X Nicolas 
  
P Traore 
  
A Mojtabi 
  
J P Caltagirone 
  
AUGMENTED LAGRANGIAN METHOD AND OPEN BOUNDARY CONDITIONS IN 2D SIMULATION OF POISEUILLE±BE Â NARD CHANNEL FLOW

Keywords: open boundary conditions, Poiseuille±Be Ânard ¯ow, augmented Lagrangian, thermal instabilities

The main objective of this study is to compare the in¯uence of different boundary conditions upon the incompressible Poiseuille±Be Ânard channel ¯ow (PBCF) in a 2D rectangular duct heated from below. In a ®rst technical part the algorithm used to carry out this work, based on the augmented Lagrangian method, is presented. The implementation details of the ®ve different open boundary conditions (OBCs) and the periodic boundary conditions (PBCs) tested in the present paper are also given. The study is then carried out for 1800 ` Ra 4 10,000, 0 ` Re 4 10 and 0Á67 4 Pr 4 6Á4. The ®ve selected OBCs, applied at the outlet of the computational domain, respectively express the following conditions: a square pro®le for the velocity (OBC1), mass conservation (OBC2), zero second derivative of the horizontal velocity component (OBC3), a mixed boundary condition combining Dirichlet and Neumann conditions (OBC4) and an Orlanski-type boundary condition (OBC5). A good estimation of the perturbation amplitude and of the length of the perturbed zone at the outlet boundary is proposed. It is shown that OBC5 causes very little perturbation in the recirculating ¯ow compared with the other OBCs.

INTRODUCTION

Often in computational ¯uid dynamics (CFD), to compute an out¯ow, one encounters the problem of open boundary conditions (OBCs). Computational time costs and memory limitations do not permit simulations on large physical domains. To solve the problem mathematically, the domain must be truncated and con®ned between arti®cial boundaries onto which numerical conditions are introduced, depending on the nature of the governing equations. However, it is dif®cult to establish these boundary conditions when the studied ¯uid system is isolated from the effects of its environment; information about the dynamics of the ¯uid through the boundary is all the more necessary as the ¯ow is of an elliptic nature (i.e. is made of eddies and recirculations). The OBCs are the result of assumptions which do not re¯ect exactly the real physical phenomenon; if they are not properly chosen, they can have spurious effects such as numerical instabilities, re¯ections at the boundary and, generally, errors that can propagate and alter the results throughout all the computational domain. Thus the choice of good OBCs is crucial in CFD. This choice is closely linked to the physical behaviour of the ¯ow and to the method used to solve the problem.

The main objective of this paper is to study the in¯uence of ®ve different OBCs, at the outlet of the computational domain, upon the thermoconvective structures that are liable to develop when simulating incompressible Poiseuille±Be Ânard channel ¯ow (PBCF). The PBCF is a mixed convection ¯ow in a horizontal rectangular channel heated from below. If there is no heating and the channel is open, it is a simple Poiseuille ¯ow. If vertical walls close each end of the channel and if the vertical temperature gradient is suf®ciently high (Ra b 1708, where Ra is the Rayleigh number), it is a thermoconvective Be Ânard ¯ow. For three-dimensional channels, when the two phenomena are added, the ¯ow structure is quite complex. For a given Prandtl number Pr and a given aspect ratio of the duct, several types of thermoconvective structures, depending on Ra and Re (where Re is the Reynolds number), can be observed: there can be either transversal rolls, longitudinal rolls (i.e. thermoconvective rolls with their axes either orthogonal or parallel to the axis of the channel) or intermittent patterns.

The stability of these different con®gurations is a very interesting problem; this has given rise to many theoretical 1±7 and experimental 1,4,8±11 papers. To our knowledge, only two similar papers [START_REF] Schro Èder | Three-dimensional convection in rectangular domains with horizontal through¯ow[END_REF][START_REF] Chen | Laminar, buoyancy induced ¯ow structures in a bottom heated, aspect ratio 2 duct with through¯ow[END_REF] have recently presented results obtained by means of direct three-dimensional numerical simulation. Other works, 14±16 carried out in the frame of CVD (chemical vapour deposition), have mainly focused on heat transfer enhancement related to different thermoconvective structures. When studying their stability numerically, several dif®culties appear: it is necessary to ensure, ®rst, that the amplitude of the perturbation caused by the OBC does not cause bifurcations between the different types of thermoconvective structures (transversal or longitudinal rolls) and, second, that the length of the perturbed zone above the outlet is limited compared with the length of the computational domain.

In the present paper the analysis of the in¯uence of OBCs is limited to the two-dimensional PBCF. In this case the ¯ow structure consists of two-dimensional contra-rotative rolls with their axes transversal to the direction of the average channel ¯ow and moving away with the mean ¯ow. The purpose of this study is to determine the OBC which causes the smallest perturbation among the ®ve selected ones. With this aim in view, the ®ve OBCs are all compared with a benchmark solution of the PBCF that was computed by Evans and Paolucci 17 for Re 10, Ra 10,000 and Pr 2 3 . They are also compared with simulations involving periodic boundary conditions (PBCs). The Nusselt number, the variation of the transversal roll wavelength l and the time period t are presented for the different OBCs. Several criteria are also proposed for estimating the length of the perturbed zone and the amplitude of the perturbation; their evolution as a function of the Rayleigh and Reynolds numbers is studied for the following range of dimensionless parameters: 0 `Re 4 10, 1800 `Ra 4 10,000 and 0Á67 4 Pr 4 6Á4.

The 2D PBCF was already proposed by Sani and Gresho 18 as a test case for an OBC minisymposium that took place in Swansea, U.K. on 10 July 1989. Bottaro [START_REF] Bottaro | Note on open boundary conditions for elliptic ¯ows[END_REF] and Kobayashi et al. [START_REF] Kobayashi | Comparison of several open boundary numerical treatments for laminar recirculating ¯ows[END_REF] compared different OBCs with Evans and Paolucci's benchmark solution. Other test cases were proposed during the minisymposium; the summary and remarks of this event are described in Reference 18.

As mentioned before, the choice of the OBCs is partly linked to the method used to compute the solution of the problem. For the present work a ®nite volume numerical code based on the augmented Lagrangian method has been developed. This method consists of an optimization technique to determine a velocity±pressure saddle point under the incompressibility constraint H ? V 0; the saddle point is computed by an iterative algorithm of Uzawa type. [START_REF] Uzawa | Iterative methods for concave programming[END_REF][START_REF] Temam | Navier±Stokes equationsÐTheory and Numerical Analysis[END_REF] This method at present is not frequently used. However, our experience in CFD has shown that it is very ef®cient in comparison with the classical numerical schemes: it permits us to simulate ¯ows with important constraints or with strong variations in the control parameters and in the geometry, for which other methods diverge. The augmented Lagrangian method was formulated in the publications by Fortin and Glowinski [START_REF] Fortin | Me Âthodes de Lagrangien Augmente Â[END_REF] and Glowinski, [START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF] in which a variety of problems in the ®elds of ¯uid mechanics and elasticity are treated. The ®rst part of this paper presents the main outlines of the method. For more details see References 23±26, in which numerous remarks on the implementation of the algorithm are available.

NUMERICAL PROCEDURE

Governing equations

The problem is formulated considering the usual hypotheses for a Newtonian and incompressible ¯uid and the Boussinesq approximation is assumed to be valid. The three conservation equations (continuity, momentum and energy equations), provided with adequate initial and boundary conditions, enable us to express the solution of the PBCF. In primitive variables (velocity V, pressure P, temperature T) and under its dimensionless form the system that has to be solved takes the following expression:

I H ? V 0Y 1 dV dt V ? HV ÀHP 1 Re DV Ra Re 2 Pr TkY 2 dT dt V ? HT 1 RePr DTX 3 V b b b b b b b b b b X
The reference length, velocity, temperature and pressure for scaling are the height H of the duct, the average velocity V o of the PBCF, the temperature difference T hot 7 T cold between the bottom and the top of the channel and r o V o (where r o is the mass per unit volume of the ¯uid) respectively. Thus Re V o Han is the Reynolds number, Ra gb(T hot 7 T cold )H 3 ana is the Rayleigh number and Pr naa is the Prandtl number. Here n, b and a are the kinematic viscosity, thermal expansion coef®cient and thermal diffusion coef®cient of the ¯uid respectively. g is the gravity constant and k is the vertical unit vector. The time scheme used to solve (I) is Gear's second-order backward implicit scheme ((a, b, c) (1Á5, 2, À 0Á5) in system (II) below). The time discretization being uniform, the time step is denoted Dt; the current time and the following time step (time at which the ®elds are unknown) are nDt and (n 1)Dt respectively. The superscripts of the primitive variables correspond to the time index. In the momentum equation the buoyancy term RaTkaRe 2 Pr is treated explicitly; therefore the two coupled equations ( 2) and ( 3) are solved separately. The advective term (V ? HV being linearized, the time-discretized form of (I) consists of computing (V n1 Y P n1 Y T n1 ) as follows:

II H ? V n1 0Y 4 A n V n1 HP n1 FY 5 BT n1 GY 6 V b b b b X
where

A n a Dt V n ? H À 1 Re DY F Ra Re 2 Pr T n k bV n cV nÀ1 Dt Y B a Dt V n1 ? H À 1 RePr DY G bT n cT nÀ1 Dt X

Augmented Lagrangian algorithm

In system (II) the main dif®culties occur in the computation of equations ( 4) and ( 5); these dif®culties are due to the velocity±pressure coupling, the treatment of the continuity constraint H ? V 0 and the determination of boundary conditions on pressure. It could be argued that the coupled linear system in (V, P) corresponding to equations ( 4) and ( 5) can be solved directly; however, the associated matrix is often very large and very ill-conditioned, making it dif®cult to ensure the stability and convergence of the iterative solver for the linear system. It is often preferred to separate the computation of the velocity from that of the pressure. Here this is achieved by using the augmented Lagrangian method. [START_REF] Fortin | Me Âthodes de Lagrangien Augmente Â[END_REF][START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF] It has been shown [START_REF] Fortin | Me Âthodes de Lagrangien Augmente Â[END_REF][START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF] that the variational formulation of the problem `to ®nd (V, P) in order that (4) and ( 5) are satis®ed' consists of minimizing a functional (derived from the momentum equation) under the incompressibility constraint H ? V 0. This minimization problem is equivalent to solving a saddle point search problem for (V, P) after having introduced the augmented Lagrangian associated with the functional and the constraint de®ned above. The determination of the saddle point (V, P) is obtained by the iterative Uzawa algorithm. [START_REF] Uzawa | Iterative methods for concave programming[END_REF][START_REF] Temam | Navier±Stokes equationsÐTheory and Numerical Analysis[END_REF] (V n , P n ) being known, (V n1 , P n1 ) are obtained using the following external loop with iteration index k (time index is n):

III V k0 Y P k0 V n Y P n Y A k r V k1 F n À HP k Y 7 P k1 P k À sH ? V k1 Y 8 when kH ? V k1 k `eY then V n1 Y P n1 V k1 Y P k1 X V b b b b b b b b b b X
In equation ( 7), A k r A k À rHH ? . The additional operator ÀrHH ? comes from the augmented Lagrangian and takes into account the incompressibility constraint; its function is to increase the rate of convergence of algorithm (III). Here r, s and e are three positive constants; e has a small value and is used to determine the convergence criterion (in this paper all the results were obtained with e 10 ±5 ). kH ? V k1 k represents the arithmetic mean of the absolute values of H ? V at each mesh point.

Fortin and Glowinski [START_REF] Fortin | Me Âthodes de Lagrangien Augmente Â[END_REF] show that the convergence condition for algorithm (III) is 0 `s `2(r 1aRe). They also prove that a greater rate of convergence of (III) is achieved as r increases; on the other hand, the bigger r is, the more ill-conditioned the matrix of the linear system (derived from A k r in equation ( 7)) will be. Thus the choice of r must be a compromise in relation to two con¯icting requirements: minimizing the number of iterations on k and minimizing the number of iterations necessary to solve the linear system. Note that when very small time steps are used (e.g. for unsteady problems), the matrix of the system becomes more diagonally dominant and it is possible to increase the value of r. Fortin and Glowinski experimentally show, [START_REF] Fortin | Me Âthodes de Lagrangien Augmente Â[END_REF] by several numerical tests, that the optimum rate of convergence is approximately obtained when s is slightly bigger than r, when r is large. Thus, in this research, after having tested several values of r and s between 10 and 5000, we chose r 400 and s 500 when Dt 0Á0005. The complete algorithm, to move from time nDt to time (n 1)Dt, is presented in Figure 1.

The augmented Lagrangian term ÀrHH ? V k1 couples the velocity components and subsequently adds eight diagonals (in 2D problems) in the matrix associated with A k r . Therefore a highly ef®cient method has to be used to solve the linear system derived from (7), since U and W must be calculated at the same time. Since the discretization of the advective term V ? HV makes the linear system matrix non-symmetric and since it is a regular matrix, the Bi-CGSTAB (biconjugate stabilized gradient) method [START_REF] Van Der | Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[END_REF] with a preconditioning based on a modi®ed and incomplete Gauss factorization MILU [START_REF] Gustafsson | On ®rst and second order symmetric factorization methods for the solution of elliptic difference equations[END_REF] was the chosen solver. The same solver is used to compute T from the linear system derived from (6).

The space discretization of the momentum equation ( 7) and energy equation ( 6) is generated by using a ®nite control volume method on a staggered grid. [START_REF] Patankar | Numerical Heat Transfer and Fluid Flow[END_REF] This grid is Cartesian and uniform in each space direction, with the space step Dx in the horizontal direction and Dz in the vertical direction. P and T are computed at the nodes of the control volumes; U and W, the horizontal and vertical velocity components, are computed at the centre of the horizontal (resp. vertical) edges of the control volumes (see Figure 2). A central difference scheme is used for the space discretization of the convective ¯uxes, while the diffusive ¯uxes are discretized with central second-order derivative approximations. We note that the ®nite volume method leads to the following discretized equation for each control volume: 29

a P ff P a E ff E a N ff N a W ff W a S ff S bfY 9 
where f stands for one of the three variables T, U or W and a i (f) (with i P, E, N, W, S) and b(f) are coef®cients depending on the discretization scheme. The subscript P refers to the central control volume point (i, k) and subscripts E, N, W and S refer to its neighbouring points to the east, north, west and south respectively (see Figure 2). To be able to compute the linear system corresponding to ( 9) for all the control volumes, equation ( 9) must be veri®ed everywhere, even at the outlet boundary. However, this is not always possible when, for example, f E is unknown on this boundary. To solve the problem, OBCs are implemented. In this paper, two formulations have been used. The `weak formulation' consists of expressing f E from the discretized form of the OBC and introducing it in equation ( 9). For instance, in the case of 9), the coef®cients are modi®ed in the following way:

a W f a W f a E fY a E f 0Y a P fY a N fY a S f

and bf remain unchangedX

The `strong formulation' consists of directly identifying the discretized form of the OBC with equation (9). For instance, in the case of Figure 2(b) the Neumann condition gives f P f E . Then the coef®cients are

a P f a E f 1Y a N f a W f a S f bf 0X
So far, no hypothesis has been made about the nature and geometry of the ¯ow; it has only been assumed that the system was provided with adequate initial and boundary conditions in order to be solved. The conditions that have been implemented to compute the PBCF are presented in the following subsection. Note that one of the advantages of Uzawa's algorithm (III) (compared e.g. with the classical SIMPLE, SIMPLER, PISO, etc. methods) is that no boundary condition on pressure is required. Indeed, owing to the explicit treatment of P in (8), only the initial conditions for pressure (and the entire velocity ®eld) are needed to compute P at each time step.

Computational con®gurations and boundary conditions

Two main computational con®gurations have been used to compute the PBCF. The ®rst one is a rectangular channel with one of the ®ve tested OBCs at the outlet and a conductive Poiseuille ¯ow at the inlet; the second one is a rectangular channel with PBCs. The description of these con®gurations and the method used to implement the different OBCs or the PBCs are given below.

First con®guration. This is illustrated in Figure 3 and its initial and boundary conditions for (V, P, T) are given in Table I (except for the ®ve OBCs, whose de®nition and implementation are given in the next subsection).

This con®guration allows us to observe the space ampli®cation of the perturbation until non-linear saturation occurs. [START_REF] Mu Èller | Convective patterns in horizontal ¯ow[END_REF] When thermoconvection develops in the PBF, three zones can be distinguished (see Figure 3): (i) for 0 4 x 4 x in , the inlet zone in which the perturbation is growing; then, after its saturation, (ii) for x in 4 x 4 x out , a fully established periodic ¯ow of transversal rolls; and (iii) near Figure 3. First computational con®guration with conductive Poiseuille ¯ow at inlet and one of ®ve tested OBCs at outlet the outlet, for x out 4 x 4 LaH, the zone on which we are going to focus, where the rolls are more or less distorted by the OBC (the longer this zone is, the more spurious the effect of the OBC).

Note that the length of the inlet and of the outlet can vary according to the values of Ra, Re and Pr. Therefore computational domains with different aspect ratios LaH (where L and H are the length and height of the duct respectively) are used to obtain a fully developed periodic ¯ow for each computed case. For the test case proposed by Evans and Paolucci 17 (Ra 10,000, Re 10, Pr 2

3 ), x in % 2; therefore we chose LaH 5 and for the space and time steps we took (Dx, Dz, Dt) (0Á0725, 0Á05, 0Á0005). For Pr 6Á4, when (Ra, Re) (4700, 0Á18) and (4700, 3), we chose LaH 10; but, when (Ra, Re) (1804, 0Á18), we took LaH 20, because x in % 9. In all cases with Pr 6Á4, (Dx, Dz, Dt) (0Á1, 0Á05, 0Á0005) unless stated otherwise.

OBCs at outlet of ®rst con®guration. Many OBCs are used by the CFD research community. Frequently their physical interpretation is dif®cult, but they permit one to close a problem mathematically. When simulating a ¯ow, no clear criterion permits one to select one of these OBCs over the others; the only way to proceed is to analyse the behaviour of the ¯ow a posteriori. Subsequently we decided to test ®ve of the most commonly encountered OBCs. Their de®nitions and the ways in which they are implemented are given below. Note that the strong formulation is used to implement the OBCs for U, while the weak formulation is used for W (except for OBC1) and T.

OBC1 U V o Y W 0Y dT dx 0Y
where

V o z1 z0
À6z 2 À zdz is the average velocity of the ¯ow. To be more precise, in order to take into account both the no-slip condition on the horizontal plates of the channel and the mass conservation, we took U(i, 0) U(i, Nz) 0 and U(i, k) [Nza(Nz 7 1)]V o for 0 `k `Nz (Nz is the total number of meshes in the z-direction).

OBC1 is a coarse way to simulate the porous side walls [START_REF] Luijkx | On the existence of thermoconvective rolls, transverse to a superimposed mean Poiseuille ¯ow[END_REF][START_REF] Schro Èder | Three-dimensional convection in rectangular domains with horizontal through¯ow[END_REF] that are often placed at the inlet and outlet of experimental channels in order to avoid direct contact of the measurement zone with the feed pump. The discretization of the condition for U gives (see Figure 2(b))

U k1 Nx 1Y k À U k1 NxY k ÀDxaDzW n NxY k 1 À W n NxY kX
In the strong formulation this expression implies

a P U a W U 1Y bU ÀDxaDzW n NxY k 1 À W n NxY kY a E U a N U a S U 0X
OBC2 is directly obtained by applying the conservation of mass at the outlet boundary. We have veri®ed (not shown here) that OBC2 has exactly the same in¯uence on the numerical solution (same pro®les of U, W and T at the outlet, same amplitude of perturbations, same perturbed length, etc.) as a Neumann boundary condition on U, W and T. The only difference is that the computational time is shorter with OBC2. Indeed, with the augmented Lagrangian algorithm, a larger number of loops in k (see system (III) or Figure 1) is necessary to reach the convergence criterion kH ? Vk `e when using the simple Neumann condition. This criterion is more easily veri®ed by OBC2 since it ensures the continuity equation on the boundary. OBC2 must be seen here as a means to close the problem mathematically.

OBC3

d 2 U dx 2 0Y dW dx 0Y dT dx 0X
U k1 Nx 1Y k is obtained explicitly by discretizing the condition for U with a second-order upwind scheme in space:

U k1 Nx 1Y k 2Á5U n NxY k À 2U n Nx À 1Y k 0Á5U n Nx À 2Y kX Therefore a P U 1Y bU 2Á5U n NxY k À 2U n Nx À 1Y k 0Á5U n Nx À 2Y kY a E U a W U a N U a S U 0X
Note that the semi-implicit treatment of this OBC implies an ill-conditioning of the linear system matrix: a P U 1 and a W U 2Á5. OBC3 is less restrictive than the Neumann boundary condition: whereas the latter implies a constant extrapolation of U at the outlet boundary, OBC3 can be seen as a linear extrapolation of U on this boundary. Note that a second-order derivative was also tested for T, but the results were never as good as those obtained with the ®rst-order derivative.

OBC4 dU dx Àb U U À U I Y dW dx Àb W W À W I Y dT dx Àb T T À T I X
For U the discretization gives (see Figure 2(b))

U k1 Nx 1Y k À U k1 NxY k ÀDxb U fU k1 Nx 1Y k U k1 NxY ka2 À U I kg
and the strong formulation implies

a P U 1 Dxb U a2Y a W U 1 À Dxb U a2Y bU Dxb U U I kY a E U a N U a S U 0X
For W the discretization gives (see Figure 2(c))

W k1 Nx 1Y k À W k1 Nx À 1Y k À2Dxb W W k1 NxY k À W I k
and the weak formulation implies 

a W W a W W a E WY a P W a P W 2Dxb W a E WY bW bW 2Dxb W W I ka E WY a E W 0Y a N W
OBC5 dU dt V o dU dx 0Y dW dt V o dW dx 0Y dT dt V o dT dx 0X
For U the discretization gives

U k1 Nx 1Y k U k1 NxY k À U n Nx 1Y k À U n NxY k 2Dt V o Dx U k1 Nx 1Y k À U k1 NxY k 0Y
which implies

a P U V o Dxa2DtY a W U V o À Dxa2DtY bU U n Nx 1Y k U n NxY kDxa2DtY a E U a N U a S U 0X
For W the discretization gives

W k1 NxY k À W n NxY k Dt V o 2Dx W k1 Nx 1Y k À W k1 Nx À 1Y k 0Y which implies a W W a W W a E WY a P W a P W 2DxaV o Dta E WY bW bW 2DxaV o DtW n NxY ka E WY a E W 0Y a N W and a S W remain unchangedX
This boundary condition is a derived and simpli®ed form of Orlanski's boundary condition. [START_REF] Orlanski | A simple boundary condition for unbounded hyperbolic ¯ows[END_REF] It was initially introduced by Bottaro [START_REF] Bottaro | Note on open boundary conditions for elliptic ¯ows[END_REF] and later tested by Kobayashi et al. [START_REF] Kobayashi | Comparison of several open boundary numerical treatments for laminar recirculating ¯ows[END_REF] on the same con®guration as the one used by us. OBC5 can be seen as an approximation of the momentum equation on the boundary; U, W and T are convected by a transport equation whose celerity is the average velocity V o of the ¯ow (V o being de®ned above). In this way the re¯ection of these quantities when passing through the boundary is expected to be avoided.

Second con®guration with PBCs (periodic boundary conditions).

To try to free ourselves from the problem of OBCs, we have computed the PBCF with PBCs since this ¯ow is spatially and temporally periodic when it is fully developed. When implementing PBCs, it is no longer possible to induce the ¯ow in the channel by enforcing a Poiseuille ¯ow at the inlet; now it is induced by imposing a constant pressure gradient DP o between the inlet and outlet boundaries during all the computation. Taking DP o as the new scaling factor for pressure (instead of r o V o ), the boundary conditions for pressure are P 1 at the inlet and P 0 at the outlet. Taking (DP o /r o ) 1a2 as the new scaling factor for velocity (instead of V o ), the Reynolds number in system (I) is now de®ned by Re (DP o ar o ) 1a2 Han.

The periodicity for V and T is assumed in the following way: at each time step (n 1)Dt, (V n , T n ) obtained at time step nDt in the centre of the duct (x La2H) is simultaneously enforced as a boundary condition at the inlet and outlet of the channel (see Figure 4); in this way, at any moment, Figure 4. Second computational con®gurationÐsimulation of periodic boundary conditions the convective roll which goes out from the numerical domain goes into it on the opposite side. The top and bottom boundary conditions as well as the initial conditions are the same as those of the ®rst con®guration (see Table I). Note that because of the special way of proceeding, the number of transversal rolls in the computational domain is necessarily a multiple of four. Therefore the transversal roll wavelength l is imposed by the aspect ratio LaH. In Evans and Paolucci's benchmark case, [START_REF] Evans | The thermoconvective instability of a plane Poiseuille ¯ow heated from below: a proposed benchmark solution for open boundary ¯ows[END_REF] characterized by Ra 10,000, Re 10 and Pr 2 3 , it was shown that l % 1Á44. Thus for the simulation with PBCs a channel with LaH 2Á88 has been chosen so that four transversal rolls with the right wavelength appear in the duct; in this case the steps in space are (Dx, Dz) (0Á0725, 0Á05).

RESULTS AND DISCUSSION

The results obtained with the ®ve OBCs are compared with a reference solution for each set of Rayleigh, Reynolds and Prandtl numbers. These solutions are called `Reference' in all the ®gures and tables. They are computed over domains twice as long as those used to test the OBCs and only their ®rst half is taken into account. Indeed, the perturbation due to the OBC at the outlet of the channel is supposed to be negligible on this ®rst half. For the Reference the grid is ®ner and the OBC used is OBC5.

In the ®rst step all the tests are carried out for the case proposed by Evans and Paolucci. The Reference is computed on a domain of aspect ratio 10 with (Dx, Dz) (0Á05, 0Á0385). Figure 5 permits us to compare the streamlines, isotherms, iso-values of horizontal velocity component and Figure 6. Field pro®les at outlet boundary at time t* for different OBCs and PBCs iso-vorticity contours obtained with the different OBCs and with the Reference. Each solution is recorded at the same time t*, de®ned as the time when the temperature reaches a local minimum at the ®xed position xY z L À [START_REF] Mu Èller | Convective patterns in horizontal ¯ow[END_REF] 4 lY Ha2, where l is the roll wavelength (l 1Á44). From the OBC point of view this is the most unfavourable time, since this is the moment when a thermoconvective roll sits astride the outlet boundary: nearly half of this boundary is submitted to an entrance ¯ow. This is also the most interesting time to evaluate the behaviour of the OBCs faced with return ¯ows. Figure 5 shows that the solution is very perturbed by OBC1, OBC2, OBC3 and OBC4, whereas OBC5 seems to allow a good undisturbed evacuation of the transversal rolls.

To focus on the perturbation at the outlet boundary, Figure 6 presents the c, T, U and W vertical pro®les at x LaH for each OBC and for the PBCs compared with the Reference (where c is the streamfunction). The recording time is t* as before. The pro®les which are furthest from the reference solution are obtained with OBC2; the behaviours of OBC1, OBC3 and OBC4 are not very good either. On the other hand, OBC5 behaves almost like the Reference (except for W). OBC5 is also the i and k are the horizontal and the vertical space index respectively, Nt is the total number of time iterations and Nz is the total number of meshes in the z-direction. In this way the envelopes that are obtained illustrate clearly the magnitude of the perturbation and the length of the perturbed zone for each OBC. The amplitude of the perturbation varies signi®cantly from one OBC to another; for instance, compared with the Reference, the amplitude of the perturbation is less than 7% for OBC5 and reaches 100% for OBC1 and OBC2. The length of the perturbed zone is more dif®cult to determine precisely, because the perturbations propagate upstream oscillating slightly. Nevertheless, for the present ¯ow the length of the perturbed zone varies approximately between H for OBC5 and 1Á5H for OBC2. Figure 7 is also a good means to evaluate the length of the entrance zone. It is approximately 2H long. Thus for x 5 2 the convective ¯ow of transversal rolls can be considered as being established. Table II presents several physical parameters computed in this zone and characterizing the thermoconvective ¯ow. These parameters are the wavelength l and time period t of the transversal rolls and the space and time average Nusselt number hNui on the bottom and top plates of the channel: 

1Á4465 1Á3319 À 2Á6495 4Á3958 À 5Á0587 5Á0319 Reference 1Á439 1Á298 2Á643 À 2Á720 4Á380 À 5Á002 4Á929 OBC1 1Á413 1Á298 2Á578 0 1Á05 0 0 (100%) (76%) (100%) (100%) OBC2 1Á419 1Á296 2Á537 À 2Á348 5Á653 À 0Á469 0Á045 (14%) (29%) (91%) (99%) OBC3 1Á419 1Á298 2Á638 À 1Á474 4Á828 À 3Á741 3Á641 (46%) (10%) (25%) (26%) OBC4 1Á406 1Á298 2Á582 À 0Á558 3Á174 À 2Á559 2Á456 (80%) (28%) (49%) (50%) OBC5 1Á425 1Á296 2Á649 À 2Á616 4Á072 À 4Á909 4Á814 (4%) (7%) (2%) (2%) PBC 1Á440 1Á310 2Á662 À 2Á741 4Á358 À 4Á951 4Á859 (0Á8%) (0Á5%) (1%) (1Á4%)
where

Nut 1 LaH À 2 LaH 2 1 2 dT dz z0 xY t dT dz z1 À xY t ! dxX
The values of Umin(i), Umax(i), Wmin(i) and Wmax(i) the furthest from the Reference, for x 2 to LaH, are also given; these values are respectively denoted Umin, Umax, Wmin and Wmax and the discrepancies with respect to the Reference are given as a percentage below each value. All these results (except hNui) obtained for the ®ve OBCs and the PBCs are compared with the benchmark of Evans and Paolucci. 17 From Table II it appears that the internal structure of the ¯ow is not modi®ed by the choice of the OBCs. Indeed, taking into account the margin of error on the measurements ( AE 0Á1 on l and AE 0Á001 on t), the wavelength and time period of the transversal rolls do not vary as a function of the OBCs; the ¯uctuations of the Nusselt number are negligible too. On the other hand, the variations in the velocity can be locally very important; the discrepancies of Umin, Umax, Wmin and Wmax with respect to the Reference are small only with OBC5 and with the PBCs.

The in¯uence of the OBCs as a function of Ra and Re is studied for ¯ows corresponding to the experiments of Ouazzani et al., [START_REF] Ouazzani | Etude expe Ârimentale de la convection mixte entre deux plans horizontaux a Á tempe Âratures diffe ÂrentesÐ2[END_REF] i.e. for water ¯ows (Pr 6Á4) at an average temperature of 23 C (n 0Á93 6 10 ±6 m 2 s ±1 ) in a duct of height H 4Á15 mm. In this aim, Figure 8 gives Wmax(i) as a function of x for three combinations of Ra and Re; Wmax(i) is plotted dimensionally. Ra 1804 is close to the critical Rayleigh number Ra* characterizing the onset of thermoconvection in the Poiseuille±Be Ânard ¯ow. Note that the appearance of fully established thermoconvective rolls is rejected far from the inlet (x % 7) when Re 3 for Ra 4700 (see Figure 8(c)). When the Rayleigh number is smaller (e.g. Ra 1804) and Re 3, the thermoconvective rolls cannot appear in the channel at Pr 6Á4. [START_REF] Ouazzani | Etude expe Ârimentale de la convection mixte entre deux plans horizontaux a Á tempe Âratures diffe ÂrentesÐ2[END_REF] Whatever the combination of Ra and Re, the smallest amplitude of perturbation is always obtained with OBC5. The behaviour of the ¯ow with OBC1, OBC2 and OBC4 is approximately the same (especially at Ra 1804, Figure 8(a)). The behaviour of OBC3 is different: the perturbation oscillates at the smallest Reynolds number Re 0Á18 (Figures 8(a The fact that the length of the perturbed zone increases when Ra diminishes is in good agreement with the linear theory. The latter predicts, [START_REF] Platten | Convection in Liquids[END_REF] in the case of free convection (i.e. with rigid boundaries at the outlet), that the length necessary to obtain fully developed thermoconvective rolls varies as [(Ra 7 Ra*)aRa*] À1a2 : therefore near the boundaries the length in question tends to in®nity when Ra tends to Ra* (with Ra b Ra*). The length of the perturbed zone also increases when Re diminishes, because the perturbations caused by the OBCs can go upstream all the more easily as the forced convection is weak.

CONCLUSIONS

In the ®rst part of this paper the implementation details of the algorithm based on the augmented Lagrangian method are given; the implementation of the different open boundary conditions (OBCs) and of the periodic boundary conditions (PBCs) is also described.

The second part is dedicated to the analysis of the response of the Poiseuille±Be Ânard channel ¯ow (PBCF) solved with the ®ve different OBCs. In particular, comparison criteria are introduced to ®nely evaluate the amplitude of the perturbation and the length of the perturbed zone at the outlet boundary of the computational domain. The results show the very good behaviour of the ¯ow when Orlanskitype boundary conditions (OBC5) are used at the outlet; they also show that the ¯ow is comparatively very perturbed with the other four OBCs. On the other hand, the PBCs give excellent results; they also allow us to reduce the length of the computational domain (and subsequently to save on storage and computing time), since it is possible to work with only two space periods of the thermoconvective ¯ow.

It is shown that the improvement obtained with OBC5 is due to the important reduction of the amplitude of the perturbation without any signi®cant reduction of the length of the perturbed zone. The latter remains approximately constant whatever the OBC used. It is also shown that the length of the perturbed zone can vary from H to 5H with Ra and Re; the length increases when Ra and Re diminish.

Figure 1 .

 1 Figure 1. Augmented Lagrangian algorithm

Figure 2 .

 2 Figure 2. Grid system and positioning of variables ((a) T and P; (b) U; (c) W) near outlet of computational domain

Figure 2 (

 2 Figure 2(a) or 2(c), applying the Neumann boundary condition dfadx 0 gives f E f W . By introducing this expression in (9), the coef®cients are modi®ed in the following way:

  and a S W remain unchangedX OBC4 is a Fourier-type boundary condition: this is a mixed condition between Neumann and Dirichlet conditions. In the case of open ¯ows (e.g. ¯ows around an obstacle) it permits the connection of the recirculating local ¯ow with the fully established parallel ¯ow at in®nity, (U I , W I , T I ), by adjusting the three positive constants (b U , b W , b T ). In the case of channel ¯ows, (U I , W I , T I ) generally represent the upstream non-perturbed ¯ow. In the present paper they represent the thermally strati®ed Poiseuille ¯ow: U I À 6(z 2 7 z), W I 0 and T I 1 7 z. Neumann boundary conditions are obtained when (b U , b W , b T ) (0, 0, 0) and Dirichlet boundary conditions when (b U , b W , b T ) (I, I, I). By choosing (b U , b W , b T ) between these two limits, the outlet behaviour of the ¯ow can be considerably improved. Since the three constants depend on the nature of the ¯ow and on the chosen non-dimensionalization, the best compromise for (b U , b W , b T ) cannot be obtained by a straightforward theoretical principle; it can only be obtained by numerical experiments. For the present work, after having tested and compared several sets of (b U , b W , b T ), the optimal value of the triplet was found to be (b U , b W , b T ) % (5, 5, 0).

Figure 5 .

 5 Figure 5. Field plots for different OBC treatments at time t* (Ra 10,000, Re 10 and Pr 2 3 )

Figure 7 .

 7 Figure 7. Envelopes of U and W extrema along axis of channel; visualization of perturbed zone for the different tested OBCs (Ra 10000, Re 10 and Pr 2 3 )

Figure 8 .

 8 Figure 8. OBC effect upon envelope of vertical velocity component as a function of Rayleigh and Reynolds numbers

  ) and 8(b)), particularly when Ra 1804. As it has already been shown in the case of the ¯ow of Evans and Paolucci, the length of the perturbed zone varies very little from one OBC to another. On the other hand, it varies with Ra and Re: it is around 5H in Figure8(a) for Ra 1804 and Re 0Á18, around 3H in Figure 8(b) for Ra 4700 and Re 0Á18 (a bit more for OBC4) and around H in Figure 8(b) for Ra 4700 and Re 3.

  

Table I .

 I Inlet, bottom and top boundary conditions as well as initial conditions for ®rst computational con®guration (with OBC)

	OBC2					
	Inlet BC (x 0)	Bottom BC (z 0) dU dx À dW dz Y	dW dx	Top BC (z 1) 0Y dT dx	0X	Initial condition (t 0)

Table II .

 II Comparison of ¯ow parameters obtained with different OBCs and with Reference values for Ra 10,000, Re 10 and Pr 2 3 . The percentages give the discrepancy with respect to the Reference

	l	t	hNui	Umin	Umax	Wmin	Wmax
	Evans and Paolucci 17						
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