolver first requests the root node, our protocol
uses a bottom-up approach. We consider the tree is organised
according to the physical topology including the links latencies
in order to minimize the time to find the node storing a replica
of the object. In other words, the parent of each node is
physically close and looking for the location of the object
by requesting it, is faster than requesting the parent of the
parent. It also limits the network traffic to a small part of the
topology.

Figure 2 also shows the location records organisation. The
edges between the nodes correspond to physical network links.
Each node is able to answer to all requests for objects stored
in their subtree, and more specifically, the root node located in
Site 6 is able to provide an answer to all the requests. The root
node was chosen because of its central position in the physical
topology. We consider each site is composed of a “storage
backend” and a “location tree server”. The “storage backend”
is in charge of storing the objects but also of retrieving them
from other sites when it is not stored locally. The “location
tree server” is responsible for storing the association between
an object’s name and all sites on which a replica is stored.
Concretely, they store location records composed of an object’s
name and the address of a storage node storing the replicas
for this object. For a given object, a server stores at most
one record per replica. Figure 2 also shows an example of
location record. For instance, there is two location records for
the object stored on Site 4: one on Site 4 and one on each
site located at an upper level in the tree (Site 6 and Site 3 in
the example).

Figure 3(a) shows a first reading process when the object is
accessed from Site 2. Because the local storage node does not
store a replica of the requested object, the location process
is started. The first location tree server to be requested is
the local one. Because no location record is stored on it, the
storage node requests the parent of this location tree server

https://renater.fr

Site 2 Site 5 Site 6 Site 4

Object lookup phase

Object relocation phase

where is
object?

not found

where is
object?

not found

where is
object?

“site4”

get
object

object

get
object

object

store
object

add
object→“site2”

add object→“site2”

add object→“site2”

Client
Storage
backend

Location tree
server

Location tree
server

Location tree
server

Storage
backend

(a) – Read from Site 2, the object written on Site 4.

Site 7 Site 5 Site 6 Site 2

Object lookup phase

Object relocation phase

where is
object?

not found

where is
object?

“site2”

get object
object

get
object

object

store
object

add
object→“site7”

add object→“site7”

Client
Storage
backend

Location tree
server

Location tree
server

Location tree
server

Storage
backend

(b) – Read from Site 7 the object previously read from Site 2.

Fig. 3: Sequence diagrams of network traffic when a client reads an object first from Site 2 (a) and secondly from Site 7 (b).

(i.e., Site 5). The process continues until one location server
can answers. In the worst case, the location is found on the
root location server (i.e., Site 6). Once the closest location is
found, the object stored on Site 4 is relocated locally and new
location records are created asynchronously. The storage node
sends a message to the location tree servers from the closest
one to the one on which the location was found. In this way,
sites that are in the subtree of the new created replica will be
able to find it during the next read.

We point out, it could be possible not to use “location
records” but to store directly object replicas within the tree,
avoiding to first determine the location of an object before
actually retrieving a replica. However, this strategy is not
efficient in term of space usage.

Figure 3(b) shows that when Site 7 requests the object
previously relocated in Site 2. The reading process is the same
as previously described but the replica from Site 2 is now
accessed thanks to the location record found on Site 5. There
is no need to reach and update the root metadata server on
Site 6, because Site 7 and Site 2 are sibling nodes.

To conclude on this section, we argue our protocol is more
adapted for Fog infrastructures than the DHT because location
is found along the physical path from the current node to
the root node. Finally, in addition to reducing the lookup
latency, creation of location records enables the sites to locate
reachable objects replicas in case of network partitioning,
increasing Fog sites autonomy.

B. Tree computation

As shown in Section III-A, the total latency to find a location
increases with the depth of the tree. Our goal is to create a tree
in which object’s location can be found in a few low latency
hops. The classical algorithm to compute the shortest paths

Site 2
(Nice)

Site 1
(Strasbourg)

Site 4
(Rennes)

Site 5
(Marseille)

Site 7
(Toulouse)

2.5 ms

Site 6
(Lyon)

9.0 ms 7.0 ms 10.0 ms 4.0 ms

Site 3
(Paris)

5.0 ms

Site 8
(Bordeaux)

5.0 ms

Fig. 4: Intermediate tree generated with our cost function of
the Dijkstra’s algorithm (total weight: 49). This tree is not

adapted to our protocol.

from a source node to all the other nodes is the Dijkstra’s
algorithm [10]. The generated shortest paths may be seen as a
tree with the source node as a root. Therefore, we propose to
reuse this algorithm to generate our tree. Nevertheless, some
improvements need to be made. The first drawback of the
Dijkstra’s algorithm is that the root node needs to be specified
manually. In order to choose the “best” root node, we compute
the tree with each node as source and select the one with
the lowest weight. The second drawback is that the traditional
cost function does not reflect the way our protocol requests the
nodes. Because our protocol is iterative, deeper a link is, more
used it is. For instance, in the tree of Figure 2, the distance
between Site 7 and Site 6 contains two times the use of the link
between Site 7 and Site 5. We propose to use the cost function
presented in Equation 1 that reflects this iterative approach.

fc =

parent(node)∑
i=root

d (i, parent (i))× depth (i)

+

d (parent (node) , node)× depth (node)

(1)

The generated tree shown in Figure 4 is very flat and cannot
be used because sites cannot benefit from relocations and
access the root node directly. In order to generate a deeper
tree, we propose to relax the constraint used in the Dijkstra’s

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 200 400 600 800 1000

M
e

a
n

 t
im

e
 t

o
 l
o

c
a

te
th

e
 o

b
je

c
t

(s
)

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – All sites

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

M
e

a
n

 t
im

e
 t

o
 l
o

c
a

te
 t

h
e

 o
b

je
c
t

(s
)

Site 2

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 3

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 4

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

Site 5

(b) – Per site

Fig. 5: Mean times to find the location of objects in the first
read for all sites (a) and for each site (b). Objects are sorted

by their location time.

algorithm. Instead of selecting a position if it reduces the total
weight, we propose to select a position if it does not increase
the latency by a factor greater than c in case of the new position
of the node is deeper in the tree. Figure 2 shows the tree
generated when c = 1.2.

IV. EXPERIMENTAL EVALUATION

We now compare experimentally our approach to a Kadem-
lia DHT [11] in a micro and a macro benchmark.

A. Material and Method

We performed our experiments on the Grid’5000 testbed [8]
using the object store IPFS. In order to mitigate our devel-
opment efforts, we implemented our approach using several
DNS servers to store location records. We used the BIND
DNS server as a “location tree server” and we modified the
routing mechanism used in IPFS to request those DNS servers
in a bottom-up manner rather than the DHT.

We use the topologies shown in Figures 7 and 2 for micro
and macro benchmark respectively. Objects are written on the
first site (in blue in the Figures) and then they are accessed in
parallel from other sites. In each read, each object is accessed
from one and only one site that did not access it previously. In
this way, we never read objects that have been locally stored
and for which determining their location is not needed.

Accesses are performed in parallel. We measure the time
to access a location record for each object and the number
of network links crossed to reach it (the number of hops).
Different replication levels in the DHT are evaluated in order
to be fair with our approach which relocates location records
on the fly. We call “DHT kx”, the DHT storing x replicas of
each key. The object repository of IPFS and the zone file of

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 200 400 600 800 1000

M
e

a
n

 t
im

e
 t

o
 l
o

c
a

te
th

e
 o

b
je

c
t

(s
)

Object

DHT k1
DHT k2
DHT k3

Our approach

(a) – Second read

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0 200 400 600 800 1000

M
e

a
n

 t
im

e
 t

o
 l
o

c
a

te
th

e
 o

b
je

c
t

(s
)

Object

DHT k1
DHT k2
DHT k3

Our approach

(b) – Third read

Fig. 6: Mean times to find the location of objects in the
second read for all sites (a) and for each site (b). Objects are

sorted by their location time.

the DNS servers are stored in a tmpfs in order to prevent
any impact from the underlying filesystem.

Network latencies are emulated using the Linux Traffic
Control Utility (tc). Network bandwidth between the sites
is set to 1 Gbps. We use 1 000 objects with a size of 4 KB
each. Because we measure only the time to locate the objects,
their size does not impact our results. All experiments were
performed 10 times. Standard deviations are not represented
but are all around 0.01 s.

B. Micro benchmarks

Site 1

Site 3

13 ms

Site 2

Site 4

114 ms

Site 5

144 ms

35 ms

Fig. 7: Tree used for the micro benchmark (total
weight: 612). Accessed objects are written on the site in blue.

We perform micro benchmarks on the topology shown in
Figure 7 to first validate our experimental plan. This topology
is manually built from 5 sites of the Wondernetwork matrix
of latencies (see https://wondernetwork.com/pings).

The time to locate objects is shown in Figure 5(a), for both
the DHT and our approach when objects are accessed for the
first time. Objects are sorted from the time to locate them.
It appears that our approach need 1.982 s to locate the 1 000
objects, which is faster than a DHT with only one replica
(about 4.794 s) and not so far a DHT with 3 replicas (about
1.740 s). We nevertheless point out that in the first read, our
approach relies only one location record. Vertical black lines
in Figure 5(a) show the theoretical values delimiting groups of

https://wondernetwork.com/pings

objects for which the location record is reached with the same
network latency in our approach. In the first read, because
each site locates objects with a different latency, we observe
4 different periods (one every 250 objects) separated by 3
different theoretical thresholds. For instance before the first
threshold we mostly observe objects read from Site 4, for
which the location of object replicas is stored locally. The
second group is almost composed of objects read from Site 3
for which the location of objects is found on Site 1, reachable
in 13 ms. From object 500 to 750, we observe objects read
from Site 5. Finally, after the last threshold, we observe the
objects read from Site 2 which need to reach Site 5 and Site 4
to locate them. Because objects are sorted by the time to
locate them and because this time is not constant for each site,
theoretical thresholds do not delimit exactly what is happening
site by site. To deeply understand the behaviour of each site,
we split the Figure 5(a) according to the site requesting each
object. Figure 5(b) shows the time to locate an object is not
the same for each site because the network latency to connect
them is different. For instance, in the DHT, Site 4 cannot reach
another node in less than 114 ms because it does not have
closer neighbour whereas Site 3 can reach Site 1 in 13 ms.
We do not observe non-linearity in our approach for a given
site because each of them finds all the location records from
the same location. We point out the tail for last objects is
due to a bad parallelism of IPFS we checked with sequential
accesses (not presented here due to space constraints).

Figure 6 shows that in a second and a third read, the
time to locate the objects does not vary with the DHT but
decreases in our approach that creates new location records
when objects are accessed. For the third read, our approach
becomes better than the DHT using 3 replicas: location records
are close to the sites which need them instead of being
spread uniformly. We need 1.417 s to locate the 1 000 objects
whereas the DHT needs 2.206 s in this case. Because new
location records are created according to object’s access, these
theoretical thresholds vary with the different reads. Therefore,
for the second read, location is found locally for 333 objects
because Site 5 now store the location for objects that have
been read from Site 2 in the first read. A similar observation
is made on Site 2 for which objects are located from Site 5
instead of Site 4.

The conclusion of this experiment is that by requesting close
nodes first and by creating new location records read after read,
our approach reduces significantly the access times.

C. Macro benchmark

In order to evaluate our approach, we use the original tree
in Figure 2 that have been computed using our approach pre-
sented in Section III-B. For the DHT-based approach, compute
the shortest path (using the traditional Dijkstra’s algorithm)
in the underlying network, so that each hop has the lowest
latency as possible. The consequence is the DHT benefits
from optimal network routing paths whereas our approach is
constrained by the tree. We perform the same experiment as
in the previous section. 1 000 objects are written on Site 1 and

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

M
e

a
n

 t
im

e
 t

o
 l
o

c
a

te
th

e
 o

b
je

c
t

(s
)

Object

DHT k1
Our approach

(a) – First read

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000

M
e

a
n

 t
im

e
 t

o
 l
o

c
a

te
th

e
 o

b
je

c
t

(s
)

Object

DHT k3
Our approach

(b) – Third read

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 200 400 600 800 1000
M

e
a

n
 t

im
e

 t
o

 l
o

c
a

te
th

e
 o

b
je

c
t

(s
)

Object

DHT k6
Our approach

(c) – Sixth read

Fig. 8: Times to locate objects in the first, the third and the
sixth read.

are read successively from other sites. Writing on the Site 1
is the worst case possible because for the first access, all sites
have to reach the root node.

Figure 8 shows the times to locate the objects in the first
read, the third and in the sixth read. Because of the high
number of sites, we performed the experiment with the DHT
up to 6 replicas for a fair comparison.

We observe that for all reads, our approach has a better per-
formance than the DHT, especially because in our approach,
the closest nodes are requested first. Figure 8(a) shows time to
locate the objects for the first read. The gap we observe around
600 objects corresponds to the objects from which location
record is accessed in 1 hop (accesses from Sites 5, 3 and 8) and
objects that are located with 3 physical hops (Sites 2, 4 and 7).
In the third read, shown in Figure 8(b), our approach becomes
better than the DHT with 3 replicas because of the relocation,
but we point out the number of location records is different
for each object. For instance an object read from Site 6, then
from Site 5 benefits only from 2 replicas when the third read
is performed. Contrary to this, an object accessed from Site 2
and then from Site 4 benefits from 5 sites storing at least one
location record in the third read. Finally, Figure 8(c) shows
better performance in our approach because when location is
not stored locally, it is requested on a closer node.

These experiments show that our approach, by creating new
location records on the fly, on the path to the root of the tree by
taking into account the physical topology enables the nodes to

locate the objects with lower access times than using a DHT.

V. RELATED WORKS

Many works propose to add locality in DHT but most papers
only consider “routing locality”. That is, only nodes with an
identifier comprised between the identifier of the source node
and the identifier of the destination node can be reached during
a lookup. This strategy enables nodes to access the closest
replica in the identifier space. This strategy is proposed by
many DHT using a Plaxton routing [12] to access the closest
replica without requesting a node that is further than it. For
instance, Zhao et al. proposed Tapestry [13], a DHT in which
the time to reach a key is proportional to the distance to
reach the node storing the key. Yalagandula et al. [14] point
out that routing locality is not sufficient and they propose a
DHT providing path convergence. The advantage is to enable
administrative isolation between some sets of nodes, enabling
sites to work in case of network partitioning, just like in
our Fog Computing approach. As summarized by Castro et
al. [15], the main drawback of those approaches is that the
distance is computed in the nodes identifier space that does
not reflect the physical topology. To solve this problem, it is
possible either to select the nodes’ identifiers or to change
the DHT routing tables according to the network topology but
these proposals are difficult to implement.

We also mention that comparing a DHT based-approach
with the DNS has been already done several times [16], [17].
Pappas et al. [17] already showed the DNS approach has
a better availability due to the hierarchical caches and also
because the average path length to reach the record is shorter.
But their experimentation is not fair because they did not
use the same number of nodes in the DHT and in the DNS
approach. Moreover, this study does not consider physical
locality and is not proposed in a Fog Context.

Finally, Content Delivery Networks (CDN) sometimes rely
on a tree [18] but contrary to our approach the data are always
written at the root, leading to use different trees, depending
on the site the object has been written on.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new protocol inspired by the
DNS to store the location of objects in a Fog infrastructure.
We explained how our protocol works, how to compute the
tree used, and we evaluated it on the Grid’5000 testbed.
The benchmark showed that requesting close nodes first and
relocating location records leads to better access times than
the DHT. In addition to provide a faster lookup process for
objects with a lot of accesses, our protocol also enable the sites
to retrieve the closest replica of the objects. Our protocol may
benefit several applications like Content Delivery Networks
(CDN), P2P approaches like video sharing or the management
of virtual machines or container images that all use immutable
objects and may be deployed in a Fog environment. Evaluating
non-deterministic algorithms to generate our tree and consid-
ering a dynamic topology with churn and fault tolerance will
be addressed in a future work.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and Its
Role in the Internet of Things,” in Proceedings of the First Edition of
the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12, 2012.

[2] B. Confais, A. Lebre, and B. Parrein, “Performance analysis of object
store systems in a Fog/Edge Computing Infrastructures,” in IEEE
International Conference on Cloud Computing Technology and Science,
Luxembourg, 2016.

[3] C. Anglano and A. Ferrino, “Using chord for meta-data management
in the n3fs distributed file system,” in 2004 International Workshop on
Hot Topics in Peer-to-Peer Systems, Oct 2004, pp. 96–101.

[4] M. El Dick, E. Pacitti, and B. Kemme, “Flower-CDN: A hybrid P2P
overlay for Efficient Query Processing in CDN,” in 12th Interna-
tional Conference on Extending Database Technology (EDBT), Saint-
Petersbourg, Russia, Mar. 2009, Research Report.

[5] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,”
Protocol Labs, Inc., Tech. Rep., 2014.

[6] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034,
Network Working Group, Nov. 1987.

[7] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
ser. STOC ’97. New York, NY, USA: ACM, 1997, pp. 654–663.

[8] D. Balouek, A. Carpen Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lebre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
virtualization capabilities to the Grid’5000 testbed,” in Cloud Computing
and Services Science, ser. Communications in Computer and Information
Science, I. Ivanov, M. Sinderen, F. Leymann, and T. Shan, Eds. Springer
International Publishing, 2013, vol. 367, pp. 3–20.

[9] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris,
“Designing a DHT for low latency and high throughput,” in Proceedings
of the 1st Conference on Symposium on Networked Systems Design and
Implementation - Volume 1. Berkeley, CA, USA: USENIX Association,
2004, pp. 7–7.

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[11] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer informa-
tion system based on the XOR metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[12] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” Theory of Computing
Systems, vol. 32, no. 3, pp. 241–280, Jun 1999.

[13] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE J.Sel. A. Commun., vol. 22, pp. 41–53, Sep. 2006.

[14] P. Yalagandula and M. Dahlin, “A scalable distributed information
management system,” SIGCOMM Computing Comm. Rev., 2004.

[15] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron, Topology-Aware
Routing in Structured Peer-to-Peer Overlay Networks. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2003, pp. 103–107.

[16] R. Cox, A. Muthitacharoen, and R. T. Morris, Serving DNS Using a
Peer-to-Peer Lookup Service, Berlin, Heidelberg, 2002, pp. 155–165.

[17] V. Pappas, D. Massey, A. Terzis, and L. Zhang, “A comparative study
of the dns design with dht-based alternatives,” in Proceedings IEEE
INFOCOM 2006. 25TH IEEE International Conference on Computer
Communications, April 2006, pp. 1–13.

[18] A. Benoit, H. Larchevêque, and P. Renaud-Goud, “Optimal algorithms
and approximation algorithms for replica placement with distance con-
straints in tree networks,” INRIA, Research Report RR-7750, Sep. 2011.

	Introduction
	Technical background
	A tree based approach for object localisation
	Protocol description
	Tree computation

	Experimental evaluation
	Material and Method
	Micro benchmarks
	Macro benchmark

	Related works
	Conclusion and Future work
	References

