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ABSTRACT Named Data Networking (NDN) has emerged as a future networking architecture having the
potential to replace the Internet. In order to do so, NDN needs to cope with inherent problems of the Internet
such as attacks that cause information leakage from an enterprise. Since NDN has not yet been deployed on
a large scale, it is currently unknown how such attacks can occur, let alone what countermeasures can be
taken against them. In this study, we first show that information leakage in NDN, can be caused by malware
inside an enterprise, which uses steganography to produce malicious Interest names encoding confidential
information. We investigate such attacks by utilizing a content name dataset based on uniform resource
locators (URLs) collected by a web crawler. Our main contribution is a name filter based on anomaly
detection that takes the dataset as input and classifies a name in the Interest as legitimate or not. Our
evaluation shows that malware can exploit the path part in the URL-based NDN name to create malicious
names, thus, information leakage in NDN cannot be prevented completely. However, we illustrate for the
first time that our filter can dramatically choke the leakage throughput causing the malware to be 137 times
less efficient at leaking information. This finding opens up an interesting avenue of research that could result
in a safer future networking architecture.

INDEX TERMS Firewall, Information leakage attack, Name filter, Named data networking

I. INTRODUCTION
Currently, in the business world, information leakage through
a targeted attack is an issue for many companies because it
drastically impacts on their benefits and profitability [1]. For
example, in 2013, the retail chain “Target” suffered from a
46% drop in profits after an attack and spent more than $100
million on a system upgrade to prevent another attack [2]. In
order to perform information leakage, an attacker must first
send malware to an employee of the targeted company, for
example, through an email that appears to be legitimate so
the employee opens the email and infects their computer with
the malware. The malware then creates a communication
channel to the outside attacker, who can remotely control
the malware and finally steal confidential information from

the company. As this security threat occurs as a result of
accessing suspicious media, one countermeasure would be to
provide employees with cybersecurity education [3]. How-
ever, it is almost impossible to eliminate all human error.
Thus, it is critical to investigate the prevention of information
leakage after a computer has been infected by malware under
the assumption that it is difficult for the computer to avoid
the infection.

In recent years, information centric networking (ICN) [4]
has been proposed as a promising future networking archi-
tecture; it performs a shift from a host-to-host to a host-to-
content communication paradigm. An ICN request packet
includes a desired content name rather than an address of
the content producer (in the Internet, an IP address of the
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content server), and the packet moves toward a nearby con-
tent producer. As for the content producer, not only the
actual content publisher but also an ICN node installing cache
(i.e., in-network cache) can reply to this request. This means
that the architecture focuses not on where the content is
but what content is being requested, and therefore ICN is
more suitable for host-to-content oriented applications such
as video services, which are one of the major use cases in the
current Internet. As one of the ICN architectures, we adopt
named data networking (NDN) [5] since many researchers
are currently paying attention to NDN and are attempting to
deploy it for future Internet.

To be adopted at Internet scale, NDN must resolve inherent
issues of the current Internet. Since information leakage is a
big issue in the Internet and it is absolutely crucial to assess
the risk before replacing the Internet with NDN completely,
we investigate whether a new security threat causing the
information leakage happens in NDN. Assuming that (i) a
computer is located in the enterprise network that is based
on an NDN architecture, (ii) the computer has been already
compromised by suspicious media such as a malicious email,
and (iii) the company installs a firewall connected to the
NDN-based future Internet, we focus on a situation where
the compromised computer (i.e., malware) attempts to send
leaked data to the outside attacker.

NDN is essentially a “pull”-based architecture, and there
are only two types of packets: Interest and Data, which
are request and response packets, respectively. In order to
retrieve content, a consumer first sends the Interest to the
NDN network and then obtains the corresponding Data from
the producer or the intermediate NDN node. In other words,
they cannot send a Data unless they receive the Interest
packet. Therefore, as one of the naive methods to mitigate
information leakage through a Data, an enterprise network
firewall can carefully inspect a Data to publish and produce
it instead of the inside employee in the network (i.e., a
whitelist). In this case, all the publicly-accessible content is
on the firewall as the originals or their caches.

However, the firewall cannot manage a naming policy on
the outside content and NDN forwarding nodes do not verify
whether the name actually exists. This results in the risk of
information leakage through an Interest since the malware
can hide information such as customer information in the
Interest name using steganography and send it toward the
outside attacker. The malware can pretend to access outside
content, so it is very difficult for the firewall to detect the
information leakage attack. We argue that the information
leakage attack through an Interest in NDN should be one of
the essential security attacks at protocol level and it is im-
portant to develop a detection method for this attack. Against
the information leakage attack through an Interest, we first
propose a name filter using search engine information. When
the filter receives an Interest, it performs a request to a search
engine in order to check whether the Interest name is indexed
by the search engine. This filter judges the indexed name as
legitimate since the malicious name created by the malware

is not published anywhere and therefore cannot be indexed.
However, this filter cannot predict whether the unindexed
names are legitimate because they are not always malicious
(e.g., unindexed names such as newly generated or password-
protected content should be legitimate). To overcome the
limitation of the filter, we propose a name filter using an
isolation forest [6]. An isolation forest is an unsupervised
learning algorithm for anomaly detection, and therefore it
is useful when there is an insufficient number malicious
samples. We evaluate the performances of the proposed name
filters by collecting uniform resource locators (URLs) from
the data repository provided by Common Crawl [7]. Our
experiments show that (1) the path part is useful for malware
to create malicious names leaking data and hide the activities,
(2) it is difficult to completely prevent information leakage
even in NDN, and (3) the filters can dramatically choke the
information leakage throughput and make malware send 137
times more Interest packets to leak information than when
filters are not used.

To the best of our knowledge, our previous work [8] was
the first to perform risk analysis on information leakage
attacks through an Interest, and this paper is an extended
version. We extend the previous work with the following
contributions:

• investigating vulnerability of available elements other
than a name in an Interest to perform information leak-
age,

• adopting a different algorithm (i.e., isolation forest) to
build a name filter using name datasets,

• preparing larger name datasets and analyzing them
deeply, and

• proposing and evaluating different ways to create mali-
cious names – one of which can bypass the name filter
more efficiently and achieve higher information leakage
throughput.

The remainder of this paper is organized as follows.
Section II describes an overview of NDN and explains a
URL-based NDN name under the assumptions made in this
paper. Section III explains information leakage attacks in
NDN. Against the attack, Section IV proposes a name filter
using search engine information and using an isolation forest.
Also, a simple name filter against information leakage attacks
through a Data is proposed. Section V describes the NDN
name dataset corresponding to the collected URL dataset
and its statistics. Using the dataset, Section VI evaluates
the proposed name filters. Section VII discusses our results,
and Section VIII presents related works. Finally, Section IX
concludes the paper and proposes future research directions.

II. OVERVIEW OF NDN AND URL-BASED NDN NAME
In this section, we present an overview of NDN [5], and then
we define a URL-based NDN name, which we adopt in this
study.
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A. OVERVIEW OF NDN
An NDN node consists of three components: a forward-
ing information base (FIB), pending Interest table (PIT),
and content store (CS). The FIB has routing information
to forward Interests. PIT keeps all pending Interests and
the arrival interfaces of the Interests into entries, and each
entry is removed when the matching Data is received or a
timeout occurs. The CS is used for caching Data packets with
the caching replacement policy. When a producer publishes
content, the producer must first advertise the name prefix
(e.g., /DOCTOR/pub) for name routing to the NDN network.
Then, in order to retrieve content, a consumer specifies the
desired content name, including the producer’s name prefix
(e.g., /DOCTOR/pub/video), in the Interest and sends it to the
NDN network. The corresponding Data can be returned from
the content producer or the intermediate NDN node with
the cached Data. After receiving the Data and the content
producer’s signature, the consumer verifies the signature.

B. URL-BASED NDN NAME
The NDN naming policy [9] refers to a uniform resource
identifier (URI) defined by RFC 3986 [10], which means
that the NDN name has hierarchical structure. The naming
policy specifies ndn in the <scheme> part but ignores the
<authority> part. In order to request a specific Data, the
NDN name in the Interest may include the SHA-256 digest
of the entire corresponding Data packet as the last name
component, but the full name of every Data must include
the digest. Moreover, according to “NDN Technical Memo:
Naming Conventions” [11], the name can carry the segment-
ing, versioning, time stamping, and sequencing.

The URL in the Internet is similar to the name in
NDN. RFC 1808 [12] defines a URL as <scheme>://
<net_loc>/<path>;<params>?<query>#<fragment> and the
<net_loc> part indicates a host generating the URL (e.g., a
fully qualified domain name (FQDN)). A user or an orga-
nization who owns this host creates URLs by following its
own naming policy, and URLs must be unique. According
to a report from Google [13], in 2008 there were one trillion
unique URLs on the Internet, so we believe that people are
accustomed to current URLs.

Considering the high affinity between many already pub-
lished URLs and people who are familiar with them, we be-
lieve it is highly likely that NDN naming policy will become
the natural evolution from the current URL naming policy.
Schnurrenberger [14] has also discussed content names based
on URL datasets. Moreover, in the case that the NDN naming
policy is extended from the current URL naming policy, it
would be very easy to translate the current numerous content
names distributed in the Internet to the corresponding NDN
names. Thus, we predict that the naming policy of NDN will
be based on that of the URL.

We adopt the NDN naming policy, except for in the
<authority> part. As mentioned previously, in the NDN
naming policy, the <authority> part, which corresponds to
the <net_loc> part in RFC 1808, is ignored. However, we

consider that an authority described in the <net_loc> part
can define the name uniquely, which means that the authority
should not be ignored. So this idea is different from the
NDN naming policy. Fig. 1 shows the URL-based NDN
name we adopt in this paper. The <path> part is constructed
from several name components. We omit the <params> part
because this part is an option in file transfer protocol (FTP).

ndn://(Organization)/(Name component 1)/…/(Name component !)?(Query)#(Fragment)

<path><net_loc> <query> <fragment>

FIGURE 1: URL-based NDN name.

III. INFORMATION LEAKAGE ATTACK IN NDN
This section first introduces an information leakage attack
through a Data and then one through an Interest. Moreover,
as for the information leakage attack through an Interest,
this section shows a more sophisticated attack to exploit an
Interest name rather than simply adding leaked data into a
name; this involves generating a steganography-embedded
Interest name, which looks like a legitimate name at first
glance, but is in fact a malicious one to leak data.

A. INFORMATION LEAKAGE ATTACK THROUGH DATA
After collecting confidential information from an enterprise
network, malware can create Data packets of the information
and associate them with the names that the outside attacker
knows. In this case, in order for the attacker to retrieve the
Data packets using the corresponding Interests, the name
prefix used in the names must be routable from the attacker
to the malware.

For example, in Fig. 2 it is assumed that the two name
prefixes “/DOCTOR/priv” and “/DOCTOR/pub”, which are
created by the enterprise, are utilized to share the private and
the public content, respectively. When employees perform
private content sharing between them inside the enterprise
network, the name prefix “/DOCTOR/priv” should be used.
If an Interest with the name prefix is sent to the enterprise
network from the outside network, based on the name pre-
fix “/DOCTOR/priv”, the firewall drops the Interest (i.e., a
blacklist). The name prefix “/DOCTOR/pub” is used to pub-
lish the public content such as a web page, but the malware
can also exploit the name prefix for information leakage as
follows. In advance, the attacker and the malware share the
same name components, which should be appended to the
name prefix “/DOCTOR/pub”, and then the attacker attempts
to retrieve the Data created by the malware, which should
be named “/DOCTOR/pub/(the shared name components)”,
using the corresponding Interest. Goergen et al. [15] propose
a firewall to prevent some types of content (such as .doc
and .pdf documents) from being shared externally. However,
they do not discuss an attack caused by malware at all,
so their firewall is not sufficient to protect against a more
sophisticated attack.
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Enterprise network

Outside network

Malware
Firewall

Interest/Data
for private content sharing

(Name prefix: /DOCTOR/priv)

Data
(Leaked data such as 
customer information)

Attacker

Employee

Employee
Interest

(Name prefix: /DOCTOR/pub)

ü Name prefix: /DOCTOR/priv for private content
ü Name prefix: /DOCTOR/pub for public content

Malware creates Data with /DOCTOR/pub
for information leakage

FIGURE 2: Information leakage attack through Data.

B. INFORMATION LEAKAGE ATTACK THROUGH
INTEREST
Assuming that an attacker’s name prefix is routable from
the malware, by hiding (or simply adding) leaked data into
Interests and sending them out from the enterprise network,
the malware can leak the confidential information to the
attacker. In particular, when the malware exploits the content
names in the Interests to hide the data, it is very difficult
for the company firewall to detect the information leakage
since the Interests seem to attempt to retrieve an outside
producer’s Data packets associated with the names. This
paper focuses only on information leakage attacks through
an Interest name. Exploitation of the other available elements
in the Interest such as Nonce [16] to perform an information
leakage attack is discussed briefly in Section III-B4.

1) Taxonomy of Information Leakage Attack through Interest

Enterprise network

Outside network

Malware
Firewall

Interest
(Leaked data such as
customer information)

NDN node

Compromised
NDN node

Attacker

FIGURE 3: One-way Interest.

Enterprise network

Outside network

Malware
Firewall

Interest
(Answer to command, 

leaked data such as customer information)

Data
(Command)

Attacker

FIGURE 4: Interest/Data.

There are two possible methods for performing an in-
formation leakage attack through an Interest: the (one-way
Interest method shown in Fig. 3) and the (Interest/Data
method, which exploits an Interest with the corresponding
Data, shown in Fig. 4). The features of these methods are
summarized in Table 1.

As for the one-way Interest method, the malware transmits
the leaked data from the enterprise network by sending the
malicious Interests to the attacker. The malware must know

TABLE 1: Taxonomy of information leakage attack through Interest

Feature One-way Interest Interest/Data
Malware remote control No Yes
Retransmission No Yes
Attacker anonymity Yes No†

Erasure coding Yes No
PIT overflow Yes No
† Yes for some cases such as exploiting bots.

the name prefixes toward the compromised NDN nodes (e.g.,
Wi-Fi AP installed by the attacker) in order to forward the
Interests to the attacker. In this method, the attacker does not
reply to the malware with any Data packets, so the attacker
cannot have fine-tuned control of the malware. Therefore,
in the case that some Interests have been lost, the attacker
cannot request a retransmission of the missing information.
This can happen when the firewall drops the Interests or the
PIT is overflowed. In order to deal with the dropped Interests,
the attacker may use erasure coding such as LT codes [17]
and Raptor codes [18]. Although this method is not the most
efficient to leak information, the main advantage of it is the
preservation of attacker anonymity since the attacker only
receives malicious Interests and does not reply to them with
any Data packets, which include the attacker’s signature.

As for the Interest/Data method, assuming that the at-
tacker’s name prefix is routable from the malware, the at-
tacker explicitly controls the malware by utilizing Interest
and Data packets. Thus, the attacker can communicate with
the malware. In the case of a packet drop, the attacker can
request the retransmissions of the missing Interest packets
by exploiting the Data packets, so there is no need to utilize
erasure coding. This method is more efficient than the one-
way Interest method, but once the attack is detected, it
is possible for the attacker to be tracked as the attacker’s
signature has been included in the Data packets. The attacker,
however, can control bots remotely and avoid being tracked.

Hereafter, in order to assess the risk of information leak-
age, we focus on the Interest/Data method since it is more
efficient than the one-way Interest method.

2) Information Leakage Attack through
Steganography-Embedded Interest Name

Generating a steganography-embedded Interest name to act
as a legitimate one (in fact, a malicious one to leak data)
should be a more sophisticated attack to exploit an Interest
name than simply adding leaked data into a name. As a
similar use case of steganography, Mason et al. [19] propose
English Shellcode to encrypt and hide information, which
transforms the Shellcode to be similar to English prose. To
create a steganography-embedded Interest name, as shown
in Fig. 5, the attacker and the malware must share the same
table for steganography, which includes each token (strings)
and the corresponding digits. Note that in order to describe
how to generate and utilize the steganography embedded
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Enterprise network

Outside network

Malware
Firewall

Interest
(Answer to command, 

leaked data such as customer information)

Data
(Command)

Attacker
(Name prefix: /attacker)

Leaked data
1010110001000011
ó
Name to leak data
/attacker/apple/banana

Token Digits
apple 10101100

banana 01000011

… …

Received name
/attacker/apple/banana
ó
Leaked data
1010110001000011

Token Digits
apple 10101100

banana 01000011

… …

FIGURE 5: Information leakage attack through steganography-embedded In-
terest name.

Interest name, Fig. 5 adopts the Interest/Data method, but the
description is also available in the one-way Interest method.
Assuming that the malware knows the attacker’s name prefix
“/attacker” and the name prefix is routable from the malware,
the malware converts the leaked data 1010110001000011
to the Interest name “/attacker/apple/banana” using the ta-
ble of steganography. After the malware sends the Interest
along with the name to leak data, the attacker decrypts the
name using the shared table and obtains the leaked data
1010110001000011.

Compress (zip)

Decompress (unzip)

(Erasure encoding for one-way Interest
method and) token encoding

Token decoding (and erasure decoding
for one-way Interest method)

Leaked data

Leaked data

zip data

zip data

Interest name

Transmit (and retransmit for Interest/Data method)

Interest name

Sender
(Malware)

Receiver
(Attacker)

FIGURE 6: Transmission of leaked data from malware to attacker.

Fig. 6 illustrates a general framework for transmitting
leaked data from malware to the attacker. First, the malware
compresses collected data to a format such as zip. For the
one-way Interest method, the malware further encodes the
compressed data with erasure encoding. To bypass a firewall
and perform information leakage through an Interest name,
the malware further encodes the output data with token
encoding for steganography. Then, it creates and adds a
malicious name to leak the data into an Interest.

3) Propterties of Malware Generating Malicious NDN Names
When malware creates a malicious name to leak data, there
is a naive idea to ameliorate the information leakage through-
put: adding the data into the name as much as possible.
However, the properties of the generated name may not be

similar to those of a legitimate name. For example, when the
leaked data is composed of hexadecimal digits, the name,
which includes as much leaked data as possible, may be
much longer than the legitimate name and the frequencies
of letters and the other printable characters in the malicious
name could be different from the ones in the legitimate
name. Therefore, it is potentially easy to detect the name as
malicious.

As discussed in Section III-B2, malware can create a
steganography-embedded Interest name as a more sophisti-
cated attack. In this attack, each token corresponds to the
digits, and after the attacker gathers several tokens from
the malware, they can be decoded and then become the
leaked data. Thus, to improve the throughput, it is essential
to add as many tokens into the name as possible. To do
so, the malware can exploit the path and the query in the
name shown in Fig. 1. As for the fragment, in the Inter-
net, the fragment is resolved by a browser and is not sent
to the server by the browser [20], so the fragment cannot
be used to add the tokens. When adding the tokens, the
malware must concatenate them with delimiters in order to
allow the attacker to decrypt the steganography-embedded
Interest name safely (e.g., assuming that “/attacker.com/aaa”
is a steganography-embedded Interest name and the token
table includes “a”, “aa”, and “aaa”, the leaked data cannot
be decrypted uniquely). As for the delimiters between the
tokens, we use a slash character (“/”) in the path and equals
and ampersand characters (“=”, “&”) in the query. Since
the tokens are used, the frequencies of letters and the other
printable characters in the path and the query of the created
name may follow the ones of a language used in the tokens
(e.g., English).

A naive information leakage throughput improvement
method by malware will adopt four properties, as shown
in Table 2. By adding as many tokens into the name as
possible, the number of “/” in the path and “=” in the query
increases (Property 1), and therefore the lengths of the path
and query become large (Property 2). In addition, to improve
the throughput, the length of token, which corresponds to the
leaked data, should be small (Property 3), and by exploiting
the tokens, the frequencies of letters and the other printable
characters in path and query follow the ones of a language
used in the tokens (Property 4). The number of equals
characters is related to the number of ampersand ones since
they are used to construct and concatenate key-value pairs
(e.g., key1=value1&key2=value2), and therefore we do not
consider the number of ampersand characters as one of the
Properties.

TABLE 2: Properties of malware generating steganography-embedded Interest
name

Property 1 The number of “/” in the path and “=” in the query will be large.
Property 2 The length of path and query will be large.
Property 3 The length of the token will be small.

Property 4
The frequencies of letters and the other printable characters
in the path and query will follow ones of a language used in the tokens.
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4) Vulnerability of the Other Available Elements in Interest

In the current specification of an Interest [16], available
elements other than a name are CanBePrefix, MustBeFresh,
ForwardingHint, Nonce, InterestLifetime, HopLimit, and Pa-
rameters. All elements except the name are optional, but as
for the Nonce, which is used to detect looping Interests, it
is required when an Interest is forwarded over the network
links. Thus, we assume that for malware to send malicious
Interests to the attacker, the malware must create them with
at least a name and a Nonce.

In the elements, CanBePrefix and MustBeFresh cannot
have a value. The InterestLifetime and the HopLimit can
include only a non-negative integer and a 1-byte unsigned
integer as a value, respectively; this restriction makes it
hard for the malware to utilize these elements to hide the
data. On the other hand, the name, ForwardingHint, Nonce,
and Parameters can be exploited to perform an information
leakage attack through an Interest since they are of variable
length, except for the Nonce, which is a randomly-generated
4 byte string. However, other than the name and the Nonce,
these are optional, as mentioned previously. Therefore, we do
not take the ForwardingHint and the Parameters into account
to perform an information leakage attack through an Interest.

In this paper, as for the Nonce, we utilize it to express a
sequence number that is needed for a retransmission of some
missing Interests in the Interest/Data method. Essentially, the
Nonce should be randomly generated, so the malware and
the attacker must produce random numbers corresponding
to the sequential numbers and share them in advance. Oth-
erwise, their malicious activity may be detected because of
the Nonce, which is a sequential number. As mentioned in
Section II-B, the name may include the SHA-256 digest of
the corresponding entire Data packet as the last name com-
ponent, segmenting, versioning, time stamping, and sequenc-
ing, which are all optional. The size of the SHA-256 digest is
32 bytes, and therefore it could be useful to leak the data.
However, in the Interest/Data method, after receiving the
SHA-256 digest from the malware, the attacker must create
and send the Data whose SHA-256 digest corresponds to the
digest appended in the Interest. To generate the Data, the
attacker must break the second pre-image resistance property
of the SHA-256, so it should be extremely difficult to produce
the corresponding Data. Thus, the SHA-256 digest cannot be
used to leak the data. As for the segmenting, versioning, time
stamping, and sequencing, similarly to InterestLifetime and
HopLimit, they have a restriction (e.g., a sequential number),
and therefore they are not useful for the attack.

Hereafter, we assume that a malicious Interest is composed
of a name and a Nonce, and the name does not include the
SHA-256 digest, segmenting, versioning, time stamping, or
sequencing.

IV. NAME FILTER
We propose several NDN name filters against an information
leakage attack through a Data and through an Interest, as

introduced in Section III. The proposed name filters are
installed in the enterprise firewall.

A. NAME FILTER AGAINST INFORMATION LEAKAGE
ATTACK THROUGH DATA
NDN is a “pull”-based architecture, so a producer cannot
send the Data unless they receive the corresponding Inter-
est from the consumer. Thus, although malware sends the
Data toward the firewall before receiving the corresponding
Interest, the firewall cannot forward it to the outside network
since there is no PIT entry for the Data. Thanks to this big
advantage in NDN, an information leakage attack through a
Data can be prevented easily by making a name filter based
on a whitelist. When the firewall builds the name filter, it
must follow the policies below.
• Policy 1: The firewall must carefully inspect content and

determine whether it can be published to the outside
network.

• Policy 2: The firewall must accept only Interests in-
cluding whitelisted names from the outside network,
otherwise it must drop the other Interests from the
outside network.

• Policy 3: The firewall must publish all the content ac-
cepted to be public to the outside network instead of the
inside employees.

In this case, all the publicly accessible content is on the
firewall, and therefore when employees attempt to publish
content to the outside network, they must ask the firewall
beforehand. Once the firewall follows these policies and
creates the whitelist-based name filter, the name filter can
eliminate the information leakage attack through a Data.

B. NAME FILTER AGAINST INFORMATION LEAKAGE
ATTACK THROUGH INTEREST
Considering regular employee behavior to access outside
content from the enterprise network, we first make the below
assumptions.
• An employee accesses an outside content name via a

search engine.
• The employee also contacts an outside content name,

which is not indexed by the search engine, directly (e.g.,
password-protected content).

• By managing a content access policy, the firewall can
prohibit access to unwanted content names and also
explicitly define a whitelist with names that can be
accessed.

1) Name Filter Using Search Engine Information
Assuming that search engines will still exist even in future
Internet, the search engine may serve to detect a legitimate
name since a malicious name to leak the information from
the enterprise network is not indexed by the search engine
(the malicious name is created by malware, and therefore
the name is not published anywhere). Thus, we propose a
name filter using search engine information. When the filter
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receives an Interest, it performs a request to a search engine to
determine whether the Interest name is indexed by the search
engine. If the name is found by the search engine, the filter
considers the Interest as legitimate. It is simple to implement
this filter, but, as will be explained next, there is a limitation
in terms of today’s Internet use.

According to [21], search engines index only 4% of all
content (referred to as Surface Web), and the remaining
96% are not indexed (referred to as Deep Web). In addi-
tion, the number of Internet users using search engines has
decreased from 55% in 2014 to only 49% in 2015 [22].
One of the factors contributing to this decrease is the mobile
era. Since it is difficult for users to search content with a
small-size mobile screen, they prefer accessing content via
other methods such as social networks. However, from an
enterprise perspective, it is usually prohibited for employees,
who work with company-supplied personal computers, to use
social networks in order to increase labor productivity and
prevent information leakage. Following these conventions,
the firewall in an enterprise must define a content access
policy to allow employees to access outside content using a
search engine or an authorized link toward the content.

As most content comes from the Deep Web, much of
it is still accessible by employees. For example, accessing
content that is unreachable from a search engine, such as
newly generated or password-protected content, should be
legitimate behavior. Therefore, a naive name filter using
search engine information will not be accurate enough to
determine whether a name is legitimate. Indeed, this filter
cannot be aware of most content names that are not indexed.
Thus, there is a need to add further information to improve
the efficiency of the name filter.

2) Name Filter Using Isolation Forest

To overcome the established limitations, we propose a name
filter using an isolation forest [6]. The isolation forest is
an unsupervised learning algorithm for anomaly detection,
and therefore it is useful in the case that there are too few
malicious samples. Regarding NDN architecture, as it has not
been deployed yet, there is neither a legitimate NDN name
dataset nor a malicious one available. Thus, assuming that an
NDN name will be based on URL as stated in Section II-B
and that the legitimate NDN name dataset is derived from the
URL dataset, we extract 122 features from each of the NDN
names and build the filter (see Table 3). We also extract the
frequencies of characters in the NDN name, and for this, we
use the function F , which is defined below.

Let S be the set of all printable characters according
to RFC 3986 [10]. Let L ⊂ S be the set of letters
(i.e., a . . . z and A . . . Z), and let C = S \ L be the set
of the other printable characters that are not letters (i.e.,
0123456789~!@#$%&*()-_=+;:',./?[]). We use N to denote
the set of all possible NDN names constructed with charac-
ters in S.

We define the function

F (·, ·) : N × S → R,

F (n, c) =
# of occurrences of c in n

size of n
,

which takes an NDN name n and a character c as input from
N and S, respectively, and returns the frequency of c in n.

TABLE 3: Features extracted from NDN name

Notation Feature variable
N/ # of “/” in path
N= # of “=” in query
LPath Length of path
LQuery Length of query
F (Path, `) Frequency of the letter ` ∈ L in path (26 dimensions)
F (Path, c) Frequency of the character c ∈ C in path (33 dimensions)
F (Query, `) Frequency of the letter ` ∈ L in query (26 dimensions)
F (Query, c) Frequency of the character c ∈ C in query (33 dimensions)

V. NDN NAME DATASET AND ITS STATISTICS
This section presents the NDN name dataset derived from the
URL dataset and describes the statistics of the dataset.

A. NDN NAME DATASET
In order to infer properties of names commonly used in the
Internet, we collect URLs from a data repository provided by
Common Crawl [7]. At first, we obtain the crawl archive for
February 2016, which holds more than 1.73 billion URLs,
and we extract unique URLs belonging to eight top-level
domains (TLDs): “com”, “net”, “org” and “info”, which are
generic top-level domains (gTLDs), and “jp”, “fr”, “uk”, and
“de”, which are country code top-level domains (ccTLDs).
In this dataset, the number of URLs varies greatly for each
TLD (millions to billions), and therefore, in order to obtain
the same number of URLs for each TLD, we extract two
million URLs for each TLD randomly. In other words, we
use 16 million URLs.

Then, assuming that a protector and an attacker collect
a name dataset from their own crawlers independently and
these two obtained datasets have no overlapping FQDNs, we
divide the dataset, which includes 16 million URLs, into two
datasets that include randomly chosen unique FQDNs: one
for the protector to make a name filter (see Section VI-A1)
and the other for the attacker to create a malicious name (see
Section VI-A2).

Table 4 summarizes the name datasets for the protector
and for the attacker. Fig. 7 shows FQDN ranking versus the
number of names for each dataset. As for the definition of the
FQDN ranking, an FQDN is ranked by the number of unique
names it holds in each TLD dataset. Fig. 7 indicates that,
despite having no overlap, the protector and the attacker’s
datasets have a similar relationship between FQDN ranking
and the number of names.

B. STATISTICS
We analyze nine name attributes in each of the datasets:
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(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 7: FQDN ranking vs. the number of names.

TABLE 4: Summary of name datasets

Protector Attacker
# of FQDNs # of NDN names # of FQDNs # of NDN names

com 100,660 986,530 100,294 1,013,470
net 56,342 947,613 56,348 1,052,387
org 48,538 997,139 48,382 1,002,861
info 58,199 969,734 58,141 1,030,266
jp 58,900 1,383,230 58,847 616,770
fr 57,057 751,649 57,074 1,248,351
uk 53,459 1,008,608 53,457 991,392
de 65,109 1,091,233 65,036 908,767

1. (the number of slash characters (“/”) in the path),
2. (the number of equal characters (“=”) in the query),
3. (the length of the path),
4. (the length of the name component),
5. (the length of the query),
6. (average frequencies of letters in the path),
7. (average frequencies of the other printable charac-

ters in the path),
8. (average frequencies of letters in the query), and
9. (average frequencies of the other printable charac-

ters in the query).

For some names, no name component exists because some
default pages such as index.html are often omitted (e.g.,
http://www.doctor-project.org/). In such a case, we set the
length of the name component to zero. To obtain the average
frequencies of letters and the other printable characters in the
path and query, we first calculate their frequencies from each
name, respectively. Then, we sum the obtained frequencies
and average them within each TLD.

Table 5 shows the computed 90th, 95th, and 99th per-
centiles of attribute 1 to 5 for each TLD. After summing
each percentile for eight TLDs, we divide the sum by eight
to obtain the average (i.e., “overall”). The percentiles of these
attributes from each TLD in the protector and attacker’s name
dataset are similar. Also, the percentiles of these attributes in

the protector’s name dataset are similar to the ones in the
attacker’s name dataset. The cumulative distribution function
(CDF) of each attribute is given in Appendix A.

Figs. 8, 9, 10, and 11 show the average frequencies of
letters and the other printable characters in the path and in
the query. These figures all show that the average frequencies
of letters and of the other printable characters from each
TLD in the protector and attacker’s name datasets are similar.
Moreover, by calculating the cosine similarities1 of “average
frequencies of letters and the other printable characters in
the path and query” between the protector’s name dataset
and the attacker’s one, it can be seen that the respective
average frequencies resemble each other (Table 6). Specific
characters such as “-”, “_”, “.”, and “%” are used more often
than the others.

As explained in the following, the properties of these
attributes can be discussed by considering search engine
optimization (SEO). SEO is optimization to improve the rank
of a web site in search engines such as Google so it appears
in the top level of retrieval results by search engines. One of
the methods to improve rank is to modify the structure of the
URL. The documentation on SEO provided by Google [23]
states that a URL should be composed of information that is
easily understood by a crawler constructing a search engine
as well as a user seeing the web site. Then, it is convenient
for the crawler to obtain information easily and for the user
to cite a link, and therefore this operation improves the rank.
Moreover, Moz, which is an SEO company, reports policies
to modify the structure of a URL [24]. These policies include
“to make the URL human-readable”, “to add keywords”, “to
shorten length”, “to make URL suitable to the title of the
web page”, “to remove stop words such as “and”, “or”, and
“but” while considering readability and length of the URL”,
“to avoid utilizing the unsafe characters written in RFC
1738 [25]”, “to decrease the number of name components”,

1CosineSimilarity = A ·B/‖A‖‖B‖.

8 VOLUME 4, 2016



Daishi Kondo et al.: Name Filter: A Countermeasure against Information Leakage Attacks in Named Data Networking

TABLE 5: Computed percentiles

(a) gTLDs (com, net, org, info)

Attributes
com net org info

Protector Attacker Protector Attacker Protector Attacker Protector Attacker
90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

# of “/” in path 4 5 8 4 5 8 4 5 7 4 5 7 4 6 8 4 6 8 4 5 5 3 4 5
# of “=” in query 4 5 10 4 5 12 3 4 6 2 3 6 4 5 10 4 5 7 4 4 8 3 5 22
Length of path 73 88 127 74 89 135 68 80 109 64 79 124 68 86 128 65 84 130 70 84 120 57 70 101
Length of name component 26 40 69 26 41 69 25 40 71 23 35 62 19 32 66 20 32 66 25 37 64 27 39 64
Length of query 103 134 217 105 142 209 71 87 136 75 99 161 96 134 209 90 118 205 86 130 193 63 99 222

(b) ccTLDs (jp, fr, uk, de)

Attributes
jp fr uk de

Protector Attacker Protector Attacker Protector Attacker Protector Attacker
90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

# of “/” in path 3 4 6 4 4 6 3 4 6 4 5 5 4 5 7 4 5 9 4 6 12 4 5 8
# of “=” in query 3 3 7 3 4 6 6 7 9 13 14 14 6 6 11 9 11 13 3 4 8 5 6 11
Length of path 112 185 190 82 99 200 89 110 115 95 106 126 80 95 126 74 88 117 73 92 121 97 108 129
Length of name component 83 104 117 18 48 99 35 57 77 55 82 108 29 44 73 27 43 76 20 33 67 39 64 101
Length of query 42 48 108 79 99 133 160 203 250 174 179 212 124 140 225 131 195 258 224 238 260 95 165 227

(c) Average (overall)

Attributes
overall

Protector Attacker
90% 95% 99% 90% 95% 99%

# of “/” in path 4 5 7 4 5 7
# of “=” in query 4 6 9 5 7 14
Length of path 81 100 164 80 96 129
Length of name component 28 50 97 30 48 91
Length of query 112 178 238 100 144 221
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(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 8: Average frequencies of letters in the path.

TABLE 6: Cosine similarities of average frequencies of letters and of the other
printable characters between the protector and attackersâĂŹ name datasets

(a) Path

TLD com net org info jp fr uk de
Letter 1.00 0.998 0.999 0.989 0.985 0.992 0.996 0.994
Other 1.00 0.999 0.999 0.995 0.937 0.990 0.998 0.983

(b) Query

TLD com net org info jp fr uk de
Letter 1.00 0.995 0.998 0.981 0.922 0.973 0.994 0.945
Other 1.00 0.997 0.999 0.982 0.705 0.975 0.997 0.943

“to avoid utilizing the hash value”, “to use “-” or “_” to
separate words”, “to avoid utilizing keywords repeatedly”.

Therefore, current URLs possibly follow the above rules
to improve their rank, and consequently SEO affects the
properties of these attributes.

VI. EXPERIMENTS
This section evaluates the performance of the proposed
NDN name filters against steganography-embedded Interest
names.

A. EXPERIMENTAL SETUP
In general, security exploits can be distinguished by two
different types: a1) an attacker does not know the coun-
termeasure by the protector and a2) an attacker knows the
countermeasure but not its parameters. Similarly, counter-
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(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 9: Average frequencies of the other printable characters in the path.

aA bB cC dD eE fF gG hH iI jJ kK lL mM nN oO pP qQ rR sS tT uU vV wW xX yY zZ
0.00

0.02

0.04

0.06

0.08

0.10

0.12

AV
G 

F(
Q

ue
ry

,
)

com
net
org
info
jp
fr
uk
de

(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 10: Average frequencies of letters in the query.
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(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 11: Average frequencies of the other printable characters in the query.
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measures can be also categorized by two different types:
p1) a protector does not know the attack method and p2)
a protector knows the attack method but not its parameters.
We consider a scenario where the protector knows the attack
method (i.e., information leakage attack through an Interest)
and prepare the protection method (i.e., we consider p2). In
order to study the upper limit of the information leakage
throughput in the case p2, we analyze the risk of attack in the
case that the attacker knows the countermeasure but not its
parameters (i.e., we consider a2), and this case is beneficial
to the attacker.

1) Protector
Fig. 12 demonstrates a flow to check an NDN Interest name
using two name filters proposed in Section IV-B. The name
should first be checked by the name filter using the search
engine information, and when the name is dropped by the
first filter, the name filter using the isolation forest (the
second filter) inspects the name. The name filter using the
search engine information is not efficient enough as mali-
cious names are not indexed by nature. Thus, this section
evaluates the sophisticated name filter using the isolation
forest. The evaluation of the name filter using the search
engine information is discussed in Section VII.

To build the name filter using the isolation forest, we use
the legitimate NDN name dataset for the protector as the
training dataset, which is summarized in Table 4. The dataset
is based on eight name datasets separated by eight TLDs,
and we prepare eight name filters using the isolation forest.
For example, when an Interest carries a name including the
“com” domain, the name should be checked by the filter
derived from the “com” dataset. In addition, to utilize the
isolation forest, as a parameter of the protector side, we must
configure the proportion of outliers RP

O in the dataset, which
is one of the parameters of the isolation forest2. We prepare
six outlier proportions: 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4.
Since the name dataset is considered as legitimate, the outlier
proportion can be the false positive rate, which is defined
as the ratio of the number of legitimate names identified as
malicious to the total number of legitimate names.

2) Attacker
As mentioned previously, in order to analyze the risk of an
information leakage attack, we consider the case that the
attacker knows the countermeasure of the protector but not its
parameters, which is beneficial to the attacker. Thus, to create
malicious names with steganography to leak data, we assume
that the attacker builds their own isolation forest-based filter
using the NDN name dataset, which is shown in Table 4, in
the same way as the protector’s dataset.

We prepare three PDF files (Y.4001/F.748.2, Y.4412/F.747.8,
Y.4413/F.748.5) from latest ITU-T recommendations [28]
as leaked data. These PDF files include a variety of text
and figures, which are common in technological docu-

2We use scikit-learn [27] with default values for the remaining parameters.

ments. Specifically, in Y.4001/F.748.2, Y.4412/F.747.8, and
Y.4413/F.748.5, there are 6, 4, and 9 figures and 18, 22, and
24 pages, respectively. Then, we compress and convert these
files into a single ZIP file (3.4 MB). Hereafter, we consider
how an attacker obtains this file.

Fig. 13 describes a flow to create malicious names with
steganography to leak data following the properties sum-
marized in Table 2. To ameliorate the information leakage
throughput, as discussed in Section III-B3, an essential key
is to add as many tokens into the name as possible. Thus, the
main principles to create malicious names are

(i) to extract NDN names classified as the inliers by
the isolation forest whose proportion of outliers is
set to RA

O (i.e., 0.01, 0.05, 0.1, 0.2, 0.3, or 0.4) as a
parameter of the attacker side;

(ii) to select one name with the maximal sum of N/ and
N= among inliers;

(iii) to extract N/, N=, LPath, and LQuery from the
name as the thresholds to create the malicious
names; and

(iv) to create the malicious names with steganography
considering the thresholds.

Table 7 indicates the thresholds of N/, N=, LPath, and
LQuery extracted from each TLD name dataset using the iso-
lation forest. Moreover, to generate the malicious names with
steganography, the attacker must prepare a table with each
token and its corresponding digits. The table is configured
as follows; using “/”, “=”, and “&” as delimiters, we collect
the tokens from the path and from the query in the inliers
identified by the isolation forest and assign four hexadecimal
digits (i.e., two bytes of information) to each token in the
table.

As for token type, our previous paper [8] utilizes the
dictionary words from WordNet [26] as tokens. However,
in this paper, we use tokens collected from the real NDN
names or the NDN names converted from the real URLs
used in the current Internet. The number of tokens required is
164 = 65, 536, and from the attacker’s NDN name dataset
shown in Table 4, we extract frequently used tokens in
the inliers preferentially. Occasionally, we could find some
tokens whose length is large (e.g., percent-encoding [10]),
and in terms of the information leakage throughput, smaller
length is preferable. Thus, when there are several tokens with
the same frequency of appearance in the inliers, we take
them in ascending order of length and ignore those with a
length greater than the 90th percentile of the length of name
components shown in Table 5. Table 8 shows the number
of tokens collected from the path and query in the inliers.
As for the tokens from the path, in all cases, the number
of tokens is 65,536. However, in some cases, the number of
tokens from the query does not reach 65,536. In this case,
each missing token is covered by the corresponding four
hexadecimal digits. As a comparison to the steganography-
embedded Interest name (hereafter, we call this Token), we
prepare malicious names, and instead of the token collected
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FIGURE 12: Flow to check NDN Interest name using two name filters.

TABLE 7: Thresholds of N/, N=, LPath, and LQuery to create malicious names

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
N/ N= LPath LQuery N/ N= LPath LQuery N/ N= LPath LQuery N/ N= LPath LQuery N/ N= LPath LQuery N/ N= LPath LQuery

com 32 0 260 0 32 0 260 0 32 0 260 0 32 0 260 0 32 0 260 0 32 0 260 0
net 38 0 216 0 38 0 216 0 38 0 216 0 38 0 216 0 38 0 216 0 21 0 222 0
org 1 66 10 1381 1 66 10 1381 3 41 25 726 2 27 24 248 2 27 24 248 2 25 24 231
info 3 24 26 257 3 24 26 257 3 24 26 257 2 25 26 249 17 0 107 0 17 0 107 0
jp 2 29 27 244 2 29 27 244 27 0 214 0 21 0 112 0 21 0 112 0 21 0 112 0
fr 1 61 1 2352 1 61 1 2352 1 61 1 2352 3 26 32 234 18 0 118 0 18 0 118 0
uk 2 32 20 175 2 32 20 175 2 32 20 175 3 22 18 169 3 22 18 169 3 22 18 169
de 3 25 23 237 3 25 23 237 3 25 23 237 24 0 173 0 24 0 173 0 24 0 173 0

TABLE 8: Number of tokens collected from the path and query in inliers

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Path Query Path Query Path Query Path Query Path Query Path Query

com 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 61,967
net 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 31,737
org 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 42,258
info 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 48,855 65,536 7,647
jp 65,536 32,159 65,536 22,930 65,536 16,111 65,536 149 65,536 32 65,536 16
fr 65,536 65,536 65,536 65,536 65,536 65,536 65,536 33,788 65,536 89 65,536 8
uk 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 65,536 51,745 65,536 19,711
de 65,536 65,536 65,536 65,536 65,536 65,536 65,536 47,449 65,536 214 65,536 15

from the real NDN names, the corresponding four hexadec-
imal digits are directly used as the tokens (hereafter, we call
this Hex).

The tokens from the path and the query are inserted
in the path and the query in the malicious names, re-
spectively. In particular, in the query, we place reserved
keys such as “key1” before the equals characters (e.g.,
key1=token1&key2=token2) to identify the order of tokens.
The reason for this convention is as follows. When the
malware uses the tokens as the keys and the values in the
query (e.g., token1=token2&token3=token4), the protector’s
name filter can shuffle the order of the key-value pairs, which
does not have an impact on legitimate content retrieval pro-
cesses, but it is detrimental to the attacker since they cannot
successfully decode the malicious names unless they decrypt
the tokens in the query while considering the order of them.
Finally, the features of the created malicious names should be
similar to those of the name selected in the abovementioned
principle (ii).

B. RESULTS

Tables 9, 10, and 11 show the performances of each of the
NDN name filters (RP

O = 0.01, 0.2, and 0.4) against the
malicious names to leak data (RA

O = 0.01, 0.05, 0.1, 0.2, 0.3,
and 0.4) in terms of

• the true positive rate, which is defined as the ratio of the
number of malicious names identified as malicious to
the total number of generated malicious names, and

• the information leakage throughput per Interest, which
has unit bytes/Interest.

As an example, when a malicious name “ndn://attacker.
com/token1/token2/token3?key1=token4&key2=token5” by-
passes the filter successfully, the name can convey 10 bytes
of leaked data to the attacker, and the information leakage
throughput can be calculated by the total volume of
leaked data obtained from the malicious names success-
fully bypassing the filter divided by the total number of
malicious names created. In these tables, the averaged value
marked in blue boldface indicates maximum true positive rate
or minimum information leakage throughput (i.e., the best
performance from the protector’s point of view), while the
averaged value marked in red boldface indicates minimum
true positive rate or maximum information leakage through-
put (i.e., the best performance from the attacker’s point of
view). The performances of each of the NDN name filters
for RP

O between 0.01 and 0.4 (i.e. 0.05, 0.1, or 0.3) show an
increase in true positive rate and a decrease of information
leakage throughput as RP

O increases. Among them, it is
interesting that the true positive rate for Token is higher than
the one for Hex for the malicious names including “fr” as the
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FIGURE 13: Flow to create malicious names.

TLD when RA
O = 0.01, 0.05, or 0.1 and RP

O = 0.05 or 0.1. We
discuss this exception in Appendix B.

From Tables 9a, 10a, and 11a, for all configurations of
RA

O, every true positive rate for Token is less than that for
Hex, because by using the tokens actually obtained from
the attacker’s name datasets, the frequencies of letters and
other printable characters in the path and query of Token
become similar to those of the inliers in the protector’s name
datasets. Thus, a steganography-embedded Interest name can
circumvent a protector more efficiently than a naive name
such as one that only includes raw data. Moreover, for every
configuration of RA

O, the greater RP
O is, the greater the true

positive rate becomes; this is because by increasing RP
O, the

name filter is built by a name dataset that excludes more
outliers, though the compensation for higher true positive
rate is to obtain higher false positive rate. With a higher
true positive rate, the attacker can create malicious names to
bypass the filter by increasing RA

O.
From Tables 9b, 10b, and 11b, when the true positive rate

for Hex is the same as that for Token, the information leakage
throughput using Hex is larger than when using Token, since
Hex does not encode the data with steganography, which
causes throughput degradation in the case of Token. However,
as mentioned previously, Hex can be detected as anoma-
lous more easily than Token, so the information leakage
throughput using Token becomes larger than that using Hex
when RP

O becomes larger. Assuming that the protector adopts
the name filter whose RP

O is 0.4, the average information
leakage throughput for all the domains is as high as 22.6

TABLE 9: Performances of NDN name filter against malicious names (RP
O =

0.01)

(a) True positive rate

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
net 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
org 0.593 0.131 0.593 0.133 0.972 0.411 0.890 0.379 0.890 0.383 0.868 0.403
info 1.00 0.863 1.00 0.851 1.00 0.815 0.999 0.773 0.00 0.00 0.00 0.00
jp 0.994 0.880 0.994 0.864 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
fr 0.00 0.00 0.00 0.00 0.00 0.00 0.821 0.193 0.00 0.00 0.00 0.00
uk 0.620 0.249 0.620 0.254 0.620 0.247 0.731 0.215 0.731 0.200 0.731 0.208
de 0.446 0.218 0.446 0.213 0.446 0.225 0.00 0.00 0.00 0.00 0.00 0.00

AVG 0.457 0.293 0.457 0.289 0.380 0.212 0.430 0.195 0.203 0.0729 0.200 0.0764

(b) Information leakage throughput per Interest [bytes/Interest]

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 64.0 51.2 64.0 51.2 64.0 51.3 64.0 50.8 64.0 49.4 64.0 46.0
net 76.0 44.9 76.0 43.7 76.0 43.0 76.0 44.9 76.0 46.7 42.0 41.9
org 54.5 116 54.5 116 2.43 50.8 5.49 26.4 5.49 26.4 6.07 23.8
info 0.00429 5.77 0.00429 6.30 0.00429 7.91 0.0708 9.78 34.0 20.8 34.0 21.2
jp 0.310 5.11 0.310 6.11 54.0 52.3 42.0 28.5 42.0 29.2 42.0 30.3
fr 124 124 124 124 124 124 8.93 21.8 36.0 17.9 36.0 19.0
uk 13.7 19.2 13.7 19.4 13.7 20.1 10.2 21.1 10.2 20.9 10.2 25.4
de 27.7 26.7 27.7 27.6 27.7 26.7 48.0 23.7 48.0 24.8 48.0 26.1

AVG 45.0 49.1 45.0 49.3 45.2 47.0 31.8 28.4 39.5 29.5 35.3 29.2

TABLE 10: Performances of NDN name filter against malicious names (RP
O =

0.2)

(a) True positive rate

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 0.0154 0.00 0.0154 0.00 0.0154 1.50e-05 0.0154 0.00 0.0154 0.00 0.0154 0.00
net 0.000155 0.00 0.000155 0.00 0.000155 0.00 0.000155 0.00 0.000155 0.00 9.81e-05 1.22e-05
org 1.00 0.928 1.00 0.922 1.00 0.988 1.00 0.989 1.00 0.990 1.00 0.989
info 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0395 1.82e-05 0.0395 1.86e-05
jp 1.00 1.00 1.00 1.00 0.00585 0.00 0.0104 0.00 0.0104 0.00 0.0104 8.86e-06
fr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.996 0.00 0.00 0.00 0.00
uk 0.999 0.855 0.999 0.851 0.999 0.844 1.00 0.798 1.00 0.792 1.00 0.825
de 1.00 0.875 1.00 0.870 1.00 0.877 2.80e-05 0.00 2.80e-05 0.00 2.80e-05 0.00

AVG 0.752 0.707 0.752 0.705 0.628 0.589 0.503 0.473 0.258 0.223 0.258 0.227

(b) Information leakage throughput per Interest [bytes/Interest]

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 63.0 51.2 63.0 51.2 63.0 51.3 63.0 50.8 63.0 49.4 63.0 46.0
net 76.0 44.9 76.0 43.7 76.0 43.0 76.0 44.9 76.0 46.7 42.0 41.9
org 0.00524 9.71 0.00524 10.5 0.00 1.05 0.00 0.477 0.00 0.430 0.00 0.419
info 3.15e-05 7.38e-05 3.15e-05 0.00 3.15e-05 0.00 0.00 0.00 32.7 20.8 32.7 21.2
jp 0.00 0.00 0.00 0.00 53.7 52.3 41.6 28.5 41.6 29.2 41.6 30.3
fr 0.00442 0.00 0.00442 0.00 0.00442 0.00 0.00 0.103 36.0 17.9 36.0 19.0
uk 0.0180 3.62 0.0180 3.77 0.0180 4.04 0.00590 5.27 0.00590 5.25 0.00590 5.48
de 0.00657 4.23 0.00657 4.48 0.00657 4.13 48.0 23.7 48.0 24.8 48.0 26.1

AVG 17.4 14.2 17.4 14.2 24.1 19.5 28.6 19.2 37.2 24.3 32.9 23.8

bytes/Interest (see Table 11b, the AVG line with RA
O = 0.3).

As shown in Table 7, there are three types of malicious
name: name composed of only the path, name composed
of only the query, and name composed of both. According
to Tables 9, 10, and 11, regardless of the type of TLD, the
generated malicious names that consist of only the path can
bypass the name filters more easily than the other two types
of malicious name. This may indicate that, for malware, it is
preferable to exploit only the path to create malicious names
leaking data and to hide activities.

To verify the hypothesis that the path is useful for malware
to circumvent an NDN name filter and send leaked data to an
outside attacker, we also create malicious names exploiting
only the path (see Fig. 14). Table 12 shows thresholds of
N/ and LPath to create the malicious names. Tables 13, 14,
and 15 show the performances of each of the NDN name
filters (RP

O = 0.01, 0.2, 0.4) against the malicious names
exploiting only the path (RA

O = 0.01, 0.05, 0.1, 0.2, 0.3,
0.4) in terms of the true positive rate and the information
leakage throughput per Interest. As expected, the generated
malicious names can bypass the name filters, and therefore
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TABLE 11: Performances of NDN name filter against malicious names (RP
O =

0.4)

(a) True positive rate

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 0.698 1.49e-05 0.698 2.99e-05 0.698 1.50e-05 0.698 0.00 0.698 0.00 0.698 8.06e-05
net 0.694 2.62e-05 0.694 0.00 0.694 1.26e-05 0.694 5.25e-05 0.694 1.36e-05 0.377 0.000183
org 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
info 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.985 0.0888 0.985 0.0871
jp 1.00 1.00 1.00 1.00 0.999 0.114 0.994 0.144 0.994 0.135 0.994 0.149
fr 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.997 0.0741 0.997 0.0507
uk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.999 1.00 1.00
de 1.00 1.00 1.00 1.00 1.00 1.00 0.839 0.0107 0.839 0.0115 0.839 0.0092

AVG 0.924 0.750 0.924 0.750 0.924 0.639 0.903 0.519 0.901 0.289 0.861 0.287

(b) Information leakage throughput per Interest [bytes/Interest]

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 19.3 51.2 19.3 51.2 19.3 51.3 19.3 50.8 19.3 49.4 19.3 46.0
net 23.3 44.9 23.3 43.7 23.3 43.0 23.3 44.9 23.3 46.7 26.2 41.9
org 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
info 3.15e-05 0.00 3.15e-05 0.00 3.15e-05 0.00 0.00 0.00 0.524 18.7 0.524 19.2
jp 0.00 0.00 0.00 0.00 0.0673 46.3 0.246 24.2 0.246 25.0 0.246 25.6
fr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.110 16.4 0.110 17.9
uk 0.00 0.00487 0.00 0.00456 0.00 0.00252 0.00 0.00473 0.00 0.0229 0.00 0.00216
de 0.00 0.00 0.00 0.00 0.00 0.00 7.75 23.5 7.75 24.6 7.75 26.0

AVG 5.33 12.0 5.33 11.9 5.33 17.6 6.32 17.9 6.40 22.6 6.77 22.1
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with maximal $/ among inliers

Finish creating

malicious names

Extract $/, $&(= 0), +,-./, and +01234(= 0) from the name

as thresholds to create malicious names

Have all malicious names 

to leak data

been created?

Append the tokens to “ndn://attacker.(TLD)/” 

considering $/ and +,-./

Yes

No

FIGURE 14: Flow to create malicious names exploiting only the path.

the true positive rate decreases and the information leakage
throughput increases. Assuming that the protector adopts
the name filter whose RP

O is 0.4, the average information
leakage throughput for all the domains is as high as 32.1
bytes/Interest (see Table 15b, the AVG line with RA

O = 0.1).
In terms of true positive rate and information leakage

throughput, the above method to create malicious names
using the tokens obtained from the NDN names in the real In-
ternet is more efficient to leak data than the method proposed
in [8], which uses the dictionary words from WordNet. As
for the method in this paper, the frequencies of letters and the
other printable characters in the path become similar to those
of the inliers in the protector’s name datasets. In addition, we
select one name with maximal sum of N/ and N= among
inliers, while [8] obtains the longest name, so many more
tokens can be added.

When the proposed filter is not used, the attacker can fill
the Interest name with the leaked data in hexadecimal digits.
Selecting the longest name in the attacker’s name datasets,

which the attacker can add 2,352 hexadecimal digits to, the
information leakage throughput reaches 1.18 Kbytes/Interest,
which is maximal since 1 byte of leaked data is mapped
into 2 hexadecimal digits. Thus, by using the proposed filter,
the malware must send 36.8 times (=1.18 K/32.1) more
Interests to the attacker. Moreover, theoretically, in NDN,
much longer names are acceptable. Since a Data packet must
include the corresponding name in the Interest, the length of
the name should be less than the maximum size of a Data
packet (8800 bytes by default [29]). Thus, assuming that the
maximum length name can consist of 8800 digits (i.e., 4.40
Kbytes/Interest), by using the proposed filter, the malware
must send 137 times (=4.40 K/32.1) more Interests to the
attacker.

VII. DISCUSSION

0.0 0.1 0.2 0.3 0.4 0.5
RNotIndexed

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ac
tu

al
 fa

lse
 p

os
iti

ve
 ra

te
 (R

P O
×

R N
ot

In
de

xe
d)

RP
O = 0.01

RP
O = 0.05

RP
O = 0.1

RP
O = 0.2

RP
O = 0.3

RP
O = 0.4

FIGURE 15: Actual false positive rate using two name filters.

The false positive rate RP
O introduced in Section VI is

caused by the name filter using the isolation forest. The
actual false positive rate should be computed after checking
Interest names with the name filter using the search engine
information and the isolation forest. Thus, the actual false
positive rate is RP

O×RNotIndexed, where RNotIndexed is the
probability that legitimate users are accessing real Deep Web
content (content not indexed by the search engine). Fig. 15
shows that the actual false positive rate for each RP

O depends
on RNotIndexed, which will be very small if the enterprise
network is properly managed. Therefore, the proposed filters
can keep the false positive rate relatively low thanks to the
name filer using the search engine information.

The proposed algorithms to create malicious names shown
in Figs. 13 and 14 may not be optimal for increasing the
information leakage throughput. These algorithms concate-
nate several tokens using a slash character (“/”) in the path
and equals and ampersand characters (“=”, “&”) in the
query as delimiters. In the case that LPath or LQuery is
relatively long, which means that there is large space to
append as many tokens as possible to the path or query,
by concatenating several tokens using some other delimiters
such as “-” and “_” and adding the concatenated tokens to the
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TABLE 12: Thresholds of N/ and LPath to create malicious names exploiting only the path

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
N/ LPath N/ LPath N/ LPath N/ LPath N/ LPath N/ LPath

com 32 260 32 260 32 260 32 260 32 260 32 260
net 38 216 38 216 38 216 38 216 38 216 21 222
org 21 151 21 151 21 151 21 151 21 151 21 151
info 17 107 17 107 17 107 17 107 17 107 17 107
jp 27 214 27 214 27 214 21 112 21 112 21 112
fr 18 118 18 118 18 118 18 118 18 118 18 118
uk 24 189 24 189 24 189 24 189 24 189 24 189
de 24 173 24 173 24 173 24 173 24 173 24 173

TABLE 13: Performances of NDN name filter against malicious names exploit-
ing only the path (RP

O = 0.01)

(a) True positive rate

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
net 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
org 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
info 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
jp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
fr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
uk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
de 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AVG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(b) Information leakage throughput per Interest [bytes/Interest]

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 64.0 51.2 64.0 51.2 64.0 51.3 64.0 50.8 64.0 49.4 64.0 46.0
net 76.0 44.9 76.0 43.7 76.0 43.0 76.0 44.9 76.0 46.7 42.0 41.9
org 42.0 30.8 42.0 30.6 42.0 31.4 42.0 32.4 42.0 33.5 42.0 34.5
info 34.0 19.9 34.0 19.3 34.0 18.7 34.0 20.1 34.0 20.8 34.0 21.2
jp 54.0 52.1 54.0 52.2 54.0 52.3 42.0 28.5 42.0 29.2 42.0 30.3
fr 36.0 14.7 36.0 13.8 36.0 13.6 36.0 15.6 36.0 17.9 36.0 19.0
uk 48.0 31.5 48.0 32.3 48.0 33.3 48.0 34.8 48.0 36.2 48.0 38.1
de 48.0 20.7 48.0 21.5 48.0 22.4 48.0 23.7 48.0 24.8 48.0 26.1

AVG 50.3 33.2 50.3 33.1 50.3 33.3 48.8 31.4 48.8 32.3 44.5 32.1

TABLE 14: Performances of NDN name filter against malicious names exploit-
ing only the path (RP

O = 0.2)

(a) True positive rate

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 0.0154 0.00 0.0154 0.00 0.0154 1.50e-05 0.0154 0.00 0.0154 0.00 0.0154 0.00
net 0.000155 0.00 0.000155 0.00 0.000155 0.00 0.000155 0.00 0.000155 0.00 9.81e-05 1.22e-05
org 0.000540 0.00 0.000540 0.00 0.000540 0.00 0.000540 0.00 0.000540 0.00 0.000540 0.00
info 0.0395 6.98e-05 0.0395 3.95e-05 0.0395 1.64e-05 0.0395 1.17e-05 0.0395 1.82e-05 0.0395 1.86e-05
jp 0.00585 0.00 0.00585 0.00 0.00585 0.00 0.0104 0.00 0.0104 0.00 0.0104 8.86e-06
fr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
uk 1.40e-05 0.00 1.40e-05 0.00 1.40e-05 0.00 1.40e-05 0.00 1.40e-05 0.00 1.40e-05 1.11e-05
de 2.80e-05 0.00 2.80e-05 0.00 2.80e-05 0.00 2.80e-05 0.00 2.80e-05 0.00 2.80e-05 0.00

AVG 7.69e-03 8.73e-06 7.69e-03 4.94e-06 7.69e-03 3.93e-06 8.25e-03 1.46e-06 8.25e-03 2.28e-06 8.25e-03 6.35e-06

(b) Information leakage throughput per Interest [bytes/Interest]

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 63.0 51.2 63.0 51.2 63.0 51.3 63.0 50.8 63.0 49.4 63.0 46.0
net 76.0 44.9 76.0 43.7 76.0 43.0 76.0 44.9 76.0 46.7 42.0 41.9
org 42.0 30.8 42.0 30.6 42.0 31.4 42.0 32.4 42.0 33.5 42.0 34.5
info 32.7 19.9 32.7 19.3 32.7 18.7 32.7 20.1 32.7 20.8 32.7 21.2
jp 53.7 52.1 53.7 52.2 53.7 52.3 41.6 28.5 41.6 29.2 41.6 30.3
fr 36.0 14.7 36.0 13.8 36.0 13.6 36.0 15.6 36.0 17.9 36.0 19.0
uk 48.0 31.5 48.0 32.3 48.0 33.3 48.0 34.8 48.0 36.2 48.0 38.1
de 48.0 20.7 48.0 21.5 48.0 22.4 48.0 23.7 48.0 24.8 48.0 26.1

AVG 49.9 33.2 49.9 33.1 49.9 33.3 48.4 31.4 48.4 32.3 44.2 32.1

malicious names (e.g., /apple_banana), the malware could
improve the information leakage throughput. However, as
introduced in Section V-B, in terms of SEO, “-” and “_”
should be used to separate words, and therefore the con-
catenated words should become a meaningful sentence fol-
lowing the grammar of the relevant language (e.g., in https:
//moz.com/blog/15-seo-best-practices-for-structuring-urls,
15-seo-best-practices-for-structuring-urls should be “15 seo
best practices for structuring urls” so it follows English
grammar). The sequence of tokens depends on the data to

TABLE 15: Performances of NDN name filter against malicious names exploit-
ing only the path (RP

O = 0.4)

(a) True positive rate

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 0.698 1.49e-05 0.698 2.99e-05 0.698 1.50e-05 0.698 0.00 0.698 0.00 0.698 8.06e-05
net 0.694 2.62e-05 0.694 0.00 0.694 1.26e-05 0.694 5.25e-05 0.694 1.36e-05 0.377 0.000183
org 0.160 9.90e-05 0.160 8.04e-05 0.160 9.16e-05 0.160 9.47e-05 0.160 5.87e-05 0.160 7.05e-05
info 0.985 0.170 0.985 0.122 0.985 0.0765 0.985 0.0775 0.985 0.0888 0.985 0.0871
jp 0.999 0.108 0.999 0.112 0.999 0.114 0.994 0.144 0.994 0.135 0.994 0.149
fr 0.997 0.107 0.997 0.0748 0.997 0.0641 0.997 0.0729 0.997 0.0741 0.997 0.0507
uk 0.351 0.000147 0.351 0.000208 0.351 7.79e-05 0.351 0.000101 0.351 0.000127 0.351 0.000167
de 0.839 0.00896 0.839 0.00891 0.839 0.00904 0.839 0.0107 0.839 0.0115 0.839 0.00920

AVG 0.715 0.0493 0.715 0.0398 0.715 0.0330 0.715 0.0382 0.715 0.0387 0.675 0.0371

(b) Information leakage throughput per Interest [bytes/Interest]

TLD RA
O = 0.01 RA

O = 0.05 RA
O = 0.1 RA

O = 0.2 RA
O = 0.3 RA

O = 0.4
Hex Token Hex Token Hex Token Hex Token Hex Token Hex Token

com 19.3 51.2 19.3 51.2 19.3 51.3 19.3 50.8 19.3 49.4 19.3 46.0
net 23.3 44.9 23.3 43.7 23.3 43.0 23.3 44.9 23.3 46.7 26.2 41.9
org 35.3 30.8 35.3 30.6 35.3 31.4 35.3 32.4 35.3 33.5 35.3 34.5
info 0.524 16.3 0.524 16.8 0.524 17.1 0.524 18.3 0.524 18.7 0.524 19.2
jp 0.0673 46.4 0.0673 46.3 0.0673 46.3 0.246 24.2 0.246 25.0 0.246 25.6
fr 0.110 12.9 0.110 12.6 0.110 12.5 0.110 14.3 0.110 16.4 0.110 17.9
uk 31.1 31.5 31.1 32.3 31.1 33.3 31.1 34.8 31.1 36.2 31.1 38.1
de 7.75 20.6 7.75 21.4 7.75 22.2 7.75 23.5 7.75 24.6 7.75 26.0

AVG 14.7 31.8 14.7 31.9 14.7 32.1 14.7 30.4 14.7 31.3 15.1 31.2

be leaked, and therefore, if the malware simply connects the
tokens with such delimiters, the connected tokens would nei-
ther be meaningful nor follow any language’s grammar. The
generated awkward name could be detected as anomalous
by some natural language processing (NLP) techniques [30].
Thus, it is extremely difficult for the malware to simply
concatenate tokens using some delimiters, which means
information leakage throughput is decreased.

In the Internet, in order to detect malicious URLs that in-
duce infection by malware (i.e., drive-by download attack) or
access phishing/spam webpages, some countermeasures rely
on token-based filtering based on the fact that specific tokens
are used in the malicious URLs ( [31]–[33]). However, this
type of token-based filtering is not efficient to mitigate the
information leakage attack through an Interest. For example,
phishing URLs must attract users using attractive tokens,
such as “paypal” and “ebay”, and make them click the URLs.
On the other hand, since the purpose of generating the name
to perform the information leakage attack is not cheating
users but leaking data, the name need not include such tokens.
Thus, the malware can generate the name to leak data without
any restrictions and the protector cannot filter out the name
using tokens.

In general, in the Internet, a host generating the URL
(e.g., an FQDN) follows its own naming policy to effectively
identify each Web page from the others using a small set of
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keywords. This may reduce the number of tokens following
the name prefix. If one name prefix creates many names by
appending many different types of tokens, that name prefix
and the generated names may be detected as anomalous.
Thus, to protect from an information leakage attack, we have
to know the statistical distribution of the number of possible
tokens appearing after each slash character (“/”) based on
the many Web pages in the Internet. Once the name prefix
is blacklisted, the malware and the attacker must exploit the
other name prefixes that are shared between them.

The features used for creating the name filter (Table 3) are
very simple as they do not reflect any character ordering. An
extension to use n-gram in the features could probably be
more effective to detect Hex as anomalous. However, as for
Token, the character ordering is derived from the extracted
real tokens, so the above extension might be ineffective to
judge Token as anomalous.

As the above discussions, the further improvement of
the proposed name filter taking semantic and correlation of
tokens or characters into account, needs reasonable mod-
elling and assumptions from several other aspects, such as
modelling the naming policy of malicious name for the
information leakage by non-existing potential attackers. This
paper, therefore, treats this kind of extensions as our future
work.

As a precondition, to utilize the proposed NDN name
filter, a policy to allow an enterprise firewall to inspect traffic
from the employees carefully is required. For example, it
is possible for a consumer to obfuscate the Interest name
in some cases such as by avoiding censorship ( [34]–[36]).
Similar to dropping Hex, the proposed name filter would
also drop such an obfuscated name even if the name is
legitimate and is not exploited to perform the information
leakage attack. Moreover, as for an enterprise, in terms of
risk hedge, the enterprise should manage any activities of its
employees in order to not only detect the malicious Interest
names created by malware but also avoid incidents such
as malware infection caused by, for example, a drive-by
download attack and employee’s leaking information to the
outside intentionally.

The proposed name filters can drastically choke informa-
tion leakage throughput per Interest. However, to counteract
the filters, malware can send numerous Interests within a
short period of time to ameliorate the speed of an attack.
Moreover, the malware can exploit an Interest with an ex-
plicit payload in the name (similarly to an HTTP POST
message in the Internet), which is out of scope of the name
filters, and can increase information leakage throughput by
adopting a longer payload. These malicious activities can
be detected by a filter considering an NDN flow, which we
propose as one of our future works.

VIII. RELATED WORK
An information leakage attack through an Interest in NDN
imitates one through DNS tunneling in the Internet. By ex-
ploiting domain names in DNS queries and the corresponding

DNS responses, an outside attacker and the malware inside an
enterprise network bypass a firewall and perform tunneling of
data and commands, and this threat is called DNS tunneling.
Leijenhorst et al. [37] show that DNS tunneling can achieve
up to 110 KB/s in throughput with DNScat [38], which
is as DNS tunneling application, but it adds huge traffic
overhead. Merlo et al. [39] compare several DNS tunneling
tools in terms of throughput, RTT, and overhead. In order
to detect DNS tunneling, some countermeasures have been
proposed. Born et al. [40] and Qi et al. [41] analyze character
frequencies of domain names and detect DNS tunneling.
Alternatively, Farnham [42] investigates not only such a
payload analysis, but also traffic analysis such as analyzing
count and frequency of queries. Ellens et al. [43] also perform
traffic analysis using a flow defined in RFC 3917 [44], and
they report that examples of appropriate metrics to detect
the tunneling are bytes per flow or the number of flows over
time. Kara et al. [45] focus on DNS TXT record and detect
DNS tunneling activities. Aiello et al. [46] analyze simple
statistical properties, such as inter-arrival time of packets and
packet size, and apply them to machine learning techniques.
These countermeasures, however, are only effective to detect
attacks generated by some specific tools such as DNScat
or some malware such as Morto worm [47], which means
that the countermeasures cannot necessarily eliminate the
threat of the attack. Xu et al. [48] conclude that DNS-based
botnet C&C channel, which is based on DNS tunneling,
is “feasible, powerful, and difficult to detect and block”.
Thus, we argue that an information leakage attack through an
Interest in NDN should be one of the essential security threats
in the protocol level such as interest flooding attack [49] and
content poisoning attack [50].

As for an Interest name, there are three types: a human-
readable name, a non-human-readable name, and a combi-
nation of the two. NDN team encourages the use of human-
readable clear-text strings [11]. On the other hand, in order
not to use a public key for data authentication, Baugher et
al. [51] propose self-verifying names, which utilize a hash
value (i.e., non-human readable) in the names obtained from
Catalog. Ghali et al. [52] apply a cryptographic hash function
to (usually human-readable) application-layer names in order
to translate them into network-layer names, which provides
some benefits for FIB, PIT, and CS. Moreover, in order to
realize some cases such as evading censorship [34]–[36],
an encryption method must be applied to Interest names.
However, these research works do not discuss information
leakage attacks through an Interest name in NDN at all.

IX. CONCLUSION
We presented information leakage attacks through a Data
and through an Interest in NDN. Particularly, we investigated
such attacks through an Interest and showed two possible
methods to perform the attack. Moreover, we introduced a
steganography-embedded Interest name to leak information
as a more sophisticated attack to exploit an Interest name
than simply adding leaked information into a name. Then,
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as a countermeasure against the attack, we proposed a name
filter using search engine information and using an isolation
forest to classify a name in the Interest as legitimate or not. In
order to build the filter using an isolation forest, we collected
URLs from a data repository provided by Common Crawl.
Our experiments show that (1) the path part in the URL-based
NDN name is useful for malware to create malicious names
leaking information and hide the activities; (2) it is difficult
to completely prevent information leakage even in NDN;
and (3) the filters can choke information leakage throughput
dramatically and malware needs to send 137 times more
Interest packets to leak information than when filters are not
used. By using our filters, we are able to mitigate the speed
of an information leakage attack by two orders of magnitude,
which makes our filters very efficient to prevent information
leakage in NDN.

Proposing the name filter is a first step to prevent the
information leakage attack, and in order to address mal-
ware’s possible counter-attacks against the name filter such
as sending numerous Interests within a short period of time to
ameliorate the speed of an attack, the next step is to introduce
a flow filter.

APPENDIX A
Figs. 16, 17, 18, 19, and 20 show the cumulative distribution
function (CDF) of attributes 1 to 5 for each TLD. After
summing each CDF for eight TLDs, we divide the sum by
eight to obtain the average CDF (i.e., “overall” in the legend).
In all figures, the CDF of “overall” in the protector’s name
dataset is similar to that in the attacker’s name dataset, while
the CDF of each of the TLDs in the protector’s name dataset
is slightly different from that in the attacker’s name dataset.

APPENDIX B
Table 16 shows the performances of the NDN name filters
(RP

O = 0.1) against the malicious names to leak data (RA
O

= 0.01, 0.05, 0.1, 0.2, 0.3, 0.4) in terms of the true positive
rate and the information leakage throughput per Interest. The
discussion is much the same as in Section VI-B with the
exception of the case of creating malicious names including
“fr” as the TLD. For these names, when RA

O is set to 0.01,
0.05, or 0.1, the true positive rate for Token is higher than that
for Hex. This is because the created malicious names consist
of only the query (see Table 7). Figs. 9 and 11 show that the
average frequency of the percentage character (“%”) in the
query is larger than that in the path. Thus, percent-encoding
may be used more in the query than in the path. In such a
case, the true positive rate for Hex may be lower than that for
Token.
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(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 16: CDF of Number of slash characters in the path.
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(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 17: CDF of Number of equals characters in the query.
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(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 18: CDF of the length of the path.
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(a) Protector’s name dataset.
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(b) Attacker’s name dataset.

FIGURE 19: CDF of the length of the name component.
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(a) Protector’s name dataset.
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FIGURE 20: CDF of the length of the query.
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