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Abstract—Information-leakage is one of the most important
security issues in the current Internet. In Named-Data Network-
ing (NDN), Interest names introduce novel vulnerabilities that
can be exploited. By setting up a malware, Interest names can be
used to encode critical information (steganography embedded) and
to leak information out of the network by generating anomalous
Interest traffic. This security threat based on Interest names does
not exist in IP network, and it is essential to solve this issue to
secure the NDN architecture. This paper performs risk analysis
of information-leakage in NDN. We first describe vulnerabilities
with Interest names and, as countermeasures, we propose a name-
based filter using search engine information, and another filter
using one-class Support Vector Machine (SVM). We collected
URLs from the data repository provided by Common Crawl
and we evaluate the performances of our per-packet filters. We
show that our filters can choke drastically the throughput of
information-leakage, which makes it easier to detect anomalous
Interest traffic. It is therefore possible to mitigate information-
leakage in NDN network and it is a strong incentive for future
deployment of this architecture at the Internet scale.

I. INTRODUCTION

Information-leakage is one of the main security threats
for companies in the Internet and it is mostly the result of
Targeted Attacks as reported in several security reports [1] or
newspapers [2]. Targeted Attacks usually come from a lack
of vigilance from corporate network users, where an attacker
succeeds to access the network by setting up a malware (e.g.,
via emails). The attacker can then access internal resources and
leak crucial information (e.g., customer list, bank information).
Targeted Attacks can have an important impact on the com-
pany business and damage its reputation (e.g., Sony, Target,
etc.). As Named-Data Networking (NDN) [3] is an emerging
architecture proposed for the future Internet, it is essential to
investigate potential security threats with information-leakage.

Thus, the main motivation of this paper is to perform
risk analysis of information-leakage in NDN for a company
network. In this context, this paper will therefore discuss
proper security attacks and protection models. Differently from
IP address field in IP network, the length of names in NDN is
much longer and variable. In addition, NDN forwarding nodes
do not verify if names really exist or not. Thus, attackers can
exploit these vulnerabilities and perform information-leakage
using Interest packets with anomalous content names [4].
Preventing information-leakage in NDN network is essential
to secure its deployment.

This paper shows that a properly configured NDN enter-
prise network can greatly reduce information-leakage. We first

present vulnerabilities with Interest packets and we show that
Interest names can be exploited to encode information (e.g.,
steganography embedded) and to leak information out of the
network by generating anomalous Interest traffic. Then, as
countermeasures, we propose a name-based per-packet filter
using search engine information, by which Interest names are
considered legitimate if highly ranked. For the case that this
filter cannot predict if unreferenced names are legitimate or
anomalous, we propose another filter using one-class Support
Vector Machine (SVM).

We evaluate the performances of our filters by collect-
ing URLs from the data repository provided by Common
Crawl [5]. We show that our filters can choke drastically the
throughput of information-leakage, which makes it easier to
detect anomalous Interest traffic. Malwares have to send 264
times more Interest packets to leak information than without
using our filters, and it reduces drastically the speed of this
threat. Then, network administrators can detect these incidents
and react accordingly to prevent information-leakage. By using
our filter, NDN can therefore be more resilient to information-
leakage and it is a strong incentive for future deployment of
this architecture.

The reminder of this paper is organized as follows. Sec-
tion II describes attack model, while Section III presents
our countermeasures. Section IV provides details on our
data set, and Section V evaluates the performances of the
attack and countermeasures. Section VI surveys related work
about information-leakage in the Internet. Section VII finally
concludes the paper and presents future perspectives.

II. ATTACK BY STEGANOGRAPHY-EMBEDDED INTEREST

A. Information-Leakage through Interest Packets in NDN

NDN is basically a “Pull”-based architecture, in which a
user can reply with a Data packet only if it has received the In-
terest packet for the content name. Thus, information-leakage
through Data packets can be prevented with a properly config-
ured firewall [4]. However, if a computer is compromised by
an attacker’s malware, it is therefore possible for the malware
to use this computer to encode confidential information into
the names of Interest packets (i.e., steganography embedded)
and send these anomalous Interest packets out of the network
toward the attacker. In this paper, we consider the case where
an enterprise network is based on NDN architecture and
connected to NDN Future Internet.



TABLE I: Taxonomy of information-leakage through Interest packets
Features TYPE I TYPE II

one-way Interest Interest and Data
Malware Remote Control No Yes
Retransmission No Yes
Attacker anonymity Yes No∗
Erasure coding Yes No
PIT overflow Yes No
∗Yes, for some cases (bots, etc.)

Enterprise network

Outside network

Malware
Firewall

Interest packet
(Leaked data such as
customer information)

Attacker

NDN node

Compromised
NDN node

Fig. 1: Type I: One-way Interest.

Enterprise network

Outside network

Malware
Firewall

Interest packet
(Answer to command, 

leaked data such as customer information)

Data packet
(Command)

Attacker

Fig. 2: Type II: Interest/Data.

There are two possible methods to perform information-
leakage through Interest packets, referred as “TYPE I” (one-
way Interest packets) and “TYPE II” (Interest packets with
their corresponding Data packets). These methods are sum-
marized on Table I and illustrated on Figs. 1 and 2.

For TYPE I method (Fig. 1), a malware transmits leaked
information out of the enterprise network by sending Interest
packets to the attacker. The malware has to know the name
prefixes toward compromised NDN nodes (e.g., Wi-Fi AP
installed by the attacker) in order to forward Interests to the
attacker. In this method, the attacker does not reply with
any Data packets to the malware and cannot have a fine-
tuned control of the malware. Therefore, in the case that
some Interest packets have been lost, the attacker cannot
request for a retransmission of missing information. This
can happen if a firewall drops packets, or when a PIT is
overflowed. The attacker may use erasure coding such as
LT codes [6] and Raptor codes [7] to deal with dropped
Interest packets. Although this method is not the most efficient
for leaked information, the main advantage of the method is
to preserve the attacker anonymity because only anomalous
Interests packets are received and the attacker does not reply
with any Data packets with its own signature.

For TYPE II method (Fig. 2), an attacker controls explicitly
the malware and can communicate with it by using Interest
and Data packets. Thus, the attacker can remotely control the
malware assuming the name prefix of the attacker is routable
from the malware. In the case of a packet drop, the attacker can
request a retransmission with Data packets and there is no need
to use erasure coding. This method is more efficient than the
TYPE I method, but once the attack is detected, it is possible
for the attacker to be tracked as his signature was included
into Data messages. The attacker, however, can control bots
remotely and avoid being tracked.

Note that in this paper we consider only Name element of
the Interest packet format for information-leakage and we keep
for future work other elements such as Selectors or Nonce [8].

B. Encoding Information into Names with Steganography

/(Organization)/(Directory 1)/…/(Directory n)/(File)?(Query)#(Fragment)

<path><net_loc> <query> <fragment>

Directory Part File Part

<scheme>://<net_loc>/<path>;<params>?<query>#<fragment>

(b)

(a)

Fig. 3: (a) URL [10]; (b) content name naturally extending URL [4].

Mason et al. [9] proposed English Shellcode to encrypt
and hide information, which transforms the Shellcode into
the one similar to English prose. We show a similar design
of encoder/decoder to include some information in names of
Interest packets, assuming:

i) the names in NDN will follow similar naming scheme as
those of URLs in the current Internet and described by
the RFC 1808 [10] (Fig. 3 (a));

ii) the Interest name prefix of the attacker including <net_
loc> part is routable from the malware.

In this paper, we set <net_loc> part and the name of appli-
cation as “attacker.(TLD)" and “/info-leak", respectively. For
example, the name from <scheme> part to “/info-leak" should
be “ndn://attacker.com/info-leak", assuming an attacker creates
anomalous names which belong to “com" domain.
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(Erasure encoding for TYPE I
and) dictionary encoding

Dictionary decoding
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Fig. 4: Transmission of leaked information from malware to attacker.

Fig. 4 shows a general framework to transmit leaked data
from a malware to the attacker. First, the data to be leaked is
compressed (Zip). For TYPE I method, the malware further
encodes the compressed data with erasure encoding. To bypass
a firewall and realize information-leakage with names, the
malware further encodes the output data by our dictionary
encoding for steganography. Then, it creates anomalous names
to leak data. To perform dictionary encoding, we prepare a
table with each dictionary word and its corresponding digits.
The dictionary words used in this paper will be introduced in
the performance evaluation part (Section V).

III. COUNTERMEASURES WITH NAME-BASED FILTERS

This paper focuses on information-leakage from compro-
mised computers in an enterprise network. We therefore as-
sume a regular user behavior to access outside content:

i) users can access remote content, whose names are found
by search engines, or by accessing links toward the
content;

ii) content access policy is managed by network adminis-
trators and they can prohibit accessing unwanted content
names. Network administrators can also explicitly define
White List with names that can be accessed.

A. Name-Based Filter Using Search Engine Information

In the attack by steganography embedded Interest
packets, anomalous names are created in order
to leak information from corporate network (e.g.,
/mydomain/leak/name1/bank1/name2/bank2), and are not



common names to be requested by users with search engines
(e.g., /named-data.net/doc/ndn-tlv/).

Assuming that search engine services will still exist in future
NDN network, search engines could serve to help detecting
legitimate names. Thus, we propose first a name-based filter
using search engine information. For instance, when our filter
receives an Interest name, it performs a request to a search
engine. If the name is indexed by the search engine, the filter
considers the Interest packet as legitimate; otherwise the filter
drops the packet. This first approach is easy to implement
but can also be considered as being naive regarding today’s
Internet use.

Indeed, according to [11], search engines index only 4%
of all content (referred as Surface Web), and the remaining
96% are not indexed by search engine (referred as Deep
Web). In addition, the number of Internet users using search
engine decreases, as its amount was 55% in 2014, to only
49% in 2015 [12]. One of the reasons for this decrease is
the mobile era, and the fact that it is difficult for users
to search content with small-size mobile screen, and they
prefer accessing content via other methods such as social
networks. From company perspectives, it is usually prohibited
for company users, who work with company-supplied personal
computers, to use social networks by their working regulations
in terms of labor productivity as well as information-leakage
prevention. Following the conventions described in this Sec-
tion, the enterprise network administrator will have to define
policy to allow users access remote content; search engine or
authorized links toward content.

As most of content come from Deep Web (96% as stated
before), many of them should still be accessible by company
users. Thus, a huge amount of content is not indexed by
search engines such as newly generated ones or password-
protected ones. A simple name-based filter using search engine
information will therefore not be accurate enough to decide the
legitimates names to be accessed. Indeed, this filter cannot be
aware of most content names that are not indexed. Thus, there
is need to add further information to improve the efficiency of
name-based filter. To overcome this proposal, we go one step
beyond and propose a more sophisticated name-based filter
using one-class SVM.

B. Name-Based Filter Using One-Class SVM
In order to filter out anomalous Interest packers used to leak

information from a corporate network, we propose a name-
based filter using one-class SVM [13]. One-class SVM is a
very useful model to perform an anomaly detection in the
case that there are not enough anomalous samples. It relies
on unsupervised learning techniques that are commonly used
with data mining.

Regarding NDN architecture, as it is not deployed, there are
currently not anomalous traffic nor content names available.
Thus, we rely on URLs that are commonly used on the
Internet.

We thus consider NDN names as being URLs and we
study the URLs properties in the next Section. Based on these
characteristics, we will be able to describe feature vector and
parameters for our name-based filter using one-class SVM
(Section V-A1). Attack scenarios (steganography embedded)
with generated anomalous names will therefore be considered,
and our countermeasures to detect if names are legitimate or
anomalous will be evaluated.

IV. URLS DATASET

NDN is an architecture for Future Internet and it has not
been deployed at large-scale. This is not an operated network
and there is no data set that is representative of regular use
of this network. Thus, we consider names in NDN network
will be based on URLs as stated before. This section presents
therefore our URLs data set and describes in details the
characteristics of the data set.

In order to infer the properties of names commonly used
in the Internet, we collected URLs from the data repository
provided by Common Crawl [5]. At first, we obtained the
crawl archive for February 2016, which holds more than 1.73
billion URLs and we extracted unique URLs belonging to 7
Top-Level Domains (TLDs): “com", “net", “org" and “info"
as gTLDs (generic Top-Level Domain), and “jp", “fr", and
“uk" as ccTLDs (country code Top-Level Domain). In this
data set, the number of URLs vary largely for each TLD
(million to hundred of millions). Thus, in order to obtain the
same amount of URLs for each TLDs, we extract randomly 1
million URLs for each TLDs. Thus, in this paper, we rely on
7 millions URLs and analyze their common characteristics in
the following (1 million for each TLDs).

TABLE II: URL Attributes and computed percentiles

Attributes Percentiles
90% 95% 99%

Path Length (LP) 81 98 147
Query Length (LQ) 108 171 236
Directory Length (LD) 19 34 72
File Name Length (LFN ) 47 72 106
Number of "/" in Path (N/) 4 5 7
Number of "=" in Query (N=) 4 6 13
Number of "&" in Query (N&) 3 5 13
Avg. Alphabet Characters in Path
Avg. Other Characters in Path
Avg. Alphabet Characters in Query
Avg. Other Characters in Query

1) URL Attributes: Similarly to our previous paper [4] ,
we extract from URLs several attributes to describe the URLs
properties (see Fig. 3 (b)) that are summarized in Table II.
All the URLs in our data set provided by Common Crawl did
not necessarily have <fragment> part as defined in RFC 1808.
Thus, we did not consider these URLs for our analysis. For
some other URLs, there is no “file name” attributes because
default pages are often omitted such as index.html. In such
a case, we set the length of file name to 0. In addition, for
each TLD, we compute the average frequencies of alphabet
characters and other printable characters of the URLs path
and query parts. We referred to other printable characters in
URLs as in RFC 3986 [17].

2) URL Statistics for Each TLD: The Cumulative Distribu-
tion Function (CDF) of the attributes is also computed and we
show on Table II the 90/95/99-percentiles of these attributes.
As these CDFs and 95th percentiles are consistent to those
computed for other data set in our previous work [4], we
argue that these distributions are stable for any huge URL
data set repository. Thus, the properties we infer from URLs
can therefore be generalized to any other URLs, and to future
NDN names.

TABLE III: Cosine similarity of averaged frequencies of alphabets
in Path and Query compared to typical English Text

TLD com net org info jp fr uk
Path 0.970 0.957 0.960 0.968 0.976 0.975 0.975
Query 0.930 0.889 0.936 0.928 0.922 0.944 0.947



3) Frequencies of Characters: As Born et al. [23] and Qi
et al. [24] analyse character frequencies in normal domain
names, we compute the averaged frequencies of alphabets and
the other printable characters in Path and Query respectively.
For each TLD, the frequencies of alphabet characters are
consistent, and also are similar to the frequencies of alphabet
characters in typical English Text as defined in [18]. We
then compute the cosine similarities of averaged frequencies
of alphabet characters in Path and Query compared to the
frequencies of alphabet characters in typical English Text as
shown in Table III. From these results, for all TLDs, the cosine
similarities metric for Path and Query parts is larger than 0.957
and 0.889 respectively. In addition, the frequencies of the other
printable characters are also similar. Specific characters such
as ‘-’, ‘_’, ‘.’, and ‘%’ were also more frequently used than
any other.

Thus, our URL data set exhibits high similarity with typical
English Text and this is the reason why we choose Word-
Net [19] as our dictionary coding to create anomalous names
instead of segments from the URL dataset (Section V-B2).

V. PERFORMANCE EVALUATION

In this section, we evaluate the performances of the
steganography embedded Interest packets attacks and show
the throughput that can be achieved to bypass filters and leak
information from the network. We separated the 7 TLDs data
set presented in Section IV into two distinct sets: a Training
set and a Testing set. Each training set contains 800,000 URLs,
and it is used for the SVM to learn the classification rules. The
remaining 200,000 URLs are used to test our filters.

In general, security exploits can be distinguished into two
different types: a1) an attacker does not know the countermea-
sure by the protector; a2) an attacker knows the countermea-
sure but not its parameters. Similarly, for countermeasures: p1)
a protector does not know the attack method by attacker; p2)
a protector knows the attack method but not its parameters.
In this paper, we consider the scenario where the protector
knows the attack method (i.e., steganography embedded Inter-
est packets) and prepares the protection method (i.e., p2). In
order to study the upper limit of information-leakage risk for
the case p2, this paper analyses the risk in the case that the
attacker knows the countermeasure but not its parameters (i.e.,
a2); this case is of benefit to the attacker.

A. Protector
1) Name-Based Filter Using One-Class SVM: We propose

a name-based filter based on one-class SVM as presented
in Section III-B. We derive from the URLs properties 125
features for the one-class SVM method as follows: seven
URLs attributes from Table II (Path Length, Query Length,
etc.), 26 alphabets characters in Path and in Query, 33 other
printable characters in Path and in Query.

For our SVM filter, we choose the “radial basis kernel”
parameter because it is the most adapted to our data set [14].
With this kernel parameter, we made the models fit to the
training set configuring the parameter ν , which is the upper
bound of the training errors, as 0.01, 0.05, 0.1, 0.2, 0.3 and
0.4, and also the parameter γ , which is kernel coefficient, as
one divided by the number of dimensions in the feature vector
(i.e., 1/125), which is the default value in scikit-learn [15]. On
the one hand, if γ is very large, it can lead to over-fitting. On

the other hand, if γ is very small, the model can be similar
to linear model. It means that the training and testing errors
depend on the value of γ .

Table IV shows the training error and testing error for each
value of ν . In all cases, the differences between training and
testing errors are quite small, and the training errors are close
to the ν parameter. As training and testing exhibit the same
low errors, we can generalize the results and the false positive
rate will be close to ν value. Note that false positive rate
is defined as the ratio of the number of legitimate content
names identified as anomalous divided by the total number of
legitimate content names.

B. Attacker

1) Leaked Data: In order to leak the data, we prepared three
Pdf files (Y.4001/F.748.2, Y.4412/F.747.8, Y.4413/F.748.5)
from latest ITU-T recommendations [16]. These Pdf files
include a variety of text and figures, which are common
in technological documents. Specifically, in Y.4001/F.748.2,
Y.4412/F.747.8 and Y.4413/F.748.5, there are 6, 4 and 9 figures
and 18, 22 and 24 pages, respectively. Then, we compressed
and converted these files into a single Zip file (3.4 MBytes).
Hereafter, we consider how an attacker obtains this file. In our
experiment, the Zip file is directly encoded into the names
in Interest packets by dictionary encoding without erasure
encoding.

Start to create
anomalous names

Extract legitimate URLs
from test set of “com” domain for target !

Obtain longest URL
among legitimate URLs in "com” domain

Finish to create
anomalous names

Extract length of path and query,
and number of slashes and equals from this URL

All anomalous names
to leak data have already 

been created?

Append words to “ndn://attacker.com/info-leak” 
considering length of path and number of slashes

Append words to question mark
considering length of query and number of equals

Yes

No

Append question mark to <path> part 

Fig. 5: Flow to create anomalous names to leak data in the “com"
domain (Explanation about ν is shown in Section V-A1).

2) Anomalous Name Creation by Attacker: Fig. 5 shows the
detailed flow to create anomalous names with the dictionary
coding (i.e., steganography) in “com" TLD. As an attacker
wants to add as many meaningful words as possible into each
name to increase the throughput of the leaked information, the
main principles to create anomalous names are (i) to choose
the legitimate URL whose length is long enough; (ii) then to
extract the name features (such as Path Length); and (iii) to
make the anomalous names similar to the selected URL.



TABLE IV: Training error and testing error

TLD ν = 0.01,γ = 1/125 ν = 0.05,γ = 1/125 ν = 0.1,γ = 1/125 ν = 0.2,γ = 1/125 ν = 0.3,γ = 1/125 ν = 0.4,γ = 1/125
Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

com 0.0209 0.0228 0.0603 0.0606 0.110 0.111 0.199 0.200 0.308 0.309 0.396 0.397
net 0.0101 0.0112 0.0498 0.0503 0.113 0.114 0.212 0.213 0.296 0.296 0.393 0.392
org 0.0103 0.0117 0.0499 0.0512 0.0996 0.100 0.206 0.207 0.297 0.298 0.394 0.395
info 0.0102 0.0109 0.0498 0.0509 0.0993 0.101 0.198 0.199 0.295 0.295 0.393 0.393
jp 0.0101 0.0106 0.0795 0.0789 0.0990 0.0987 0.197 0.195 0.294 0.293 0.420 0.418
fr 0.0378 0.0386 0.0498 0.0501 0.0995 0.0986 0.199 0.197 0.297 0.296 0.423 0.422
uk 0.0103 0.0120 0.0685 0.0684 0.118 0.117 0.199 0.198 0.316 0.315 0.415 0.414

TABLE V: Threshold of each attribute in anomalous names
TLD ν = 0.01 ν = 0.05 ν = 0.1 ν = 0.2 ν = 0.3 ν = 0.4

LP LQ N/ N= LP LQ N/ N= LP LQ N/ N= LP LQ N/ N= LP LQ N/ N= LP LQ N/ N=

com 10 773 2 15 19 391 3 7 19 230 3 7 16 171 2 6 15 141 2 3 15 112 2 4
net 32 496 4 4 212 0 12 0 19 178 2 7 16 118 2 6 22 80 2 2 20 76 2 3
org 22 334 2 3 16 248 2 4 15 212 2 6 16 151 2 6 17 109 2 5 17 98 2 4
info 206 121 5 5 26 249 2 24 26 245 2 24 46 67 3 4 14 86 2 5 16 80 2 1
jp 342 0 3 0 226 0 3 0 191 0 4 0 191 0 4 0 191 0 4 0 190 0 4 0
fr 286 0 10 0 10 261 1 10 10 259 1 10 10 229 1 9 26 189 3 14 26 178 3 14
uk 15 270 2 3 11 263 1 14 11 263 1 14 11 260 1 14 11 258 1 14 12 132 2 7

In order to prepare a table with each dictionary words and its
corresponding digits (steganography), we extracted the words
from WordNet [19]. WordNet 3.1 counts 147,478 words. In
terms of the transmission rate, it is better to select shorter
words. Therefore, we sort the 147,478 unique words in as-
cending order of their length, we extract the top 164 = 65,536
words, and we assign 4 hexadecimal digits to each word in
our conversion table.

We assume that the attacker prepares a data set indepen-
dently from the protector and builds its one-class SVM filter
by using this dataset and creates information-leakage packets
with anomalous content names. For each TLD, Table V shows
the threshold value of each attribute for building anomalous
names with flow from Fig. 5. These thresholds are presented
for ν value from 0.01 to 0.4. LP, LQ, N/ and N= show the
threshold of the Path Length, the threshold of the query length,
the number of ‘/’ and the number of ‘=’, respectively.

C. Per-Packet Throughput of Information-Leakage
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Fig. 6: ROC curve for dictionary encoding with ν = 0.4.

Fig. 6 shows the ROC curves when the names by dictionary
encoding designed for the thresholds at ν = 0.4 are processed
by the filters designed for ν = 0.01 to 0.4. While the True
Positive Rate (TPR), which is defined as the ratio of the
number of anomalous content names identified as anomalous
divided by the total number of anomalous content names, all
false positive rates are the testing errors for the filters using
one-class SVM shown in Table IV. Fig. 6 shows that all the
TPR are almost 0 for ν < 0.2 except for the “fr" domain. The
reason why TPR for “fr" domain is high is that N= = 14 at

ν = 0.4, and it is a much larger value than the one computed
in Table II (95th percentile, N= = 6).

If our filter is not used, the attacker can fill the URL with
the leaked data in hexadecimal digits. Selecting the longest
URL in our data sets (4,127 characters excluding FQDN),
the per-packet throughput of information-leakage reaches 2.06
KBytes/Interest_packet, which is maximum since 1 Byte of
leaked data is mapped into 2 hexadecimal digits.

If our filter is used, as shown in Section V-B2, the attacker
has to encode two Bytes of leaked data into each word used in
the name template (e.g., ndn://attacker.com/info-leak/word1?
key1=word2&key2=word3&key3=word4&key4=word5).
Thus, as an example, our created name template conveys at
most 10 Bytes of leaked data because all the words in the
template may not be used due to the threshold restrictions
in Table V. When ν for the one-class SVM filter is set to
less than 0.2, our SVM filter can start filtering out some of
these packets. For each name template, regarding previous
example in Section V-B1 with 3.4 MB of leaked data, one
can compute the per-packet throughput by summing up all the
received leaked data bytes and dividing this sum by all the
sent packets. The average of per-packet throughput for all the
domains except “fr" gives the information-leakage throughput
in our data set, which is up to 7.79 Bytes/Interest_packet. We
do not include “fr" domain as its TPR was high compared
with other domains (Fig. 6). Thus, by using our filter, the
malware has to send 264 times more Interest packets to the
attacker than without using the filter (2.06 KB/7.79 B).

D. Discussion
According to Fig. 6, we find that an attacker can per-

form information-leakage through Interest packets with two
methods. The first one is to design anomalous names for
ν parameter much larger than the one of the targeted fire-
wall. The second is to choose the best URL seed for this
larger ν . The best seed URL to create anomalous names
must be the longest URL with N/ and N= less than their
95th percentile, LP > (Average word length) ·N/, and LQ >
(Average word length+key length) ·N=.

Note that the false positive rates shown in Fig. 6 are
computed only for the filter using one-class SVM. Actual false
positive rate should be computed after checking content names
with the name-based filter using search engine information
and one-class SVM. Thus, the actual false positive rate is
ν × RNotIndexed . RNotIndexed is the probability that legitimate



users access real Deep Web content, which are not indexed
by search engine. Fig. 7 shows the actual false positive rate
for each ν depends on RNotIndexed , which will be very small
if the enterprise network is properly managed. Therefore, we
can keep low false positive rate and high performance for our
filter.
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Fig. 7: Actual false positive rate.

Although it is possible for information to be leaked from
NDN network through Interest packets, our proposed fil-
ter chokes off per-packet throughput of information-leakage.
Therefore, the malware has to send a huge amount of Interest
packets to the attacker to leak information and the throughput
of this threat is drastically reduced. Thanks to our filter, it
will be easy to detect anomalous Interest traffic by a per-flow
filter based on traffic analysis at the subsequent stage. Network
administrator can also perform naming policy control in NDN
and reduces risks of information-leakage.

VI. RELATED WORK

In this section, we present information-leakage through
DNS Tunneling in the Internet, whose schema is similar to
information-leakage through Interest packets in NDN.

In the Internet, it is possible to bypass a firewall and realize
tunneling of data and commands by exploiting DNS queries
and responses. This threat is called DNS tunneling. When
an attacker carries out DNS tunneling, the attacker exploits
Fully Qualified Domain Name (FQDN) or DNS record such
as TXT record; the attacker can therefore access important
information. Leijenhorst et al. [20] show that DNS tunneling
can achieve 110 KBps with DNScat [21], but it adds huge
traffic overhead. Merlo et al. [22] compare some DNS tun-
neling tools in terms of throughput, RTT, and overhead. In
order to detect DNS tunneling, some countermeasures have
been proposed. Born et al. [23] and Qi et al. [24] analyze
domain names character frequencies and detect DNS tunneling
domain names. Differently, Farnham [25] investigates not only
payload but also traffic analysis (e.g., frequency analysis for
domain name). Kara et al. [26] focus on DNS TXT record
and detect DNS tunneling activities with this record. But these
countermeasures are only effective to detect attacks generated
by Morto worm [27] or other specific tools. Xu et al. [28]
concludes that DNS-based botnet C&C channel, which is
based on DNS tunneling, is “feasible, powerful, and difficult
to detect and block”.

VII. CONCLUSION

This paper performs risk analysis of information-leakage in
NDN architecture. At first, this paper presents two possible at-
tacks to perform information-leakage through Interest packets
based on content names utilizing steganography. Then, this
paper proposes a name-based per-packet filter using search
engine information and another per-packet filter using one-
class SVM. We collected URLs from the data repository
provided by Common Crawl and evaluate the performances
of our filters. Our per-packet filters can reduce drastically the
speed of this threat, so that malwares have to send 264 times
more Interest packets to leak information. Then, it is possible
to mitigate information-leakage in NDN network, and thus
the NDN architecture will be more resilient to information-
leakage.

As next step, we will propose per-flow filters against pos-
sible counter-attacks for our per-packet filters.
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