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The Rayleigh–Benard problem in extremely confined geometries 
with and without the Soret effect

Jean K. Platten a,∗, Manuel Marcoux b, Abdelkader Mojtabi b
a University of Mons-Hainaut; B-7000 Mons, Belgium

b IMFT, Allée du Professeur Camille-Soula, 31400 Toulouse, France

Abstract

We examine the linear stability of a liquid layer heated from below (the classical Rayleigh–Benard problem) but laterally confined 
between four vertical rigid and adiabatic boundaries. The main feature of the present study is that the height of the layer is much 
greater than the two other horizontal dimensions. The Soret effect is also taken into account. The ultimate objective of the study 
is a better knowledge of the operation of thermogravitational columns, and the search for a possible new way to measure positive 
Soret coefficients based on the variation of the critical Rayleigh number. 

Résumé

Le problème de Rayleigh–Bénard dans des géométries extrêmement confinées avec et sans effet Soret. On examine la 
stabilité linéaire d’une couche liquide chauffée par le bas (le problème classique de Rayleigh–Bénard) mais confinée latéralement 
par quatre parois rigides et adiabatiques. La caractéristique essentielle de cette étude est que la hauteur de la couche est beau-
coup plus grande que les deux autres dimensions horizontales. On prend aussi en compte l’effet Soret. L’objectif ultime de cette 
étude est une meilleure connaissance du mode opératoire de colonnes thermogravitationnelles ainsi que la recherche d’ une mé-

thode nouvelle pour mesurer des coefficients Soret positifs, basée sur la variation du nombre de Rayleigh critique. 

Keywords: Computational fluid mechanics; Rayleigh–Benard; Stability; Galerkin; Thermodiffusion; Soret
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1. Introduction

The onset of free convection in horizontal liquid layers heated from below and of infinite extent in the two horizon-

tal directions (the so-called Rayleigh–Benard problem) is well known both for a pure liquid and for a binary mixture
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taking into account the Soret effect [1,2]. Its extension to the case of through flow of Poiseuille type has also been

considered [3–6]. In all these studies the critical Rayleigh number, eventually its variation with the separation ratio

(the ratio of the solutal to the thermal contribution to the buoyancy) or with the Reynolds number, were given together

with the critical wave number.

Much less is known when the fluid layer is laterally bounded by rigid boundaries. In that case two aspect ratios,

say ‘height to length’ and ‘height to depth’, influence the critical Rayleigh number and the convective pattern as well.

The study is usually restricted to small aspect ratios generally not exceeding 1. For example in a rectangular cavity,

the rolls are aligned (at least with no through flow) with their axes parallel to the shorter side of the container [7].

In this article we deal with aspect ratios much greater than 1 and the system we investigate is shown on Fig. 1. The

two aspect ratios H/L and H/P are both much greater than 1 and sometimes of the order of 102. The two shadowed

horizontal boundaries at z = 0 and z = H are at constant temperature T1 and T2 with T1 > T2, while the four lateral

boundaries will be adiabatic.

We now justify the reasons of this study. There are essentially two reasons both related to the Soret effect. The first

reason is to understand how thermogravitational columns do operate. In thermogravitational columns, the geometry

is fundamentally the same as that sketched on Fig. 1. However, the thermal conditions are totally different than in the

Rayleigh–Benard configuration. In thermogravitational columns, the left and right boundaries at x = 0 and x = L are

kept at two different temperatures T1 and T2 and the cell is filled with a binary fluid. Bottom and top boundaries are

e.g. adiabatic. Due to the Soret effect induced by the horizontal temperature gradient ∂T /∂x, one of the components

will migrate to the cold wall while the other component will migrate to the hot wall. The horizontal temperature

gradient induces not only molecular separation, but also convection with hot fluid raising and cold fluid sinking. As

a consequence of this basic convection (there is no threshold for the onset of this type of convection) the component

that migrates to the hot wall is advected to the top and the component that migrates to the cold wall is advected

to the bottom. Thus the interplay between convection and Soret effect destroys in some sense, at least partially, the

horizontal concentration or mass fraction gradient but builds up vertical concentration stratification. Two cases must be

considered. If the denser component goes to the cold wall and the lighter component to the hot one, then the resulting

vertical concentration gradient will be stabilizing with dense fluid at the bottom and light fluid at the top. Almost the

totality of the experiments was done in such a situation. We have to mention here that in many cases experiments are

performed not in parallelepipedic cavities, but between two concentric cylinders kept at two different temperatures (see

Fig. 2) (see e.g. [8–10]). As far as the spacing between the two cylinders Ro −Ri (where Ro and Ri are the radii of the

outer and inner cylinder respectively) remains small compared to the mean radius RM = (Ro + Ri)/2 (no significant

curvature effect), then there is some analogy between the two geometrical configurations, provided that L = Ro − Ri

and P = 2πRM . Experiments have proved that the same Soret coefficient is obtained [11,12] independently of the

type of cell used, parallelepipedic or cylindrical. However, the situation is totally different when the denser component

migrates to the hot wall and the lighter component to the cold wall, in which case convection builds up an adverse

vertical concentration gradient with dense fluid at the top of the cell and light fluid at the bottom. Parallelepipedic

thermogravitational columns are unable to sustain this potentially unstable stratification, except maybe for small

time, whatever the applied temperature difference between the two lateral walls [13,14]. On the contrary, between

concentric cylinders it has experimentally been shown that this unstable stratification may be maintained in the steady

state provided that the Grashof number (or the nondimensional temperature difference between the two cylinders)

exceeds some critical value [15]. This is experimental observation only, not sustained by theoretical considerations. It

seems to us that these apparent contradictory behaviours between the two types of columns must be related to some

instability problems. Let us be a little more specific and recall the value of the molecular separation 1C between the

top and the bottom of a thermogravitational column given a long time ago by the Furry–Jones–Onsager–Majumdar

theory [16,17]:

1C = 504
ν

αg
DT C0(1 − C0)

H

L4
(1)

In this last equation, ν is the kinematic viscosity of the fluid, α its thermal expansion coefficient, g the acceleration due

to gravity, C0 the initial, or mean mass fraction of the considered component, DT its thermodiffusion coefficient in the

mixture, H and L (or equivalently Ro −Ri ) respectively the height and the spacing of the column according to Figs. 1

and 2. Let us note that P (or the mean radius) does not affect the molecular separation. One could also be astonished

that the separation is independent of the applied temperature difference: in fact Eq. (1) is an approximation valid for



Fig. 1. Sketch of the system.

Fig. 1. Croquis du système.

Fig. 2. A cylindrical thermogravitational column.

Fig. 2. Colonne thermogravitationnelle cylindrique.

‘large gaps’ (say greater than 1 mm); for gaps of the order 100–300 µm, the separation is an increasing function of the

applied temperature difference, but we shall not deal in the remainder of this paper with such small gaps. Furthermore,

the separation given by Eq. (1) has been obtained under the consideration of a constant thermodiffusion coefficient DT .

This remains a quite reasonable assumption when the separation is small (1C/C0 ∼ 0.01–0.1), namely for ‘large gap’

thermogravitational columns, but could be less satisfactory for larger separations since it is well known that DT is

concentration dependent. This extension of the separation, considering a temperature and concentration dependent

Soret coefficient (the ratio of DT divided by the isothermal molecular diffusivity D) is given in this volume in a paper

by Labrosse [18].

Next, we define as usual a Rayleigh number (in the present case a solutal Rayleigh number) by

RaS =
gβ1CH 3

νD
(2)

where β is the mass expansion coefficient and D the isothermal (or molecular) diffusion coefficient. By combining

Eqs. (1) and (2) we get

RaS = 504
β

α

DT

D
C0(1 − C0)

(

H

L

)4

(3)

In most problems coupling Soret effect and convection one usually defines a so-called separation ratio S by

S =
β

α

DT

D
C0(1− C0) (4)

This separation ratio represents the solutal contribution to the buoyancy divided by the thermal contribution. Combin-

ing Eqs. (3) and (4) we get

RaS = 504S

(

H

L

)4

(5)

Summarizing, the interplay between Soret effect and free convection builds up a vertical density gradient measured

by the solutal Rayleigh number (5) containing the thermodiffusive properties of the mixture (S) and one of the as-



pect ratios (H/L). This density gradient (sometimes adverse depending on the sign of S) is solely due to the vertical

concentration gradient since the temperature is not a function of the vertical coordinate z. The stability of this steady

state solution is not easy because of the existence of a basic velocity profile; the vertical velocity is a function of x

(or r), temperature is also a function of x (or r), but concentration is a function of x and z. Of course one could try

to handle the complete problem, but in a first step we could simplify it. This simplification is based on experimental

considerations. The gap between the two walls (or the two cylinders) is of the order of 1 mm (at most 2 mm), otherwise

according to Eq. (1) greater spacings would produce molecular separation too small to be detected. Also in the exper-

iments the height H is of the order of 500 mm in order to observe a sufficient and measurable molecular separation.

And even in such geometrical conditions the molecular separation will be of a few percent only; higher separations

(say 30% or even more) can be obtained with smaller gaps, typically ∼200–300 µm [16,19], but this raises many other

technical problems. Thus with an aspect ratio H/L of the order of say 300, the effective solutal Rayleigh number at

which we operate is according to Eq. (5) of the order of RaS ∼ 4×1012S. Even for a small separation ratio of the order

of S ∼ 0.1, we are operating at very high solutal Rayleigh numbers, which could be supercritical. However, as we said

before, let us simplify the stability problem. Suppose that when the steady state is reached we turn off the temperature

gradient (say the two thermostats). Immediately, or almost immediately because of the small gap and the high thermal

diffusivity of the liquid mixture in comparison with its molecular diffusivity, the temperature will become uniform;

as a consequence the flow stops. But the vertical concentration gradient will take months or years to disappear by

diffusion because of the smallness of the molecular diffusivity and the large value of H . Therefore we are left with

a cavity into which there is only an adverse vertical density gradient, its origin being solutal, due to the interplay ‘in

the past’ between Soret effect and convection (which has been stopped for a while); in other words we have to face

with an ordinary Rayleigh–Benard problem, except that we are working in extremely confined geometries (which is

not so usual) and for aspect ratios corresponding to experiments with thermogravitational columns we did not find

in the literature any useful information. Thus the motivation is first to know how the critical Rayleigh number equal

to 1707.762 in infinite horizontal layers will be affected by an extreme lateral confinement; next what are the most

dangerous perturbations and last if the solutal Rayleigh number at which thermogravitational columns do operate and

given by Eq. (5) is smaller or higher than the critical Rayleigh number. The answer to these questions could not be the

same in Cartesian co-ordinates (parallelepipedic cavity) and in cylindrical co-ordinates (a liquid layer between two

concentric cylinders); and in the last case it is not sure that axisymmetric perturbations are the most dangerous as far

as the stability of the system is concerned; azimuthal modes have to be considered.

This is our first motivation for investigating the Rayleigh–Benard problem in extremely confined geometries. But

there is a second motivation.

In the classical Rayleigh–Benard problem of binary liquid layers of infinite horizontal extension heated from below,

the critical Raleigh number will be modified by the Soret effect [2,20]. This modification is directly related to the

separation ratio S. Therefore if we are able to measure with the requested accuracy the modification of the critical

Rayleigh number and if we have correct working equations that give the variation of the critical Rayleigh number with

the separation ratio S, then this will be an indirect way, but nevertheless accurate way, to determine a separation ratio

and from its numerical value a Soret coefficient without any sampling process followed by a compositional analysis of

the removed samples [21–23]. The price we have to pay is a precise knowledge of the two expansion coefficients, but

this is not a problem since commercial densimeters are available with an accuracy of 2 × 10−6 g/cm3 (quartz U-tube

vibrating densimeter). Once again two cases must be considered depending on the sign of the separation ratio.

When S < 0, the solutal contribution is of opposite sign to that of the thermal contribution; since the thermal

contribution is destabilizing (we heat from below), the solutal contribution is stabilizing. In other words the denser

component migrates to the bottom plate (to the hot) and the adverse density gradient (due to the temperature gradient)

is reduced by the Soret effect. As a consequence we need a larger temperature difference (or thermal Rayleigh number)

to promote convection. Thus the increase of the critical thermal Rayleigh number is a measure of S. It is rather

easy to detect the onset of free convection. In the past Schmidt–Milverton plots were employed [24,25], but today

we have at our disposal modern optical techniques as for example Laser-Doppler Velocimetry, provided that the

equipment is dedicated to measure extremely small velocities, down to e.g. 5 µm/s. But this is actually the case [26].

To be more concrete, for a layer of water 4.15 mm height, the necessary temperature difference for the onset of

convection is 1.7 ◦C [27]. The situation is therefore not too bad since the temperature of each boundary (say each

copper plate) may be controlled at ±0.01 ◦C with commercial thermostats. The addition of a small amount of salt

or a particular alcohol (ethanol or propanol) will increase considerably this critical temperature difference, say up



to 2.5 or 3 ◦C or more; the computed new critical thermal Rayleigh number, larger than 1707.762, finally gives the

separation ratio S. Moreover in that case it is well known that the bifurcation is an Hopf bifurcation characterized

by its Hopf frequency, also related to the separation ratio [20,21,25,28]. And since one is able to measure at a given

point inside the system the velocity say each second, or each two seconds, from the time dependence of the velocity

(well before saturation due to the nonlinear terms), having Fourier transformed the oscillatory time trace, we get

the Hopf frequency and thus a second independent measurement of the separation ratio. This procedure is currently

used since 15 years [22,23]. Very precise values may be obtained for the Soret coefficient that are in remarkable

agreement [21] with other techniques like the bending of a laser beam [28,29], or more recently the very efficient

Thermal Diffusion Forced Rayleigh Scattering technique, a very sophisticated optical technique based on the existing

temperature gradients due to light adsorption inside a system of interference fringes created at the intersection of two

laser beams [30]. Light is thus used to create the temperature gradient, more precisely a temperature grating. And

Soret effect induces a concentration grating. The resulting index of refraction grating is read out by Bragg diffraction

by a second laser.

When S > 0, the solutal contribution is of the same sign as that of the thermal contribution and therefore also

destabilizing. In other words the denser component migrates to the cold upper plate and convection will start earlier:

the critical Rayleigh number is reduced. One could think of using this fact as a measure of the separation ratio, as we

did for negative separation ratios. However this will not work for accuracy reasons. To be more specific let us give the

critical thermal Rayleigh number for the onset of steady convection (which is the case for S > 0 in contradistinction

with the oscillatory onset for S < 0)

Racrit =
27π4

4

1

1 + S(Le+ 1)
(6a)

This last equation has been established for the case of stress-free, conducting and pervious boundaries, which could be

nonrealistic as far as experiments are concerned but this is not the main point. For realistic boundary conditions (rigid,

conducting and impervious) convection starts (at zero wavenumber) with a critical Rayleigh number given by [31]

Racrit =
720

LeS
(6b)

Le is the Lewis number, the ratio of the thermal diffusivity κ by the molecular diffusivity D. It is well known

in liquids that heat diffuses much more rapidly than mass, typically 100 to 1000 times faster. Thus Le ∼ 100–1000.

For example, salty water 0.5 M/l NaCl has a Lewis number of 140 [32] and a solution water (90 wt%)-isopropanol

(10 wt%) has a Lewis number of 200 [22]. Thus according to Eqs. (6), the critical Rayleigh number will be reduced

by at least a factor 20 in most realistic cases. In other words, if the critical temperature difference to observe the

onset of free convection in absence of the Soret effect is of the order of 2 ◦C (a very convenient value for accurate

experimental work), this temperature difference will drop to 0.1 ◦C under the influence of the Soret effect. One recog-

nizes immediately the loss of accuracy in the determination of a positive S by the use of the critical point for the

onset of free convection. Of course, one could always try to build thermostatisation systems constant at ±0.001 ◦C

or better, but this has not yet been done. Thus, the determination of positive separation ratios or Soret coefficients

was never made in a Rayleigh–Benard configuration. Imagine now critical Rayleigh numbers for pure fluids (S = 0)

much higher than 27π4/4 or 1708, for example 106 or 109, simply due to a lateral confinement of the layer that will

delay the onset of convection. In order to get such high values of the critical Rayleigh number, one needs cavities of

the type sketched on Fig. 1. Suppose now that a Rayleigh number as high as 106 or 109 (it does not matter) implies

a totally unrealistic temperature difference of 100 ◦C. After reduction by a factor of 20 due to the Soret effect, this

temperature difference will drop to the very convenient value for an experimentalist of 5 ◦C. Thus one of the objec-

tives is to search a new possible way to measure positive separation ratios by convective coupling. But first we have to

conceive an experimental cell, i.e. we have to determine the two aspect ratios that will provide optimal conditions for

experiments. Thus we have to solve the Rayleigh–Benard problem in the geometry of Fig. 1 and to find the variation

(at S = 0) of the critical thermal Rayleigh number with the two aspect ratios H/L and H/P . Next we have to extend

the problem with the Soret effect included, since it would be hazardous to suppose the validity of Eq. (6a) in the

form

Racrit = Racrit0

(

H

L
,
H

P

)

1

1+ S(Le + 1)
(7)



where Racrit0 is the aspect ratios dependent critical value of the Rayleigh number at S = 0. In fact we can prove that

Eq. (7) is not true.

Thus there several reasons to undertake the linear stability of liquid layers with an adverse density gradient in

extremely confined geometries with and without the Soret effect.

2. The Rayleigh–Benard problem in confined cavities for pure fluids

In this article, the Boussinesq approximation [33] is used. It states that density differences δρ between two points

in the fluid are sufficiently small to be neglected, except where they appear in terms multiplied by g, the acceler-

ation due to gravity. The Boussinesq approximation is inaccurate when the nondimensionalised density difference

δρ/ρ is of order unity. Since in many problems of natural convection we use an equation of state of the form

ρ = ρ0(1 − α1T ) where α is the thermal expansion coefficient, generally lower than 10−3 K−1, and 1T some

applied temperature difference between boundaries, it is clear that the approximation will fail for temperature differ-

ences greater than 102 K. All this is discussed in details in [1]. Moreover we also make the approximation that the

other physico-chemical parameters such as the viscosity, the thermal conductivity, the specific heat are temperature

independent.

We consider the cavity represented on Fig. 1 with the lower wall at z = 0 at temperature T1 (or concentration C1)

and the upper one at z = H at T2 (or C2), with T1 > T2 (or C2 > C1 where C could represent some salt concentra-

tion). The four lateral boundaries will be adiabatic (or impervious to matter). There is complete analogy between the

thermal and the solutal problems as long as they are acting alone. In fact, we investigate the stability of a basic rest

steady state V
steady
i = 0 with a vertical temperature gradient ∂T steady/∂z = 1T/H (or equivalently a vertical concen-

tration gradient, or more precisely a vertical adverse density gradient, independently of its origin) and therefore in

the remainder of this paper, Vi and T denote ‘perturbations’ around this basic state. We also suppose everywhere in

the paper marginal stability. The real three-dimensional problem with three velocity components function of the three

coordinates is rather difficult and therefore we only deal in this paper with rolls, i.e. two velocity components but still

function of the three coordinates due to the lateral confinement. A roll has a symmetry axis that can be parallel to the

x or to the y axis. Therefore two cases must be considered: x-rolls (Fig. 3) and y-rolls (Fig. 4) and we have to find

out the most dangerous perturbations leading to the smallest Rayleigh number.

Fig. 3. (Infinite) x-rolls.

Fig. 3. Rouleau (infini) à l’axe x.

Fig. 4. y-rolls.

Fig. 4. Rouleau à l’axe y.



2.1. Simplified 1-D model

We first recall the 1-D problem, that is to say the flow problem in a plane (z–y or z–x, no matter) of very high

aspect ratio (H ≫ L or P ) such that the different fields are independent of the vertical coordinate z [34,35]. An

analytical solution is available in this case. Thus we have only one vertical velocity component Vz function of one

coordinate (say x). In such conditions, the steady linearized nondimensional Navier–Stokes and energy equations are

in the Boussinesq approximation:

∂2Vz

∂x2
+ Ra Γ 2T = 0 (8)

Γ 2Vz +
∂2T

∂x2
= 0 (9)

where Ra is the Rayleigh number based on H 3 and Γ is the aspect ratio defined by 1
Γ

= H
L
. (It could equally well be

defined with P instead of L, replacing x by y into Eqs. (8), (9).) The boundary conditions associated to this problem

are:

Vz = 0 at x = 0 and x = 1 (no slip) (10)

∂T

∂x
= 0 at x = 0 and x = 1 (vertical walls are adiabatic) (11)

It is rather easy to eliminate T between Eqs. (8) and (9) and to solve

∂4Vz

∂x4
= λ4Vz (12)

where λ4 = RaΓ 4 could be considered as a new Rayleigh number based on the distance L between the two lateral

walls and on the vertical temperature gradient. The boundary conditions associated to (12) are

Vz =
∂3Vz

∂x3
= 0 at x = 0 and x = 1 (13)

The last boundary condition (13) is equivalent to (11) and deduced from Eq. (8). The general solution of Eq. (12) is

Vz = a sin(λx) + b cos(λx) + c sinh(λx) + d cosh(λx) (14)

and for nontrivial solutions to exist satisfying the boundary conditions (13) we must have

1 − cosλ coshλ = 0 (15)

The smallest root of this equation is λ = 4.73004074448627 . . . or in other words

Racrit =
500.5639017 . . .

Γ 4
(16)

This result does apply to infinite x-rolls (Fig. 3) with 1/Γ = H/P or to infinite y-rolls (Fig. 4) with 1/Γ = H/L

provided that there is no dependence of the different fields on the infinite direction (zero wavenumber in that direction).

The confinement of the rolls (finite x- or y-rolls) will produce a higher critical Rayleigh number as we shall see later.

Let us apply this result (16) to real experiments in thermogravitational columns [11,13]. The dimensions of the cell

used in these experiments are

H = 530 mm, L = 1.58 mm, P = 30 mm

Therefore:

Racrit(infinite y-rolls) = 0.633781× 1013 and Racrit(infinite x-rolls) = 0.487621× 108

According to Eq. (5), the Rayleigh number at which the column operates is:

RaS = 0.638125× 1013S

Since the order of magnitude of the separation ratio is S ∼ 0.01 to 0.6, y-rolls are not dangerous but it seems that we

are always operating above the critical Rayleigh number for infinite x-rolls. However the confinement will increase the



critical Rayleigh numbers and the question is to know if the working (solutal) Rayleigh number will remain above that

corresponding to finite x-rolls. Thus we have to treat the case of finite x-rolls with two velocity components function of

the three coordinates. In that case, an exact solution comparable to Eq. (16) does not exist, and approximate solutions

(e.g. of Galerkin type) should be searched. This is the subject of the next paragraph.

2.2. Finite x-rolls

We are dealing here with the case Vx = 0; Vz(x, y, z) 6= 0; Vy(x, y, z) 6= 0. This can only be an approximation

(probably excellent) since due to the boundary conditions such a flow cannot exist as shown e.g. in Chap. VI of [2].

But within the frame of this approximation we may define a stream function ψ by Vz = − ∂ψ
∂y

; Vy = ∂ψ
∂z

. For the

nondimensional space coordinates, we use x/L, y/P and z/H . Once again as in Section 2.1, aspect ratios will appear

in the nondimensional equations. They read:

∇2

(

∂2ψ

∂z2
+

1

B2

∂2ψ

∂y2

)

=
Ra

B

∂T

∂y
(17)

1

B

∂ψ

∂y
= ∇2T (18)

with

∇2 =
∂2

∂z2
+

1

A2

∂2

∂x2
+

1

B2

∂2

∂y2
;

H

L
=

1

A
;

H

P
=

1

B
(19)

Before solving this 3-D problem, let us once again suppose that H/L ≫ 1 and H/P ≫ 1. In other words, the fields ψ

and T do not depend on z: we only have one velocity component Vz function of y and also of x due to the lateral

confinement in these two directions. Then Eqs. (17)–(19) reduce to

∇2
x,yVz = −RaT (20)

(−Vz) = ∇2
x,yT (21)

∇2
x,y =

1

A2

∂2

∂x2
+

1

B2

∂2

∂y2
;

H

L
=

1

A
;

H

P
=

1

B
(22)

It is rather easy to eliminate T between Eqs. (20) and (21). We get:

∇4
x,yVz = RaVz; ∇4

x,y =
1

A4

∂4

∂x4
+

2

A2B2

∂2

∂x2

∂2

∂y2
+

1

B4

∂4

∂y4
(23)

This generalises in some sense Eq. (12). Due to the cross-differentiation term in ∇4
x,y , a solution under the form

Vz(x, y) = F(x) + G(y) exists, but cannot satisfy the no slip boundary conditions, e.g.

Vz(0, y) = F(0) + G(y) = 0 ∀y

Moreover, when solving Eq. (23), the additional boundary conditions on Vz reflecting a zero heat flux across the four

lateral boundaries will make the problem even more complicated. Therefore we prefer to solve the system (20), (21)

by a classical Galerkin technique. Let us now recall the boundary conditions associated to Eq. (20), (21):

For y = 0 or 1, ∀x, Vz = 0 and ∂T /∂y = 0 (24a)

For x = 0 or 1, ∀y, Vz = 0 and ∂T /∂x = 0 (24b)

Since we want to describe a finite x-roll, Vz must be antisymmetric with respect to y = 1/2, but is symmetric with

respect to x = 1/2. The following sets of trial functions have all the required properties

Vz =

N
∑

i=1

N
∑

j=1

aijy(y − 1)(y − 1/2)2i−1xj (1 − x)j (25)

T =

N
∑

i=1

N
∑

j=1

bij

[

(2y − 1)2i−1 −
2i − 1

2i + 1
(2y − 1)2i+1

][

(2x − 1)2(j−1) −
j − 1

j
(2x − 1)2j

]

(26)



Table 1

Convergence of Ra.B4 in the 2-D problem as a function of the cross section aspect ratio B/A

Tableau 1

Convergence de Ra.B4 dans le problème 2-D en fonction rapport d’aspect transversal B/A

N B/A = 1/100 B/A = 1/10 B/A = 1 B/A = 5 B/A = 10 B/A = 30/1.58

1 627.214933 628.693333 776.533333 4360.533333 15560.533333 54464.726037

2 500.673104 507.158644 708.575710 4038.106322 13925.185435 47998.043147

3 500.630914 506.132529 707.993547 4020.583116 13666.503808 46463.928765

4 500.628147 505.721409 707.974387 4019.436741 13624.628794 45982.247429

5 500.626804 505.563706 707.972141 4019.273073 13619.217616 45844.024513

6 500.626006 505.512828 707.971704 4019.234419 13618.372794 45810.398023

7 500.625465 505.498772 707.971590 4019.223712 13618.139530 45803.111696

8 500.625060 505.495220 707.971552 4019.220229 13618.056534 45801.367095

But instead of solving Eq. (20), (22) for various values of A and B , we prefer to solve the problem for the cross section

aspect ratio (B/A) = (P/L) and find the numerical values of Ra.B4 considered as eigenvalue of the problem. Indeed

Eqs. (20), (21) may be rewritten as
(

B

A

)2
∂2Vz

∂x2
+

∂2Vz

∂y2
= −

(

Ra.B4 T (27)

(

B

A

)2
∂2T

∂x2
+

∂2T

∂y2
= −Vz (28)

We give in Table 1 examples of convergence of Ra.B4 for different values of B/A.

First of all the limit given by Eq. (16) is recovered for B/A → 0 (infinite x-rolls). However, to be clear, only results

for B/A > 1 have a physical meaning while the calculations with B/A < 1 is a mathematical game (when B/A < 1,

the finite x-roll represented by the expansion (25) is aligned with its axis parallel to the larger side of the cell!).

The confinement in the x-direction increases the critical Rayleigh number. The convergence is slower for extremely

confined layers, as e.g. for the experimental case (P = 30 mm; L = 1.58 mm; last column), but remains not bad

(0.3% difference between N = 4 and N = 5, which is far below any experimental error on a Rayleigh number; 0.07%

difference between N = 5 and N = 6; and less than 0.02% between N = 6 and N = 7). Having the value of Ra.B4,

we may deduce Ra for any height of the column, but still subjected to the condition H/L ≫ 1 and H/P ≫ 1. For

example for the experimental case evoked in Section 2.1 [11,13] (H = 530 mm; L = 1.58 mm; P = 30 mm) we get:

For Finite x-rolls : Ra = 45801.37× (530/30)4 = 0.446166 × 1010

To be compared to Infinite x-rolls : Ra = 0.487621× 108

And to the Operating Rayleigh number : Ra = 0.638125× 1013S

Thus even if the x-confinement of the roll increases the critical Rayleigh number by two orders of magnitude, for

usual values of S we are still operating above the instability point.

We have now to handle the full 3-D problem (Fig. 1) taking into account the confinement in the z direction (this

will still increase the critical Rayleigh number) and described by the full Eqs. (17), (18). The boundary conditions are:

(1) zero velocity on the six faces and this implies

at x = 0 and 1 ψ = 0

at y = 0 and 1 ψ = 0 and
∂ψ
∂y

= 0

at z = 0 and 1 ψ = 0 and
∂ψ
∂z

= 0

(29)

(2) temperature is prescribed on the bottom and top boundaries

at z = 0 and 1 T = 0 (30)

(3) no heat flux across the four lateral boundaries

at y = 0 and 1 ∂T
∂y

= 0

at x = 0 and 1 ∂T
∂x

= 0
(31)



Regarding the symmetry requirements,

Vz must be even in x, odd in y and even in z

Vy must be even in x, even in y and odd in z

and this implies:

ψ must be even in x, in y and in z

Finally:

T must be even in x, odd in y and even in z

The following expansions obey all the requirements

ψ =

N
∑

i=1

M
∑

j=1

K
∑

k=1

aijk x(1 − x)
i

y(1 − y)
j+1

z(1 − z)
k+1

(32)

T =

N
∑

i=1

M
∑

j=1

K
∑

k=1

bijk

[

(2x − 1)2(i−1) −
i − 1

i
(2x − 1)2i

][

(2y − 1)2j−1 −
2j − 1

2j + 1
(2y − 1)2j+1

]

× z(1 − z)(1 − 2z)2(k−1) (33)

Let us first solve the problem for a cubical box A = B = 1, and next for a box of square cross section A = B but of

increasing height A = B < 1 (we exclude B > 1, since the approximation (32) allows the study of a one roll system

only). For the cubical box we find

N = M = K = 1 Racrit = 3988.12
1 = 14%

N = M = K = 2 Racrit = 3412.91
1 = 0.2%

N = M = K = 3 Racrit = 3406.45
1 = 0.005%

N = M = K = 4 Racrit = 3406.28

The approximation N = M = K = 4 implies computing a 128 × 128 determinant for many Rayleigh numbers in

order to catch its zero value (more precisely the change of sign of the determinant) and this is time consuming. In

view of the result there is no need to go to a higher approximation. Even between the order N = M = K = 2 and the

order N = M = K = 3 there is only a 0.2% difference. Therefore in Table 2 we limit ourselves to the approximation

N = M = K = 3. We also compare the results of the full 3-D problem with those from the 2-D approximation that

ignores the boundary conditions at the bottom and at the top of the cavity. These 2-D values are taken from Table 1 at

the same approximation N = M = 3.

The value of 3406.28 for Racrit in a cubical box is compatible with numerical calculations of the Nusselt number Nu

[36] for several types of rolls: convection (or Nu > 1) is found at 3500 for a single roll structure. In a box of square

cross section, a diagonally oriented roll, or toroïdal shape perturbations, could lead to other critical Rayleigh numbers.

In these two last cases the three velocity components are nonzero, a situation we do not account for since we are mainly

interested in geometries of Fig. 1. Bergeon [37] reported for the cubical box the value Racrit = 3388.39. We also give

in the last part of Table 2 the critical Rayleigh number for a box of rectangular cross section P = 10L, a situation that

certainly rules out toroïdal perturbations with fluid rising at the centre and sinking near the four boundaries.

The conclusion of this table is that the lower and upper boundary conditions have no measurable effect as soon

as the height becomes larger than 10 times the greatest horizontal dimension, since it is hard to measure a Rayleigh

number with accuracy better than 2%.

Let us come back to the experimental cell we used in the thermogravitational problem (H = 530 mm; L =
1.58 mm; P = 30 mm) and look more closely at the convergence of the 3-D problem (Table 3). The first part of

Table 3 shows the decrease and the convergence of Racrit when the number of trial functions in the y and z directions

is increased. In the second part of the table we keep M = K = 3 and we increase the number of trial functions in the

x direction: already with N = 1 four significant digits are obtained; N = 2 changes only the two last digits whereas

with N = 3 the result does not change at all (six significant digits unchanged). This is essentially due to the small

value of L (1.58 mm) compared to the two other dimensions (P = 30 mm and H = 530 mm). It is sufficient to take

a parabolic variation for the velocity field in the x direction, and a constant for the temperature field which satisfies



Table 2

Variation of the critical Rayleigh number with the two aspect ratios (N = M = K = 3)

Tableau 2

Variation du nombre de Rayleigh critique en fonction des deux rapports d’aspect (N = M = K = 3)

Aspect ratio Racrit for the 3-D problem Racrit for the 2-D problem: 707.993547/B4 Difference between 2-D and 3-D

A = B = 1 0.340645 × 104 0.707994 × 103 >100%

A = B = 1/2 0.170906 × 105 0.113279 × 105 51%

A = B = 1/3 0.686800 × 105 0.573475 × 105 20%

A = B = 1/5 0.471615 × 106 0.442496 × 106 7%

A = B = 1/10 0.719247 × 107 0.707994 × 107 <2% (1.6%)

A = B = 1/100 0.708111 × 1011 0.707994 × 1011 <0.02%

A = B = 1/1000 0.707994 × 1015 0.707993 × 1015 0%

P = 10L; A = B/10 Racrit for the 3-D problem Racrit for the 2-D problem: 13666.5038/B4 Difference between 2-D and 3-D

B = 1 A = 1/10 0.551436 × 105 0.136665 × 105 >100%

B = 1/2 A = 1/20 0.338969 × 106 0.218664 × 106 55%

B = 1/3 A = 1/30 0.135993 × 107 0.110699 × 107 23%

B = 1/5 A = 1/50 0.922171 × 107 0.854156 × 107 8%

B = 1/10 A = 1/100 0.139382 × 109 0.136665 × 109 2%

B = 1/100 A = 1/1000 0.136693 × 1013 0.136665 × 1013 0.02%

B = 1/1000 A = 1/10000 0.136665 × 1017 0.136665 × 1017 0%

Table 3

Convergence of the critical Rayleigh number for the experimental column

Tableau 3

Convergence du nombre de Rayleigh critique pour la colonne expérimentale

Order of approximation B = 30/530 ; A = 1.58/530

N M K Racrit

1 1 1 0.553753 × 1010

1 2 2 0.470956 × 1010

1 3 3 0.455684 × 1010

2 3 3 0.455612 × 1010

3 3 3 0.455612 × 1010

1 4 4 0.450897 × 1010

1 5 5 0.449527 × 1010

1 6 6 0.449201 × 1010

1 7 7 0.449133 × 1010

1 8 8 0.449119 × 1010

the zero heat flux condition. This is the so-called Hele-Shaw approximation used when avoiding the solution of the

full equations and that is in some sense fully justified here by increasing the number of trial functions in x. However

if we still increase M and K (last part of Table 3) then the significant digits still change. Four digits are correct at

the order M = K = 8, which implies once again the computation of 128 × 128 determinants. Without the vertical

confinement we found (2-D model) Racrit = 0.446183 × 1010; vertical confinement increases a little bit this number

to Racrit = 0.449119 × 1010 as it should be. In conclusion, operating with the thermogravitational column described

before, does not allow one to maintain an adverse density stratification with heavy liquid at the top, cold or ‘salty’ via

the Soret effect according to Eq. (5).

3. The Rayleigh–Benard problem in confined cavities for binary fluids

We now investigate the same problem as exposed in the previous paragraph, but the cavity is filled with a binary

mixture. Due to the Soret effect a steady concentration gradient (or better, mass fraction gradient) dCst/dz will be

established, proportional to the temperature gradient.



dCst

dz
= −

DT

D
C0(1 − C0)

dT st

dz
(34)

where DT is the thermodiffusion coefficient and D the isothermal diffusion coefficient. We are only interested here

in the particular case DT /D > 0. In other words, dCst/dz has the opposite sign of dT/dz. Since dT/dz < 0 (we heat

from below), dCst/dz > 0 and the considered component goes to the top, thus to the cold wall. We have now to specify

which component we are speaking on. We take arbitrarily the denser component, but the opposite choice could equally

be made. Indeed we need an equation of state

ρ = ρ0 1 − α(T − T0) + β(C − C0) (35)

and β , the mass expansion coefficient given by 1
ρ0

∂ρ
∂C

is thus positively defined. Had we taken the lighter component

as the reference component, then β would be negative. But the important parameter is the solutal contribution to the

buoyancy force, compared to the thermal contribution, that we call S; combining Eqs. (34), (35) S is equal to (see also

Eq. (4))

S =
β dCst

dz

−α dT st

dz

= +
β

α

DT

D
C0(1 − C0) (36)

Therefore a different choice for the reference component would leave unchanged the sign of S, since both β and DT

would change sign. Thus to be more concrete, we are interested in the case S > 0, that is to say the temperature and

the concentration gradients are cooperating; since the temperature gradient is destabilizing, so is the concentration

gradient: the denser component goes to the cold upper plate.

The linear stability of the laterally unbounded liquid layer with upper and lower stress free boundaries and perme-

able to matter, leads to Eq. (6a) for the critical Rayleigh number (or to Eq. (6b) for rigid boundaries) and as explained

in details in the introduction this cannot be used to determine the separation ratio based on the onset of convection.

We want to generalise the results presented in Section 2 in order to see if we can use these results as a possible new

way of measurement of the Soret coefficient by a noninvasive technique (i.e. the detection of the onset of convection

by e.g. LDV or PIV).

Without going into the details of the adimensionalisation process, except that the field C is scaled by

(DT /D)C0(1− C0)1T , let us rewrite Eq. (17) for the binary mixture

∇2

(

∂2ψ

∂z2
+

1

B2

∂2ψ

∂y2

)

=
Ra

B

(

∂T

∂y
− S

∂C

∂y

)

(37)

The second term in the r.h.s. arises from the solutal contribution to the buoyancy and the minus sign from the choice

we made for the equation of state (35). The heat equation (18) is unchanged (rewritten here for simplicity)

1

B

∂ψ

∂y
= ∇2T (18)

but we need an additional equation for the conservation of mass of the heavy component

−
1

B

∂ψ

∂y
=

1

Le

(

∇2C + ∇2T (38)

This equation is similar to that for the energy, but there are two differences; the minus sign in the l.h.s. is due to the

fact that the steady gradients 1T/H and 1C/H are of opposite sign according to Eq. (34); in the r.h.s. of (38), in the

divergence of the mass flux, there is a term describing the Soret effect. Le is the Lewis number already mentioned in

the introduction. The boundary conditions for ψ and T are of course the same as before. We need boundary conditions

for C: physically, the mass flux EJ across a solid boundary is zero, i.e. in a dimensional form.

−ρ0D gradC − ρ0DT C0(1 − C0)gradT = 0 across a boundary (39a)

or in a nondimensional form

gradC + gradT = 0 (39b)

If a boundary is adiabatic (e.g. the four lateral boundaries), then the boundary conditions on T and C are the same.

On the contrary, if a boundary is at prescribed temperature (the lower and the upper), than the full condition (39a)

or (39b) applies.



Before solving the full 3-D problem, let us once again have a look at the 2-D problem for which the different fields

ψ , T and C do not depend on the vertical coordinate z. Then Eqs. (37), (18), (38) reduce to

∇2
x,yVz = −Ra(T − SC) (40)

(−Vz) = ∇2
x,yT (18)

∇2
x,yT + ∇2

x,yC = LeVz (41)

There is thus one velocity component function of the two space coordinates x and y. It is rather easy to eliminate the

variables T and C in the system (40), (41) and to obtain a fourth order equation similar to Eq. (23)

∇4
x,yVz = Ra 1+ S(Le+ 1) Vz (42)

which is formally the same equation as in a pure fluid provided that the Rayleigh number is multiplied by [1 +
S(Le + 1)]. The numerical values of Ra[1 + S(Le + 1)] will be those given in Table 1, provided that Vz obeys for

the binary mixture case the same boundary condition as in the pure component case. But this is actually true because

the boundary conditions for T and C are the same on the four lateral boundaries. In particular the two conditions

∂T /∂x = 0 and ∂C/∂x = 0 imply only from Eq. (40) one additional condition for Vz, namely ∇2
x,y(∂Vz/∂x) = 0 the

same as for a pure fluid; the same holds for the other pair of faces. The conclusion is that when the bottom and top

boundary conditions may be ignored, the critical Rayleigh number for the binary mixture is given by Eq. (7) where

Racrit0 are given by the values of Table 1. Of course this conclusion is no longer true when the boundary conditions at

Z = 0 and Z = 1 are taken into account.

For the full 3-D problem, one could still eliminate T and C between Eqs. (37), (18) and (38) and get a 6th order

differential equation for ψ , identical in the pure component and in the binary fluid case, but the boundary conditions

on ψ would be different in the two cases since at the horizontal boundaries one has T = 0 and ∂C/∂z + ∂T /∂z = 0;

and the boundary conditions on the eliminated variables must be equivalent to the new boundary conditions on the

remaining variable. Thus even if the variable ψ obeys the same differential equation, the boundary conditions would

be different in the one component and in the two component cases, leading to different eigenvalues or critical Rayleigh

numbers.

In view of the boundary condition (39b), it is quite natural to define a new field ζ by

ζ = C + T (43)

and the problem (37), (18) and (38) is transformed into

∇2

(

∂2ψ

∂z2
+

1

B2

∂2ψ

∂y2

)

=
Ra

B

(

(1 + S)
∂T

∂y
− S

∂ζ

∂y

)

(44)

1

B

∂ψ

∂y
= ∇2T (18)

−
1

B

∂ψ

∂y
=

1

Le

(

∇2ζ (45)

and the boundary conditions for ζ become

at y = 0 and 1
∂ζ
∂y

= 0

at x = 0 and 1
∂ζ
∂x

= 0

at z = 0 and 1
∂ζ
∂z

= 0

(46)

The symmetry requirements for the field ζ are the same as for T . And since the boundary conditions on the four

lateral boundaries are also the same for T and ζ , quite naturally we take the same expansion in X and in Y . The Z

dependence of the field ζ should be different from that of T since the boundary conditions are different at Z = 0

and 1. Since ζ is even in Z (as it was in X) and obeys at Z = 0 and 1 the same conditions as in X = 0 and 1, we take

the same dependence in Z and in X.



Table 4

Convergence of the critical Rayleigh number Le = 100

Tableau 4

Convergence du nombre de Rayleigh critique Le = 100

A = B = 1 Eq. (7)

N = M = K = 1 N = M = K = 2 N = M = K = 3

S = 0 3988.122 3412.910 3406.447

S = 0.1 253.941 209.095 208.902 306.887

S = 0.2 131.146 107.835 107.739 160.681

S = 0.3 88.399 72.652 72.588 108.832

S = 0.4 66.669 54.779 54.731 82.281

S = 0.5 53.514 43.963 43.925 66.145

ζ =

N
∑

i=1

M
∑

j=1

K
∑

k=1

cijk

[

(2x − 1)2(i−1) −
i − 1

i
(2x − 1)2i

][

(2y − 1)2j−1 −
2j − 1

2j + 1
(2y − 1)2j+1

]

×

[

(2z − 1)2(k−1) −
k − 1

k
(2z − 1)2k

]

(47)

This terminates the 3-D formulation of the stability of the Rayleigh Benard problem with Soret effect in very con-

fined geometries where x-rolls prevail. An example of convergence is given in Table 4. In Table 5, we give the

critical Rayleigh number, called “3-D” using the expansion (47) with N = M = K = 3 and we compare with Eq. (7)

where Racrit0 (H
L

, H
P

) is found by putting S = 0 at the same level of approximation. Clearly when A = B > 1/10,

the approximation (7) cannot be used because of the importance of the difference between top and bottom bound-

ary conditions on the concentration field (or the ζ field) and on the temperature field. On the other hand, when

A = B < 1/10, the correct top and bottom boundary conditions on the concentration field can be ignored since

these boundaries are far away and the approximation (7) can be used. The values listed in Table 5 has been com-

puted for a cavity of square cross section A = B , but, as a matter of fact, the program runs for any value of A 6= B ,

with the same physical interpretation: as soon as the height of the cell becomes greater than 10 times the largest

horizontal dimension, the exact top and bottom boundary conditions for the concentration (or ζ ) field loose their

importance.

We now search for a possible ‘design’ for a new observation cell. The first limitation is the relaxation time for the

diffusion process τDiff = H 2/(π2D). Based on the approximate order of magnitude D ∼ 10−9 m2/s, the requirement

τDiff < 24 hours limits the height of the column at H = 3 cm. That means that after each temperature change, we have

to wait 5 times the relaxation time (5 days) before the new steady state is reached and the next temperature change.

Experiments with diffusion processes always require some patience, but 5 days is not too bad owing to the fact that

in packed thermogravitational column the steady state is achieved typically after 90 days, see e.g. [38]. Putting the

thermophysical properties of pure water in the definition of the Rayleigh number together with H = 0.03 m, we find

Ra ∼ 3.645 × 1051T . A second limitation is on 1T for the Boussinesq approximation to be valid, say 1T < 30 ◦C

(α1T ∼ 0.01 ≪ 1). Therefore the critical Rayleigh number should be of the order of 107. Looking at Table 2, B = 1/5

and A = 1/50 should be perfect. But A = 1/50 implies for H = 30 mm the value L = 0.6 mm, which is not very

comfortable for an accurate construction of the cell, and moreover the cell will be difficult to fill for capillarity reasons.

Therefore we looked at a different shape: H = 30 mm; L = 2 mm and P = 3 mm (A = 1/15 and B = 1/10). Table 6

gives for these dimensions (A = 1/15 and B = 1/10) the critical Rayleigh number and the corresponding critical

1T for the properties of pure water, even if for S 6= 0 these properties (density, viscosity, . . .) will change a little

bit, but not so much if you have in mind dilute sodium chloride or copper sulphate solutions. What Table 6 shows, is

that experiments seem possible with the drop of the critical 1T from 25 ◦C to ∼1 ◦C. However, since we are in the

Soret regime, the velocity amplitudes remain small and this raises the question of the detection of small velocities. An

observation cell has been built with dimensions given above and is now under evaluation tests for pure water using

Particle Image Velocimetry PIV. Even if the first experimental result is promising, at this stage more details will be

outside the scope of this paper.



Table 5

Critical Rayleigh number function of the cross section aspect ratio and separation ratio, Le = 100, N = M = K = 3

Tableau 5

Nombre de Rayleigh critique en fonction du rapport d’aspect transversal et du rapport de séparation, Le = 100, N = M = K = 3

A = B = 1 1/2 1/3

“3-D” Eq. (7) “3-D” Eq. (7) “3-D” Eq. (7)

S = 0.0 3406.447 3406.447 17090.589 17090.589 68680.016 68680.016

S = 0.1 208.902 306.887 1424.614 1539.693 6030.060 6187.389

S = 0.2 107.739 160.681 743.182 806.160 3153.170 3239.623

S = 0.3 72.588 108.832 502.716 546.025 2134.711 2194.250

S = 0.4 54.731 82.281 379.820 412.816 1613.544 1658.938

S = 0.5 43.925 66.145 305.145 331.856 1296.915 1333.593

A = B = 1/5 1/10 1/50

“3-D” Eq. (7) “3-D” Eq. (7) “3-D” Eq. (7)

S = 0 471614.97 471614.97 0.719347×107 0.719347×107 0.442788× 1010 0.442788× 1010

S = 0.1 42258.34 42487.84 0.647888×106 0.648060×106 0.398903 × 109 0.398908 × 109

S = 0.2 22119.66 22245.99 0.339220×106 0.339315×106 0.208859 × 109 0.208862 × 109

S = 0.3 14980.51 15067.57 0.229758×106 0.229823×106 0.141464 × 109 0.141466 × 109

S = 0.4 11325.27 11391.67 0.173705×106 0.173755×106 0.106952 × 109 0.106954 × 109

S = 0.5 9103.91 9157.57 0.139639×106 0.139679×106 0.085977 × 109 0.085978 × 109

A = B = 1/100 1/250 1/1000

“3-D” Eq. (7) “3-D” Eq. (7) “3-D” Eq. (7)

S = 0 0.708111× 1011 0.708111× 1011 0.276567× 1013 0.276567× 1013 0.707995× 1015 0.707995× 1015

S = 0.1 0.637928× 1010 0.637938× 1010 0.249156× 1012 0.249159× 1012 0.637823× 1014 0.637833× 1014

S = 0.2 0.334009× 1010 0.334015× 1010 0.130454× 1012 0.130456× 1012 0.333954× 1014 0.333960× 1014

S = 0.3 0.226230× 1010 0.226234× 1010 0.088359× 1012 0.088360× 1012 0.226193× 1014 0.226196× 1014

S = 0.4 0.171038× 1010 0.171041× 1010 0.066803× 1012 0.066804× 1012 0.171010× 1014 0.171013× 1014

S = 0.5 0.137495× 1010 0.137497× 1010 0.053702× 1012 0.053702× 1012 0.137472× 1014 0.137475× 1014

Table 6

Possible experiments with H = 30 mm, L = 2 mm and P = 3 mm, Le = 100; N = M = K = 3

Tableau 6

Expérience possible avec H = 30 mm, L = 2 mm et P = 3 mm, Le = 100 ; N = M = K = 3

B = 1/10; A = 1/15 Racrit for the 3-D problem 1T crit (with the physical properties of water)

S = 0 0.916770×107 25.2 ◦C

S = 0.1 0.825708×106 2.3 ◦C

S = 0.2 0.432322×106 1.2 ◦C

S = 0.3 0.292818×106 0.8 ◦C

S = 0.4 0.221381×106 0.6 ◦C

S = 0.5 0.177964×106 0.5 ◦C

4. Conclusions

In this article we have calculated the critical Rayleigh number for a laterally extremely confined quiescent liquid

layer submitted to an adverse vertical density gradient, with and without the Soret effect. These calculations were

always conducted keeping in mind experimental evidence, existing or forthcoming.

In the existing thermogravitational column (H = 530 mm; P = 30 mm; L = 1.58 mm) we have shown that the

(solutal) Rayleigh number at which the column operates with salt on top (or water in water–alcohol systems), was

supercritical and this could explain the absence of any separation. Of course we did not incorporate the basic velocity

profile, which is a much more complicated problem left for future investigation. Also to be complete, the calculations

should be repeated in cylindrical coordinates in order to see the differences with parallelepipedic columns, if any.



Incorporating the Soret effect, we have shown that the decrease of the critical Rayleigh number for positive sep-

aration ratios was of the same order as for horizontally extended systems. However, confining laterally the system

increases the value of the critical point and the deduced critical temperature difference seems to be accessible to ex-

perimental investigation. Thus this finding could lead to a new way of determination of positive separation ratios by

convective coupling. However, as shown by Eq. (45), the theory requires the knowledge of the Lewis number, in other

words of the diffusion coefficient D. Convective coupling will give the separation ratio proportional to DT /D. Thus

the proposed method will allow the determination of DT that could be compared to the value coming from thermo-

gravitational column according to Eq. (1) based on a sampling process along the column height. In contradistinction,

what we propose here does not imply any sampling and chemical analysis of removed samples. Should the two values

agree, then we could have confidence in the proposed value for DT .
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