
HAL Id: hal-01946345
https://hal.science/hal-01946345

Submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Number, arithmetic, multiplicative thinking and coding
Krista Francis, Brent Davis

To cite this version:
Krista Francis, Brent Davis. Number, arithmetic, multiplicative thinking and coding. CERME 10,
Feb 2017, Dublin, Ireland. �hal-01946345�

https://hal.science/hal-01946345
https://hal.archives-ouvertes.fr

Number, arithmetic, multiplicative thinking and coding

Krista Francis1 and Brent Davis2

1University of Calgary, Werklund School of Education, Calgary, Canada; kfrancis@ucalgary.ca

2University of Calgary, Werklund School of Education, Calgary, Canada; brent.davis@ucalgary.ca

With frequent predictions of upcoming technological and economic difficulties triggered by an

impending shortage of information and communications technologies (ICT) professionals, the calls

are growing stronger to include coding as a core element of school curriculum. These calls are

bolstered by the suggestion that coding supports the development of thinking skills – which echoes a

longstanding argument for teaching mathematics. Motivated by the parallel, we attempted to

investigate some of the common ground between learning to code and the development of core

mathematical concepts. We photographed and video recorded children, aged 9–10, as they learned

to build and program Lego MindstormsTM EV3 robots over four days. Our findings suggest that

programming supports children’s understandings of decimal numbers and their transitions from

additive to multiplicative thinking.

Keywords: Coding, robotics, arithmetic, number concepts, elementary education.

Introduction

In recent years there has been a growing recognition that information and communications

technologies (ICT) are a major contributor to innovation and economic growth. For instance, the

Organization for Economic Cooperation and Development (OECD, 2016) considers computer

programming a necessity for a highly skilled labour force. Shortages are already felt across the

world and demand for highly skilled ICT professionals is expected to rise. In our home country of

Canada, for instance, there are predicted shortages of more than 150,000 skilled ICT workers in the

next few years. This shortage is impacting IT innovations and revenues (see Arellano, 2015;

Clendenin, 2014).

Canada is hardly unique on this count, as evidenced by major pushes around the world to include

coding as a core part of school curriculum. In response, some educators and educational systems are

shifting from teaching “how to use” software programs toward “how to code.” Estonia and England,

for example, have implemented a national curriculum that makes computer programming

mandatory for all school-aged students across all grades, and other nations appear to be moving in

this direction. For instance, it is currently a topic of political debate in Australia, where the

opposition party is calling to have computer programming taught in every primary and secondary

school in the country (Roumeliotis, 2015; Sterling, 2015).

In North America, national-level discussions and calls have yet to gather the same sort of

momentum, but more and more initiatives are emerging at the local level. For example, the Chicago

school district is adopting computer science as a core subject in all public high schools – prompted

in large part by support from Google and Microsoft and through initiatives such as Code.org and

Hour of Code, which are dedicated to expanding access to computer science for all U.S. students.

Despite the absence of a national strategy in the U.S., messages on the importance of learning to

code are frequent, with some emanating even from the President’s office. In fact, coding skills have

been associated not only with empowering individuals and meeting employment needs, but with

many aspects of the country’s future and security (Pearce, 2013).

Trends toward including coding in school curriculum were preceded by a broadly effective

worldwide push to get computers in schools. In 2011, most students (71%) in OECD countries

reported having access to computers and the Internet at school. However, most students reported

using the computers at school for email, browsing the Internet, word processing or doing individual

homework. For the most part, such activities require low-level cognitive thinking and do not

challenge students to develop more than basic user skills. Learning how to program a computer, it is

typically argued, involves higher-level cognitive processes and provides opportunities for

developing higher-level ICT skills.

These sorts of arguments for teaching computer coding parallel long-standing rationales for

teaching mathematics. Similarly, many of the structures and strategies within coding bear strong

resemblances to elements of mathematical concepts (Papert, 1980). We discuss a few of these

resemblances in this paper, focusing on arithmetic.

Conceptual metaphors are one of the ways we understand mathematics (Núñez, 2000). With regard

to the concept of number, Lakoff and Núñez (2000) describe “four fundamental metaphors of

arithmetic”: arithmetic as object collection, arithmetic as object construction, the measuring stick

metaphor, and arithmetic as object along a path. The metaphor of arithmetic as an object collection

is based on a one-one correspondence of numbers to physical objects. With this metaphor a greater

size corresponds to a bigger number. For instance, 5 is greater than 2 because it forms a bigger

collection. The metaphor of arithmetic as object construction is based on fitting objects/parts and

arithmetic operations. For instance, 5 is greater than 2 because an object comprising 5 units is larger

than one comprising two. The measuring stick metaphor maps numbers onto distances, whereby 5

is greater than 2 because it is longer. The metaphor of arithmetic as an object along the path is

based on arithmetic as motion, by which 5 is greater than 2 because it entails moving further from a

common starting point (i.e., zero). Programing robots provides opportunities for illustrating and

experiencing these arithmetic metaphors.

Context

In this interpretive study we asked what mathematics children learn by building and programming

Lego MindstormsTM EV3. Interpretive research is about what meaning individuals construct in their

lived experiences (Bhattacharya, 2008). We co-designed learning tasks with a graduate engineering

student and co-taught the tasks with the classroom teachers over a course of four sequential days in

three-hour daily sessions. The study’s participants were 22 children, Grades 4-5 (aged 9–10), at

Pakan School at Whitefish Lake 128 First Nation in rural Northern Alberta. Once the children knew

the basic coding blocks for moving the robot, they were given Papert’s (1980) task of programming

a robot to follow a trace out of a triangle, square, pentagon or hexagon. On the third day, they were

given the final challenge of building a robot that could find and douse a fire in any of four rooms in

a building. Data included video-recordings, GoPro digital images, field notes, and artifacts

including saved computer programs.

We video-recorded the four sessions to obtain rich contextual detail of children’s mathematical

interactions when programming the robots. Using interpretive video analysis (Knoblauch, 2013) we

selected videos and GoPro digital images that exemplified instances of children’s mathematical

thinking. Video data enables repeated viewing, slow motion, fast motion and frame-by-frame

analysis. The selected videos formed the basis for emergent understandings of the children’s

experiences. The analysis developed through an iterative process of rereading the literature,

reviewing the video and GoPro data, and rewriting. As is evident in our analysis, below, video data

was vital. In particular, it permitted us to slow down the process and identify the integrated/nested

processes of learning that occurred. The three instances that we use to focus our discussion were:

(1) a trio of girls learning to program their robot for the final challenge to move a certain distance

into the hallway to illustrate a developing understanding of number, (2) a boy tapping the vertices

and sides of a triangle to count the number of programming steps necessary for the robot to move

around the triangle as an example of additive thinking, and (3) a boy learning how the number of

sides and angles of a polygon connects to the number of repeats in a loop, which illustrates a

developing shift from additive to multiplicative thinking.

Findings

In the numberline video (see https://vimeo.com/144996708video), Krista was helping the pink team

program their robot to move into the building. This action required manipulating one block of EV3

code to move the wheels a specified number of rotations. The team members started out with a

guess of 0.4 rotations to move the robot into the first corridor of the building. After testing how far

the robot moved and observing that the robot needed to move a considerably greater distance, Krista

prompted the girls by asking what they should try next. Celina suggested they try 0.5. The small

incremental change was still not enough, so Krista suggested they try 2. Two rotations moved the

robot too far.

Krista: What is between 0.5 and 2?

Celina: 5.

Suspecting that Celina’s response indicated that she and her teammates were unable to summon an

appropriate interpretation of decimal numbers, Krista drew a simple number line on the whiteboard.

Krista: What is between 0.5 and 2?

Celina: Oh! 1.8.

The number Celina chose was close to the number of rotations actually required, which indicated

she understood the meaning of 1.8. In the exchange above, we take Celina’s immediate and

satisfactory response to the repeated question as evidence that Krista was justified in her suspicion

that the learners were lacking an appropriate interpretation for understanding decimal numbers – or,

at least, were unable to extend whatever interpretations that had available to a situation in which

distance was measured in wheel rotations. Coding the robot to move compelled the learners to

elaborate their understandings. Invoking the number line appeared to provide an appropriate

metaphor for helping Celina understand.

In the following sequence of images and descriptions, we summarize how the task of coding the

robot to move into a room calls for all four of Lakoff and Núñez’ (2000) representations of

arithmetic. To begin, the metaphor of arithmetic as an object collection is used in most counting

situations, whenever the forms being counting are perceived as discrete objects. It is by far the most

https://vimeo.com/144996708
Numberline.mp4

common interpretation of number through the task of assembling a robot, by simple virtue of the

fact that the robots begin as large collections of separate items. Less obviously, it is also called for

in coding moments as programmers translate complicated actions into discrete steps or instructions.

And more obscurely too, such conceptual moves as the discretizing of wheel turns, so that they can

be counted and thus used as a tool in programming, might be argued to rely on this metaphor.

Figure 1 (left) presents an instance of this metaphor, showing that 2 turns is less (i.e., forms a

smaller set than) 5 turns.

Figure 1: Arithmetic as object collection. Number of wheel rotations | Arithmetic as Object

construction – combining portions of wheel rotations into single objects

Figure 1 (right) shows how the metaphor of arithmetic as an object construction might be

encountered when programming a robot to move. Celina wanted a larger wheel rotation than 0.4, so

she added an incremental amount of 0.1 wheel rotations to make 0.5 wheel rotations. Contrasted to

the previous metaphor, in this instance, wheel turns are not perceived as discrete objects, but as

parseable continuities. Those parsed elements can then be assembled into an appropriate object to

move the robot a precise distance.

The measuring stick metaphor also featured prominently in the children’s programming, and was

particularly prominent in the frequent need to interpret wheel turns in terms of actual distances (e.g.,

when the phrase “1 wheel turn” was deployed not as a description of movement but was a reference

to a distance of roughly 12 cm). Figure 2 (left) in reference to the instance in which the room of the

hall was shorter than approximately 1.8 wheel turns. In this instance, programming the code block

requires understanding measurement.

Figure 2: Measuring Stick: The length of hall | Arithmetic as an object along the path. The robot

travels further with 2 than 0.5

Figure 2 (right) shows how programing the robot to move draws upon the metaphor of arithmetic as

on object along the path. In this case, starting place becomes a critical element is that, for example,

occurs when the robot enters the room and recurs in the opposite direction when the robot leaves.

To re-emphasize, we observed each of Lakoff and Núñez’ four metaphors of arithmetic to be

present in programming the robot to move a required distance in the room. The ability to identify to

the particular metaphor(s) that a situation is calling for is a critically important teaching

competence, as Krista demonstrated in the interaction with Celina. Re-interpreting that brief

episode, Krista recognized that Celina was not interpreting number as a distance (i.e., she was not

using a measuring stick metaphor), and thus reminded her of that metaphor by offering the image of

a number line. No explanation other than an image of number that fitted the application at hand was

required.

Arithmetic Topic 2 – Moving from “additive” thinking to “multiplicative” thinking.

The need for appropriate metaphors and images of number isn’t sufficient for making sense of that

entire episode, however, closer analysis reveals a further issue with the children’s arithmetic,

namely the tendency to default to additive actions rather when multiplicative actions would have

been more suitable. That episode began with the group’s realization that an entry of “0.4” moved

the robot only a small portion of a desired distance. Asked what else they might try, they increased

the distance only incrementally by 0.1 (to 0.5) rather than the necessary factor of (roughly) three.

This same tendency to default to additive actions when multiplicative action would have been more

productive was witnessed many times across many groups over the four-day project. The additive

thinking video (see https://vimeo.com/144820583) provides a window into any instance of the same

phenomenon. In this case, Gene, who was on the floor in orange, is figuring out how many blocks

of code were needed for the program. As he counted “one, two, three, four, five, six,” he tapped

each vertex and side of the yellow triangle, finally announcing that six steps are needed. Gene’s

step-by-step of the same two steps (straight, turn, straight, turn, straight, turn sequence) is an

example of additive thinking – that is, of construing the situation in terms of a sequence of

increments rather than a repetition.

Phrased in terms of coding, Gene opted to repeat the same line of instructions six times rather than

employing a loop that ran six times. This happened in spite the fact that he and his group mates had

learned how to use loops the day before when they programmed their robot to dance.

In fact, only one of the 8 groups in the class used a loop for the polygon task – suggesting that the

move from additive/increment-based thinking to multiplicative/loop-based thinking is more

conceptually demanding than is often assumed. The additive to multiplicative thinking video (see

https://vimeo.com/144826969) further illustrates this point, as the classroom teacher along with

Krista attempted to help Liam program with loops. Liam, on the left, identified that a pentagon has

three sides. When asked to count the sides, he walked around the pentagon counting aloud and

announced “5 times.” Krista explains that 5 times is the number of times to repeat the two block

codes (go straight and turn) in the loop. In response, Liam exclaimed excitedly, “Yes!”

In the same clip there are two boys who were fine-tuning their robot’s program to follow a triangle.

Their robot never stopped, which indicates that they are using an infinite loop – suggesting that they

are making use of a concept of “repeating,” but likely not a concept of multiplication. After three

attempts at tracing out a triangle, they still hadn’t crafted a program that would stop their robots.

Davis and Renert (2014) have identified a number of common instantiations for multiplication that

are encountered in elementary school classrooms, including grouping, hopping, repeated sums,

https://vimeo.com/144820583
https://vimeo.com/144826969)

stretching and compressing, array- and area-making, and making combinations. Looping, it seems,

is another, distinct instantiation of multiplication that is particularly powerful in the activity of

programming – in a manner, we suspect, that might be used reflexively to support mathematics

learning. Figure 3 below, illustrates two programs for following a triangle. Additive thinking is

found with the sequential accumulation of six programming blocks: move forward, turn, move

forward, turn, move forward turn. Multiplicative thinking requires recognizing that the triangle can

be traced by repeating the move forward and turn blocks three times in a loop. In the exchanges

above, Liam appeared to be developing fluency with multiplicative thinking.

Figure 3: An additive and a multiplicative program for moving a robot in a triangle

Across the participants there was a pervasive tendency to program robots to trace out polygons as a

sequence of same-steps rather than as a repetition of a set of steps (i.e., as enabled with a loop). This

tendency was not easily interrupted through instruction, which provides evidence of the complexity

of thinking multiplicatively. Even at the end of the four days, during the final challenge, only two of

the teams had managed to appreciate the power of loops sufficiently to incorporate them into their

programs. Not surprisingly, theirs were also the robots that performed the best. In one of these

cases, the code for the winning robot (see https://vimeo.com/145404678) involved a loop

determining if a fire is present, announcing “Yes” or “No” as appropriate, and activating an arm

motion to dump retardant if “Yes.”

Part of the reason that we dwell on this point is that the operation of multiplication is, arguably, the

most important concept in grade-school mathematics. Multiplicative thinking is the cornerstone of

proportional thinking, which is foundational to advanced mathematics for reasons that include the

access it affords to an extended range of numbers (for example, larger whole numbers, decimals,

common fractions, ratio and percent), its role in recognizing and solving a range of problems

involving direct and indirect proportions, and the power it offers with its prominent place in school-

based concepts and processes (Education and Training, 2013). In brief, multiplicative thinking is a

key in the transition from early ideas to later ideas (see, e.g., ACME, 2011, p. 20).

Closing remarks

Our preliminary findings suggest programming robots can support learning mathematics. In the

episodes reported, the tasks of programming robots required more than parsing complicated actions

into singular direction; they entailed flexible engagement, Lakoff and Núñez’ (2000) conceptual

metaphors and mathematical models.

Computer programming aligns closely with concepts and structures in mathematics and we suspect

that it might provide other powerful instantiations for mathematical concepts that have not yet been

noticed. That suggestion is perhaps not surprising, given the mathematical roots of computer

programming. However, to our reading, it is not an aspect of programming that has garnered much

consideration in either mathematics education or the technology education literature. Considering

https://vimeo.com/145404678

that mathematics literacy and competency with coding are of growing relevance, engagement with

emergent technologies can complement and co-amplify mathematics learning, and contribute to

evolving understandings of what “basic” mathematics might be for our era.

With regard to important complementarities between learning mathematics and learning to code, the

Lego MindstormsTM EV3 robots and the associated programming language provide a powerful

instance of multiple solutions. They afford tremendous flexibility for accomplishing a range of

tasks, from the trivial to the complex. None of the coding tasks set for the children in our study had

pregiven or optimal “solutions.” Despite that – or perhaps because of that – the children were able

to engage in manners that they could recognize as successful, even when “complete” solutions were

not reached. With incremental tasks and iterative refinements, children were able to learn more

sophisticated and efficient methods for programming the robot. It is not difficult to imagine a

mathematics class with similar standards of success.

That said, it is not a coincidence that the winning robot had the most efficient and sophisticated

program of the group. Some answers are better than others, and those answers appear to reflect

powerful mathematical thinking. Our future longitudinal research will investigate how children’s

understandings of mathematical concepts and programming robotics develop over several years.

We believe that the results of this study underscore the importance of developing and implementing

a computer programming curriculum in schools. Coding is an emergent literacy that can amplify

other critical literacies, while affording access to a diverse range of cultural capitals. The reasons to

teach coding go beyond the technical and economic; for us, they are fundamentally ethical.

References

ACME. (2011). Mathematical needs: The mathematical needs of learners (p. 27). London, UK: The

Advisory Committee on Mathematics Education. Retrieved from http://www.acme-

uk.org/media/7627/acme_theme_b_final.pdf

Arellano, N. E. (2015). Why Canada has an 182,000 IT talent shortage while lots of tech

professionals are out of work. IT World Canada. Retrieved from

http://www.itworldcanada.com/article/why-canada-has-an-182000-it-talent-shortage-while-lots-

of-tech-professionals-are-out-of-work/373517

Bhattacharya, H. (2008). Interpretive research. In L. Given, The SAGE encyclopedia of qualitative

research methods. Thousand Oaks, CA: SAGE Publications.

Clendenin, B. (2014). Canada’s IT labour shortage: Challenges and opportunities. IT Business.

Retrieved from http://www.itbusiness.ca/blog/canadas-it-labour-shortage-challenges-and-

opportunities/50250

Davis, B., & Renert, M. (2014). The math teachers know: Profound understanding of emergent

mathematics. New York, NY: Routledge.

Education and Training. (2013). Multiplicative thinking. Melbourne, Australia: Victoria State

Gorvernment. Retrieved from http://www.education.vic.gov.au/school/teachers/teaching

resources/discipline/maths/assessment/pages/multithink.aspx

http://www.acme-uk.org/media/7627/acme_theme_b_final.pdf
http://www.acme-uk.org/media/7627/acme_theme_b_final.pdf
http://www.itworldcanada.com/article/why-canada-has-an-182000-it-talent-shortage-while-lots-of-tech-professionals-are-out-of-work/373517
http://www.itworldcanada.com/article/why-canada-has-an-182000-it-talent-shortage-while-lots-of-tech-professionals-are-out-of-work/373517
http://www.itbusiness.ca/blog/canadas-it-labour-shortage-challenges-and-opportunities/50250
http://www.itbusiness.ca/blog/canadas-it-labour-shortage-challenges-and-opportunities/50250
http://www.education.vic.gov.au/school/teachers/teachingresources/discipline/maths/assessment/pages/multithink.aspx
http://www.education.vic.gov.au/school/teachers/teachingresources/discipline/maths/assessment/pages/multithink.aspx

Knoblauch, H. (2013). Videography. Focused ethnography and video analysis. In H. Knoblauch, B.

Schettker, & J. Raab (Eds.), Video analysis : Methodology and methods: qualitative audiovisual

data analysis in sociology (3rd ed., pp. 69–84). Frankfurt: Peter Lang.

Núñez, R. E. (2000). Mathematical Idea Analysis: What Embodied Cognitive Science Can Say

about the Human Nature of Mathematics. In Proceedings of the Conference of the International

Group for the Psychology of Mathematics Education (Vol. 1, pp. 3–22).

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: how the embodied mind brings

mathematics into being. New York, NY: Basic Books.

OECD. (2016). Skills for the Digital World. Paris, France: Organisation for Economic Co-operation

and Development. Retrieved from http://www.oecd.org/officialdocuments/publicdisplay

documentpdf/?cote=DSTI/ICCP/IIS(2015)10/FINAL&docLanguage=En

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic

Books.

Pearce, K. (2013). Why You Should Learn To Code (And How To Do It!). Retrieved from

http://www.diygenius.com/learn-to-code-online/

Roumeliotis, I. (2015). Back to school: Canada lagging in push to teach kids computer coding. CBC

New. Canada. Retrieved from http://www.cbc.ca/news/technology/back-to-school-canada-

lagging-in-push-to-teach-kids-computer-coding-1.3185926

Sterling, L. (2015). An education for the 21st century means teaching coding in schools. The

Conversation. Retrieved from http://theconversation.com/an-education-for-the-21st-century-

means-teaching-coding-in-schools-42046

Acknowledgments

We thank participating teachers and students. We are also grateful to Michael Poscente for

designing and coaching the LegoTM robotics task. This work was funded by the Imperial Oil Science

Technology Engineering and Mathematics Education Initiative.

http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/IIS(2015)10/FINAL&docLanguage=En
http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/ICCP/IIS(2015)10/FINAL&docLanguage=En
http://www.diygenius.com/learn-to-code-online/
http://www.cbc.ca/news/technology/back-to-school-canada-lagging-in-push-to-teach-kids-computer-coding-1.3185926
http://www.cbc.ca/news/technology/back-to-school-canada-lagging-in-push-to-teach-kids-computer-coding-1.3185926
http://theconversation.com/an-education-for-the-21st-century-means-teaching-coding-in-schools-42046
http://theconversation.com/an-education-for-the-21st-century-means-teaching-coding-in-schools-42046

