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With frequent predictions of upcoming technological and economic difficulties triggered by an 

impending shortage of information and communications technologies (ICT) professionals, the calls 

are growing stronger to include coding as a core element of school curriculum. These calls are 

bolstered by the suggestion that coding supports the development of thinking skills – which echoes a 

longstanding argument for teaching mathematics. Motivated by the parallel, we attempted to 

investigate some of the common ground between learning to code and the development of core 

mathematical concepts. We photographed and video recorded children, aged 9–10, as they learned 

to build and program Lego MindstormsTM EV3 robots over four days. Our findings suggest that 

programming supports children’s understandings of decimal numbers and their transitions from 

additive to multiplicative thinking.  
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Introduction 

In recent years there has been a growing recognition that information and communications 

technologies (ICT) are a major contributor to innovation and economic growth. For instance, the 

Organization for Economic Cooperation and Development (OECD, 2016) considers computer 

programming a necessity for a highly skilled labour force. Shortages are already felt across the 

world and demand for highly skilled ICT professionals is expected to rise. In our home country of 

Canada, for instance, there are predicted shortages of more than 150,000 skilled ICT workers in the 

next few years. This shortage is impacting IT innovations and revenues (see Arellano, 2015; 

Clendenin, 2014). 

Canada is hardly unique on this count, as evidenced by major pushes around the world to include 

coding as a core part of school curriculum. In response, some educators and educational systems are 

shifting from teaching “how to use” software programs toward “how to code.” Estonia and England, 

for example, have implemented a national curriculum that makes computer programming 

mandatory for all school-aged students across all grades, and other nations appear to be moving in 

this direction. For instance, it is currently a topic of political debate in Australia, where the 

opposition party is calling to have computer programming taught in every primary and secondary 

school in the country (Roumeliotis, 2015; Sterling, 2015). 

In North America, national-level discussions and calls have yet to gather the same sort of 

momentum, but more and more initiatives are emerging at the local level. For example, the Chicago 

school district is adopting computer science as a core subject in all public high schools – prompted 

in large part by support from Google and Microsoft and through initiatives such as Code.org and 

Hour of Code, which are dedicated to expanding access to computer science for all U.S. students. 

Despite the absence of a national strategy in the U.S., messages on the importance of learning to 

code are frequent, with some emanating even from the President’s office. In fact, coding skills have 



been associated not only with empowering individuals and meeting employment needs, but with 

many aspects of the country’s future and security (Pearce, 2013).  

Trends toward including coding in school curriculum were preceded by a broadly effective 

worldwide push to get computers in schools. In 2011, most students (71%) in OECD countries 

reported having access to computers and the Internet at school. However, most students reported 

using the computers at school for email, browsing the Internet, word processing or doing individual 

homework. For the most part, such activities require low-level cognitive thinking and do not 

challenge students to develop more than basic user skills. Learning how to program a computer, it is 

typically argued, involves higher-level cognitive processes and provides opportunities for 

developing higher-level ICT skills.  

These sorts of arguments for teaching computer coding parallel long-standing rationales for 

teaching mathematics. Similarly, many of the structures and strategies within coding bear strong 

resemblances to elements of mathematical concepts (Papert, 1980). We discuss a few of these 

resemblances in this paper, focusing on arithmetic.  

Conceptual metaphors are one of the ways we understand mathematics (Núñez, 2000).  With regard 

to the concept of number, Lakoff and Núñez (2000) describe “four fundamental metaphors of 

arithmetic”: arithmetic as object collection, arithmetic as object construction, the measuring stick 

metaphor, and arithmetic as object along a path. The metaphor of arithmetic as an object collection 

is based on a one-one correspondence of numbers to physical objects. With this metaphor a greater 

size corresponds to a bigger number. For instance, 5 is greater than 2 because it forms a bigger 

collection. The metaphor of arithmetic as object construction is based on fitting objects/parts and 

arithmetic operations. For instance, 5 is greater than 2 because an object comprising 5 units is larger 

than one comprising two. The measuring stick metaphor maps numbers onto distances, whereby 5 

is greater than 2 because it is longer. The metaphor of arithmetic as an object along the path is 

based on arithmetic as motion, by which 5 is greater than 2 because it entails moving further from a 

common starting point (i.e., zero). Programing robots provides opportunities for illustrating and 

experiencing these arithmetic metaphors.  

Context 

In this interpretive study we asked what mathematics children learn by building and programming 

Lego MindstormsTM EV3. Interpretive research is about what meaning individuals construct in their 

lived experiences (Bhattacharya, 2008). We co-designed learning tasks with a graduate engineering 

student and co-taught the tasks with the classroom teachers over a course of four sequential days in 

three-hour daily sessions. The study’s participants were 22 children, Grades 4-5 (aged 9–10), at 

Pakan School at Whitefish Lake 128 First Nation in rural Northern Alberta. Once the children knew 

the basic coding blocks for moving the robot, they were given Papert’s (1980) task of programming 

a robot to follow a trace out of a triangle, square, pentagon or hexagon. On the third day, they were 

given the final challenge of building a robot that could find and douse a fire in any of four rooms in 

a building. Data included video-recordings, GoPro digital images, field notes, and artifacts 

including saved computer programs. 

We video-recorded the four sessions to obtain rich contextual detail of children’s mathematical 

interactions when programming the robots. Using interpretive video analysis (Knoblauch, 2013) we 



selected videos and GoPro digital images that exemplified instances of children’s mathematical 

thinking. Video data enables repeated viewing, slow motion, fast motion and frame-by-frame 

analysis. The selected videos formed the basis for emergent understandings of the children’s 

experiences. The analysis developed through an iterative process of rereading the literature, 

reviewing the video and GoPro data, and rewriting. As is evident in our analysis, below, video data 

was vital. In particular, it permitted us to slow down the process and identify the integrated/nested 

processes of learning that occurred. The three instances that we use to focus our discussion were: 

(1) a trio of girls learning to program their robot for the final challenge to move a certain distance 

into the hallway to illustrate a developing understanding of number, (2) a boy tapping the vertices 

and sides of a triangle to count the number of programming steps necessary for the robot to move 

around the triangle as an example of additive thinking, and (3) a boy learning how the number of 

sides and angles of a polygon connects to the number of repeats in a loop, which illustrates a 

developing shift from additive to multiplicative thinking.  

Findings 

In the numberline video (see https://vimeo.com/144996708video), Krista was helping the pink team 

program their robot to move into the building. This action required manipulating one block of EV3 

code to move the wheels a specified number of rotations. The team members started out with a 

guess of 0.4 rotations to move the robot into the first corridor of the building. After testing how far 

the robot moved and observing that the robot needed to move a considerably greater distance, Krista 

prompted the girls by asking what they should try next. Celina suggested they try 0.5. The small 

incremental change was still not enough, so Krista suggested they try 2. Two rotations moved the 

robot too far. 

Krista: What is between 0.5 and 2?  

Celina: 5.  

Suspecting that Celina’s response indicated that she and her teammates were unable to summon an 

appropriate interpretation of decimal numbers, Krista drew a simple number line on the whiteboard. 

Krista: What is between 0.5 and 2? 

Celina: Oh! 1.8.  

The number Celina chose was close to the number of rotations actually required, which indicated 

she understood the meaning of 1.8. In the exchange above, we take Celina’s immediate and 

satisfactory response to the repeated question as evidence that Krista was justified in her suspicion 

that the learners were lacking an appropriate interpretation for understanding decimal numbers – or, 

at least, were unable to extend whatever interpretations that had available to a situation in which 

distance was measured in wheel rotations. Coding the robot to move compelled the learners to 

elaborate their understandings. Invoking the number line appeared to provide an appropriate 

metaphor for helping Celina understand.  

In the following sequence of images and descriptions, we summarize how the task of coding the 

robot to move into a room calls for all four of Lakoff and Núñez’ (2000) representations of 

arithmetic. To begin, the metaphor of arithmetic as an object collection is used in most counting 

situations, whenever the forms being counting are perceived as discrete objects. It is by far the most 

https://vimeo.com/144996708
Numberline.mp4


common interpretation of number through the task of assembling a robot, by simple virtue of the 

fact that the robots begin as large collections of separate items. Less obviously, it is also called for 

in coding moments as programmers translate complicated actions into discrete steps or instructions. 

And more obscurely too, such conceptual moves as the discretizing of wheel turns, so that they can 

be counted and thus used as a tool in programming, might be argued to rely on this metaphor. 

Figure 1 (left) presents an instance of this metaphor, showing that 2 turns is less (i.e., forms a 

smaller set than) 5 turns. 

 

Figure 1: Arithmetic as object collection. Number of wheel rotations | Arithmetic as Object 

construction – combining portions of wheel rotations into single objects 

Figure 1 (right) shows how the metaphor of arithmetic as an object construction might be 

encountered when programming a robot to move. Celina wanted a larger wheel rotation than 0.4, so 

she added an incremental amount of 0.1 wheel rotations to make 0.5 wheel rotations. Contrasted to 

the previous metaphor, in this instance, wheel turns are not perceived as discrete objects, but as 

parseable continuities. Those parsed elements can then be assembled into an appropriate object to 

move the robot a precise distance. 

The measuring stick metaphor also featured prominently in the children’s programming, and was 

particularly prominent in the frequent need to interpret wheel turns in terms of actual distances (e.g., 

when the phrase “1 wheel turn” was deployed not as a description of movement but was a reference 

to a distance of roughly 12 cm). Figure 2 (left) in reference to the instance in which the room of the 

hall was shorter than approximately 1.8 wheel turns. In this instance, programming the code block 

requires understanding measurement. 

 

Figure 2: Measuring Stick: The length of hall | Arithmetic as an object along the path. The robot 

travels further with 2 than 0.5 

Figure 2 (right) shows how programing the robot to move draws upon the metaphor of arithmetic as 

on object along the path. In this case, starting place becomes a critical element is that, for example, 

occurs when the robot enters the room and recurs in the opposite direction when the robot leaves.  



To re-emphasize, we observed each of Lakoff and Núñez’ four metaphors of arithmetic to be 

present in programming the robot to move a required distance in the room. The ability to identify to 

the particular metaphor(s) that a situation is calling for is a critically important teaching 

competence, as Krista demonstrated in the interaction with Celina. Re-interpreting that brief 

episode, Krista recognized that Celina was not interpreting number as a distance (i.e., she was not 

using a measuring stick metaphor), and thus reminded her of that metaphor by offering the image of 

a number line. No explanation other than an image of number that fitted the application at hand was 

required. 

Arithmetic Topic 2 – Moving from “additive” thinking to “multiplicative” thinking. 

The need for appropriate metaphors and images of number isn’t sufficient for making sense of that 

entire episode, however, closer analysis reveals a further issue with the children’s arithmetic, 

namely the tendency to default to additive actions rather when multiplicative actions would have 

been more suitable. That episode began with the group’s realization that an entry of “0.4” moved 

the robot only a small portion of a desired distance. Asked what else they might try, they increased 

the distance only incrementally by 0.1 (to 0.5) rather than the necessary factor of (roughly) three. 

This same tendency to default to additive actions when multiplicative action would have been more 

productive was witnessed many times across many groups over the four-day project. The additive 

thinking video (see https://vimeo.com/144820583) provides a window into any instance of the same 

phenomenon. In this case, Gene, who was on the floor in orange, is figuring out how many blocks 

of code were needed for the program. As he counted “one, two, three, four, five, six,” he tapped 

each vertex and side of the yellow triangle, finally announcing that six steps are needed. Gene’s 

step-by-step of the same two steps (straight, turn, straight, turn, straight, turn sequence) is an 

example of additive thinking – that is, of construing the situation in terms of a sequence of 

increments rather than a repetition. 

Phrased in terms of coding, Gene opted to repeat the same line of instructions six times rather than 

employing a loop that ran six times. This happened in spite the fact that he and his group mates had 

learned how to use loops the day before when they programmed their robot to dance. 

In fact, only one of the 8 groups in the class used a loop for the polygon task – suggesting that the 

move from additive/increment-based thinking to multiplicative/loop-based thinking is more 

conceptually demanding than is often assumed. The additive to multiplicative thinking video (see  

https://vimeo.com/144826969) further illustrates this point, as the classroom teacher along with 

Krista attempted to help Liam program with loops. Liam, on the left, identified that a pentagon has 

three sides. When asked to count the sides, he walked around the pentagon counting aloud and 

announced “5 times.” Krista explains that 5 times is the number of times to repeat the two block 

codes (go straight and turn) in the loop. In response, Liam exclaimed excitedly, “Yes!” 

In the same clip there are two boys who were fine-tuning their robot’s program to follow a triangle. 

Their robot never stopped, which indicates that they are using an infinite loop – suggesting that they 

are making use of a concept of “repeating,” but likely not a concept of multiplication. After three 

attempts at tracing out a triangle, they still hadn’t crafted a program that would stop their robots. 

Davis and Renert (2014) have identified a number of common instantiations for multiplication that 

are encountered in elementary school classrooms, including grouping, hopping, repeated sums, 

https://vimeo.com/144820583
https://vimeo.com/144826969)


stretching and compressing, array- and area-making, and making combinations. Looping, it seems, 

is another, distinct instantiation of multiplication that is particularly powerful in the activity of 

programming – in a manner, we suspect, that might be used reflexively to support mathematics 

learning. Figure 3 below, illustrates two programs for following a triangle. Additive thinking is 

found with the sequential accumulation of six programming blocks: move forward, turn, move 

forward, turn, move forward turn. Multiplicative thinking requires recognizing that the triangle can 

be traced by repeating the move forward and turn blocks three times in a loop. In the exchanges 

above, Liam appeared to be developing fluency with multiplicative thinking.  

 

Figure 3: An additive and a multiplicative program for moving a robot in a triangle 

Across the participants there was a pervasive tendency to program robots to trace out polygons as a 

sequence of same-steps rather than as a repetition of a set of steps (i.e., as enabled with a loop). This 

tendency was not easily interrupted through instruction, which provides evidence of the complexity 

of thinking multiplicatively. Even at the end of the four days, during the final challenge, only two of 

the teams had managed to appreciate the power of loops sufficiently to incorporate them into their 

programs. Not surprisingly, theirs were also the robots that performed the best. In one of these 

cases, the code for the winning robot (see https://vimeo.com/145404678) involved a loop 

determining if a fire is present, announcing “Yes” or “No” as appropriate, and activating an arm 

motion to dump retardant if “Yes.” 

Part of the reason that we dwell on this point is that the operation of multiplication is, arguably, the 

most important concept in grade-school mathematics. Multiplicative thinking is the cornerstone of 

proportional thinking, which is foundational to advanced mathematics for reasons that include the 

access it affords to an extended range of numbers (for example, larger whole numbers, decimals, 

common fractions, ratio and percent), its role in recognizing and solving a range of problems 

involving direct and indirect proportions, and the power it offers with its prominent place in school-

based concepts and processes (Education and Training, 2013). In brief, multiplicative thinking is a 

key in the transition from early ideas to later ideas (see, e.g., ACME, 2011, p. 20).  

Closing remarks 

Our preliminary findings suggest programming robots can support learning mathematics. In the 

episodes reported, the tasks of programming robots required more than parsing complicated actions 

into singular direction; they entailed flexible engagement, Lakoff and Núñez’ (2000) conceptual 

metaphors and mathematical models.  

Computer programming aligns closely with concepts and structures in mathematics and we suspect 

that it might provide other powerful instantiations for mathematical concepts that have not yet been 

noticed. That suggestion is perhaps not surprising, given the mathematical roots of computer 

programming. However, to our reading, it is not an aspect of programming that has garnered much 

consideration in either mathematics education or the technology education literature. Considering 

https://vimeo.com/145404678


that mathematics literacy and competency with coding are of growing relevance, engagement with 

emergent technologies can complement and co-amplify mathematics learning, and contribute to 

evolving understandings of what “basic” mathematics might be for our era. 

With regard to important complementarities between learning mathematics and learning to code, the 

Lego MindstormsTM EV3 robots and the associated programming language provide a powerful 

instance of multiple solutions. They afford tremendous flexibility for accomplishing a range of 

tasks, from the trivial to the complex. None of the coding tasks set for the children in our study had 

pregiven or optimal “solutions.” Despite that – or perhaps because of that – the children were able 

to engage in manners that they could recognize as successful, even when “complete” solutions were 

not reached. With incremental tasks and iterative refinements, children were able to learn more 

sophisticated and efficient methods for programming the robot. It is not difficult to imagine a 

mathematics class with similar standards of success. 

That said, it is not a coincidence that the winning robot had the most efficient and sophisticated 

program of the group. Some answers are better than others, and those answers appear to reflect 

powerful mathematical thinking. Our future longitudinal research will investigate how children’s 

understandings of mathematical concepts and programming robotics develop over several years.  

We believe that the results of this study underscore the importance of developing and implementing 

a computer programming curriculum in schools. Coding is an emergent literacy that can amplify 

other critical literacies, while affording access to a diverse range of cultural capitals. The reasons to 

teach coding go beyond the technical and economic; for us, they are fundamentally ethical. 
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