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The aim of this paper is to analyze students’ reasoning on linear transformations while using a 

Dynamic Geometry System (DGS) from a semiotic mediation perspective. Considering design 

heuristics of Realistic Mathematics Education and the semiotic potential of certain tools and 

functions of DGS, I have developed a hypothetical learning trajectory and have designed a task for 

inventing fundamental properties of linear transformations. The task was field-tested in a case 

study with pair of undergraduate linear algebra students. An analysis of the task-based interviews, 

with a semiotic mediation lens, shows that the students managed to (re–)invent the fundamental 

properties of linear transformations. 

Keywords: Semiotic mediation, linear algebra, DGS. 

Introduction 

One major issue in the teaching and learning of linear algebra is providing students with ready–

made mathematics using different representations and different contexts (Dorier, 1998) without 

considering the students’ intellectual needs for learning (Harel, 1998). An example might be to 

introduce the notion of linear transformations with two fundamental properties as in numerous 

textbooks, where such introduction to the topic could trigger epistemological issues for students’ 

conceptualization of non–linear transformations (Dreyfus, Hillel, & Sierpinska, 1998). In this paper, 

I acknowledge a contrary introduction to the topic and consider a research question: Is it possible 

for students to (re–)invent fundamental properties of linear transformations? To answer this 

question, I consider a dynamic geometry system (DGS), which invite students into a progressive 

process of epistemic exploring, conjecturing and generalizing (Leung, Baccaglini-Frank, & 

Mariotti, 2013). Consequently, I focus on specific tools and functions of GeoGebra, such as 

dragging and grid functions, ApplyMatrix command and slider tool of the DGS as a tool of semiotic 

mediation for students’ reinvention of proposed mathematics. 

Theoretical Perspectives 

In this work, I consider two theoretical insights: (i) Realistic Mathematics Education and (ii) Theory 

of Semiotic Mediation, for designing instructional activity and analyzing the teaching–learning 

process. 

Realistic Mathematics Education (RME) 

RME is a domain–specific instructional theory developed by Dutch researchers (Van den Heuvel-

Panhuizen & Drijvers, 2014). The word realistic, here, does not directly refer to real–world task 

situations, but to paradigmatic situations that invite the development of meaningful mathematics. 

The problem situations do not necessarily come from real life directly, they can be related to an 

imaginary world or to real mathematics that students experience as meaningful: task situations have 

to be experientially real (Gravemeijer, 1999) to students. In parallel to such views, RME offers 

three interacting design heuristics for curriculum developers and educational designers 



(Freudenthal, 1983; Gravemeijer, 1999; Van den Heuvel-Panhuizen & Drijvers, 2014): guided 

reinvention, didactic phenomenology, and emergent modelling. Guided reinvention means 

providing students with an environment for their exploration, elaboration and inventing of 

mathematics. Didactic phenomenology refers to finding certain experientially real phenomena, 

which might form an environment where students create mathematics. The objective of emergent 

modelling is to enable students to shift from informal task situations to formal mathematics through 

support, enabling them to create their own informal mathematics.  

Theory of Semiotic Mediation (TSM) 

TSM was presented by Bartolini Bussi and Mariotti (2008) with the following main idea: to 

construct mathematical meanings, the teacher intentionally uses artefacts as a tool of semiotic 

mediation, which are used in carefully–designed tasks. The aim of the TSM is to transform 

students’ personal meanings to mathematical meanings. The teacher exploits the semiotic potential 

of the artefact, in which he or she uses an epistemological and didactical analysis to picture out 

possible learning steps from personal meanings to shared conventional mathematical meanings. 

Here, taking into account the didactic goals, the teacher considers what students know, what their 

experience with the artefact is and how they will accomplish the task by using the artefact. As a 

next step, the teacher designs a didactic cycle for classroom interventions. 

Students’ interaction with the artefact produces a complex semiotic process. Artefact signs (aS) 

appear when students who use the artefact relate in some way to the activity; specifically, to the use 

of artefact. Mathematical signs (mS) appear, when the students make a definition, conjecture, 

generalization or proof corresponding to didactic goals. Pivot signs (pS) have an interpretative link 

between personal meanings and mathematical signs and can appear in the accomplishment of the 

task. In the application of the didactic cycles, the teacher’s role is orchestrating students’ learning. 

Methodology 

This paper, in which I focus and present the results of a single task, is part of an extensive Design–

Based Research (project) (Bakker & van Eerde, 2015). Due to page limitation, I will present a case 

limited to a pair of students (A male, B female), who were sophomore level undergraduate linear 

algebra students, aged twenty. The students had experience solving linear equations, matrix algebra, 

(geometric) vector spaces and subspaces, and they had learned that every linear transformation can 

be represented through matrices. They also had experience in the use of GeoGebra’s main 

functions, specifically forming a slider and a matrix, and applying the ApplyMatrix construction 

tool from previous task sequences, where they constructed meaning of a transformation and linear 

transformation. However, the students did not know the fundamental properties of linear 

transformations. Task–based interviews were video–recorded and lasted around half an hour. The 

data was analyzed through a semiotic lens using categories of signs (Bartolini Bussi & Mariotti, 

2008): aS, mS and pS.  

Mathematical context, semiotic potential of DGS and task design 

A linear transformation is a specific transformation between V  and W can be represented as 

WVT :  for vector spaces V  and W , where T  satisfies: (i) )()()( vuvu TTT   for all 

vectors Vvu, , and (ii) )()( uu kTkT   for all Vu  and all scalars Rk  (Lay, 2006). Here, I 



took 
2

RWV  because of DGS availability (for example as in GeoGebra) and considered the 

semiotic potential of the following tools and functions of DGS for students’ (re–)invention of the 

fundamental properties above: (i) the dragging function allows the user to manipulate figures and 

explore independency–dependency of drawings and constructed objects, (ii) the grid function 

activates specific lines for integer values on the x and y axes and this function enables the user to 

observe variations of the coordinates of the objects in different windows, (iii) the slider tool offers a 

means to define a parameter and this may evoke meaning for dynamic (co)variation (Turgut & 

Drijvers, 2016), (iv) the ApplyMatrix tool works through an input line that enables the user to apply 

certain matrix transformations to geometric figures. I postulate that students’ dragging sliders 

connected to a matrix and applying matrix transformations to arbitrary vectors could provide an 

understanding for a meaning: matrix (and therefore linear) transformations preserve vector addition 

and scalar multiplication. 

The synergy between the definitions of guided reinvention and didactic phenomenology heuristics 

and the notion of semiotic potential in TSM implies the construction of a possible learning route, in 

other words, a Hypothetical Learning Trajectory (HLT) (Simon, 1995) which has to be elaborated 

on by the designer before the experiment by following four points (Bakker & van Eerde, 2015): (i) 

learning goals, (ii) students’ pre-knowledge, (iii) assumptions for students’ learning, and (iv) the 

teacher’s role (also in our case, the role of artefacts). Therefore, in Table 1, I express (i), (ii) and 

(iii) points of a HLT for invention of fundamental properties of linear transformations in a DGS.  

Associated 

Concepts 

Expected Steps in 

the DGS 
Exemplary Task 

Epistemic 

Artefacts in 

DGS 

Expected 

Mathematical 

Meanings 

–Geometric 

vectors 

–Addition of 

vectors 

–Multiplication 

with scalars 

–Matrix 

transformations 

–Fundamental 

properties of 

linear 

transformations 

–Exploring the 

effects of sliders on 

(arbitrary) linear 

transformations of 

arbitrary vectors 

–Comparing the 

initial and final 

versions of vectors 

while moving 

sliders or dragging 

the objects 

–Form sliders 

–Construct 

2´2 matrix 

–Form arbitrary 

vectors  

–Use Apply 

Matrix 

command 

–Move the 

sliders and drag 

the objects 

–Dragging 

–Grid 

function 

–Apply 

Matrix 

construction 

tool 

–Slider tool 

–Comprehending that 

the situation is 

independent from 

matrix entries or 

vectors  

–Formulating the first 

rule situation, 

T(u+v)=T(u)+T(v)  

–Formulating the 

second T(ku)=kT(u)  

–Proving such results 

in terms of matrix 

representations 

Table 1: HLT for the inventing of fundamental rules for linear transformations 

As aforementioned before, students worked on GeoGebra interface in the previous didactic cycles, 

which were about transformation of geometric vectors, figures, and constructing meaning for linear 

transformation. Consequently, the tools and functions of GeoGebra and proposed concepts were 

experientially real for them. Following Table 1 and considering guided reinvention heuristic, the 

task was formulated as follows (a possible interface for the task steps is presented in Figure 1), and 

also for students’ making their own models (cf. emergent modeling). 

Step 1: Open GeoGebra and activate grid function. Next, form two sliders a and b and, using a and 

b, form an arbitrary 22  matrix. Step 2: Form two arbitrary vectors vu,  and construct vu   



through an Input line. Step 3: Apply matrix transformation to vu,  and vu  . Name these vectors, 

respectively: u , v and w respectively, and then calculate vu  . Move the sliders and drag u  

and v  in itself. Discuss with your pair and explain your observations. Step 4: Form a new slider k . 

Now, obtain matrix transformation of uk  and also compute uk . Drag the vector u  and explain 

your observations, and make conjectures. What happens when you move the sliders? 

 

Figure 1: An expected DGS interface for the task 

Teacher’s (possible) underpinning questions in the interview are: What is the role of sliders here? 

What is the role of the matrix? What are the relationships between initial vectors and 

transformations? How do you prove this? [In case they make a generalization with matrix notation]. 

Within this task, I hypothesized that students would observe that the transformation of vu  , 

denoted by )( vu T , always overlaps on the )()( vu TT   vector and similarly, )( ukT  also always 

overlaps on )(ukT  vector, where situations were independent from the choice of matrix and/or 

choice of vector. This could be made possible through the semiotic potential of the aforementioned 

functions and tools of DGS and teacher’s (T) guidance role for reinvention of the mathematics. 

Analysis: Emergence of signs 

Students followed the line of the task. First they constructed two sliders, a and b. Next, using such 

values in the spreadsheet window of Figure 1, they defined a 22  matrix as 









ab

ba
A . Through 

the Input line, they formed two vectors  2,1u  and  3,1v . They first obtained the sum of the 

vectors and thereafter applied matrix transformation by the ApplyMatrix command. The software 

assigned u  for )(uT , similarly, v  for )(vT , and wvu   and dvu  . For a while, the 

students discussed the steps of the task to determine which matrix application is the first, the second 

or the third, which seemed rather confusing for them. After they had completed the three steps, 

while dragging the sliders, they were surprised because a number of vectors and some 

transformation vectors overlapped. At this moment a few aS appeared (see 18–20):  

18 A: … [pointing on the grid (see Figure 2a)] look, how this happened, these are 

overlapping…  

19 B: No. I think, it is because of matrix, look, [dragging sliders and pointing 

matrix entries with pencil (see Figure 2b)] it is changing. 



20 A: Let’s analyze them, which is which and why overlaps… [They are trying to 

separate the vectors (see Figure 2c) and taking notes] 

   

(a)        (b)            (c) 

Figure 2: a, b, c Emergence of aS during analyzing the overlapping situation 

Next, the teacher intervened to make the students focus on the transformations of the vectors, 

because they had spent a lot of time dragging sliders, changing matrix entries (i.e., trying a unit or 

zero matrix and so on) to figure out why some overlapped (see Figure 3a). Then students re–

checked the steps and wrote up the findings in their own way. Some pS appeared here, reflecting 

the students’ new meanings through the semiotic potential of the artefact (37–38), and also 

appeared on the students’ productions (Figure 3b). 

26 T: … what about the transformations of vectors? What did you observe? 

… 

37 B: … I think we will find a relationship between these [pointing on the notes 

(see Figure 3b)]. Here, we have the sum vector’s transformation and sum of 

each vector’s transformation. 

38 A: However, this could be dependent on the choice of matrix? What will 

happen for the matrices where their determinants are zero? … 

                

   (a)      (b) 

Figure 3: a, b Students’ productions as pS 

Interestingly, once more, they focused on the entries of the matrix, because in the previous step they 

had employed a unit or a zero matrix, and they began to check other possibilities for the cause of the 

overlapping situation. Consequently B figured ‘they always overlap’. Here, aS ‘overlaps’ in the 

previous analyses, and can now be considered a pS (see 63, 86), because it is mediating the 

transformation of personal meanings to mathematical meanings. 

63 B: It is clear that they always overlap … Why is this happening? 

64 A: Exactly… but why? 

… 



86 B: d  and w  always overlap and they are the same. I could not analyze the 

others.  

87 A: … because of matrix transformation, I think. 

As a next step, aS and pS interlaced with the students’ personal meanings associated with matrix 

transformations. They re–analyzed their findings, and finally, mS corresponding to students’ 

reinvention of the fundamental properties appeared (93-97). 

93 B: Just a second. What was the meaning of w? It was a transformation of 

vu ? … [moving sliders and thinking]…  

94 A: We also applied matrix transformation to vu ? 

95 B: Because, they are overlapping, this means, we have obtained the same 

vector. … Does transformation of the sum vector [meaning vu ] equals 

the sum of the separate transformations? 

96 A: Absolutely, right. …  

97 B: … [First, she is writing her conclusion, but not mathematically (see Figure 

4a), then she is trying to write it mathematically with her partner’s help (see 

Figure 4b)] …  

            

   (a)        (b) 

Figure 4: a, b Students’ conclusions for the first fundamental property as mS 

Next, while trying to express the situation mathematically, which was under the teacher’s 

orchestration, the students reinvented the first fundamental property (see Figure 5a). However, the 

teacher was orienting students to prove their result considering their pre–knowledge on representing 

linear transformations with matrices. Student B immediately related the situation with her pre-

knowledge and proved her conclusion (119 and Figure 5b). 

114 T: Ok right. Please remember the matrix representations of linear 

transformations. Considering this, how do you prove your result? 

… 

119 B: … [She is writing matrix representations (see Figure 5b), then explains], yes 

… I now realize why this is happening. We can show every linear 

transformation with a matrix and matrix algebra has distribution property. 

Then I can do like this [writing expressions in Figure 5b]… 



                

   (a)       (b) 

Figure 5: a, b Emergence of mS in relation to the task’s goal 

As a final step, the teacher asked the students to consider Step 4. As expected they placed a slider 

for k, and applied a matrix transformation to uk and also computed vector uk . As soon as one 

student saw that the transformation of uk  and uk  overlapped and were exactly the same, by the 

help of the first property she invented, B expressed her views. The final mS emerged in the 

discourse (129).  

129 B: … Oh yes, I think this is obvious; this is also a result of property of matrix 

algebra. For a matrix, k can be multiplied with each entry of a matrix or it 

can be expressed a factor [writing )( uu kfk  ]. Therefore, their [meaning 

uk  and uk ] transformations are the same. 

Conclusions 

In this paper, I consider the research question, ‘Is it possible for students to (re–)invent fundamental 

properties of linear transformations?’ Students work on the task formed through the design 

heuristics of RME and the semiotic potential of some tools and functions of GeoGebra provide an 

affirmative answer, but with some doubts and limitations. For instance, the students spent much 

time determining vectors when they overlapped. This issue to be considered is the students’ 

frequent analysis of matrix entries, where they think that an overlapping situation depended on this. 

I think that such frequent analysis of matrix entries stems from previous experience, where the 

students were continually trying to find matrices of linear transformations. Interestingly, in the 

students’ analyses for characterizing the matrix, different semiotic resources beyond aS, pS and mS 

appeared; for instance, gestures and mimics attached to students’ analyses process. A multimodal 

perspective (Arzarello, 2006) could provide a detailed view for our case. However, in the present 

case within a TSM perspective, I observe a semiotic chain (Bartolini Bussi & Mariotti, 2008), 

which shows the connection between semiotic resources of students’ learning, for inventing 

fundamental properties of linear transformations as follows (Figure 6). 

 

 

Figure 6: A semiotic chain for inventing fundamental properties 
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