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Some quantitative homogenization results in a
simple case of interface

Marc Josien∗

December 4, 2018

Abstract

Following a framework initiated by Blanc, Le Bris and Lions, this arti-
cle aims at obtaining quantitative homogenization results in a simple case
of interface between two periodic media. By using Avellaneda and Lin’s
techniques, we provide pointwise estimates for the gradient of the solution
to the multiscale problem and for the associated Green function. Also we
generalize the classical two-scale expansion in order to build a pointwise
approximation of the gradient of the solution to the multiscale problem
(up to the interface), and, adapting Kenig, Lin and Shen’s approach, we
obtain convergence rates.
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1 Introduction
In this article, we are concerned with the quantitative homogenization of the
following elliptic equations in divergence form:

−div
(
A
(x
ε

)
· ∇uε(x)

)
= f(x), (1)

in a simple case of interface between two periodic media.
Equation (1) is a prototypical equation for various physical phenomena (like

electrostatics or when generalized to systems, elastostatics) set on a material
with a microstructure of characteristic scale ε � 1. Homogenization of (1),
which aims at studying the behavior of the solution uε when ε→ 0, has attracted
much attention for half a century. Two particular structures are especially
studied: the periodic structure and the stationary ergodic structure (see, e.g,
the reference books [1, Chap. 1] for the periodic case, and [13, Chap. 7] for
a the stationary stochastic case). Both of these frameworks can be used for
actual numerical computations: the homogenization theory is an efficient tool
for approximating numerically the solution uε of (1) and its gradient, for a
fixed ε > 0.

Recently, Blanc, Le Bris and Lions proposed in [7] two other cases that can
be amenable to numerical computations (see [6]). In the first case, the matrix A
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is periodic but perturbed by a defect at the microscopic scale (see also [8] for
an extension to the advection-diffusion case, and [5] for quantitative homoge-
nization results). In the second case, which might be a fair model for bicrystals,
the matrix A is obtained by gluing two periodic structures with Hölder contin-
uous coefficients along a planar interface. This particular framework has the
specificity that the associated homogenized equation involves a matrix A? that
is piecewise constant with a discontinuity across the interface (in the generic
case). From this perspective, this second case is very different from the afore-
mentioned settings, where the homogenized matrix is constant. The authors
of [7] proposed a definition of the correctors and showed that they exist and
enjoy some desirable properties of regularity and boundedness. This is a first
step in order to obtain quantitative homogenization results. The present article
is an attempt to go further, by taking advantage of the literature in periodic
homogenization (in particular, the celebrated work of Avellaneda and Lin [2]
and the recent article of Kenig, Lin and Shen [15]).

The type of results we show here are familiar to the experts of periodic or
stochastic homogenization. But the main idea of this article is the following:
in a simple case of bicrystals, the generalized two-scale expansion yields an
approximation that possesses the same qualitative and quantitative properties
as the two-scale expansion in the periodic setting when considering the gradient
of the multiscale solution. From a theoretical point of view, this might be useful
for understanding the homogenization of elliptic equations in the case where the
homogenized matrix is discontinuous. We also hope this may be of interest for
the numerical practitioner.

Our aim is twofold: estimate and approximate the gradient ∇uε in L∞ norm
up to the interface. Obviously, far from the interface, the classical theory of
periodic homogenization provides a way to fulfill these goals, first by Avellaneda
and Lin’s results [2], and then by using the two-scale expansion. Hence, the very
difficulty of our study is located close to the interface. This is the reason why
we strive for pointwise estimates and approximations (for uε but also on the
level of the multiscale Green function).

Our first purpose is to obtain pointwise estimates on the gradient ∇uε of
the multiscale problem (1). In the periodic setting, such results are provided
by Avellaneda and Lin’s theory [2]. But, as shown in [11] (see also [4, 5]), the
periodicity assumption is not necessary to these local estimates: they can be
obtained in various frameworks, as long as the correctors and the potential (de-
fined below by (14) and (22)) associated with the matrix A are strictly sublinear
and as long as the homogenized matrix is constant.

The fact that the homogenized matrix is constant is a useful but mere con-
tingent assumption due to the framework used by the authors (the matrix A
is supposed to be periodic, possibly perturbed by a defect, or stationary er-
godic). Actually, the crucial ingredient is that the multiscale problem inherits
regularity properties from the homogenized problem, which are very favorable
when the homogenized matrix is constant. But the solution of an elliptic equa-
tion the coefficient of which is piecewise Hölder continuous with discontinuities
only on smooth interfaces also enjoys some regularity properties (see, e.g., [17]),
which are sufficient for Avellaneda and Lin’s approach. Yet, there is another
impediment: in the case of a discontinuous homogenized coefficient A?, the A?-
harmonic functions (i.e. satisfying −div(A? · ∇u?) = 0) might have a discon-
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tinuous gradient (as a consequence, its second gradient may involve a singular
measure supported on the interface). As discussed below, this fact prevents the
classical two-scale expansion to work properly. This motivates us to introduce
a generalized two-scale expansion. Equipped with this expansion and with the
regularity result of [17], we can proceed with Avellaneda and Lin’s proof.

Our second purpose is to show to what extent the generalized two-scale ex-
pansion yields an accurate pointwise approximation of the gradient ∇uε, as does
the classical two-scale expansion in the periodic setting, where the convergence
rate can be quantified in ε (see e.g. [15, Lem. 3.5]). We aim at deriving the
same type of convergence rate in the case of bicrystals, up to the interface.

Our article is articulated as follows. In Section 2, we describe precisely our
mathematical setting. Then, in Section 3, we introduce and motivate the gen-
eralized two-scale expansion. It is formulated by appealing to the A-harmonic
functions (which involve the so-called correctors) and to the A?-harmonic func-
tions (which are piecewise linear). This expansion is meant to approximate the
solution uε of (2) by means of the solution u? of the homogenized problem. As
in the classical cases, the residuum solves an elliptic equation with a right-hand
side in divergence form. We state our main results in Section 4. They concern
first pointwise estimates on uε and on ∇uε and then pointwise approximations
of these quantities by the generalized two-scale expansion. These results are
also interpreted on the level of the Green functions. We conclude this section
by discussing some aspects, limitations and possible extensions of those results.
The following sections are devoted to the proofs. More precisely, we collect some
elementary results in Section 5 concerning the correctors and the H-convergence
of the matrix A(·/ε), and concerning the regularity properties of the solutions of
elliptic equations involving discontinuous coefficients. Then, in Section 6, we use
Avellaneda and Lin’s techniques to prove pointwise estimates on uε and ∇uε.
Finally, in Section 7, we follow Kenig, Lin and Shen’s approach [15] to estimate
the residuum between uε and the generalized two-scale expansion. There, the
Green function plays a central role.

Acknowledgement The author gratefully thanks Xavier Le Blanc and Claude
Le Bris for fruitful discussions. He is particularly indebted to Xavier Blanc who
brought his attention to the article [18] and who commented an early version of
the proofs of Section 6.

The main ideas of Sections 6 and 7.1 were found when the author was a PhD
student at the École Nationale des Ponts ParisTech.

2 Mathematical setting
From now on, Rd is endowed with a canonical base (e1, · · · , ed). Since we want
to focus on the interface and avoid the problem of boundaries, we set following
the equation on the whole ambient space Rd, with d ≥ 3:{

− div (A (x/ε) · ∇uε(x)) = f(x) in Rd,
∇uε ∈ L2

(
Rd,Rd

)
,

(2)

(the more difficult case d = 2 will be mentioned in some results). In the above
expression, f ∈ C∞c (Rd) is a smooth function with compact support, 0 < ε < 1,
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and A is an elliptic and bounded matrix modeling an interface between two
infinite crystals that share a common periodic cell on the interface I := {0} ×
Rd−1. As is also classical in Avellaneda and Lin’s theory, we assume that the
matrix A is Hölder continuous on the left and on the right of the interface. These
assumptions, formalized below, correspond to the simplest case of interface in [7,
Sec. 5]:

Assumption 1 (Ellipticity and boundedness). There exists a constant µ > 0
such that, for all x, ξ ∈ Rd, the matrix A(x) is invertible and

ξ ·A(x) · ξ ≥ µ |ξ|2 and ξ ·A−1(x) · ξ ≥ µ |ξ|2 .

Assumption 2 (Periodicity with commensurable periods). The matrix A(x) sat-
isfies

A(x) =

{
A+(x) if x · e1 > 0,

A−(x) if x · e1 < 0,
(3)

where A± is [0, T±1 ]× · · · × [0, T±d ]-periodic with T+
i /T

−
i ∈ Q,∀i ∈ [[2, d]].

Assumption 3 (Regularity). For a fixed α > 0, there holds

A− ∈ C0,α
(
Rd,Rd×d

)
and A+ ∈ C0,α

(
Rd,Rd×d

)
.

Remark 1. The above regularity assumption can be weakened as in [17, Th. 1.9]:
A− and A+ can be assumed to be uniformly α-Hölder continuous everywhere
but on the (regular) boundaries of disjoint inclusions.

By using the Lax-Milgram theorem, it can be shown that there exists a
solution uε ∈ H1

loc(Rd) to (3) such that ∇uε ∈ L2
(
Rd,Rd

)
. This solution is

unique up to the addition of a constant that we set by imposing that the mean
of uε on Rd vanishes.

Under Assumptions 1 and 2, the homogenized problem associated with (2)
when ε→ 0 is the following:{

− div (A?(x) · ∇u?(x)) = f(x) in Rd,
∇u? ∈ L2

(
Rd,Rd

)
,

(4)

where the homogenized matrix A? is defined by

A?(x) =

{
A?+ if x · e1 > 0,

A?− if x · e1 < 0,
(5)

and A?± are the homogenized matrices associated with the periodic matrices A±.
In general, the matrix A? is discontinuous across the interface.

By standard arguments, it can be shown (see Lemma 5.6 below) that the
gradient ∇uε weakly converges to ∇u? in L2

(
Rd,Rd

)
. In the periodic case

(namely if A+ = A−), obtaining strong convergence is more difficult and requires
the so-called two-scale expansion:

uε,1(x) := u?(x) + wi

(x
ε

)
∂iu

?(x), (6)
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where here, and in the sequel, the Einstein summation convention is used. The
functions wi are the so-called correctors, which are the strictly sublinear solu-
tions (unique up to the addition of a constant) to the following equation:

−div (A · (ei +∇wi)) = 0 in Rd. (7)

We explain in the next section how to generalize the definition of correctors and
the two-scale expansion.

3 Definition of the correctors and the two-scale
expansion

A fundamental ingredient of Avellaneda and Lin’s proof is that the so-called
correctors “correct” sublinear A?-harmonic functions to A-harmonic sublinear
functions. Hence, the first step is to build the sublinear A?-harmonic functions,
i.e., the functions Pj satisfying:

−div (A?(x) · ∇Pj(x)) = 0 in Rd. (8)

They induce a natural definition of correctors, which slightly differs from [7].
Unfortunately, with these correctors, the classical formula (6) for the two-scale
expansion is algebraically inadequate. As a consequence, we propose a general-
ization of this formula which takes into account the fact that the homogenized
matrix is not constant and that allows for a divergence-form representation of
the residuum uε,1 − uε.

3.1 A?-harmonic functions
When A? is constant, the sublinear A?-harmonic functions are the affine func-
tions. (We say that a function f is sublinear if lim sup|x|→+∞|x|−1|f(x)| = l <
+∞ and strictly sublinear if l = 0 in the previous limit.) In our case, the space
of sublinear A?-harmonic functions is spanned by the constant functions and
the following piecewise linear functions:

Pj(x) = P (x) · ej :=

{
x · ej if x · e1 < 0,

x · ej + ǎjx · e1 if x · e1 > 0,
(9)

for j ∈ [[1, d]], where ǎ is related to the transmission matrix through the inter-
face I and reads:

ǎj =

(
A?−
)

1j
−
(
A?+
)

1j(
A?+
)

11

. (10)

If ǎ = 0 (which strictly encompasses the case where A? is constant), the func-
tions Pj are linear.

It is straightforward that the functions Pj are solution to (8). Indeed, by
definition, the functions Pj are continuous and their gradients read

∇Pj(x) =

{
ej if x · e1 < 0,

ej + ǎje1 if x · e1 > 0.
(11)
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Hence, the functions Pj are A?-harmonic in R∗− ×Rd−1 and in R∗+ ×Rd−1, and
they satisfy the transmission conditions across the interface:

lim
h→0+

[(A? · ∇Pj) (x+ he1)] · e1 = lim
h→0+

[(A? · ∇Pj) (x− he1)] · e1, (12)

lim
h→0+

∂kPj(x+ he1) = lim
h→0+

∂kPj(x− he1), (13)

for all x ∈ I and k ∈ [[2, d]].

3.2 Definition of the correctors
Since the correctors are meant to turn the A?-harmonic functions Pj into A-
harmonic sublinear functions, they should solve the following equation:

−div (A(x) · ∇ (Pj(x) + wj(x))) = 0 in Rd. (14)

Using the techniques of [7], we show in Section 5.3 the following proposition:

Proposition 3.1. Suppose that the matrix A satisfies Assumptions 1, 2 and 3.
Then, there exists a solution wj ∈ H1

loc(Rd) to (14), which satisfies the following
estimates:

‖wj‖L∞(Rd) < +∞, (15)

and ‖∇wj‖C0,β
unif (Rd\I) < +∞, (16)

for any 0 < β < min (α, 1/4).

If ǎ = 0, the definition (14) coincides with the classical one (7) and with [7,
(48)], that we recall here:

−div (A(x) · (∇wj(x) + ej)) = −div (A?(x) · ej) . (17)

However, in the case where ǎ 6= 0, these three definitions lead to different
objects. We motivate our choice in the next section.

3.3 A possible generalization of the two-scale expansion
Now, we introduce a generalization of the two-scale expansion. From above, it
appears clearly that the corrected version of the sublinear A?-harmonic functions
u?(x) = ajPj(x) (for (aj) ∈ Rd) is the following

aj (Pj(x) + wj(x)) = u?(x) + wj(x)
(

(∇P (x))
−1
)
jk
∂ku

?(x),

where we use the convention (∇P )ij := ∂iPj . This suggests to set, for the
solution u? to (4), the following generalized two-scale expansion

uε,1(x) = u?(x) + εwj

(x
ε

)(
(∇P (x))

−1
)
jk
∂ku

?(x). (18)

In (18), the quantity

U?(x) := (∇P (x))
−1 · ∇u?(x), (19)
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is actually a gradient in harmonic coordinates. Indeed, if we set

ũ(z) := u?
(
P−1(z)

)
, (20)

then, it obviously holds that ∂zj ũ(z) = U?j
(
P−1(z)

)
. Moreover, by the trans-

mission conditions through the interface (see (12) and (13)), the function U?j is
continuous across the interface I (for f sufficiently regular).

Notice that we recover the classical two-scale expansion when ǎ = 0.

The classical argument for assessing the quality of the two-scale expansion is
that it allows for a divergence-form representation of the residuum uε,1−uε (see
e.g. [13, pp. 26-27]). We justify that this algebraical structure is preserved by the
generalized expansion (18), with a right-hand term involving the gradient ∇U?.

In this perspective, it shall be underlined that the formal computation of [13]
with the classical two-scale expansion (6) and with the definition (17) of [7] in-
volves the quantity ∇2u? (which, in our case, might involve a singular measure
supported on the interface I) multiplied by quantities that might be discontin-
uous across the interface I. As a consequence, the mathematical significance of
this formal computation is not clear for bicrystals, even when resorting to the
theory of distributions.

We now proceed with the computation of−div
(
A
(
x
ε

)
· ∇
(
uε,1(x)− uε(x)

))
.

For simplicity, we set ε = 1 and drop the argument x of the functions below.
By (2) and (4), we have

− div
(
A · ∇

(
uε,1 − uε

))
= −div

(
A · ∇uε,1

)
+ div (A? · ∇u?) .

We now use the definitions (19) and (18) to expand the above right-hand term:

−div
(
A · ∇

(
uε,1 − uε

))
= −∂i

(
Aij (∂ju

? + ∂jwkU
?
k )−A?ij∂ju?

)
− ∂i (Aijwk∂jU

?
k ) .

Next, using once more (19), we obtain:

− ∂i
(
Aij (∂ju

? + ∂jwkU
?
k )−A?ij∂ju?

)
= −∂i

([
Aij (∂jPk + ∂jwk)−A?ij∂jPk

]
U?k
)
.

Yet, by definition of Pj and wj , there holds

∂i
(
Aij (∂jPk + ∂jwk)−A?ij∂jPk

)
= 0. (21)

Hence, as will be justified below by Proposition 5.5, there exists a tensor Bijk
that is antisymmetric in its first two indices and that satisfies

∂iBijk = A?jl∂lPk −Ajl (∂lPk + ∂lwk) . (22)

Therefore, using the antisymmetry of B, one can express:

−∂i
([
Aij (∂jPk + ∂jwk)−A?ij∂jPk

]
U?k
)

= ∂lBlik∂iU
?
k = ∂i (Bijk∂jU

?
k ) .

As a conclusion, while restoring the scale ε, we obtain:

−div
(
A(·/ε) · ∇

(
uε,1 − uε

))
= ε∂i ((Bijk −Aijwk) (·/ε)∂jU?k ) . (23)

In the above expression, it can be seen that every term is well-defined in the
weak sense. Moreover, the right-hand term is multiplied by ε so that, formally,
one can expect that the error

∣∣∇uε,1 −∇uε∣∣ scales like ε in various Lp norms.
This justifies the introduction of the generalized two-scale expansion (18).
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4 Main results
We are now in a position to state our main results. The first ones concern
Lipschitz estimates. They can be used in a second step to quantify the error
residuum between the generalized two-scale expansion and the actual solution
of the multiscale problem.

4.1 Estimation
Our first result is a generalization of the local Lipschitz estimates [2, Lem. 16]:

Theorem 4.1. Suppose that d ≥ 2 and that the matrix A satisfies Assump-
tions 1, 2 and 3. Let ε > 0, x0 ∈ Rd and R > 0. Assume that the func-
tion uε ∈ H1 (B(x0, 2)) is a solution to

−div (A (x/ε) · ∇uε(x)) = 0 in B(x0, 2R). (24)

Then, there exists a constant C that only depends on A and d such that

sup
x∈B(x0,R)\I

|∇uε(x)| ≤ C

Rd+1

(ˆ
B(x0,2R)

|uε|2
)1/2

. (25)

If the ball B(x0, R) does not intersect the interface I, the above result
concerns nothing but the classical periodic setting. But, in Theorem 4.1 the
ball B(x0, R) may intersect the interface I, where the gradient ∇uε(x) might be
discontinuous: in this case, a Lipschitz estimate holds up to the interface. On
the first hand, this result might seem surprising: one could have expected that
the discontinuity of A through the interface would interact with the oscillations
of the small scale so that ∇uε would not remain bounded when ε goes to 0.
But, on the other hand, in the periodic setting, it is known that some Lipschitz
estimates can also be obtained up to the boundary of a smooth domain (see
e.g. [2, Th. 2]), which, from a geometric point of view, might be seen as a kind
of interface. Moreover, the way of building the correctors themselves (see [7,
Th. 5.1] and Section 5.3) is reminiscent of boundary layers. However, we have
not been able to take this apparent similarity further.
Remark 2. Since the function uε is continuous in B(x0, R), Theorem 4.1 actually
induces a local L∞ estimate in the following sense:

‖∇uε‖L∞(B(x0,R)) ≤
C

Rd+1

(ˆ
2B(x0,R)

|uε|2
)1/2

. (26)

Similarly, Corollary 4.2 and Theorem 4.5 below can be understood in a local L∞

sense.

We prove Theorem 4.1 by using the compactness method of [2]. Two scales
should be separated:

• the small scales, where R/ε � 1, where the Schauder estimates provided
by [17] comes into play,

• the large scales, for R/ε � 1, where we use the compactness method of
Avellaneda and Lin.
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The large-scale control on ∇uε is due to a structural property of the matrix A,
which uniformly H-converges to its associated homogenized matrix A? (this
statement is made precise in Lemma 5.6). The idea of the proof is to com-
pare uε to a locally A?-harmonic function u? (since A? is piecewise constant,
this function enjoys sufficient regularity properties for our purpose). By the uni-
form H-convergence, uε can be made sufficiently close to u?, and thus inherit a
medium-scale regularity estimate from it. Then, by “linearizing” uε in the spirit
of the two-scale expansion (18) (here we need the correctors wj to be strictly
sublinear), one can iterate the medium-scale regularity estimate on balls of ex-
ponentially increasing radii to obtain a large-scale regularity estimate. There, it
is of the uttermost importance to use a A(·/ε)-harmonic approximation of uε in
order to iterate the reasoning (this is another motivation for using the correctors
defined by (14)). Finally, a blow-up argument turns the large-scale regularity
estimate into an estimate on the gradient ∇uε by resorting to the Schauder
estimates of [17].

As is well-known in the periodic setting (see e.g. [15]), pointwise estimates
on the Green function can be derived from the Lipschitz estimates. The Green
function G(x, y) (also called fundamental solution) associated with the opera-
tor −div (A · ∇) is a solution of the following equation weak formulation (see [9]
for a precise definition):

−div (A(x) · ∇xG(x, y)) = δy(x).

If d ≥ 3, since A is uniformly bounded and coercive, by [9, Th. 1], there exists
a Green function which is unique. Moreover, it satisfies the following estimate:

|G(x, y)| ≤ C|x− y|−d+2. (27)

Remark that the Green function G(x, y) is locally A-harmonic for x 6= y. There-
fore, by applying Theorem 4.1, we deduce the following estimates on the gradient
and the mixed gradient of the Green function:

Corollary 4.2. Let d ≥ 3. Suppose that the matrix A satisfies Assumptions 1,
2, and 3. Let G be the Green function of the operator −div (A · ∇) on Rd.
Then, there exists a constant C > 0 depending only on d and A such that, for
any x 6= y ∈ Rd\I, there holds

|∇xG(x, y)|+ |∇yG(x, y)| ≤ C|x− y|−d+1, (28)

|∇x∇yG(x, y)| ≤ C|x− y|−d. (29)

It should be noted that, by a dilatation argument, the Green function Gε of
the operator −div (A(·/ε) · ∇) can be written as:

Gε(x, y) = ε2−dG(x/ε, y/ε).

Whence the Green function Gε also satisfies (27), (28) and (29), with a con-
stant C that does not depend on ε.
Remark 3 (Case d = 2). The conclusions of Corollary 4.2 also hold in the
case d = 2. It can be retrieved from the case d = 3 by expressing the 2-
dimensional Green function by means of a 3-dimensional Green function with
well-chosen coefficients. This is not shown here but can be found in [2, Th. 13]
(see also [9, Prop. 5]).
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The proofs of the Theorem 4.1 and Corollary 4.2 are respectively postponed
until Sections 6.1, and 6.2.

4.2 Approximation
We now estimate the residuum uε,1 − uε (or equivalently uε − u?) in the L∞

norm by combining the algebraical expression (23) and the estimates on the
Green function provided by Corollary 4.2:

Proposition 4.3. Let d ≥ 3, x0 ∈ Rd and ε > 0. Suppose that the matrix A
satisfies Assumptions 1, 2, and 3. Let f ∈ Lp(Rd) with support inside B(x0, 1),
for p > d. Assume that the functions uε and u? are respectively the zero-mean
solutions to (2) and (4). Then, there exists a constant C that only depends
on A, d and p such that

‖uε − u?‖L∞(Rd) ≤ Cε ‖f‖Lp(Rd) . (30)

By a duality argument (see [15, Th. 1.1]), this provides a pointwise error
estimate on the level of the Green function:

Proposition 4.4. Let d ≥ 3. Suppose that the matrix A satisfies Assump-
tions 1, 2, and 3. Let G, respectively G?, be the Green function of the opera-
tor −div (A · ∇), respectively −div (A? · ∇), on Rd. Then, there exists a con-
stant C > 0 depending only on d and A such that, for any x 6= y ∈ Rd, there
holds:

|G(x, y)− G?(x, y)| ≤ C|x− y|−d+1. (31)

For the sake of concise notations, we define the matrices W (x) and W †(x)
by

Wij(x) := δij + ∂iwk(x) (∇P (x))
−1
kj , (32)

W †ij(x) := δij + ∂iw
†
k(x)

(
∇P †(x)

)−1

kj
, (33)

where, δij stands for the Kronecker symbol, and the functions P † and w† are
the analogous of P and w, but with respect to the transposed matrix AT . Then,
the gradient ∇uε,1 can be expressed by means ofW and U? respectively defined
by (32) and (19) as

∇uε,1(x) = W (x/ε) · ∇u?(x) + εwj(x/ε)∇U?j (x).

Since the last right-hand term of the above identity scales like ε, we expect∇uε(x)
to be well approximated by W (x/ε) · ∇u?(x).

We justify it first on the level of the Green function, in the same vein as the
recent results of [15] (see also [3] in the stationary ergodic case). Indeed, as a
consequence of Theorem 4.1 and of Proposition 4.4:

Theorem 4.5. Under the assumptions of Proposition 4.4, there exists a con-
stant C > 0 depending only on d and A such that, for all x 6= y ∈ Rd\I, there
holds:

|∇xG(x, y)−W (x) · ∇xG?(x, y)| ≤ C ln (2 + |x− y|)
|x− y|d

, (34)∣∣∣∇x∇yG(x, y)−W (x) · ∇x∇yG?(x, y) ·
(
W †(y)

)T ∣∣∣ ≤ C ln (2 + |x− y|)
|x− y|d+1

. (35)
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Going backwards to the solutions u? and uε, this implies an L∞ estimate on
the gradient of the residuum:

Corollary 4.6. Let d ≥ 3, x0 ∈ Rd and ε > 0. Suppose that the matrix A
satisfies Assumptions 1, 2, and 3. Let f ∈ L∞(Rd) with support inside B(x0, 1).
Assume that the function uε is the zero-mean solution to (2) and that u? is the
zero-mean solution to (4). Then, there exists a constant C that only depends
on A and d such that

‖W (·/ε) · ∇u? −∇uε‖L∞(Rd) ≤ Cε
∣∣ln(2 + ε−1)

∣∣2 ‖f‖L∞(Rd) . (36)

The proofs of Proposition 4.3 and 4.4, respectively Theorem 4.5 and Corol-
lary 4.6 are postponed until Sections 7.1, respectively 7.2.

4.3 Remarks and possible extensions
We conclude this Section by discussing some aspects of this study.

First, we shall underline that the above results concern the problem on Rd, so
that there is no boundary. In this regard, if we denote the cell Q := [−1/2, 1/2]×
[0, T2] × · · · × [0, Td] and set ε := 1/n for n ∈ N, then the above results can be
generalized to the problem (2) set on Q with periodic boundary conditions
(see [14] for a related work in the case of a periodic coefficient). But it seems
more difficult to treat the case where (2) is set on a regular bounded domain Ω
along with Dirichlet boundary conditions. Indeed, in this case, we need to
show boundary estimates, which might not be true in the neighborhood of the
intersection point between the boundary ∂Ω and the interface I. At the moment,
it is not clear for the author which results may still hold in this case.

Second, in all the results above, the constant C of the estimates is said
to “depend on A”. This rather vague dependence is a consequence of the fact
that the compactness method of Avellaneda and Lin relies on a proof by con-
tradiction. However, one can likely be more precise by proceeding with the
proof on the class E

(
µ, α, τ,

(
T±i
))

of matrices A ∈ L∞
(
Rd,Rd×d

)
satisfying

Assumption 1, 2 and 3 with ‖A±‖C0,α(Rd) ≤ τ (rather than by working on a
fixed matrix). Thus, the dependence on A would be replaced by a dependence
on
(
µ, α, τ,

(
T±i
))
. Such assumptions have been developed in [15] for example.

Once these limitations are left aside, we remark that, as in [11, 5], the main
ingredients used here are the long-range behavior of the correctors and the
regularity of the homogenized problem. Actually, our proofs only require the
fact that A is uniformly elliptic and bounded and uniformly Hölder continuous
up to the interface I (Assumptions 1, 3) and that there exist correctors wj and
a potential B that are bounded. Therefore, the structural Assumption 2 can
certainly be weakened. In particular (see [7, Th. 5.7]), one can reasonably think
that assuming that the ratios T+

i /T
−
i are not Liouville-Roth numbers would be

sufficient to build bounded correctors wj and a bounded potential B.
The regularity of the matrix A is a key ingredient in the proof of Avellaneda

and Lin to show Lipschitz estimates –which encompass the small scales and the
large scales. However, as shown in [11], no regularity assumption is necessary
to obtain large-scale regularity down to the scale ε. Therefore, this assumption
could be removed to obtain a weaker version of the above results. In this regard,
the approach of [11] could be adapted to obtain regularity estimates (instead of
Avellaneda and Lin’s approach). One can optimistically think that this would

11



pave the way to quantitative homogenization results in the case of “stochastic”
bicrystals.

Finally, one could also think of systems of elliptic equations in divergence
form, for which Avellaneda and Lin’s approach as well as the regularity results
of [17] are adapted. One can extend Theorem 4.1 to the case of systems by a
slight adaptation –namely, by showing that the result of C0,α regularity [2, Th.
1] still holds in our case and then by invoking this regularity estimate instead of
the De Giorgi-Nash Moser theorem in the proofs below. Generalizing the other
above results would require first to generalize the W2,p estimates for piecewise
constant coefficients in [19, 16] (see Lemma 5.2 below) to the case of systems.
To the best of our knowledge, this has not been done yet.

5 Preliminary considerations
In this section, we collect some results that will be used throughout this article.
First, we introduce a few notations. Then, we state some regularity results
concerning elliptic equation with piecewise regular (or constant) coefficients.
In particular, we show some estimates on U? defined by (19) and we build a
procedure for “linearizing” locally A?-harmonic functions by appealing to the A?-
harmonic sublinear functions Pj . Next, we build the correctors defined by (14)
and a solution B to (22) (that we call the potential) and we show that they
enjoy some regularity properties. Finally, we justify that the matrices A(·/ε)
uniformly H-converge to A? when ε→ 0.

5.1 Notations
We introduce here some useful notations for building the correctors and the
potential. From now on, the matrix A satisfies Assumptions 1, 2, and 3.

For i ∈ [[2, d]], we denote by Ti the least common multiple of T−i and T+
i .

We define the domains

D := R× [0, T2]× · · · × [0, Td], and D± := R± × [0, T2]× · · · × [0, Td].

We say that u is D-periodic if u is Ti-periodic in xi, for i ≥ 2.
We denote w±j , respectively B±, the correctors, respectively the potential

associated with the periodic matrices A±. By definition, B±ijk is a tensor anti-
symmetric in its first two indices that solves

−∂iB±ijk = (A±)jl
(
δlk + ∂lw

±
k

)
−
(
A?±
)
jk

in Rd.

We recall that both the correctors w±j and the potential B± are [0, T±1 ]× · · · ×
[0, T±d ]-periodic and of regularity C1,α.

Last, if Ω is a bounded domain, we define the rescaled integral −́
Ω
u =

|Ω|−1
´
u, where |Ω| is the Lebesgue measure of Ω.

5.2 Regularity results
We borrow a regularity result from [17] (see also [18]):

12



Theorem 5.1 (Local version of Theorem 1.1 of [17]). Let A ∈ L∞(Rd,Rd×d) be
a matrix defined by (3), where the matrices A± satisfy Assumption 3 (but are not
necessarily periodic), and that satisfies Assumption 1. Let 0 < β < min (α, 1/4).
Suppose that f ∈ L∞(B(x, 2)), and that g ∈ C0,β (B(x, 2)\I). If u solves

−div (A · ∇u) = f + div(g) in B(x, 2),

then there exists a constant C only depending on d, α, β, µ and ‖A‖C0,α(B(x,2))

such that

‖u‖C1,β(B(x,2)\I) ≤ C
(
‖u‖L2(B(x,2)) + ‖f‖L∞(B(x,2)) + ‖g‖C0,β(B(x,2)\I)

)
.

Then, we provide some W1,p estimates on the quantity U? defined by (19):

Lemma 5.2. Let d ≥ 3, x0 ∈ Rd, p ∈ (d,+∞), and A? be a matrix defined
by (5) and satisfying Assumption 1. Suppose that f ∈ Lp(Rd) is supported
into B(x0, 1). Let u? ∈ H1

loc(Rd) be the zero-mean solution to (4) and define
U? by (19). Then there exists a constant C > 0 depending only on d and A?±
such that

‖U?‖W1,p(Rd) ≤ C ‖f‖Lp(Rd) . (37)

Moreover, there holds

‖∇U?‖L2(Rd) ≤ C ‖f‖Lp(Rd) . (38)

The proof (37) rests on a regularity result [19] on nondivergence elliptic
equations with coefficients that are constant on the half-spaces R− × Rd−1

and R+ × Rd−1. One turns (4) into such an equation by means of the A?-
harmonic coordinates Pj . We need to treat separately Estimation (38) since,
if d = 3 or d = 4, it is not guaranteed that u? defined above lies in L2(Rd).

Proof of Lemma 5.2. We first show an Lp estimate on u?. By definition, there
holds:

u?(x) =

ˆ
B(x0,1)

G?(x, y)f(y)dy. (39)

Since the Green function G? associated with the operator −div (A? · ∇) is such
that |G?(x, y)| ≤ C|x− y|−d+2, and since the function f is in Lq(Rd) for all q ∈
[1, p] (by the Hölder inequality, recalling that the support of f is inside B(x0, 1)),
the Young inequality yields

‖u?‖Lp(Rd) ≤ C ‖f‖Lp(Rd) . (40)

Next, we define the function ũ by (20). It satisfies the following elliptic
equation:

−div
(
|J(z)|−1Ã(z) · ∇ũ(z)

)
= |J(z)|−1f

(
P−1(z)

)
, (41)

where Ã(z) is defined by

Ã(z) :=
(
∇P

(
P−1(z)

))T ·A(P−1(z)) · ∇P
(
P−1(z)

)
,
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and J(z) is the Jacobian of P evaluated on P−1(z). By construction, Ã(z) is
elliptic and constant on the half-spaces R∗±×Rd−1, and the product |J(z)|−1Ã(z)
is divergence-free in Rd. Whence, (41) can be rewritten as

Ãij(z)∂ij ũ(z) = f
(
P−1(z)

)
. (42)

As a consequence, we can apply [19, Th.] (see also [16, Lem. 2.4]): there exists
a constant C so that

‖ũ‖W2,p(Rd) ≤ C ‖f‖Lp(Rd) + C ‖ũ‖Lp(Rd) .

Thus, by (40), we deduce

‖ũ‖W2,p(Rd) ≤ C ‖f‖Lp(Rd) .

A simple change of variable yields the desired estimate (37).
We now show (38). Since f is compactly supported in B(x0, 1), then ũ

is Ã-harmonic on Rd\B(z0, ρ), where ρ :=
∥∥(∇P )−1

∥∥
L∞(Rd)

and z0 := P−1(x0).
Therefore, for z1 ∈ Rd such that |z0− z1| > 2ρ, one can apply [17, Prop. 1.7] so
that, on B (z1, |z0 − z1|/2) so that

∥∥∇2ũ
∥∥

L∞(B(z1,|z0−z1|/4)
≤ C|z0 − z1|−2

(
−
ˆ

B(z1,|z0−z1|/2)

|ũ|2
)1/2

. (43)

Now, recalling that u? satisfies (40), then, by using (27) and the Cauchy-
Schwartz inequality, we obtain that, if |x− x0| > 2, there holds

|u?(x)| ≤ C|x− x0|−d+2 ‖f‖L1(B(x0,1)) .

Transposing it on the level of ũ yields that, for any z ∈ B(z1, |z0 − z1|/2), we
have

|ũ(z)| ≤ C|z − z0|−d+2.

Therefore, we deduce from (43) that∥∥∇2ũ
∥∥

L∞(B(z1,|z0−z1|/4)
≤ C|z0 − z1|−d. (44)

As a consequence, since we already know that ∇2ũ ∈ Lp(Rd) for p > 2, we
finally obtain that ∇2ũ ∈ L2(Rd). This proves (38).

We now explain how locally A?-harmonic functions can be “linearized” by
using the sublinear A?-harmonic functions Pj .

Lemma 5.3. Let A? be a matrix defined by (5) and satisfying Assumption 1.
Let x0 ∈ Rd, and assume that the function u? ∈ H1(B(x0, 1)) satisfies

−div (A?(x) · ∇u?(x)) = 0 (45)

in B(x0, 1). Then, there exists a constant C depending only on d and µ such
that, for all θ ∈ (0, 1/2), there holds

sup
x∈B(x0,θ)

∣∣∣∣∣u?(x)− u?(x0)− (P (x)− P (x0)) · −
ˆ

B(x0,θ)

(∇P )
−1 · ∇u?

∣∣∣∣∣
≤ Cθ2

(
−
ˆ

B(x0,1)

|u?|2
)1/2

. (46)
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We underline that the above formula (46) gives a first-order approximation
of u? that is also A?-harmonic. In this regard, it is a generalization of [2,
(3.5)]. This estimates will play a central role in the proof of Theorem 4.1 by
encapsulating some regularity properties of the homogeneous problem (4).

The (simple) proof below interprets the A?-harmonic functions Pj as new
coordinates, in which (46) appears as a first-order Taylor expansion.

Proof of Lemma 5.3. The key ingredient of the proof is that the function ũ
defined by (20) satisfies∥∥∇2ũ

∥∥
L∞(P−1(B(x0,1/2)))

≤ C ‖u?‖L2(B(x0,1)) . (47)

Indeed, by the same argument as for establishing (41) above, we obtain that ũ
satisfies

−div
(
|J(z)|−1Ã(z) · ∇ũ(z)

)
= 0 in P−1 (B(x0, 1)) , (48)

with J and Ã defined as in the proof of Lemma 5.2. Since the matrix |J |−1A is
piecewise constant, as a consequence of [17, Prop. 1.7], there holds

sup
z∈P−1(B(x0,1/2)\I)

∣∣∇2ũ(z)
∣∣ ≤ C ‖ũ‖L2(P−1(B(x0,1))) . (49)

Moreover, since the matrix |J |−1Ã is divergence-free, the gradient ∇ũ is con-
tinuous across the interface (inside B(x0, 1/2)). Hence, (49) can be improved
as (47).

Therefore, a first-order Taylor expansion on ũ yields∣∣∣∣∣ũ(P (x))− ũ(P (x0))− (P (x)− P (x0)) · −
ˆ

B(x0,θ)

∇ũ(P (z))dz

∣∣∣∣∣
≤ Cθ2

∥∥∇2ũ
∥∥

L∞(P−1(B(x0,1/2)))

≤ Cθ2 ‖u?‖L2(B(x0,1)) .

Finally, since ∇ũ(P (x)) = (∇P (x))
−1 · ∇u?(x), we obtain (46).

5.3 Correctors and potential
Proposition 3.1 is shown by appealing to Theorem 5.1 and to the following
result, which is inspired by [7, Th. 5.1]:

Proposition 5.4 (Adaptation of Th. 5.1 of [7]). Suppose that the matrix A
satisfies Assumptions 1, 2, and 3. Then:
(i) There exists a solution wj to Equation (14). This solution satisfies

∇
(
wj − w−j

)
∈ L2(D−),

∇
(
wj − w+

j − ǎj∇w
+
1

)
∈ L2(D+),

wj is D-periodic.

(50)
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The function wj satisfying both (14) and (50) is unique up to the addition of a
constant.
(ii) There exist constants C > 0 and κ > 0 such that∣∣∇wj(x)−∇w−j (x)

∣∣ ≤ C exp(−κ|x · e1|) if x · e1 < −1, (51)∣∣∇wj(x)−∇w+
j (x)− ǎj∇w+

1 (x)
∣∣ ≤ C exp(−κ|x · e1|) if x · e1 > 1. (52)

We now build a potential B:

Proposition 5.5. Suppose that the matrix A satisfies Assumptions 1, 2, and 3.
Then, there exists a D-periodic potential B ∈ L∞

(
Rd,Rd3

)
associated with A.

Namely, Bijk is antisymmetric in its first two indices and satisfies (22). More-
over, it lies in C0,β

unif

(
Rd,Rd3

)
for any β ∈ (0, 1).

Since the proofs of Propositions 5.4 and 5.4 closely follows the proof of [7,
Th. 5.1], we postpone them until Appendix A.

5.4 Uniform H-convergence
Equipped with the correctors, we are in a position to state a first qualitative
homogenization result:

Lemma 5.6. Suppose that the matrix A satisfies Assumptions 1, 2, and 3. Let
sequences xn ∈ Rd and εn ∈ R∗+ satisfy xn · e1 → l ∈ R and εn → 0. Then,
the sequence An := A ((· − xn)/εn) H-converges to A?(· − le1) on every regular
bounded domain of Rd.

The proof is classical and relies an the div-curl lemma [20, Lem. 1.1 p. 4].
Therefore, we only emphasize on its main ingredient: the matrix A admits
correctors wj such that

∇wj ∈ L2
unif

(
Rd,Rd

)
, (53)

and that satisfy the following weak convergences in L2
(
Ω,Rd

)
:

∇wj ((· − xn)/εn) ⇀
n→+∞

0, (54)

(A · (∇Pj +∇wj)) ((· − xn)/εn)− (A? · ∇Pj) (· − xn) ⇀
n→+∞

0, (55)

for any bounded domain Ω, for any j ∈ [[1, d]] and for all sequences xn ∈ Rd
and εn → 0. The above facts (53), (54) and (55) are consequences of Proposi-
tion 5.4, using the properties of the periodic correctors w±j .

6 Estimation
This section is devoted to proving the Lipschitz estimates of Theorem 4.1, from
which we derived the estimates on the multiscale Green function of Corollary 4.2.
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6.1 Lipschitz estimates
Our proof of Lipschitz estimates closely follows the proof of Avellaneda and
Lin [2]. It is based on the method of compactness and it is done in three steps:

1. the initialization step (see Section 6.1.1), in which we take advantage of
the uniform H-convergence (Lemma 5.6) of the multiscale problem to the
homogeneous problem (4). Thus, the multiscale solution uε inherits the
medium-scale regularity property of the solution u? of (4) encapsulated
in (46). This property is reinterpreted in terms of a “linearization” of uε
by A(·/ε)-harmonic functions (here, it is crucial that the correctors wj are
strictly sublinear).

2. the iteration step (see Section 6.1.2), in which the previous estimates are
iterated to obtain Lipschitz regularity of uε down to scale ε (this is also
called “excess decay” in [11, Lem. 2]). In this step, it is crucial to resort to
an A(·/ε)-harmonic approximation of uε (otherwise, we could not iterate).

3. a blow-up step (see Section 6.1.3), in which we use the regularity result
Theorem 5.1 to obtain Lipschitz regularity on scales smaller than ε.

6.1.1 Initialization: “linearization” of locally A(·/ε)-harmonic func-
tions

For the sake of conciseness, we define the A-harmonic coordinates χ by

χj(x) = Pj(x) + wj(x).

We prove first that the multiscale problem inherits regularity from the homog-
enized problem:

Lemma 6.1 (See Lemma 14 in [2]). Suppose that the matrix A satisfies Assump-
tions 1, 2, and 3. Let γ ∈ (0, 1) and x0 ∈ Rd. Then, there exists θ ∈ (0, 1/4),
which only depends on A?± and γ, and ε0, which only depends on A, d, γ and θ,
such that, if uε ∈ H1(B(x0, 1)) satisfies

−div (A (x/ε) · ∇uε(x)) = 0, (56)

in B(x0, 1) for ε ≤ ε0, then

sup
x∈B(x0,θ)

∣∣∣∣∣uε(x)− uε(x0)− ε
(
χ
(x
ε

)
− χ

(x0

ε

))
· −
ˆ

B(x0,θ)

(∇P )
−1 · ∇uε

∣∣∣∣∣
≤ θ1+γ

(
−
ˆ

B(x0,1)

|uε|2
)1/2

. (57)

Proof of Lemma 6.1. By Theorem 3.1, the correctors wj are bounded. More-
over, by the Cauchy-Schwartz inequality and the Cacciopoli estimate, there
holds∣∣∣∣∣−
ˆ

B(x0,θ)

(∇P )
−1 · ∇uε

∣∣∣∣∣ ≤ C
(∣∣∣∣∣−
ˆ

B(x0,θ)

|∇uε|2
∣∣∣∣∣
)1/2

≤ C

(∣∣∣∣∣−
ˆ

B(x0,1)

|uε|2
∣∣∣∣∣
)1/2

.
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Therefore, proving (57) amounts to establishing a similar estimate, in which χj
is replaced by Pj (up to taking a smaller ε0).

By Lemma 5.3, we set θ ∈ (0, 1/4) sufficiently small so that, for any x∞ ∈ Rd,
if u? satisfies (45) in B(x∞, 1/2), then

sup
x∈B(x∞,θ)

∣∣∣∣∣u?(x)− u?(x∞)− (P (x)− P (x∞)) · −
ˆ

B(x∞,θ)

(∇P )
−1∇u?

∣∣∣∣∣
≤ θ1+γ

3 · 2d

(
−
ˆ

B(x∞,1/2)

|u?|2
)1/2

. (58)

Now, by absurd, we assume that there exist εn → 0, xn ∈ Rd and uεn

satisfying (56) in B(xn, 1) and such that, for any n ∈ N,

sup
x∈B(xn,θ)

∣∣∣∣∣uεn(x)− uεn(xn)− (P (x)− P (xn)) · −
ˆ

B(xn,θ)

(∇P )
−1 · ∇uεn

∣∣∣∣∣
≥ θ1+γ

2

(
−
ˆ

B(xn,1)

|uεn |2
)1/2

. (59)

(We recall that εP
(
x
ε

)
= P (x) for all x ∈ Rd and ε > 0.) We renormalize uεn

by (
−
ˆ

B(xn,1)

|uεn(x)|2 dx

)1/2

= 1. (60)

Up to a subsequence, there holds xn · e1 → l ∈ R. Since the cases l = ±∞ are
the classical periodic cases, we assume that l ∈ R. We denote x∞ := le1.

The sequence uεn(· + xn) is bounded in the space L2(B(0, 1)) and, by the
Cacciopoli estimate, in the space H1 (B(0, 1/2)). Therefore, up to a subsequence
(that we do not relabel), it weakly converges to u?(·+x∞) ∈ H1 (B(0, 1/2)) and
in L2(B(0, 1)).

On the one hand, by the De Giorgi-Nash Moser theorem [10, Th. 8.24 p.
202], there exists β ∈ (0, 1) such that the sequence uεn(· + xn) is bounded
in C0,β (B(0, 1/4)). By weak convergence, we also have(

−
ˆ

B(xn,1)

|uεn |2
)1/2

≥

(
−
ˆ

B(x∞,1)

|u?|2
)1/2

.

Moreover, the quantity P (xn + z) − P (xn) only depends on z and xn · e1

and ∇P (z) only depends on sign(z · e1). As a consequence, one can take the
limit n→ +∞ in (59). This yields

sup
x∈B(x∞,θ)

∣∣∣∣∣u?(x)− u?(x∞)− (P (x)− P (x∞)) · −
ˆ

B(x∞,θ)

(∇P )
−1∇u?

∣∣∣∣∣
≥ θ1+γ

2

(
−
ˆ

B(x∞,1)

|u?|2
)1/2

. (61)
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On the other hand, by Lemma 5.6, u? satisfies (45) in B(x∞, 1/2). Therefore,
it also satisfies (58). This is in contradiction with (61) (since u? cannot be
uniformly equal to 0 on B(x∞, 1/2) by (59) and (60)). As a consequence, our
supposition (59) was absurd. This establishes the existence of ε0 such that (46)
is valid for any ε < ε0 and x0 ∈ Rd.

6.1.2 Iteration

We iterate Lemma 6.1 to obtain the following:

Lemma 6.2 (See Lemma 15 in [2]). Suppose that the matrix A satisfies As-
sumptions 1, 2, and 3. Let γ ∈ (0, 1). Let θ and ε0 as in Lemma 6.1. Assume
that uε satisfies (56) in B(x0, 1), for x0 ∈ Rd, and ε ≤ θnε0. Then, there exist
a constant C that only depends on d, θ and µ, and a sequence κ(n) ∈ Rd such
that

sup
x∈B(x0,θn+1)

∣∣∣uε(x)− uε(x0)− ε
(
χ
(x
ε

)
− χ

(x0

ε

))
· κ(n)

∣∣∣
≤ θ(1+n)(1+γ) ‖uε‖L∞(B(x0,1)) , (62)

|κ(n)| ≤ C

 n∑
j=0

θjγ

 ‖uε‖L∞(B(x0,1)) . (63)

A central argument of the proof is that the functions χj are A-harmonic, so
that Lemma 6.1 can be iterated.

Proof. We proceed by induction.
If n = 0, we set

κ(0) = −
ˆ

B(x0,θ)

(∇P )
−1 · ∇uε.

By Lemma 6.1, (62) is satisfied. Moreover, since ∇P only takes two values, we
have:

−
ˆ

B(x0,θ)

(∇P )
−1∇uε =

1

|B(x0, θ)|

[
∇P (−e1) ·

ˆ
B(x0,θ)∩(R−×Rd−1)

∇uε

+∇P (e1) ·
ˆ

B(x0,θ)∩(R+×Rd−1)

∇uε
]
.

and, by the Stokes’ theorem
ˆ

B(x0,θ)∩(R−×Rd−1)

∇uε =

ˆ
∂(B(x0,θ)∩R−×Rd−1)

uε(x)d~S(x).

A similar formula is obtained for the other part of the ball B(x0, θ)∩
(
R+ × Rd−1

)
.

As a consequence, (63) is satisfied for n = 0.
We assume now that Lemma 6.2 is true for n ≥ 0. Let 0 < ε ≤ θn+1ε0

and uε ∈ H1
loc (B(x0, 1)) satisfying (56) in B(x0, 1). Applying Lemma 6.2, there
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exists κj(n) associated to uε such that (62) and (63) are satisfied. We set ε̃ :=
εθ−n−1 ≤ ε0, x̃0 := θ−n−1x0 and

v(z) :=uε
(
θn+1z

)
− uε(x0)− θn+1ε̃

(
χ
(z
ε̃

)
− χ

(
x̃0

ε̃

))
· κ(n). (64)

Since the functions χj areA-harmonic and by (56), we deduce that the function v
is A(·/ε̃)-harmonic in B(x̃0, 1). Hence, thanks to Lemma 6.1,

sup
z∈B(x̃0,θ)

∣∣∣∣∣v(z)− v(x̃0)− ε̃
(
χ
(z
ε̃

)
− χ

(
x̃0

ε̃

))
· −
ˆ

B(x̃0,θ)

(∇P )
−1 · ∇v

∣∣∣∣∣
≤ θ1+γ ‖v‖L∞(B(x̃0,1)) . (65)

Yet, by the induction hypothesis (62) and by definition (64),

‖v‖L∞(B(x̃0,1)) ≤ θ
(1+n)(1+γ) ‖uε‖L∞(B(x0,1)) . (66)

We set

κ(n+ 1) := κ(n) + θ−n−1−
ˆ

B(x̃0,θ)

(∇P )
−1 · ∇v, (67)

so that inserting (64) and (67) in (65) and using (66) yields (62) for the n+1-th
step. Moreover, thanks to Stokes’ theorem (see above) and to (66),

|κj(n+ 1)| ≤ |κj(n)|+ Cθ−n−2 ‖v‖L∞(B(x̃0,1))

≤ |κj(n)|+ Cθ(1+n)γ ‖uε‖L∞(B(0,1)) ,

where the constant C only depends on d and θ (but not on n). This proves (63)
for the n+ 1-th step and concludes the proof of Lemma 6.2.

6.1.3 Blow-up

We proceed with the last part of the proof of Theorem 4.1.

Proof of Theorem 4.1. The proof is done by a blow-up argument, in two steps:
the first aims at controlling the oscillation of uε down to the scale ε. It relies on
Lemma 6.2 and on the fact that the correctors are strictly sublinear; the second
step uses the first step along with the regularity of the operator −div (A(·/ε) · ∇)
at a scale finer than ε -the latter being provided by Theorem 5.1.

Without loss of generality, we assume that R = 4 and that ε < ε0.

Step 1: We set γ = 1/2, and obtain ε0 and θ from Lemma 6.1. Let x1 ∈
B(x0, 2)\I. We first show that, if 1 ≥ r ≥ ε/ε0, there holds

sup
x∈B(x1,r)

|uε(x)− uε(x1)| ≤ Cr ‖uε‖L∞(B(x1,1)) . (68)

We set n ∈ N such that θn+1 ≤ r ≤ θn, and x ∈ B(x1, r). Thanks to
Lemma 6.2, we obtain

|uε(x)− uε(x1)| ≤ C
∣∣∣ε(χ(x

ε

)
− χ

(x1

ε

))∣∣∣ ‖uε‖L∞(B(x1,1))

+ θ(1+n)(1+γ) ‖uε‖L∞(B(x1,1)) . (69)
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By Proposition 3.1, the correctors wj are bounded. Therefore, we deduce from
the above estimate (69) that

|uε(x)− uε(x1)| ≤ C
(
|x− x1|+ ε+ r1+γ

)
‖uε‖L∞(B(x1,1)) ,

which yields (68).

Step 2: Let v(z) = uε (εz/ε0)− uε(x1). By definition, the function v satisfies

−div (A (z/ε0) · ∇v(z)) = 0 in B(ε0x1/ε, 1).

By Theorem 5.1, there exists a constant C > 0 independent of ε such that

|∇v(ε0x1/ε)| ≤ C ‖v‖L∞(B(ε0x1/ε,1)) .

Rescaling the above estimates yields

|∇uε(x1)| ≤ Cε−1ε0 ‖uε‖L∞(B(x1,ε/ε0)) .

Appealing to (68) applied with r := ε/ε0 and to the De Giorgi-Nash Moser
theorem [10, Th. 8.24 p. 202], we deduce that

|∇uε(x1)| ≤ C ‖uε‖L∞(B(x1,1)) ≤ C ‖u
ε‖L2(B(x1,2)) .

By a covering argument, this implies

sup
x∈B(x0,2)\I

|∇uε(x)| ≤ C ‖uε‖L2(B(x0,4))

and establishes Theorem 4.1.

6.2 Estimates on the Green function
We prove Corollary 4.2 by appealing to the Lipschitz estimate of Theorem 4.1.

Proof of Corollary 4.2. Let x 6= y ∈ Rd\I. By [12, Th. 1.3] we have G(y, x) =
G†(y, x), where G† is the Green function associated with the transposed opera-
tor −div

(
AT · ∇

)
. Therefore, without loss of generality, it is sufficient to esti-

mate ∇xG(x, y) in order to establish (28). By definition, G(·, y) is A-harmonic
in B(x, |x− y|/2):

−div (A · ∇xG(·, y)) = 0 in B(x, |x− y|/2). (70)

Hence, applying Theorem 4.1 and using (27) yields (28) as follows:

|∇xG(x, y)| ≤ C|x− y|−1

(ˆ
B(x,|x−y|/2)

|G(x′, y)|2 dx′

)1/2

≤ C|x− y|−d+1.

Finally, differentiating (70) with respect to y implies that ∇yG(·, y) is also A-
harmonic in B(x, |x − y|/2). Therefore, as a consequence of Theorem 4.1, we
obtain

|∇x∇yG(x, y)| ≤ C|x− y|−1

(ˆ
B(x,|x−y|/2)

|∇yG(x′, y)|2 dx′

)1/2

,

which implies (29), by resorting to (28).
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7 Approximation
In this section, we prove Proposition 4.3, Proposition 4.4, Theorem 4.5 and
Corollary 4.6. The proofs of this section follow the strategy of [15]. For simplic-
ity, we denote henceforth the residuum:

Rε(x) := uε,1(x)− uε(x) = u?(x) + wi (x/ε) ∂iu
?(x)− uε(x). (71)

7.1 Pointwise approximation
This section is concerned with the proof of the pointwise approximation of the
function uε and of the Green function G (that is, Propositions 4.3 and 4.4). The
first step is to show a global pointwise estimate on |uε(x)− u?(x)|, namely (30).
It relies on the identity (23) combined with the estimates on the multiscale Green
function and its derivatives provided by Corollary 4.2. Then, by a duality argu-
ment (and by rescaling), the first step yields an estimate on ‖G(x, ·)− G?(x, ·)‖Lp′
for p′ < d/(d − 1). By establishing a local counterpart of Proposition 4.3, one
finally obtains a pointwise estimate on |G(x, y)− G?(x, y)|.

We proceed with the:

Proof of Proposition 4.3. By (23), there holds

Rε(x) = −ε
ˆ
Rd
∂yiGε(x, y) ((Bijk −Aijwk) (y/ε)∂jU

?
k (y)) dy, (72)

where U? is defined by (45). By Propositions 3.1 and 5.5, the quantity Bijk −
Aijwk is uniformly bounded on Rd. Hence, applying the Hölder inequality
on (72) for a suitable decomposition of Rd and invoking (28) yields

|Rε(x)| ≤Cε

(ˆ
|y−x|<2

|∇Gε(x, y)|
p
p−1 dy

) p−1
p

‖∇U?‖Lp(Rd)

+ Cε

(ˆ
|y−x|>2

|∇Gε(x, y)|2 dy

) 1
2

‖∇U?‖L2(Rd)

≤Cε

(ˆ
|z|<2

|z|−
(d−1)p
p−1 dz

) p−1
p

‖∇U?‖Lp(Rd)

+ Cε

(ˆ
|z|>2

|z|−2(d−1)
dz

) 1
2

‖∇U?‖L2(Rd) . (73)

Since (d− 1)p/(p− 1) < d and 2(d− 1) > d, then the above integrals converge.
Moreover, by Lemma 5.2, and since f is supported in B(x0, 1) there holds

‖U?‖W1,p(Rd) ≤ C ‖f‖Lp(Rd) and ‖∇U?‖L2(Rd) ≤ C ‖f‖Lp(Rd) .

Therefore, (73) yields ∥∥uε,1 − uε∥∥
L∞(Rd)

≤ Cε ‖f‖Lp(Rd) . (74)
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Furthermore, by a Sobolev injection (recall that p > d), we estimate

‖∇u?‖L∞(Rd) ≤ C ‖U
?‖L∞(Rd) ≤ C ‖U

?‖W1,p(Rd) ≤ C ‖f‖Lp(Rd) . (75)

As a consequence of (74) and (75), and since the correctors wj are bounded,
the definition (18) of uε,1 implies that

‖uε − u?‖L∞(Rd) ≤Cε ‖∇u
?‖L∞(Rd) +

∥∥uε,1 − uε∥∥
L∞(Rd)

≤ Cε ‖f‖Lp(Rd) .

We now show a localized version of (30), which is a key step to prove point-
wise error estimate on the Green function (27):

Lemma 7.1 (Adaptation of Lemma 4.2 of [15]). Assume that A satisfies As-
sumptions 1, 2, and 3. Let ε > 0, x0 ∈ Rd, q ∈ (1,∞). Suppose that uε, u? ∈
H1(B(x0, 1)) satisfies

−div (A?(x) · ∇u?(x)) = −div (A (x/ε) · ∇uε(x)) (76)

in B(x0, 1). Then, there exists a constant C independent of ε so that

‖Rε‖L∞(B(x0,1/2)) ≤C ‖R
ε‖Lq(B(x0,1)) + Cε ‖∇U?‖L∞(B(x0,1)) , (77)

for Rε and U? respectively defined by (71) and by (19).

Proof. We decompose Rε := Rε1 +Rε2 where Rε1 is the zero-mean solution on Rd
to the following equation:

−div (A (x/ε) · ∇Rε1(x)) = εdiv(Hε(x)) and ∇Rε ∈ L2(Rd,Rd), (78)

and where the vector-valued function Hε is defined by

Hε
i (x) := εχB(x0,1)(x) (Bijk −Aijwk) (x/ε) ∂jU

?
k (x). (79)

By definition

Rε1(x) = −
ˆ

B(x0,1)

∇yGε(x, y) ·Hε(y)dy +

ˆ
B(x0,1)

Gε(x, y)Hε(y) · d~S(y).

As a consequence of (27) and (28), and since the quantity Bijk − Aijwk is
bounded, there holds

‖Rε1‖L∞(Rd) ≤ C ‖H
ε‖L∞(B(x0,1)) ≤ Cε ‖∇U

?‖L∞(B(x0,1)) . (80)

We now estimate the function Rε2. By (23) and (78), it satisfies

−div (A (x/ε) · ∇Rε2(x)) = 0 in B(x0, 1). (81)

Hence, by [10, Th. 8.25 p. 202], Rε2 can be estimated as follows

‖Rε2‖L∞(B(x0,1/2)) ≤ C ‖R
ε
2‖Lq(B(x0,1)) . (82)
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Therefore, by applying the triangular inequality and then (80) and (82), we get

‖Rε‖L∞(B(x0,1/2)) ≤ ‖R
ε
1‖L∞(B(x0,1/2)) + ‖Rε2‖L∞(B(x0,1/2))

≤ Cε ‖∇U?‖L∞(B(x0,1)) + C ‖Rε2‖Lq(B(x0,1)) . (83)

The triangular inequality and then (80) yield

‖Rε2‖Lq(B(x0,1)) ≤ ‖R
ε
1‖Lq(B(x0,1)) + ‖Rε‖Lq(B(x0,1))

≤ Cε ‖∇U?‖L∞(B(x0,1)) + ‖Rε‖Lq(B(x0,1)) . (84)

As a consequence, we obtain (77) by combining (83) and (84).

Proposition 4.4 is then obtained by a duality argument involving Proposi-
tion 4.3 coupled with the local L∞ estimate of Lemma 7.1:

Proof of Proposition 4.4. If |x−y| < 1, then the result is deduced by a triangular
inequality and by (27). Hence, we restrict to the case |x− y| > 1.

On the one hand, by Proposition 4.3 (used with a scaling argument), for
all f ∈ Lp(Rd), for p > d, with support inside B(y, |x− y|/2), there holds

|u(x)− u?(x)| =

∣∣∣∣∣
ˆ

B(y, |x−y|2 )
(G(x, z)− G?(x, z)) f(z)dz

∣∣∣∣∣
≤ C|x− y|1−

d
p ‖f‖Lp(Rd) ,

where u and u? are respectively the zero-mean solutions to (2) (with ε = 1)
and (4). Hence, by duality,(

−
ˆ

B(y, |x−y|2 )
|G(x, z)− G?(x, z)|

p
p−1 dz

) p−1
p

≤ C|x− y|−d+1, (85)

which scales like (31), but involves a weaker norm.
On the other hand, by [12, Th. 1.3] the functions G(x, ·) and G?(x, ·) are

respectively AT -harmonic and (A?)
T -harmonic. Therefore, by Lemma 7.1 and

by (85), there holds

|G(x, y)− G?(x, y)| ≤C|x− y|−d+1 + C|x− y|2 ‖∇U?‖
L∞(B(y, |x−y|2 )) , (86)

for U? defined by

U?(y) :=
(
∇P †(y)

)−1 · ∇yG?(x, y).

By applying [17, Prop. 1.7] in a ball B(y, |x− y|/2), in which G?(x, ·) is (A?)
T -

harmonic, there holds

‖∇U?‖
L∞(B(y, |x−y|2 )) ≤ C|x− y|

−2 ‖G?‖
L∞(B(y, 3|x−y|4 )) ≤ C|x− y|

−d.

Injecting the above inequality in (86) yields (31).
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7.2 Pointwise approximation of the gradient
In this Section, we approximate the gradients ∇xG and ∇x∇yG of the multi-
scale Green function by means of the two-scale expansion applied on G? (i.e.
Theorem 4.5). It relies on Lemma 7.2 below, which estimates the gradient of
the residuum associated with locally A(·/ε)-harmonic functions. Applying it
on the Green function and invoking Proposition 4.4 yields (34). Iterating once
more the same reasoning, we obtain (35). Finally, Corollary 4.6 is a consequence
of (34) and of the Hölder inequality (with a small technical argument required
by the non-integrability in x = y of the right-hand side of (34)).

Theorem 4.5 relies on the following:

Lemma 7.2. Let d ≥ 3, x0 ∈ Rd\I and ε > 0. Suppose that the matrix A sat-
isfies Assumptions 1, 2, and 3. Suppose that uε and u? are respectively A(·/ε)-
harmonic and A?-harmonic in B(x0, 2). Then, there exists a constant C > 0
depending only on A and d such that

‖∇uε −W (·/ε) · ∇u?‖L∞(B(x0,1/2)) ≤C ‖u
ε − u?‖L∞(B(x0,2))

+ Cε ln
(
2 + ε−1

)
‖u?‖L∞(B(x0,2)) , (87)

where W is defined by (32).

The proof is divided in four steps.
The first step concerns the case where x ∈ B(x0, 1/2) is far from the interface:

we suppose dist(x, I) ≥ δ (where δ ∈ (0, ε/2) will be fixed at the end of the
proof). We define Rε by (71). In this case, thanks to the estimates on the Green
function provided by Corollary 4.2 combined with the identity (23), we show
that

|∇Rε(x)| ≤C ‖Rε‖L∞(B(x0,1)) + Cε |ln(δ)| ‖∇U?‖L∞(B(x0,1))

+ Cεδ
∥∥∇2U?

∥∥
L∞(B(x,δ)

. (88)

This step closely follows the proof of [15, Lem. 3.5]. However, two point should
be underlined: First, the function ∇2U? might involve a singular measure sup-
ported on I, so that it is necessary to assume that dist(x, I) ≥ δ. Second,
we shall play with the extra parameter δ (not present in [15, Lem. 3.5]) to
get sufficiently close to the interface I (the salient point is that right-hand
side of (88) blows up very slowly when δ → 0). The second step is concerned
with x ∈ B(x0, 1/2) close to the interface (i.e. at a distance smaller than δ).
Then we use a regularity result at the scale ε (namely Theorem 5.1) to com-
pare ∇Rε(x) with ∇Rε(x′), for x′ farther from the interface. Appealing to
the previous step for x′ and using a triangular inequality provides the desired
bound. In the third step, we estimate the derivatives of U? in (88) by invoking
the regularity results of [17]. Finally, in the fourth step, we choose an optimal
parameter δ and establish (87) by means of the two previous steps.

Proof. Without loss of generality, we assume that ε < 1/8. Let x ∈ B(x0, 1/2)\I.
The parameter δ ∈ (0, ε/2) will be set in Step 4.
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Step 1: Estimates far from the interface In this step, we assume that
the distance dist(x, I) between x and the interface I, is larger than δ and we
show (88). As in the proof of Lemma 7.1, we decompose Rε := Rε1+Rε2 where Rε1
is the solution on Rd to (78) and Rε2 solves (81).

On the one hand, by Theorem 4.1, there holds

‖∇Rε2‖L∞(B(x0,1/4)) ≤ C ‖R
ε
2‖L2(B(x0,1/2)) .

Whence, by triangular inequality, and by appealing to (80),

‖∇Rε2‖L∞(B(x0,1/4)) ≤C ‖R
ε‖L∞(B(x0,1/2)) + C ‖Rε1‖L∞(B(x0,1/2))

≤C ‖Rε‖L∞(B(x0,1)) + Cε ‖∇U?‖L∞(B(x0,1)) . (89)

On the other hand, by (78), there holds

∇Rε,1(x) =

ˆ
∂(B(x0,1))

∇xGε(x, y) (Hε(y)−Hε(x)) · d~S(y)

−
ˆ

B(x0,1)

∇x∇yGε(x, y) · (Hε(y)−Hε(x)) dy, (90)

where the vector-valued function Hε is defined by (79). The first integral of (90)
is easily bounded thanks to (28):∣∣∣∣∣

ˆ
∂(B(x0,1))

∇xGε(x, y) (Hε(y)−Hε(x)) · d~S(y)

∣∣∣∣∣ ≤ C ‖Hε‖L∞(B(x0,1)) .

By resorting to (29), we estimate the second integral in (90).∣∣∣∣∣
ˆ

B(x0,1)

∇x∇yGε(x, y) · (Hε(y)−Hε(x)) dy

∣∣∣∣∣
≤

∣∣∣∣∣
ˆ

B(x0,1)

|x− y|−d · (Hε(y)−Hε(x)) dy

∣∣∣∣∣ .
We cut the ball B(x0, 1) = B(x, δ) ∪ (B(x0, 1)\B(x, δ)). On the small ball, we
use the Hölder regularity of Hε, and on the remaining part, we use the L∞ norm
of Hε: ∣∣∣∣∣

ˆ
B(x0,1)

∇x∇yGε(x, y) · (Hε(y)−Hε(x)) dy

∣∣∣∣∣
≤ C

∣∣∣∣∣
ˆ

B(x,δ)

|x− y|α|x− y|−ddy

∣∣∣∣∣ sup
y∈B(x,δ)

|Hε(y)−Hε(x)|
|y − x|α

+ C

∣∣∣∣∣
ˆ

B(x0,1)\B(x,δ)

|y − x|−ddy

∣∣∣∣∣ ‖Hε‖L∞(B(x0,1))

≤ Cδα sup
y∈B(x,δ)

|Hε(y)−Hε(x)|
|y − x|α

+ C |ln(δ)| ‖Hε‖L∞(B(x0,1)) .

Now, by Propositions 3.1 and 5.5, there holds

‖Hε‖L∞(B(x0,1)) ≤ Cε ‖∇U
?‖L∞(B(x0,1)) (91)
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and (recall that δ < ε):

δα sup
y∈B(x,δ)

|Hε(y)−Hε(x)|
|y − x|α

≤ Cε1−αδα ‖∇U?‖L∞(B(x0,1)) + Cεδα sup
y∈B(x,δ)

|∇U?(y)−∇U?(x)|
|y − x|α

≤ Cε ‖∇U?‖L∞(B(x0,1)) + Cεδ
∥∥∇2U?

∥∥
L∞(B(x,δ))

. (92)

As a consequence,∣∣∇Rε,1(x)
∣∣ ≤Cε |ln(δ)| ‖∇U?‖L∞(B(x0,1)) + Cεδ

∥∥∇2U?
∥∥

L∞(B(x,δ))
, (93)

and, by a triangular inequality involving (89) and (93), we show (88).

Step 2: Estimates close to the interface Assume that dist(x, I) ≤ δ. We
set β < min (α, 1/4) /2. Without loss of generality, we assume that x · e1 < 0
and denote by πr(x) the orthogonal projection of x on −re1 + I.

By a rescaling argument, one can apply Theorem 5.1 for Rε on B(πε(x), 2ε).
Thus, there exists a constant C independent of δ such that for all y 6= z ∈
B(πε(x), 2ε)\I such that y · e1 and z · e1 have the same sign:

|∇Rε(x)−∇Rε(πδ(x))|
|x− πδ(x)|β

≤Cε−1−β ‖Rε‖L∞(B(πε(x),2ε)) + C
|Hε(z)−Hε(y)|
|z − y|β

+ Cε−β ‖Hε‖L∞(B(πε(x),2ε)) .

By a reasoning similar to the one producing (92) (with δ := ε), we deduce that

‖Hε‖L∞(B(πε(x),2ε)) + εβ
|Hε(z)−Hε(y)|
|z − y|β

≤ Cε ‖∇U?‖L∞(B(πε(x),2ε)) + Cε2 sup
y∈B(πε(x),2ε)\I

∣∣∇2U?(y)
∣∣ ,

(where we underline that y · e1 and z · e1 have the same sign). Therefore,

|∇Rε(x)−∇Rε(πδ(x))| ≤Cδβε−1−β ‖Rε‖L∞(B(x0,1))

+ Cδβε1−β ‖∇U?‖L∞(B(πε(x),2ε))

+ Cδβε2−β sup
y∈B(πε(x),2ε)\I

∣∣∇2U?(y)
∣∣ . (94)

Hence, invoking (88) for πδ(x), by a triangular inequality, we get

|∇Rε(x)| ≤C
(
1 + δβε−1−β) ‖Rε‖L∞(B(x0,1))

+ Cε
(
δβε−β + |ln (δ)|

)
‖∇U?‖L∞(B(x0,1))

+ Cε2
(
1 + δβε−β

)
sup

y∈B(x0,1)\I

∣∣∇2U?(y)
∣∣ . (95)
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Step 3: Estimates on U? We collect two useful estimates concerning ∇U?
and ∇2U?. By [17, Prop. 1.7], we have

sup
x∈B(x0,1)\I

[∣∣∇2u?(x)
∣∣+
∣∣∇3u?(x)

∣∣] ≤ C ‖u?‖L∞(B(x0,2)) . (96)

By definition (19), U? is continuous through the interface I and there holds

‖∇U?‖L∞(B(x0,1)) ≤ C ‖u
?‖L∞(B(x0,2)) (97)

sup
x∈B(x0,1)\I

∥∥∇2U?
∥∥ ≤ C ‖u?‖L∞(B(x0,2)) . (98)

Step 4: Conclusion From Steps 1 and 2, we know that Estimate (95) is
satisfied for any x ∈ B(x0, 1/2)\I. Invoking (97) and (98), it implies that, for
any x ∈ B(x0, 1/2)\I, there holds

|∇Rε(x)| ≤C
(
1 + δβε−1−β) ‖Rε‖L∞(B(x0,1))

+ Cε
(
δβε−β + |ln (δ)|

)
‖u?‖L∞(B(x0,2)) . (99)

Recall that δ ∈ (0, ε) is still a free parameter. Now, we set δ := ε1/β+1.
Therefore, (99) yields

|∇Rε(x)| ≤ C ‖Rε‖L∞(B(x0,1)) + Cε |ln(ε)| ‖u?‖L∞(B(x0,2)) . (100)

By Proposition 3.1, and then by (97),

‖Rε − (u? − uε)‖L∞(B(x0,1) ≤ ε ‖∇U
?‖L∞(B(x0,1)) ≤ ε ‖u

?‖L∞(B(x0,2)) , (101)

so that Rε can be replaced by uε − u? in the right-hand side of Estimate (100).
Since

∇Rε = [W (·/ε) · ∇u? −∇uε] + εwj (·/ε) ∂j∇U?,

by Proposition 3.1 and by (98), the quantity ∇Rε in (100) can be replaced
by W (·/ε) · ∇u? −∇uε so that we get (87).

We are now in a position to proceed with the:

Proof of Theorem 4.5. Let x 6= y ∈ Rd\I. Recall that x′ 7→ G(x′, y) and x′ 7→
G?(x′, y) are respectively A-harmonic and A?-harmonic on B(x, |x − y|/2). As
a consequence of Lemma 7.2, (87) properly rescaled yields

‖∇xG(·, y)−W · ∇xG?(·, y)‖L∞(B(x,|x−y|/4))

≤ C|x− y|−1 ‖G (·, y)− G? (·, y)‖L∞(B(x,|x−y|/2))

+ C|x− y|−2 ln (2 + |x− y|) ‖G? (·, y)‖L∞(B(x,|x−y|/2)) .

Since G?(x, y) ≤ C|x− y|−d+2, we obtain (34) by invoking (31).
The function y′ 7→ ∇xG(x, y′) (and similarly y′ 7→W (x) ·∇xG?(x, y′)) is AT -

harmonic (respectively (A?)
T -harmonic on B(y, |x− y|/2)). Hence, as a conse-

quence of Lemma 7.2, (87) properly rescaled yields∣∣∣∇x∇yG(x, y)−W (x) · ∇x∇yG?(x, y) ·
(
W †
)T

(y)
∣∣∣

≤ C|x− y|−1 ‖∇xG(x, ·)−W (x) · ∇xG? (x, ·)‖L∞(B(x,|x−y|/2))

+ C|x− y|−2 ln (2 + |x− y|) ‖W (x) · ∇xG?(x, ·)‖L∞(B(x,|x−y|/2)) .
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By appealing to (34) and then by using a Lipschitz estimate on G?(x, ·), we
finally obtain (35).

Corollary 4.6 is a consequence of Theorem 4.5 and of the Hölder inequality.

Proof of Corollary 4.6. By definition, and since f is supported inside B(x0, 1),
there holds:

W (x/ε) · ∇u?(x)−∇uε(x)

=

ˆ
B(x0,1)

(W (x/ε) · ∇xG?(x, y)−∇xGε(x, y)) f(y)dy. (102)

We separate B(x0, 1) = B(x, ε) ∪ (B(x0, 1)\B(x, ε)). On B(x0, 1)\B(x, ε), the
integrand of (102) is estimated thanks to (34) (rescaled by ε). On B(x, ε), the
integrand of (102) is dealt with by appealing to (28) and is counterpart for the
homogeneous problem. Thus,∣∣∣∣∣
ˆ

B(x0,1)

(W (x/ε) · ∇xG?(x, y)−∇xGε(x, y)) f(y)dy

∣∣∣∣∣
≤ C

[ ˆ
B(x0,1)\B(x,ε)

ε ln
(
2 + ε−1|x− y|

)
|x− y|d

dy +

ˆ
B(x,ε)

|y − x|−d+1dy

]
‖f‖L∞(Rd)

≤ ε
∣∣ln(2 + ε−1)

∣∣2 ‖f‖L∞(Rd) .

This establishes (36).
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A Proof of Proposition 5.4
For the sake of clarity, we prove successively and separately points (i), and (ii)
of Proposition 5.4. The proof closely follows the proof of [7, Th. 5.1]:

Proof of Proposition 5.4(i). The proof consists in three steps. First, we build a
function v that reflects the difference wj(x)−w−j (x) for x · e1 < 0 and wj(x)−
w+
j (x) − ǎjw+

1 (x) for x · e1 > 0 by means of a suitable cut-off function. This
function v satisfies an elliptic equation, from which we deduce that wj exists
and is unique.
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Step 1: We set a smooth cut-off function φ+(x) only depending on x · e1

that vanishes on R− × Rd−1 and that is equal to 1 on [1,+∞)× Rd−1, and we
define φ−(x) = φ+(−x). Next, we define

v(x) = wj(x)− φ+(x)
(
w+
j (x) + ǎjw

+
1 (x)

)
− φ−(x)w−j (x). (103)

Therefore, by (14),

−div (A · ∇v) =div (A · ∇Pj) + div
(
A · ∇

{
φ+

(
w+
j + ǎjw

+
1

)
+ φ−w

−
j

})
=div (f) + div (g) , (104)

where, (by adding A?− · ej),

f := (1− φ+ − φ−)
(
A · ∇Pj −A?− · ej

)
+A · ∇φ+

(
w+
j + ǎjw

+
1

)
+A · ∇φ−w−j ,

and, using (11),

g :=φ+

(
A ·
(
ej +∇w+

j + ǎj
(
e1 +∇w+

1

))
−A?− · ej

)
+ φ−

(
A ·
(
ej +∇w−j

)
−A?− · ej

)
.

Step 2: Now, we treat separately f and g in (104) to show that v exists.
Since A, A?, ∇φ± and w± are uniformly bounded there holds:

‖f‖L∞(Rd) ≤ C.

Moreover, the support of the D-periodic function f is inside [−1, 1] × Rd−1,
whence f ∈ L2(D,Rd). Therefore, by the Lax-Milgram theorem, there exists
a D-periodic function v1 such that

−div (A · ∇v1) = div (f) in Rd and ∇v1 ∈ L2(D,Rd). (105)

We should now build a D-periodic function v2 satisfying

−div (A · ∇v2) = div (g) in Rd and ∇v2 ∈ L2(D,Rd). (106)

The function g satisfies the following properties:

(i) g is D-periodic,

(ii) if |x · e1| > 1, then div (g) = 0,

(iii) g is T+
1 -periodic in x1, if x · e1 > 1, and T−1 -periodic in x1, if x · e1 < −1

(iv) there holds

e1 ·
ˆ
x+[0,T+

1 ]×[0,T2]×···×[0,Td]

g(y)dy = 0 if x · e1 > 1, (107)

e1 ·
ˆ
x−[0,T−1 ]×[0,T2]×···×[0,Td]

g(y)dy = 0 if x · e1 < −1. (108)
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The last point (iv) is a consequence of the formula satisfied by the homogenized
matrix. We prove below the case x · e1 > 1:

e1 ·
ˆ
x+[0,T+

1 ]×[0,T2]×···×[0,Td]

g(y)dy

=

 d∏
j=1

Tj

[(A?+)1j + ǎj
(
A?+
)

11
−
(
A?−
)

1j

]
= 0

by definition (10) of ǎj .
We remark that the proof of [7, Lem. 5.2] only requires Assumptions (i), (ii),

(iii), and (iv) above, although its original statement requires that the following
equality holds instead of (107):

ˆ
x+[0,T+

1 ]×[0,T2]×···×[0,Td]

g(y)dy = 0. (109)

Therefore, by a straightforward generalization of [7, Lem. 5.2], there holds

e1 ·
ˆ
{x·e1}×[0,T2]×···×[0,Td]

g(y)dy = 0 if x · e1 > 1.

Hence, the result [7, Lem. 5.3] can be adapted to the less stringent Assump-
tions (i), (ii), (iii) and (iv) above. As a consequence, there exists a D-periodic
function g̃ such that

−∆g̃ = div(g) and ∇g̃ ∈ L2(D,Rd).

This turns (106) into

−div (A · ∇v2) = −div(∇g̃).

Therefore, by the Lax-Milgram theorem, there exists a D-periodic solution v2

to (106).
As a consequence v := v1 + v2 is a solution to (14) and satisfies (50).

Step 3: Proving uniqueness amounts to showing that if the function v is D-
periodic and satisfies

− div (A · ∇v) = 0 in Rd and ∇v ∈ L2(D,Rd),

then v is a constant function. This fact is a straightforward corollary of the proof
of uniqueness in [7, Th. 5.1] (which is similar to the proof of Proposition 5.4 (ii)
below).

The proof of Proposition 5.4(ii) is a simple adaptation of [7, Th. 5.1].

Proof of Proposition 5.4 (ii). We only prove (52), since the proof also applies
for (51).

Let v be defined by (103). Whence,

−div (A · ∇v) = 0 if |x · e1| > 0. (110)
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Therefore, testing Equation (110) against v yields, for 1 < R < R′,
ˆ

[R,R′]×[0,T2]×···×[0,Td]

A(x) · ∇v(x) · ∇v(x)dx

=

ˆ
{R′}×[0,T2]×···×[0,Td]

v(x)A(x) · ∇v(x) · e1dx

−
ˆ
{R}×[0,T2]×···×[0,Td]

v(x)A(x) · ∇v(x) · e1dx. (111)

Remark that, by the divergence theorem, the quantity
ˆ
{x1}×[0,T2]×···×[0,Td]

e1 ·A(x) · ∇v(x)dx

does not depend upon x1. Therefore, it shall vanish, since ∇v ∈ L2
(
D,Rd

)
.

Hence, we deduce from (111) that, for any constants C1, C2 ∈ R, there holds
ˆ

[R,R′]×[0,T2]×···×[0,Td]

A(x) · ∇v(x) · ∇v(x)dx

=

ˆ
{R′}×[0,T2]×···×[0,Td]

(v(x)− C1)A(x) · ∇v(x) · e1dx

−
ˆ
{R}×[0,T2]×···×[0,Td]

(v(x)− C2)A(x) · ∇v(x) · e1dx.

By the Cauchy-Schwartz and the Poincaré inequalities, and using ellipticity and
boundedness of A, we obtain
ˆ

[R,R′]×[0,T2]×···×[0,Td]

|∇v(x)|2 dx ≤ C
ˆ
{R′}×[0,T2]×···×[0,Td]

|∇v(x)|2 dx

+ C

ˆ
{R}×[0,T2]×···×[0,Td]

|∇v(x)|2 dx.

Now, since ∇v ∈ L2
(
D,Rd

)
, letting R′ → +∞ in the above expression yields

ˆ
[R,+∞[×[0,T2]×···×[0,Td]

|∇v(x)|2 dx ≤ C
ˆ
{R}×[0,T2]×···×[0,Td]

|∇v(x)|2 dx.

By the Grönwall Lemma, this implies that there exists constants C, κ > 0 such
that ˆ

[R,+∞[×[0,T2]×···×[0,Td]

|∇v(x)|2 dx ≤ C exp(−κR).

Then, by Schauder regularity [10, Cor. 8.36 p. 212], we finally obtain (52).

We finally proceed with the

Proof of Proposition 5.5. Recall that, in the periodic case, there exist [0, T±1 ]×
[0, T2]×· · ·×[0, Td]-periodic potentialsB± associated with A±, that is, satisfying.
They read

(B±)ijk = ∂i (N±)jk − ∂j (N±)ik ,
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where N± are [0, T±1 ]× [0, T2]× · · · × [0, Td]-periodic solutions to

∆ (N±)ik =
(
A?±
)
ik
− (A±)il

(
δlk + ∂lw

±
k

)
in Rd. (112)

Note that, by Schauder regularity, the functions N± belong to C2,α
unif

(
Rd,Rd×d

)
.

Similarly, if we build a D-periodic function N satisfying

∆Nik = A?il∂lPk −Ail (∂lPk + ∂lwk) , (113)

and set Bijk = ∂iN
j
k−∂jN i

k, then B satisfies (22) (recall that the right-hand side
of (113) is divergence-free, in the sense of (21)). Building such a function N is
the goal of what follows.

We proceed in the same manner as in the proof of Proposition 5.4 by using
techniques of [7]. We decompose

N = φ+N+ · ∇P + φ−N− · ∇P + Ñ . (114)

Recall that ∇P is piecewise constant and possibly discontinuous only across the
interface, where φ± vanishes. Hence, by definition,

∆Ñ =∆N − φ+∆N+ · ∇P − φ−∆N− · ∇P
− 2 (∇φ+ · ∇N+ · ∇P +∇φ− · ∇N− · ∇P )

−∆φ+N+ · ∇P −∆φ−N− · ∇P. (115)

Using (112) yields

∆Nij − φ+∆ ((N+)ik) ∂kPj − φ−∆ ((N−)ik) ∂kPj

= (1− φ+ − φ−) (A?ik∂kPj −Aik (∂kPj + ∂kwj))

+ φ+Aik
(
∂kw

+
l ∂lPj − ∂kwj

)
+ φ−Aik

(
∂kw

−
l ∂lPj − ∂kwj

)
.

As a consequence, the right-hand term of (115) is D-periodic and bounded.
Moreover, it is in L1(D). Indeed, the functions (1 − φ+ − φ−) and ∇φ± are
supported in [−1, 1]× Rd−1 and, by Proposition 5.4, the quantities(

∂kw
±
l ∂lPj − ∂kwj

)
decrease exponentially when x · e1 → ±∞ (we recall the formula (11) for the
gradient ∇P ). Hence the right-hand side of (115) is bounded in all Lp for p ∈
[1,+∞]. Therefore, by the Lax-Milgram theorem, there exists a D-periodic so-
lution Ñ to (115) so that ∇Ñ ∈ L2

(
D,Rd×d×d

)
. Moreover, by elliptic regularity

(see [10, Th. 8.32]), for any β ∈ (0, 1), there holds ∇Ñ ∈ C0,β
unif

(
Rd,Rd3

)
.

As a conclusion, we have built a D-periodic potential B that is β-Hölder
continuous, for any β ∈ (0, 1).
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