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For appropriate orthonormal wavelet basis {ψ e j k } j∈Z k∈Z d e∈{0,1} d , constants p and γ, if I γ denotes the Riesz fractional integral operator of order γ and (η j k e ) j∈Zk∈Z d e∈{0,1} d a sequence of independent identically distributed symmetric p-stable random variables, we investigate the convergence of the series j k e η j k e I γ ψ e j k . Similar results are also studied for modified fractional integral operators.

Introduction

It is of practical interest to obtain uncoupled representations of random processes which, on the other hand, may posses some interesting statistical properties for applications. A classical example for Gaussian processes is the Karhunen-Lóeve (KL) representation. Motivated in part by applications in signal and image processing [START_REF] Cohen | Fractional Fields and Applications[END_REF][START_REF] Unser | An Introduction to Sparse Stochastic Processes[END_REF], a usual requirement for a random process defined on R d is to be self similar (see section 2.2) in some previously specified sense, since there exists several related notions in the literature. For the finite variance case, several KL like representations for the family of 1 f of self-similar processes and related were proposed e.g. [START_REF] Cohen | Fractional Fields and Applications[END_REF][START_REF] Flandrin | Wavelet analysis and synthesis of fractional Brownian motion[END_REF][START_REF] Meyer | Wavelets, generalized white noise and fractional integration: The synthesis of Fractional Brownian Motion[END_REF][START_REF] Unser | An Introduction to Sparse Stochastic Processes[END_REF] among others. In this case, these representations have in general the form:

X γ = I η I I γ ψ I , (1) 
where I γ is some fractional integration operator, {ψ I } I is an orthonormal basis of L 2 (R d ) or other Hilbert space of functions and the {η I } I is a sequence of finite variance identically distributed random variables, in most cases Gaussian. The parameter γ is usually linearly related to the self-similarity or Hurst parameter H of the process [START_REF] Falconer | Techniques in fractal geometry[END_REF]. Apart from applications, series like (1) and its geometric properties were extensively studied in the case of Fourier Gaussian random series, see for example [START_REF] Kahane | Some random series of functions[END_REF]. Considering this sum as a generalized random process in the sense of Gelfand and Vilenkin [5, Chapter 3, p. 237], if the η I 's are Gaussian and I γ is the Riesz fractional integration operator (definition 3) then this sum converges a.s. in the sense of distributions, i.e. in D (R d ) to a self-similar process as defined here in Section 2.2 in terms of equality in probability law between X γ and a re-scaled version of it: a δ X γ (a . ) for some δ ∈ R. Indeed, in this particular case X γ is a fractional Gaussian noise (See Theorem 3.2). This type of representations have received some interest for its simplicity for modelling certain random signals (see e.g. [START_REF] Unser | An Introduction to Sparse Stochastic Processes[END_REF]) since one only needs to know the probability distribution of the coefficients η I and the parameter γ or similar. On the other hand, the finite variance requirement may be a constraint in some applications. A first and almost obvious attempt to overcome this limitation, retaining at the same time some of the properties of interest of X γ , is to substitute the η I 's by non Gaussian p-stable random variables, p ∈ (0, 2) [16, Chapter 0]. However, it may become a no trivial task to check which of these properties are preserved. For example, besides self similarity, in [START_REF] Pipiras | Can continuous time stable processes have discrete linear representations?[END_REF] is proved that it is not possible to represent a p-stable stationary random process by a series like [START_REF] Adams | Sobolev Spaces[END_REF]. In this work we prove that for appropriate parameters γ ≤ d 2 and p, if we consider {ψ I } I a suitable wavelet basis, the series (1) stills converges a.s. in D (R d ) and changing I γ by a modified operator, it converges to an ordinary process for the case

d 2 < γ ≤ d 2 + 1. If p = 2 the limit of the series (1) is self similar of parameter d 2 +
γ and in the case p = 2 although its limit is not necessarily self similar we can prove that the distribution function of the re-scaled process a d 2 +γ X γ (a . ) is, in some sense, properly stochastically dominated. In the Gaussian case of p = 2 the series of equation ( 1) converges to a fractional Gaussian noise, which an integrated version of it gives the well known fractional Brownian motion and its d-dimensional analogues with their known "fractal" properties. We shall see, for appropriate parameters p and γ, that integrated versions of the process X γ have a graph with Hausdorff dimension greater than d, justifying the possible use of the process defined by (1) as a model of fractal process still for p = 2.

2 Auxiliary results and definitions.

2.1 Function spaces, Fourier transforms and Wavelets.

On the following, if p ∈ [1, ∞] and µ is a Borel measure over R d , the corresponding Lebesgue spaces of functions (indeed equivalence classes) associated to it will be denoted by L p (R d , dµ), and if µ is the usual Lebesgue measure, we will write shortly L p (R d ). When p = 2 it becomes a Hilbert space and the L 2 (R d ) inner product will be denoted by . , . . If x ∈ C d (d ∈ N) we will denote its usual norm by |x| and the support of a function f is defined by supp(f ) = {x : f (x) = 0}. The Schwartz class of functions S(R d ) is defined as the linear space of smooth functions rapidly decreasing at infinity, together with its derivatives, this means that

φ ∈ S(R d ) whenever φ ∈ C ∞ Ä R d ä and sup (x 1 ,...x d )∈R d d i=1 |x i | α i ∂ ∂x β 1 1 ... ∂ ∂x β d d φ(x 1 , ...x d ) < ∞ ∀ α j β j ∈ N ,
endowed with its usual topology. We will denote D(R d ) the space of functions which are in C ∞ Ä R d ä and have compact support. Both spaces are topological vector spaces (For more details see [7, Chapter 2, p. 109], and their duals are denoted as:

S (R d ) (Tempered distributions) and D (R d ) (distribu- tions) respectively. Clearly: D(R d ) ⊂ S(R d ) and then S (R d ) ⊂ D (R d ). The Fourier Transform f of f ∈ S(R d ) is defined as f (λ) = R d f (x)e -2πiλ.
x dx . It is a known fact that f also belongs to the space S(R d ). The Fourier transform can be defined, as usual as a linear map over L 1 (R d ), as an isometry on L 2 (R d ) or over the class of tempered distributions. The inverse Fourier transform ∨ f is defined in an analogous way. For more references about Fourier transforms and series we refer the reader, for example, to [START_REF] Grafakos | Classical Fourier Analysis[END_REF]. Later, we will need a variant of the classic sampling theorem of Shannon, Nyquist and Kotelnikov.

Theorem 2.1. If f ∈ L 2 (R d ) is such that supp(f ) ⊂ [-x o , x o ] d with x o < 1 2 .
Then there exists φ ∈ S(R d ) such that

f (λ) = k∈Z d f (k)φ(λ -k) (2) Proof. Let f (x) = k∈Z d f (x + k) be the periodization of f . f verifies f ∈ L 2 ñ - 1 2 , 1 2 
ô d ⊂ L 1 ñ - 1 2 , 1 2 
ô d
and therefore f has Fourier series given by k∈Z d

a k e -2πix.k , and then lim

R→∞ k∈D R a k e -2πix.k = f a.e. and in L 1 ñ - 1 2 , 1 2 
ô d (and in L 2 ) norm for a suitable domain D R ∈ R d . Now, we can take φ ∈ S(R d ) such that ∨ φ(x) = ® 1, |x i | < x 0 0, |x i | ≥ 1 -x 0 . Defining S R (x) = ∨ φ(x) Ç k∈D R a k e -2πix.k å then is easy to check that f = f ∨ φ and that lim R→∞ S R -f L 1 (R d ) = 0. This implies lim R→∞ sup λ∈R d " S R (λ) -f (λ) = 0 ,
but (see e.g. [7, Excersise 3.6.4, p.236]):

a k = f (k), then " S R (λ) = k∈D R f (k)φ(λ -k) .
Then (2) follows immediately from this.

In our developments we will sometimes use some fractional integral operators, let us review some of their properties. We begin with a definition ([8, Chapter 6, p. 2] or [17, Chapter 5, p. 117]): Definition 2.2. Let 0 < α < d. For f ∈ S(R d ) we can define its Riesz Potential:

(I γ f )(x) = 1 C γ R d f (y) |x -y| d-γ dy ( 3 
)
where

C γ = π d/2 2 α Γ Å γ 2 ã Γ Ç d 2 - γ 2 å .
Riesz potentials have the following scaling property: for every a = 0: I γ (f (a . )) = |a| -γ (I γ f )(a . ) A crucial result for this integral operators is the following [8, Chapter 6, p.3] : Theorem 2.3. (Hardy, Littlewood and Sobolev) Let 0 < γ < d, 1 ≤ p < q < ∞ and

1 q = 1 p - γ d then:
(a) For all f ∈ L p (R d ), the integral that defines I γ f converges a.e. (b)If p > 1 then

I γ f L q (R d ) ≤ C pq f L p (R d ) . (4) 
Note that, in the appropriate sense, the Fourier Transform of I γ f is given by:

' I γ f (λ) = (2π) -γ |λ| -γ f (λ) (5) 
and that it is easy to check that for f ∈ S(R d ) and α + β < d then I α (I β f ) =

I α+β (f ). Furthermore, if ∆f = d j =1 ∂ 2 f ∂x 2 j is the Laplacian of f , ∆(I γ f ) = I γ-2 f
. Finally, I γ can be thought as defined by the convolution with the

locally integrable function k γ (x) = 1 C γ 1 |x| d-γ
and is formally self adjoint in the sense that for every f, g ∈ S(R d ):

I γ f, g = f, I γ g . (6) 
Considering again k γ , we can define a fractional integral operator for f ∈ L p (R d ), in the following way:

K γ f (x) = R d (k γ (x -y) -k γ (y))f (y)dy = R d K γ (x, y) f (y)dy
The modified kernel K γ (x, y) = k γ (x -y) -k γ (y) is easier to control, and we can sketch the proof of the following lemma:

Lemma 2.4. If 1 < p < ∞ and 0 < d Ç 1 - 1 p å < γ < d Ç 1 - 1 p å + 1, then K γ (x, . ) ∈ L p (R d )

and moreover:

(i) There exists a positive constant C p β d such that for each x ∈ R d :

K γ (x, . ) L p (R d ) = C p γ d |x| γ-(1-1 p )d . (ii) For every x, x ∈ R d : K γ (x, . ) -K γ (x , . ) L p (R d ) = K γ (x -x , . ) L p (R d ) .
Proof. (sketch) Since

K γ (x, . ) p L p (R d ) = {|y|<2|x|} |K γ (x, y)| p dy + {|y|≥2|x|} |K γ (x, y)| p dy .
The condition d ering that for some positive constant C

|K γ (x, y)| ≤ C|x -y| γ-d-1 |x| , if |y| > 2|x|,
then the second integral is also finite. From all this, the map

x → K γ (x, . ) L p (R d )
is well defined and by a change of variable is easy to check that it is also an homogeneous function depending only on |x| from which assertion (i) follows. (ii) is also obtained by a change of variable.

For fixed x ∈ R d we note that in the Fourier domain K γ can be characterized, in an appropriate sense [2, Chapter 3, p.45] by:

K γ f (x) = 1 (2π) γ R d e -2πiλx -1 |λ| γ f (λ)dλ . (7) 
Some formal manipulations shows that combing equations ( 5) and ( 7), for suitable parameters β and γ:

¤ (I γ K β (x, . ))(λ) = ¤ K β+γ (x, . )(λ) = 1 (2π) γ+β e -2πiλx -1 |λ| β 1 |λ| γ . (8) and K γ (I β f )(x) = K β+γ f (x) = R d K β+γ (x, y)f (y)dy . (9) 
For s ∈ R another related operator J s f is defined, formally, by its Fourier transform as:

' J s f (λ) = (1 + |λ| 2 ) s/2 f (λ) . ( 10 
) Theorem 2.5. [8, Chapter 6, p.8] If s < 0 and p ≥ 1, J s : L p (R d ) -→ L p (R d
) defines a continuous linear operator i.e. there exists C p > 0 such that

J s f L p (R d ) ≤ C p f L p (R d ) .
For 1 < p < ∞, and s ∈ R, we introduce the Sobolev spaces H p s (R d ):

H p s (R d ) = ¶ f ∈ S (R d ) : J s f ∈ L p (R d ) © .
These are Banach spaces of tempered distributions with the norm defined by f

H p s (R d ) = J s f L p (R d ) . Moreover ([14] p.168), if s ≥ 0, this norm is equivalent to f L p (R d ) + (| . | s f ) ∨ L p (R d )
. Recalling again equation ( 7) the equivalence of norms for K γ (x, . ) takes the following form which will be useful in the sequel:

K γ (x, . ) H p s (R d ) ∼ K γ (x, . ) L p (R d ) + (K γ-s (x, . ) L p (R d ) . (11) 
In the particular case s = -d, only when p = 2 the H p s (R d ) spaces coincide with the following FL p w spaces, which are introduced for auxiliary purposes.

Proposition 2.6. For 1 ≤ p ≤ 2, the space

FL p w = f ∈ S (R d ) : f (1 + | . | 2 ) -d ∈ L p (R d )
is a Banach space with the norm defined by f

F L p w = f (1 + | . | 2 ) -d L p (R d )
.

Moreover convergence in FL p w implies convergence in S (R d ).

Proof. Observe that defining w(λ

) = (1 + |λ| 2 ) -d then f ∈ FL p w if and only if f ∈ L p (R d , wdλ). Let (f n ) n∈N be a Cauchy sequence en FL p
w which is equivalent to ( fn ) n∈N being a Cauchy sequence in L p (R d , wdλ), and then there exists a unique g ∈ L p (R d , wdλ) such that fn -g

L p (R d ,wdλ) -→ 0,
when n -→ ∞. We shall verify that g ∈ S (R d ) and therefore taking f := g ∨ ∈ S (R d ) we are done. For this take

1 p + 1 q = 1 and m > d Ç 1 + 2 q p
å then by Hölder's inequality:

R d |g(λ)| (1 + |λ|) m dλ = R d |g(λ)| (1 + |λ|) m (1 + |λ| 2 ) d p (1 + |λ| 2 ) d p dλ ≤ Ö R d |g(λ)| p (1 + |λ| 2 ) -d dλ è 1 p Ö R d (1 + |λ| 2 ) dq p (1 + |λ|) m dλ è 1 q < ∞ , thus (See e.g. [7, Exercise 2.3.1, p.122]) g ∈ S (R d ) and therefore f ∈ FL p w . Finally, f n -→ f n-→∞ in FL p w if and only if fn -→ f n-→∞ in L p (R d , wdλ). Let ϕ ∈ S(R d ), then, if 1 p + 1 q = 1
, by the definition of Fourier Transform of a tempered distribution and Hölder's inequality one gets:

| f n , ϕ -f, ϕ | = | fn -f , ϕ ∨ | = R d ( fn (λ) -f (λ))ϕ ∨ (λ)dλ = R d ( fn (λ) -f (λ))ϕ ∨ (λ) (1 + |λ| 2 ) d p (1 + |λ| 2 ) d p dλ ≤ Ö R d | fn (λ) -f (λ)| p 1 (1 + |λ| 2 ) d dλ è 1 p Ö R d |ϕ ∨ (λ)| q (1 + |λ| 2 ) dq p dλ è 1 q ,
which proves the last assertion of Proposition 2.6.

The following estimate for the FL p w norm will be useful in the sequel.

Lemma 2.7. Let 1 ≤ p ≤ 2, then L 2 (R d ) ⊂ FL p w and moreover, if Q = ñ - 1 4 , 1 4 å d 
, there exits a positive constant C p d such that for every f ∈ L 2 (R d ), f = 0 a.e. in Q c , the following inequality holds:

f p F L p w ≤ C p d k∈Z d | f (k)| p (1 + |k| 2 ) -d . ( 12 
)
Proof. If p = 2 is immediate. To prove the first assertion for p = 2, by Hölder's inequality one has the following estimate

f p F L p w ≤ f p L 2 (R 2 ) Ö R d dλ (1 + |λ| 2 ) d/(1-p 2 ) è 1-p 2 .
For the second assertion, under these conditions we can write

f (λ) = k∈Z d f (k)φ(λ -k),
as in Theorem 2.1 and therefore:

f F L p w = R d | f (λ)| p (1 + |λ| 2 ) -d dλ ≤ R d Ñ k∈Z d | f (k)||φ(λ -k)|(1 + |λ| 2 ) -d/p é p dλ ≤ R d Ñ k∈Z d | f (k)||φ(λ -k)|2 d/p (1 + |k| 2 ) -d/p (1 + |λ -k| 2 ) d/p é p dλ (13) since (1 + |λ| 2 ) -d ≤ 2 d (1 + |k| 2 ) -d (1 + |λ -k| 2 ) d by Peetre's inequality. Now, if 1 p + 1 q = 1, take a k (λ) = |φ(λ -k)| 1 q and b k (λ) = | f (k)||φ(λ -k)|2 d p (1 + |k| 2 ) -d p (1 + |λ -k| 2 ) d p |φ(λ -k)| 1 p ,
by Hölder's inequality we get:

f F L p w ≤ R d k∈Z d |b k (λ)| p Ñ k∈Z d |a k (λ)| q é p q dλ , (14) 
finally, taking into account that for some positive constant C:

k∈Z d |a k (λ)| q = k∈Z d |φ(λ -k)| ≤ C, equation (14) becomes 
≤ 2 d C R d k∈Z d | f (k)| p (1 + |k| 2 ) -d (1 + |λ -k| 2 ) d |φ(λ -k)|dλ = 2 d C R d (1 + |λ| 2 ) d |φ(λ)|dλ k∈Z d | f (k)| p (1 + |k| 2 ) -d .
2.2 Some probability, stable laws and generalized random processes.

Let (Ω, F, P) be a probability space and X a random variable variable defined on it. The distribution function of X is defined, for x ∈ R, as F X (x) = P(X ≤ x). If ϕ is any Borel measurable real function, we will denote the expectation of ϕ(X) with E(ϕ(X)). The characteristic function of X is Φ X (ξ) = E(e iξX ). For p ∈ (0, 2], we say that a random variable η is symmetric p-stable of parameter σ > 0 if Φ η (ξ) = e -σ p |ξ| p and this situation will be denoted by η ∼ SpS. When we write F ηp we shall be referring to the distribution function of such a random variable with σ = 1. Note that p = 2 corresponds to the Gaussian case and therefore η ∼ N (0, σ). Let us list some basic properties of stable distributions, for more references see [ Now, let µ be a non negative Borel measure on R d . We shall need a result on the a.s. convergence of random elements in L r (R d , dµ). This Theorem is a particular case of a more general one in [10, Chapter 2].

Theorem 2.8. Let 0 < r < p < 2, {f j } j∈N ⊂ L r (R d , dµ), and let {η j } j∈N ∼ SpS be a sequence of independent and identically distributed random variables. Then the series

∞ i=1 η i f i converges in L r (R d , dµ) a.s. if and only if ∞ i=1 |f i | p 1/p L r (R d ,dµ) < ∞ .
Our results, are aimed at the construction of certain random variables taking values in D (R d ). In this case, every D (R d )-valued random variable, say X, takes the form of a random linear functional defined on D(R d ). Previously, we will also need to define the class of generalized random processes, of which these D (R d )-valued random variables are particular cases. Following [5, Chapter 3, p.237] and [18, Chapter 4, p.57], we will say that a generalized random functional is defined on D(R d ) if for every ϕ ∈ D(R d ) there is associated a real valued random variable X(ϕ) = X, ϕ . In accordance with the way that one usually specifies the probability distributions of a countable set of real random variables, given n ∈ N, ϕ 1 , . . . , ϕ n ∈ D(R d ) one gives the probability of the events, {a k ≤ X, ϕ k < b k }, k = 1, . . . , n , and these probability distributions are compatible in the usual sense. On the other hand, the linearity means that for any a, b ∈ R, ϕ, ψ ∈ D(R d ): X, aϕ + bψ = a X, ϕ + b X, ψ a.s for a comprehensive reference on this topic see [START_REF] Gel | Generalized Functions[END_REF]. In an analogous way to real valued random variables, for each ϕ ∈ D(R d ) we can calculate the characteristic function of the real random variable X, ϕ , Φ X,ϕ (ξ) = E(e iξ X,ϕ ). In fact if ξ = 1 and considering ϕ as a variable, this gives the characteristic functional of X, Φ X (ϕ) = E(e i X,ϕ ), which completely determines its distributions as in the case of ordinary random processes. Finally, self-similarity, for generalized random processes can be defined in the following analogous way to [18, p.178]: If there exists a constant δ > 0 such that

Φ X (ϕ) = Φ X (a δ ϕ(a . )) , (15) 
in distribution, for every dilation factor a > 0 and ϕ ∈ D(R d ). This means that X is equivalent, in probability law, to a r X( . /a), for some appropriate constant r. (|x

-x | 2 + |f (x) - f (x )| 2 ) -ρ/2 dxdx < ∞ then dim H (G) > ρ.
Other related results, if needed, will be introduced within the text and used in the final section to estimate the Hausdorff dimension of certain processes arising from the construction introduced in equation (1).

Wavelets.

Let {ψ e j k } j∈Z k∈Z d e∈E (with E = {0, 1} d ) be an orthonormal wavelet basis [14, Chapter 2] of L 2 (R). Obviously, in this case one has Parseval's identity:

f 2 L 2 (R 2 ) = e∈E j∈Z k∈Z d | f, ψ e j k | 2 , (16) 
therefore the norm f 2 L 2 (R 2 ) can be estimated from the wavelet coefficients f, ψ e j k . Under some additional conditions, for example if the wavelet basis arises from a r-regular wavelet multirresolution approximation of L 2 (R d ) and if {I j k } j∈Z,k∈Z d denotes the family of dyadic cubes of R d , for some positive constants c p , c p s , C p , C p s we have the following estimations for the L p (R d ) and H p s (R d ) norms respectively [START_REF] Meyer | Wavelets and operators[END_REF]Chapter 6]:

c p f L p (R d ) ≤ Ñ j k e | f, ψ e j k | 2 2 dj 1 I j k é 1 2 L p (R d ) ≤ C p f L p (R d ) , (17) 
and for 0 ≤ s ≤ r,

c p s f H p s (R d ) ≤ Ñ j k e | f, ψ e j k | 2 (1 + 4 sj )2 dj 1 I j k é 1 2 L p (R d ) ≤ C p s f H p s (R d ) .
(18) In order to simplify the notation involving wavelet expansions we will sometimes omit the summation limits as in equations ( 17) and [START_REF] Unser | An Introduction to Sparse Stochastic Processes[END_REF].

3 Main Results.

Convergence.

First, we shall prove an inequality involving the l p norm of the wavelet coefficients of a function. This inequality implies as a by side product one case of Sobolev's embeddings (See e.g. Theorem 7.57 of [START_REF] Adams | Sobolev Spaces[END_REF] and further). 

f L 2 (R d ) ≤ Ñ j k e | f, ψ e j k | p é 1 p ≤ C p s f H p s (R d ) , ( 19 
)
for all f ∈ H p s (R d ). If p = 2, the inequality (19) holds for s ≥ 0. Proof. The case p = 2 is immediate since f L 2 (R d ) ≤ H 2 s (R d ). If 1 < p ≤ 2, the lower bound holds, since j k e | f, ψ e j k | p ≥ Ñ j k e | f, ψ e j k | 2 é p 2 = f p L 2 (R d ) .
The upper bound is obtained splitting the sum:

j k, e | f, ψ e j k | p = j<1 k e | f, ψ e j k | p + j≥1 k e | f, ψ e j k | p .
Then for each e ∈ E:

j≥1 k | f, ψ e j k | p = R d j≥1 2 jd(1-p 2 ) 4 -js p 2 4 js p 2 Ñ k∈Z d | f, ψ e j k | 2 1 I j k (x)2 jd é p 2 dx , since I j k I j k = ∅ if k = k .
The inner integrand can be rewritten as Hence

j≥1 2 jd((1-p 2 )-sp d ) 4 -js p 2 Ñ k∈Z d | f, ψ e j k | 2 1 I j k 2 jd é p 2 ≤ Ñ j≥1 Å 2 jd((1-p 2 )-sp d ) ã 2 2-p é 2-p 2 Ñ j≥1 4 js k∈Z d | f, ψ e j k | 2 1 I j k 2 jd
j≥1 k | f, ψ e j k | p ≤ C d p s R d Ñ j≥1 4 js k∈Z d | f, ψ e j k | 2 1 I j k (x)2 jd é p 2 dx (20) j≥1 k | f, ψ e j k | p ≤ C d p s f p H p s (R d ) .
Now we give a bound on the other term. Similarly to the previous case:

j<1 k | f, ψ e j k | p = R d j<1 2 jd(1-p 2 ) Ñ k∈Z d | f, ψ e j k | 2 1 I j k (x)2 jd é p 2 dx .
Therefore by by Hölder's inequality with exponents 2 p and 2 2 -p , if

C d p = Ñ j<1 2 jd(1-p 2 ) 2 2-p é 2-p p , we get j<1 k | f, ψ e j k | p ≤ C d p R d Ñ j<1 k∈Z d | f, ψ e j k | 2 1 I j k (x)2 jd é p 2 dx ≤ C d p f L p (R d ) ≤ C d p f H p s (R d ) (21) 
Combining equations ( 20) and ( 21) and since E is finite we get the result. Now, we can prove one of the main results of this work.

Theorem 3.2. Let {ψ e j k } j k e be an r-regular orthonormal wavelet series,

d Ç 1 p - 1 2 å < γ ≤ d Ç 1 - 1 p å , 3 4 
≤ p ≤ 2, γ < r and (η j k e ) j k e a sequence of independent identically distributed random variables such that η j k e ∼ SpS.

Then the series defined by

X γ = j k e η j k e I γ ψ e j k converges a.s. in D (R d ). If p = 2, the result remains true for 0 ≤ γ ≤ d 2 .
Proof. We shall prove the case p < 2, the p = 2 case is very similar using Parseval's identity instead of Theorem 3.

1. Let Q = ñ -1 4 , 1 4 å d 
, since

(I γ ψ e j k )1 Q ∈ L 2 (R d ),
then by lemma 2.7,

(I γ ψ e j k )1 Q F L p w ≤ C p d n∈Z d | ¤ (I γ ψ e j k )1 Q (n)| p (1 + |n| 2 ) -d , thus j k e (I γ ψ e j k )1 Q p F L p w ≤ C p d n∈Z d j k e | ¤ (I γ ψ e j k )1 Q (n)| p (1 + |n| 2 ) -d = C p d n∈Z d (1 + |n| 2 ) -d j k e | ¤ (I γ ψ e j k )1 Q (n)| p , (22) 
but, if e n (x) = 1 Q (x)e i2πnx , a density argument applied to equation ( 6) gives:

¤ (I γ ψ e j k )1 Q (n) = (I γ ψ e j k )1 Q , e n = ψ e j k , I γ e n = I γ e n , ψ e j k ,
therefore, by Theorem 3.1, and taking γ = s :

j k e | ¤ (I γ ψ e j k )1 Q (n)| p = j k e | I γ e n , ψ e j k | p ≤ C p s I γ e n H p s (R d ) (23) 
≤ C p s ( I γ e n L p (R d ) + I γ-s e n L p (R d ) ) ≤ C p γ ( e n L r (R d ) + e n L p (R d ) ) . ( 24 
)
Where the last inequality holds by the Hardy-Littlewood and Sobolev In-

equality with exponents 1 r - 1 p = γ d
, note that the validity of this last step is granted since

4 3 ≤ p ≤ 2 and d Ç 1 p - 1 2 å ≤ γ ≤ d Ç 1 - 1 p å . Moreover e n L r (R d ) + e n L p (R d
) is finite and constant in n. Thus from the definition of FL p w combined with equations (24), ( 23) and ( 22):

R d j k e ¤ (I γ ψ e j k )1 Q (λ) p (1 + |λ| 2 ) -d dλ (25) = j k e (I γ ψ e j k )1 Q p F L p w ≤ C p d n∈Z d (1 + |n| 2 ) -d j k e | ¤ (I γ ψ e j k )1 Q (n)| p < ∞ .
Taking any 1 < r < p, by Hölder's inequality combined with equation (25):

R d Ñ j k e ¤ (I γ ψ e j k )1 Q (λ) p é r p (1 + |λ| 2 ) -d dλ ≤ Ö R d j k e ¤ (I γ ψ e j k )1 Q (λ) p (1 + |λ| 2 ) -d dλ è r p Ö R d 1 (1 + |λ| 2 ) d dλ è 1-r p < ∞ then, by Theorem 2.8, j k e η j k e ¤ (I γ ψ e j k )1 Q converges a.s. in L r (R d , wdλ
) and therefore

j k e η j k e (I γ ψ e j k )1 Q converges a.s. in FL r
w and in S (R d ). Notice that the same argument, with slight modifications works with any translate of Q. Finally, to verify that

j k e η j k e I γ ψ e j k converges a.s. in D (R d ), take Q = Q = ñ -1 4 , 1 4 
å d + k 2 , k ∈ Z d , Ω such that P(Ω ) = 1 defined by Ω = Q∈Q    ω ∈ Ω : j k e η j k e (ω)(I γ ψ e j k )1 Q Fr < ∞    and ϕ ∈ D(R d ). For fixed Q ∈ Q, ω ∈ Ω and N, M ∈ N note that s N M Q (ω) = |j|≤N |k|≤M e∈E η j k e (ω)(I γ ψ e j k )1 Q ∈ L 2 (R d ) ,
and then

∞ Q s N M Q (ω), ϕ ∫ = l i=1 s N M Q i (ω), ϕ
for some Q i such that supp(ϕ) ⊂ 

Remark.

Note that the range of validity of the result depends on the dimension d.

Indeed, the restrictions give that

1 < 2d d + 2 < p ≤ 2 for d ≥ 2.
Proof. Recalling the properties of p stable random variables from Section 2.2. For each x ∈ R d , we can prove the convergence in r-mean (r < p) of the sum defining Y γ (x). In fact, by Theorem 3.1 and taking any s such that

d Ç 1 p - 1 2 å < s < γ -d Ç 1 - 1 p å , since K γ ψ e j k (x) = K γ (x, .
), ψ e j k , for some constant C we obtain:

(E|Y γ (x)| r ) 1 r = C Ñ j k e | K γ (x, . ), ψ e j k | p é 1 p ≤ C K γ (x, . ) H p s (R d ) < ∞ ,
since recalling from Section 2.1 Lemma 2.4 and the equivalence of norms of H p s (R d ) of equation ( 11) one obtains:

K γ (x, . ) H p s (R d ) ≤ C( K γ-s (x, . ) L p (R d ) + K γ (x, . ) L p (R d ) ) ≤ C (|x| (γ-s)-(1-1 p )d + |x| γ-(1-1 p )d ) .
The sum defining Y γ (x) converges a.s. since convergence in the r-mean of independent random variables implies a.s. convergence. Similarly to the previous bound, if |x -x | < 1, by Lemma 2.4 (ii) one gets:

(E|Y γ (x) -Y γ (x )| r ) 1 r = C Ñ j k e | K γ (x, . ) -K γ (x ), ψ e j k | p é 1 p = C Ñ j k e | K γ (x -x , . ), ψ e j k | p é 1 p ≤ C |x -x | (γ-s)-(1-1 p )d ,
From this, applying Chevychev's inequality it follows the stochastic continuity of Y γ (x) and thus there exists a measurable version (Theorem 1, p.157 of [START_REF] Gikhman | Introduction to the theory of random processes[END_REF]) of {Y γ (x)} x∈R d .

Self similarity analysis

Exact self similarity is broken if p = 2. However, we can see in the following results that, in some sense, the re scaled versions of X γ are stochastically dominated and moreover one can expects some kind of fractal behaviour for on an integrated version of X γ (See for example, the following realizations of Y γ considering a Daubechies wavelet basis). ) has the same distribution function as X γ , ϕ , and otherwise, for every s > γ, there exists a positive constant C p s such that the following bounds hold:

F ηp (C p s (a d( 1 2 -1 p ) I γ ϕ L p (R d ) + a d( 1 2 -1 p )+s I γ-s ϕ L p (R d ) ) -1 x) (27) ≤ P(a d 2 +γ X γ , ϕ(a . ) ≤ x) ≤ F ηp ( I γ ϕ -1 L 2 (R d ) x) , for every a > 0, ϕ ∈ D(R d ) and x > 0.

Remark

Note that in the case p = 2 is easy to verify that the limit process is a Gaussian fractional noise with characteristic functional φ Xγ (ϕ) = e -Iγ ϕ 2 L 2 (R d ) , and this stationary generalized random process has an spectral measure [START_REF] Gel | Generalized Functions[END_REF]Chapter 3] given by dµ Xγ (λ) = (2π) -2γ dλ |λ| 2γ . However, if p = 2, the analogous result for the stable case does not hold: φ Xγ (ϕ) = e -Iγ ϕ p L p (R d ) which corresponds to the case of fractional stable noise. Since the η j k e 's are independent and identically distributed with characteristic function Φ η j k e (ξ) = e -|ξ| p (σ = 1 with no loss of generality) therefore the sum defining a d 2 +γ X γ , ϕ(a . ) has a characteristic function given by:

Ln Å Φ a d 2 +γ X(ϕ(a . )) (ξ) ã = -a dp 2 Ñ j k e | (I γ ϕ)(a . ), ψ e j k | p é |ξ| p (28) 
which corresponds to the distribution

F ηp Ö a -d 2 Ñ j k e | (I γ ϕ)(a . ), ψ e j k | p é -1/p x è .
Then the upper bound follows combining Theorem 3.1 and the fact that F ηp is monotone. The lower bound is obtained similarly estimating the norm

(I γ ϕ)(a . ) H p s (R d ) .
Finally, the case p = 2 is obtained in an analogous way with equality due to Parseval's identity for the orthonormal basis {ψ e j k } j k e of L 2 (R d ).

Indeed, the previous result is a consequence of the bound derived from Theorem 3.1: Proof. The lower bound is a consequence of Lemma 2.9. We shall prove that Thus, from equation (30) :

Ln Ä Φ X(ϕ) (ξ) ä = - Ñ j k e | (I γ ϕ), ψ e j k | p é |ξ| p ≤ -I γ ϕ p L 2 (R d ) |ξ| p . ( 29 
E((|x -x | 2 + |Y (x) -Y (x )| 2 ) -ρ/2 ) ≤ R R 1 (|x -x | 2 + |u| 2 ) ρ/2 |Φ ∆ (ξ)|dξdu ≤ R 1 (|x -x | 2 + |u| 2 ) ρ/2 du R e -|ξ| p |x-x | pγ-pd 2 dξ ≤ C |x -x | ρ-1+γ-d 2 ,
and therefore

E B B (|x -x | 2 + |Y (x) -Y (x )| 2 ) -ρ/2 dxdx ≤ C B B 1 |x -x | ρ-1+γ-d 2 dxdx < ∞
provided that ρ < 3d 2 -γ + 1, which concludes the proof.

Aknowledgements. 

  the appropriate exponent for the boundedness of the first integral. In addition, since γ < d
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 1612 Chapter 1, p.10] and [10, Chapter 0, p.5]. If η 1 , . . . , η n are independent and η i ∼ SpS, with parameter σ i then n i=1 η i ∼ SpS, with σ = (σ η i ) i l p . Let p < 2. If η ∼ SpS and 0 < r < p then (E|η| r ) 1/r = C r σ η , where C r r = E|η p | r , and E|η| r = ∞ for r ≥ p.
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 312 Let {ψ e j k } j k e be an r-regular orthonormal wavelet basis, 1 < p < 2 and d Ç 1< s < r then there exists a positive constant C p s such that:

é p 2 ,

 2 
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 3311 i since ϕ has compact support. Now the result follows from the convergence of s N M Q i (ω), ϕ when N, M -→ ∞ for each i = 1 . . . m. Alternatively, considering γ > d 2 and the operators K γ instead of I γ we can prove: Let {ψ e j k } j k e be an r-regular orthonormal wavelet series, p ≤ 2, γ < r and (η j k e ) j k e a sequence of independent identically distributed random variables such that η j k e ∼ SpS. Then, for each x ∈ R d the series defined by Y γ (x) = j k e η j k e K γ ψ e j k (x) converges a.s.. Moreover, {Y γ (x)} x∈R d has a measurable version. If p = 2, the result remains true for d 2 ≤ γ ≤ d 2 + 1.
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 1 Figure 1: Observations of Y γ , d = 2 and γ = 1.1.

  (a) p = 2 (b) p = 1.8

Figure 2 :

 2 Figure 2: Observations of Y γ , d = 2 and γ = 1.6.
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 135 For x ∈ R d and taking a sequence ϕ n x ∈ D(R d ) such that ϕ n x -→ K β (x, . ) n-→∞ in L p (R d ), provided that γ +β are as in Theorem 3.3 we can interpret Y γ+β as an integrated observation of X γ :Y γ+β (x) = X γ , K β (x, . ) = R d K β (x, y)X γ (y)dywhere these equalities are only formal. In fact Y γ+β (x) is a well defined ordinary random variable for each x ∈ R d . And recalling equation (8) and Section 2.2, its characteristic function is given byLn(Φ Y γ+β (x) (ξ)) = -Ñ j k e | (K γ+β (x, . ), ψ e j k | p é |ξ| pwhich is the pointwise limit of the sequence of characteristic functions{Φ Xγ ,ϕn x (ξ)} n∈N .This is a consequence of the following bound which again can be derived from Theorem 3.1 with s = γ:(-Ln(Φ Y γ+β (x) (ξ))) 1/p -(-Ln(Φ Xγ ,ϕn x) (ξ))) 1/p ≤ |ξ| Ñ j k e | (I γ (K β (x, . ) -ϕ n x )), ψ e j k | p é C p s |ξ|( I γ (K β (x, . ) -ϕ n x ) L p (R d ) + K β (x, . ) -ϕ n x L p (R d ) ) .The Lebesgue measure (in R d+1 ) of a measurable version of {Y γ (x)} x∈R d is zero. Now, let us bound, from below, the Hausdorff dimension of the graph G ⊂ R d+1 of Y γ (x). As a consequence we shall see that for suitable parameters it has non integer values. Under the same hypothesis of Theorem 3.3, then 3d 2 -γ +1 ≤ dim H (G) a.s., where G ⊂ R d+1 is the graph of Y γ (x).

-x | 2 +< 3d 2 -γ + 1 . 2 p

 2212 |Y (x) -Y (x )| 2 ) -ρ/2 dxdx < ∞ if ρ Let us write ∆(x, x ) = Y (x) -Y (x ), then recalling equation (29), in this case, by Lemma 2.4 ((i) and (ii)) one gets:-Ln (Φ ∆ (ξ)) = Ñ j k e | K γ (x -x , . ), ψ e j k | p é |ξ| p (30) ≥ K γ (x -x , . ) p L 2 (R d ) |ξ| p = C |x -x | γ-d |ξ| p .

  In this context, it would be useful to recall the Hausdorff dimension [3, Chapter 2, p.21] of a subset A of R d denoted by dim H (A). Lemma 2.9. If B is a compact subset of R d and G ⊂ R d+1 denotes the graph of a measurable function f : B -→ R and

	one has not a precise meaning. However subsets of R d with a non integer
	Hausdorff dimension are regarded to display a fractal behaviour. A common
	task is to study the fractal behaviour of the graph of a function calculating
	its Hausdorff dimension. Usually, the estimation of a lower bound for this
	value is calculated by potential methods ([3, Chapter 2, p.26][9, Chapter 10,
	p.132]). A direct application of it takes form in the following:
	B B
	Although self similarity is associated to the notion of "fractality", the last
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