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A B S T R A C T

In remote areas, the vital need is production of drinking water and the provision of electrical energy for housing.
Often the only sources of energy are based on renewable energies with storage to create a local micro-network.
This paper investigates the optimal design of embodied energy for water treatment by reverse osmosis, coming
from brackish water (6 g/l) and with a double storage that is done in a drinking water tank and in batteries for
electricity. Taking account wind and photovoltaic potentials in such system for assessing its performance implies
its simulation over long periods of time. This can drastically increase the CPU time cost related to the design step,
especially if the system energy management and sizing are sequentially optimized into a two-level optimization
process. In order to solve this problem and accelerate the system simulation, meta-models are used for re-
presenting the system constraints and objectives. These meta-models are built by the design of experiments
method. From realistic data, the results of this paper show that the contribution of the meta-models divides by
two or three the design time by obtaining values of the sizing parameters close to the dynamic simulator de-
picting the real operation of the whole system.

1. Introduction

Around the world, large-scale development of renewable energy
technologies is giving new opportunities to regions that lack fresh water
and electricity. Even regions rich in fossil energy are beginning to worry
about energy efficiency, long-term sustainability and environmental
friendliness [1]. Today, many papers deal with systems for generating
electrical energy from renewable energies: development of structures
and their optimal sizing based on environmental and/or economical
considerations [2,3]. In this regard, it is necessary to select and con-
figure the optimal life cycle calibration of all hybrid renewable energy
systems to operate at minimum economic and energy costs (embodied
energy) while maintaining reliability of the system. From electrical
energy, often the reverse osmosis process is used, because the need is to
supply booster pumps and to fill tanks [4,5]. But intermittent renewable
sources require the establishment of storage elements and/or mixing
several sources. Many papers have already been published in this
context. A study in Australia shows, when the distribution network is
present, adding a wind turbine, PV and not using batteries reduces the
financial cost of water production [6]. Another in Iran, on a remote site

not really favorable for the wind turbine, shows that it is more profit-
able to use only PV with batteries [7]. Thus, the context of the site is a
very important factor in the choice of the structure of the freshwater
production system.

Regarding the design, sizing and optimization of the power systems
based on renewable energy sources, several approaches are proposed
using different indicators and configurations. For hybrid wind-solar
power systems, linear programming techniques [8,9], pattern search
based on SMCS (Sequential Monte Carlo Simulation) [10], particle
swarm optimization algorithm [11], bees algorithm [12] have been
applied under economic and technical indicators. An optimal sizing
using a linear programming of photovoltaic power plants based on the
optimal participation in electricity markets has been developed in Ref.
[13]. In Ref. [14], a method employs the genetic algorithm to reduce
the total cost of an offshore wind farm by optimizing its architectural
design. A recent paper compares several optimization approaches for
reverse osmosis water desalination system with solar and wind hybrid
energy [15]. A robust solution method proposed in Ref. [16] used
DIgSILENT Power Factory software for optimally coordinating a mix of
distributed energy resources in the presence of high wind penetration to
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simultaneously minimize operating costs and maximize the utilization
of wind turbine generation.

Many sizing optimization publications optimize life cycle cost [1-
7,9-13] and take into account weather conditions (wind speed, solar
radiation and temperature) for one year [5-7,12,17,18]. In this paper,
modeling is done on the amount of embodied energy (EE) for the life
cycle of each element of the system, from meteorological records (wind
speed, solar radiation, and temperature) over a year and for isolated
sites. Sizing optimization is always done using optimization algorithms
that require a high CPU time for the implementation of the optimization
algorithms that depends on the modeling used to represent the opera-
tion of the system. Some authors use a dynamic simulator including the
physical equations of each element, weather data and load equations.
The resolution is done with a computing step of several minutes or
hours. Thus, one year data resolution represents several thousand
computation loops for one parameter vector. So, global optimization
can take a CPU time of several days if the system is a bit complex. The
goal of this paper is to propose a new modeling based on meta-models
that replaces the dynamic simulator with an equation vector that links
the outputs with the parameter vector in the optimization process. The
quality of the meta-models becomes a crucial point for the quality of the
results and it is also important to minimize the time to establish these
meta-models. Early experiments have shown that the Design Of Ex-
periments (DOE) approach can give good results. The application of the
DOE method in several areas has been discussed by many authors
[19,20], but only a very few attempts have been made to integrate the
DOE in systemic design. In a recent study, a modeling approach is
presented by Ref. [17] to size an autonomous multi-source system with
battery storage and a diesel generator. It is also used in Ref. [21] for a
photovoltaic/wind/Battery energy system with storage to investigate a
meta-model by hybrid spline interpolation. This study contributes to
integrate a sizing methodology with DOE to optimize a freshwater and
electricity production by multi-source renewable energy systems lo-
cated in remote areas.

This paper gathers the papers already made in this area by the same
authors by presenting the complete study with the results obtained and
which integrates a new modeling of the reverse osmosis unit with its

motor pump for a salinity of the water: 6 g/l (brackish water from
southern Tunisia (see Appendix A)). This last model uses only one
parameter, which is the cubic meter per day (CMD), to limit the number
of parameters in order to reduce the complexity of the system. The
paper is organized as follows: after the Introduction, Section 2 describes
the system with its modeling, presents the methodology to realize the
optimization by implementing a dynamic simulator or meta-models.
Section 3 shows the results and discusses the results obtained. The
paper ends with a conclusion, one appendix and the bibliographic re-
ferences.

2. Description and methodology

2.1. System description

2.1.1. Architecture
The electricity acquired from photovoltaic panels (PV) wind tur-

bines (WT) will be used to feed the motor-pumps of a hydraulic process
(water pumping and reverse osmosis desalination unit) and other
electrical house loads. The system has two types of storage: battery
energy storage and hydraulic storage in water tanks (brackish water
storage and freshwater storage). The global architecture of the system,
shown in Fig. 1, corresponds to the application described for the iso-
lated areas. The different subsystems are coupled to the DC bus with
different converters (DC/DC, AC/DC or DC/AC).

The hydraulic loads are composed of a first motor-pump 1 used to
pump brackish water from well and to store it in a first tank and a
second motor-pump supplied by the brackish water (6 g/l (see
Appendix A)) to the Reverse Osmosis (RO) desalination unit to produce
freshwater. This freshwater is stored in a second tank without pumping.

2.1.2. Power and water flow models
This part is devoted to the power and water flow models of the

investigated system. In the context of optimizing the size of the system,
it is important to specify all energy models with significant expressions
to reduce the running time of the optimization program. For all re-
newable energy generator, the maximum power is taken account in the

Nomenclature

β coefficient of the temperature of the PV cells (%)
Δt sampling step (h)
ηr polycrystalline solar PV efficiency (%)
ηCou Coulomb efficiency for charge-discharge (%)
ηpc aging factor (%)
ηsc, ηg static converter efficiency, generator efficiency (%)
ρ air density (kg/m3)
AWT wind turbine swept area (m2)
Cn nominal battery capacity (Ah)
Cp,opt optimal wind turbine power coefficient (%)
CMD RO size (cubic meters per day)
EE embodied energy (MJ)
EEBAT battery embodied energy (MJ)
EEMP motor-pumps 1 and 2 embodied energy (MJ)
EEOI RO embodied energy (MJ)
EEPV PV embodied energy (MJ)
EEST tanks 1 and 2 embodied energy (MJ)
EEWT wind turbine embodied energy (MJ)
IBat battery current (A)
L1, L2 tank 1, tank 2 water level (m)
L2u intermediate water level in tank 2 (m)
LPSPE Loss of electric Power Supply Probability (%)
LPSPH Loss of hydraulic Power Supply Probability (%)
min(L1)> 0 minimum level in tank 1 (m)

NOCT nominal operating cell temperature (°C)
P1, P2 motor-pumps 1, 2 electric power (W)
Pr pump 1 pressure (bar)
PBat battery power (W)
PCV 1, PCV 2 converter power of motor-pumps 1 and 2 (V.A)
PDiff = PPV+ PWT− Pload−elec (W)
Pload−elec electric power consumed (W)
PPV optimal photovoltaic generator power (W)
PWT wind turbine power (W)
Q1, Q2 motor-pumps 1, 2 flow rate (m3/h)
Q2p freshwater flow rate (m3/h)
Q2r concentrate flow rate (m3/h)
Qload−hydrau water consumed (m3/h)
Rr recovery rate (%)
S1, S2 tank 1, tank 2 surface area (m2)
SOC state of charge (%)
SOCu intermediate state of charge (%)
Ta ambient temperature (°C)
Tc temperature of the PV cells (°C)
V Bat voltage battery (V)
V wind wind speed (m/s)
DOE design of experiments
PV photovoltaic panel
RO reverse osmosis membrane
WT wind turbine



formulas. That means the MPPT algorithm (maximum power point
tracking) is considered as perfect.

2.1.2.1. Turbine model. The optimal wind turbine power (with MPPT)
versus time PWT(t) has the following expression [22,23]:

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅P t η η C ρ A V t( ) 1
2

( )WT sc g p opt WT wind,
3

(1)

with

ηsc, ηg static converter efficiency, generator efficiency,
Cp,opt optimal wind turbine power coefficient (i.e. corresponding to

a perfect maximum point tracker),
ρ air density (kg/m3),
AWT wind turbine swept area (m2),
V wind (t) wind speed versus time (m/s)).

2.1.2.2. Photovoltaic generator model. The optimal photovoltaic
generator power (with MPPT) versus time PPV(t) (W) is proportional
to the panel area APV (m2) and the solar irradiation versus time Ir(t) (W/
m2), and depends on total efficiency versus time ηt(t) [24,25]:

= ⋅ ⋅P t η t A I t( ) ( ) ( )PV t PV r (2)

with

= ⋅ ⋅ ⋅ − ⋅ −η t η η η β T t NOCT( ) (1 ( ( ) )t r pc sc c (3)

with

ηr polycrystalline solar PV efficiency (value taken: 13%),
ηpc aging factor,
ηsc static converter efficiency,
β coefficient of the temperature of the PV cells (0.004 to

0.006(°C−1),
NOCT nominal operating cell temperature,
Tc (t) temperature of the PV cells versus time (°C). with the ex-

pression of Tc [26]:

= + ⋅ − + ⋅ −T t I t T t( ) 30 0.0175 ( ( ) 300) 1.14 ( ( ) 25)c r a (4)

Ta (t) ambient temperature versus time (°C).

2.1.2.3. Electrical battery model. For the integration of the battery in the
dynamic simulator, the most simple model is a constant internal voltage
E0 with a constant internal resistance rBat [27]:

= − ⋅V t E r I t( ) ( )Bat Bat Bat0 (5)

= ⋅P t V t I t( ) ( ) ( )Bat Bat Bat (6)

where IBat(t) and PBat(t) are the battery current and power versus time
(t).

The state of charge evolution versus time SOC(t) of the battery de-
pends on the battery current versus time IBat(t):

= − + ⋅ ⋅SOC t SOC t t η I t t
C

( ) ( Δ ) ( ) Δ
Cou

Bat

n (7)

where Δt (h) denotes the sampling step, Cn: nominal battery capacity
(Ah), ηCou: Coulomb efficiency for charge-discharge. Taking account the
battery lifetime implies the SOC to stay into two technological limits;
high and low according the following equations:

≤ ≤SOC SOC t SOC( )min max (8)

with

SOCmin, SOCmax minimal and maximal states of charge respectively.

2.1.2.4. Drawing water pump. Centrifugal pumps, with induction motor,
are commonly used for pumping water from well. In this case, the
motor-pump 1 is powered by three-phase power at fixed frequency for
obtaining fixed speed, because the load law pressure (Pr) vs flow rate
(Q1) is almost constant and a variable speed would lead to a less energy
efficiency. The design parameter is the electric power P1 consumed by
the motor-pump 1. So, it is necessary to develop a equation linking the
flow rate Q1 with the electric power P1.

From GRUNDFOS manufacturer pump datasheets and with the
specifications of the hydraulic system, the range of pumps CRN 3 is the
good choice. With the help of WinCAPS software [28,29], it allows us to
calculate different operating points depending on the hydraulic load for
the different pump sizes. Fig. 2 shows hydraulic data (pressure vs flow
rate) for five sizes of the CRN3 pump type. The intersection of these five
curves with the hydraulic load curve gives the five operating points (A
to E).

Fig. 1. The global system architecture.



WinCAPS software also allows calculating the electric power of
these five operating points. With “curve fitting tool” of Matlab, a
polynomial model (fourth degree) can depict these five operating
points. Fig. 3 shows the characteristic of the flow rate Q1 according to
the electric power P1(t) of the motor-pump 1 (computing data and
polynomial model). This curve is valid only for fixed hydraulic load by
extrapolation from real pumps. The polynomial equation is as follows:

= ⋅ + ⋅ + ⋅ + ⋅ +Q a P a P a P a P a1 4 1
4

3 1
3

2 1
2

1 1 0 (9)

where ai(i=0..4): (a0=−3m3/h, a1= 1.5E–02m3/h/W,
a2=−1.5E–05m3/h/W2, a3= 8E-09m3/h/W3, a4=−1.6E–12m3/
h/W4).

2.1.2.5. Water pumping and its desalination system. Freshwater
production is achieved by using reverse osmosis (RO) membrane from
the brackish water of tank 1. So the motor-pump P2 allows boosting the
permeate (fresh) water flow which is collected in the tank 2 (see Fig. 1).
In optimization goal, it is necessary to minimize the number of sizing
parameters. So, a new compact model of the RO with the pump P2 is
developed in this paper requiring only one design parameter. The
reverse osmosis (RO) membrane needs high pressure for the good
operating of the RO. This pressure must exceed the osmotic pressure of
the brackish water. The characteristic pressure/flow rate of the pump
must be appropriate to the size of the RO membrane with the best
energy efficiency. Thus, the size of the RO membrane was retained as
the unique design parameter. This size, noted CMD (Cubic Meters per
Day) in the paper, is defined as the nominal production capacity of
freshwater per day (m3/d). Hydraulic load made by the RO membrane
leads to a large variability of the pressure vs flow rate. Thus, the motor-
pump P2, thanks to variable speed, can modulate the flow rate and
hence the consumed electric power. With the help of WinCAPS software
for pumps and ROSA software [30,31] for RO membrane (Filmtec), they

allow us to calculate the hydraulic characteristics depending on the size
for both and the speed for pumps. Fig. 4 shows hydraulic characteristic
(pressure vs flow rate) for two sizes of the reverse osmosis membrane
(CMD1 and CMD2) with the same pump CRN10-18 operating for two
frequencies (40 Hz and 50 Hz). The intersection of the four curves leads
to the operating points (CMD1-40, CMD1-50 and CMD2-40, CMD2-50).

Like for the pump 1, to optimize the size of the studied system, an
equation between the size of the RO membrane (CMD), the flow rate
(Q2) and the electric power (P2) has to be found. With WinCAPS and
ROSA softwares, different combinations of pump-RO membrane can be
defined with a good energy efficiency on a large scale by means of
variable speed motor. Thus, Table 1 shows the selected combinations.
Fig. 5 shows the results of these four combinations with the power
supply frequency varying from 30Hz to 50 Hz.

With “Surface Fitting Tool” of Matlab, a custom model (10) can
depict these four pump-RO membrane combinations. Fig. 5 shows the
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Table 1
Some configurations using moto-pumps “CRN” of Grunfos and RO membrane
"BW30" of Filmtec.

Moto-pump of CRN type RO membrane of BW30 type

CRN1S-36 (1.1 kW) BW30-2540 (CMD=3.2 m3/d)
CRN3-29 (2.2 kW) BW30-4040 (CMD=9.1 m3/d)
CRN10-18 (7.5 kW) BW30-330 (CMD=28.4 m3/d)
CRN10-18 (7.5 kW) BW30-400 (CMD=40.0 m3/d)

Fig. 5. Flow rate Q2 vs electric power P2 for four CRN pump-RO membrane
combinations in variable power supply frequency and the Q2 vs P2 model (10).



= ⋅ ⋅Q P CMD0.01224 .2 2
0.5341 0.5525 (10)

When the size of the RO membrane is fixed, the electric power depends
on the supply frequency (speed) of the motor-pump. For operational
frequency range (fs) between 30 Hz and 50 Hz, the electric power has
one operational range between P2,min (for fs=30Hz) to P2,max (for
fs=50Hz) where:

⎧
⎨⎩

= ⋅
= ⋅

P CMD
P CMD

104.8
478.7

.2,min
0.6772

2,max
0.7058 (11)

To know the freshwater flow produced by the RO membrane, there is a
recovery rate Rr which depends of the RO membrane surface and the
upstream flow rate. The relation of the recovery rate Rr can be extra-
polated as follows:

= ⋅ ⋅ −R Q CMD0.1623r 2
0.452 0.3535 (12)

with the recovery rate Rr and the flow rate Q2, the freshwater flow Q2p

and the concentrate flow Q2r are calculated by the following relation-
ships:

⎧
⎨⎩

= ⋅
= −

Q R Q
Q Q Q .p r

r p

2 2

2 2 2 (13)

Consequently, with the Eqs. (10) to (13), we obtain the relation of the
freshwater production Q2p as function of the power P2 and the size of
the RO membrane as follows:

= ⋅ ⋅ + ⋅−Q P CMD(3.25 10 5 0.0264) .p2 2
0.4636 (14)

2.1.2.6. Water tanks. In our system, two storage tanks are used: one for
storing the brackish water filled by the drawing pump 1, and a second
for the freshwater produced by the desalination process (RO membrane
+ pump 2). The capacities of water tanks 1 and 2 depend on the surface
area and height of the tanks. In the optimization process, the tank
heights remain constant, and the surface areas will be considered as the
design parameters. In dynamic operation, the storage capacity is
proportional to the water level in the tank. For the tanks 1 and 2,
these levels are noted L1 and L2, respectively. In dynamic operation, the
level L1(t) is determined by the flow rates of the two pumps as follows:

⎧
⎨⎩

= − + − ⋅L t L t t Q t Q t
S

t( ) ( Δ ) ( ) ( ) Δ1 1
1 2

1 (15)

In dynamic operation, the level L2(t) is determined by the permeate
water flow Q2p(t) from the RO membrane and the water consumed
Qload−hydrau(t) as follows:

⎧
⎨⎩

= − +
−

⋅−L t L t t
Q t Q t

S
t( ) ( Δ )

( ) ( )
Δp load hydrau

2 2
2

2 (16)

with Δt: sampling time step (h) and S1, S2: surface areas of tank 1 and
tank 2 respectively.

2.1.2.7. Freshwater and electricity loads. Electricity and freshwater
consumption correspond to a family home. The electrical demand is
defined over one week and repeated each week with seasonal
modulation [18]. Fig. 6 shows the electrical power demand for a
typical week. Freshwater demand is defined over one day and repeated
each day [18]. Fig. 7 shows the water flow demand for a typical day.

2.2. Resolution system

In order to optimize the sizing of all the parameters of this system, it
is necessary to solve the system in a real environment for one year,
using a dynamic simulator. Weather profiles: wind speed (V wind), solar
irradiation (Ir) and ambient temperature (Ta) must be known. The re-
solution system uses recording data from a typical region (North
Tunisia) during one year with a acquisition time of half an hour. Before
starting the optimization problem, the following paragraph defines two
performance indicators (LPSPE and LPSPH) that are used in the criteria
to be optimized and also in the constraints by limiting their values.

2.2.1. Performance indicators
2.2.1.1. Loss of electric Power Supply Probability (LPSPE).

= ⋅
∑ ⋅

∑ ⋅
=

= −
LPSP

δP t

P t
(%) 100

| | Δ

Δ
E

i
T i

i
T

load elec
i

1

1

s

s (17)

with δPi: electric power not delivered by the source to the load at the
time i during Δt, −Pload elec

i : electric power consumed by the load at the
time i during Δt, Δt: sampling time step (h).

2.2.1.2. Loss of hydraulic Power Supply Probability (LPSPH).

= ⋅
∑ ⋅

∑ ⋅
= − ≤

= −
LPSP

Q t

Q t
(%) 100

[ Δ ]

Δ
H

i
T

load hydrau
i

L

i
T

load hydrau
i

1 0

1

s i

s
2

(18)

with −Qload hydrau
i : flow of consumed water at the time i during Δt, ≤L 0i

2 :
hydraulic failure when the tank 2 is empty during Δt.

2.2.2. Dynamic simulator
For each design parameter, it is necessary to calculate the powers

evolution's involved (PPV(t), PWT(t), PBat(t)), the state of the battery
(SOC(t)), the water levels in each tank (L1(t), L2(t)), the power of the
motor-pumps (P1(t), P2(t)) and the satisfaction or not to supply the
electrical and hydraulic loads with a energy management. The energy
management of such system constitutes itself a difficult issue which can

Fig. 6. Weekly electrical power consumption profile.

Fig. 7. Daily freshwater consumption profile.

characteristic of the flow rate Q2 according to the electric power P2 of 
the motor-pump 2 (real data and the custom model). This curve is valid 
only for the optimal pump-RO membrane combinations from RO 
Filmtec membranes and real Danfos pumps supplied at variable fre-
quency between 30 Hz and 50 Hz. The equation linking the RO mem-
brane (CMD), the flow rate (Q2) and the electric power (P2) is as fol-
lows:



be solved using optimal control methods. In this paper, a simple (rule
based) but quite efficient energy management strategy developed in
previous works [32] has been used. Fig. 8 shows the simplified principle
of the management of the operation of the two motor-pumps 1 (P1) and
2 (P2) and the supply of the electric charge (Pload−elec) according to the
SOC(t) of the battery compared to the SOCu and the water levels in the
tanks (at the levels L1,min and L2,u). For more information, readers can
refer to the paper [32]. For this purpose, a dynamic simulator (see
Fig. 9) calculates the state of the system (all the variables listed above)
and the system indicators (LPSPE, LPSPH, min(L1)) over a year, with a
sampling step, according to meteorological data (wind speed, irradia-
tion, temperature) [18].

2.2.3. Meta-models synthesis process
In order to speed up the optimization system, meta-models are used

to model the system in its specific environment. For this, the meta-
modeling by design of experiments (DOE) is efficient. The first step
consists in creating a database of the outputs according to the inputs.
This database is created with the dynamic simulator for simulated ex-
periments. In order to avoid a huge database, the latin hypercube
sampling (LHS) method is used to obtain only 5000 points [33] (with
nine inputs, which are the decision variables displayed in Table 2).

Secondly, the goal is to find the best equation for each output ac-
cording to the inputs in accordance with experiments. Thus, the
“Model-Based Calibration” toolbox is used with equations of the B-
spline form.

The meta-modeling process is summarized in Fig. 10 where xi de-
notes the decision variables, yi the dynamic simulator outputs and yi the
meta-model outputs. The expressions are as follows:
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2.3. Optimization principle

The goal consists in doing the co-optimization of the system sizing
with an energy management. This involves two optimization nested
loops. Firstly, the size of each element composing the photovoltaic/
wind system for the production of electricity and freshwater has to be
determined: PV and wind turbine surfaces, nominal power of pumps,
volume of tanks, battery capacity and RO membrane capacity.
Secondly, for sharing energy storage between the battery and the
freshwater tank, two intermediate levels of storage (one in the battery
(SOCu) and the second in the freshwater tank (L2u)) are used by the
energy management. This consists reserving enough in both storages for
anticipating the lacking phases of renewable energy. To optimize the
total embodied energy (EE) of the system throughout its life cycle, it is
necessary to define the cost model (MJ) of each element used. The next
part gives these relations.

2.3.1. Embodied energy modeling
For the studied system (based on renewable energy), embodied

energy is mainly consumed during elements manufacturing, on-site
construction and decommissioning at end of life. Embodied energy
consumed during the lifetime (maintenance) is relatively low, but taken
account in the paper. The following paragraphs show the relationships
of the EE of each element of the studied system in terms of their design
parameter.

2.3.1.1. Wind turbine. The embodied energy of wind turbine EEWT (MJ)
is based on the swept area of the rotor AWT (m2). The analytic
relationship, coming from Ref. [34], is as follows:

= ⋅ +EE A2360 1875.WT WT (20)

2.3.1.2. Photovoltaic panels. The embodied energy of PV panel EEPV
(MJ) is based on their surface area APV (m2). The analytic relationship,
coming from Ref. [34], is as follows:

= ⋅ −EE A3863 47.PV PV (21)

2.3.1.3. Battery. The embodied energy of battery EEBAT (MJ) is based
on its storage capacity Cn (Ah) for the battery voltage of 12 V. The
analytic relationship, coming from Ref. [18], is as follows:

= ⋅ ⋅EE N C60BAT r n (22)

with Nr: number of battery replacement during the life cycle of the
system.

2.3.1.4. Pumps. The embodied energy of motor-pumps EEMP (MJ) is
based on their nominal electric power P1n (kW) and P2n (kW). The total
for the two pumps with their supply converter, the analytic relationship
coming from Ref. [34] is as follows:

= ⋅ + ⋅ + ⋅ +EE P P P P283 684 2200 ( )MP n n CV CV1 2 1 2 (23)

with PCV 1, PCV 2: nominal power of supply converters feeding

Fig. 9. Dynamic simulator with energy management.

Table 2
Exploration range of decision variables.

Parameter Minimum value Maximum value

APV (m2) 20 100
AWT (m2) 80 160
Cn (Ah) 200 1400
P1 (W) 1500 2500
CMD (m3/day) 10 40
S1 (m2) 1 20
S2 (m2) 20 200
L2,u (m) 0.3 1.9
SOCU (%) 60 100

Fig. 8. Simplified management algorithm.



respectively the motor-pumps P1 and P2 expressed in (kW).
Note: the nominal electric power of the motor-pump 2 is linked to

the RO membrane sizing, thus P2n is equal to P2,max (Eq. (11)).

2.3.1.5. Tanks. The embodied energy of tanks EEST (MJ) is based on
their surface area S1 and S2 (m2) and their height h1 and h2 (with
h1= h2= h=2m). The analytic relationship for the two tanks, coming
from Ref. [34] is as follows:

= ⋅ ⋅ +EE h S S371 ( ).ST 1 2 (24)

2.3.1.6. Reverse osmosis membrane. The embodied energy of RO
membrane EEOI (MJ) is based on its flow rate per day CMD (m3/d).
The analytic relationship of the RO membrane, taking account of the
maintenance during all the life cycle, coming from Ref. [34] is as
follows:

= ⋅EE CMD5224 .OI (25)

2.3.2. Optimization problem
In order to speed up the CPU time of the simulations performed over

one year, a sampling time of 1/6 h is used. This “high” value may lead,
in some configuration cases, to negative levels of water in the brackish
water tank 1. Instead of reducing this time step which would implies a
significant increase of the CPU time, a constraint is added into the
optimization problem ensuring min(L1)> 0.

2.3.2.1. Definition. The optimization problem has three objectives to be
minimized: LPSPE, LPSPH and EE under three constraints: LPSPE and
LPSPH less than 5% and the tank 1 never empty translated by min
(L1)> 0, with nine decision variables xi (system parameters). The
optimization problem may be expressed by the following equations:
Optimization criteria:
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with
g1= LPSPE− 5%;g2= LPSPH− 5; g3=−min(L1).

2.3.2.2. Algorithm. Genetic algorithms are well suited for solving this
kind of problem. NSGA-II is classically used for multiobjective and
constrained optimization cases [35,36]. In the following, the chosen
parameters of the NSGA-II algorithm are two hundred individuals and
five hundred generations.

2.4. Optimization process

The system performance must be evaluated over long periods of
time to take seasonal features and correlations of renewable energies
into account. Two solutions are developed in this paper in order to
optimize the studied system. First, the dynamic simulator is used for
evaluations the constraints and criteria used by the NSGA-II algorithm.
The simulator is run with all sampling points of one year (52,560
samples: 1 sample per 10min). Secondly, a meta-model is used for
formulate the outputs of the studied system byparameterized equations
for the decision variables. The sizing process by means of optimization
is shown by Fig. 11.

3. Results and discussions

3.1. Meta-model results

With the DOE carried out with the dynamic simulator, the three
indicators = =∼ ∼∼ ∼y LPSP y LPSP,E H1 2 and =∼ ∼

y Lmin( )3 1 defined in
Fig. 10 are shown in Fig. 12. The red color cross clouds are the results of
the dynamic simulator with 5,000 samplings (LHS) for the nine design
parameters in the range given in Table 2. The dashed black line on each
figure represent the best meta-model obtained with “model-based ca-
libration” toolbox of Matlab. Globally, the meta-model curve is in the
average of the point cloud for the useful zones (LPSP≥0 and L1,min≥0).
We also see that the point cloud for the LPSPE has a very low variance
around its mean unlike the other two indicators.

3.2. Sizing results

The evolution of the dissatisfaction levels of the electric and hy-
draulic demands LPSPE and LPSPH according to the total embodied
energy EE over a 20-year life period is shown in Fig. 13 (EE/LPSPE, EE/
LPSPH and LPSPE/LPSPH representations). This figure compares the
three Pareto optimal solutions achieved from the meta-models optimi-
zation (noted by green color cross) and from the accurate solutions
achieved by the dynamic simulator in the optimization loop (noted by

Fig. 10. Meta-modeling process.

Fig. 11. Block diagram of the optimization process: (a) with Dynamic simu-
lator, (b) with meta-modeling.



red color dot).
For the results with the meta-models, the indicators LPSPE and

LPSPH have been recalculated with the dynamic simulator from the
solutions of the sizing achieved with the NSGA-II algorithm (noted in
Fig. 13: meta-model (recalculated solutions)). The figure shows only the
solutions that respect the constraints (i.e. LPSPE<5%, LPSPH<5%
and min(L1)> 0). We note a good match of solutions for the three
Pareto diagrams. The results in the design space are shown in Fig. 14.
The decision variables have globally comparable values. For example,
taking in both cases the embodied energy of 8.4E+05MJ,
LPSPE=1.75% and LPSPH=1.84%. Table 3 presents the obtained
parameters for both models. This table shows the small difference be-
tween the parameters achieved by the dynamic simulator and those
achieved by the meta-models. This shows the quality of the meta-model
approximation even for this kind of complex system comprising two
forms of storage (battery and water tank) and two kinds of loads
(electricity and freshwater).

The results in the design space are shown in Fig. 14. The decision
variables have globally comparable values. For example, taking in both
cases the embodied energy of 8.4E+05MJ, LPSPE=1.75% and
LPSPH=1.84%. Table 3 presents the obtained parameters for both
models. This table shows the small difference between the parameters
achieved by the dynamic simulator and those achieved by the meta-
models. This shows the quality of the meta-model approximation even
for this kind of complex system comprising two forms of storage (bat-
tery and water tank) and two kinds of loads (electricity and freshwater).

3.3. CPU times results

Table 4 shows the CPU time when the optimization is done using the
dynamic simulator with all meteorological data and when the optimi-
zation is done using only the meta-models obtained with the processing
explained in the paper in accordance with the same criteria and con-
straints.

3.4. Discussions

3.4.1. Sizing results
The results of Figs. 13 and 14 show that it is possible to have LPSPE

and LPSPH almost zero but at the cost of a significant investment. An

Fig. 12. Meta-model points for monitoring system indicators. (For interpreta-
tion of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 13. Pareto optimal fronts for two simulation approaches: dynamic simulator and meta-model. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article.)



investment reduction of 30% leads to an increase of LPSPE and LPSPH of
only 5%. The influence of the investment relates exclusively to PV and
wind turbine surfaces and battery capacity. All the sizing of the hy-
draulic part and the control parameters remain insensitive to these
investment variations, which is remarkable. It is the sizing of the bat-
tery that is the most sensitive, which triples value on the studied range.
For PV and wind turbines, the variations are approximately propor-
tional to the investments.

The percentage of relative error in Table 3 shows differences be-
tween the design parameters obtained with the meta-model of less than
4%, except the size of the tanks that have a greater difference. This is
due to a greater dispersion of the optimal points of the real LPSPH
compared to the optimal points obtained by the meta-model; see in
Fig. 12.

3.4.2. CPU times
The difference is made on the convergence time of the optimization

algorithm. Three days are required with the dynamic simulator in the
loop of the optimization algorithm and few minutes with the meta-
models because for the dynamic simulator 52,560 samples are needed
to calculate one optimization point, while for the meta-model-models
the algorithm solves the equations once. Obviously, it is necessary to
add one day to realize the database by DOE and the search of the meta-
models from this database with a good representativeness.

4. Conclusions

This paper presents a methodology for the optimal sizing of a system
for the production of fresh water and electricity, for an isolated site,
with brackish water well, renewable energies and double storage in a
battery and in water tanks (brackish water and fresh water). This ap-
proach is applied to the embodied energy (EE) used over the total life
cycle of the system. The hydraulic equations are extrapolated from the
manufacturers catalogs of pump and reverse osmotic (RO) membrane.
For the well pump, its flow is linked to the electrical power. The whole
of the RO-based desalination unit, the freshwater flow rate was mod-
eled according to the surface of the RO membrane and the electric
power of the pump. Using meta-models in the optimization process
saves CPU time with results similar to using a dynamic simulator (a few
minutes for the first and several days for the second). The optimization
results show that the cost of energy investment (EE) is strongly related
to the dissatisfaction of the production of water and electricity (LPSPH

Fig. 14. Evolution of the decision variables on the optimal fronts of two simulation approaches: dynamic simulator and meta-model. (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

Table 3
Decision variables for EE=8.4E+05MJ, LPSPE=1.75% and LPSPH=1.84%,
with the dynamic simulator and with the meta-model.

Parameter Dynamic simulator Meta-model Relative error

APV (m2) 61 58.7 −3.8%
AWT (m2) 123.3 127 +3%
Cn (Ah) 649.1 673 −3.7%
P1 (W) 1926 1944 +0.9%
CMD (m3/day) 16.7 16.1 −3.6%
S2 (m2) 52.3 43.3 −18.8%
S1 (m2) 5.6 4.7 −16%
L2,u (m) 1.9 1.65 −13%
SOCU (%) 92.1 89 −3.4%

Table 4
CPU time NSGA-II optimization by using dynamic simulator or using the meta-
models (with Processor AMD FX(tm), 8 cores, 4 GHz).

Parameter Value

Number of parameters 9
Number of criteria 3
Number of constraints 3
Number of run 01
CPU time using the dynamic simulator 72 h (3 days)
CPU time using the meta-models 0.22 h (13min)
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Appendix A. Quality parameters of brackish water and WHO requirements

Component Brackish water WHO* requirements
(Southern Tunisia)

PH 7.8 ≥ 6.5 and ≤ 9.5
TDS (mg/l) 5401 < 1000
Sodium (mg/l) 1430 200
Potassium (mg/l) 26.6 12
Calcium (mg/l) 320 < 100
Magnesium (mg/l) 106 50
Bicarbonate (mg/l) 167 –
Chloride (mg/l) 1900 250
Sulfate (mg/l) 1450 500
Fluoride (mg/l) 0 1.5
Boron (mg/l) 0 0.5

* WHO: World Health Organization.
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