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Two-dimensional numerical analysis of the Poiseuille-Be ´nard flow in a rectangular channel heated from below

The Poiseuille-B énard flow ͑PBF͒ is studied by a two-dimensional numerical simulation for a Prandtl number equal to 6.4 ͑that of water at 23 °C͒ and for a wide range of Rayleigh ͑Ra͒ and Reynolds ͑Re͒ numbers: Raр6000 and Reр3. The two observed flow configurations are ͑1͒ thermally stratified Poiseuille flow and ͑2͒ thermoconvective transversal rolls superimposed to the basic Poiseuille flow. The time evolution of the velocity components, the spatial development of the transversal rolls, their frequency, wavelength and velocity, the Nusselt number, together with the stability map in the Ra-Re plane, are studied in detail. Whenever possible, quantitative comparisons are made with published results: most of the experimental data, based on laser-Doppler anemometry ͑LDA͒, are recovered with amazing accuracy; a good agreement with results of convective stability deduced from a weakly nonlinear Ginzburg-Landau theory is also obtained.

I. INTRODUCTION

The Poiseuille-Be ´nard flow ͑PBF͒ is a mixed convection flow in a horizontal rectangular channel heated from below. This problem has been widely studied, particularly because of its practical or technological interest. During this first half century, research on this subject attempted to explain certain meteorological phenomena like the cloudy band alignment under the action of the wind. [START_REF] Be | Travaux re ´cents sur les tourbillons cellulaires et les tourbillons en bandes; applications a `l'astrophysique et a `la me ´te ´orologie[END_REF][START_REF] Brunt | Experimental cloud formation[END_REF] More recently, applications have been concerned with technological processes like the cooling of electronic components [START_REF] Braaten | Analysis of laminar mixed convection in shrouded arrays of heated rectangular blocks[END_REF][START_REF] Hasnaoui | Mixed convective heat transfer in a horizontal channel heated periodically from below[END_REF] or the production of thin films in CVD ͑chemical vapor deposition͒ reactors; [START_REF] Evans | A study of traveling wave instabilities in a horizontal channel flow with applications to chemical vapor deposition[END_REF][START_REF] Evans | Unsteady three-dimensional mixed convection in a heated horizontal channel with applications to chemical vapor deposition[END_REF][START_REF] Evans | Thermally unstable convection with applications to chemical vapor deposition channel reactors[END_REF][START_REF] Moffat | Complex flow phenomena in MOCVD reactors-1. Horizontal reactors[END_REF][START_REF] Chiu | Mixed convection between horizontal plates-1. Entrance effects[END_REF][START_REF] Chiu | Mixed convection between horizontal plates-2. Fully developed flow[END_REF] these works have mainly focused on the heat transfer enhancement related to thermoconvective structures in the flow. Because of the richness of its dynamical behavior, the PBF has also given rise to fundamental studies on the stability of the different thermoconvective patterns that are liable to arise. The present paper is in keeping with these studies.

The PBF is the result of the superimposition of two convective sources: ͑1͒ a horizontal pressure gradient giving rise to a forced flow, characterized by its Reynolds number Re, and ͑2͒ a vertical temperature gradient ͑characterized by its Rayleigh number Ra͒ the source of thermoconvective structures.

Results of linear hydrodynamic stability theory [START_REF] Luijkx | On the existence of ther-moconvective rolls, transverse to a superimposed mean Poiseuille flow[END_REF][START_REF] Luijkx | Influence de la pre ´sence de parois late ´rales sur l'apparition de la convection libre, force ´e et mixte[END_REF][START_REF] Platten | Convection in Liquids ͑Springer-Verlag[END_REF] have shown that the thermally stratified Poiseuille flow ͑the ''basic flow''͒ keeps stable as long as Ra does not exceed a certain critical value Ra* ͑cf. Fig. 1͒. Beyond this value, the basic flow becomes unstable and two kinds of thermoconvective structures, called ''transversal rolls'' and ''longitudinal rolls,'' may appear. The transversal rolls, R Ќ ͑respectively longitudinal rolls, R ʈ ͒ have their axes perpendicular ͑respectively parallel͒ to the direction of the mean flow. While the longitudinal rolls are stationary structures, the transversal rolls are carried away out of the channel by the average flow; they can be considered like a quasi-twodimensional ͑2-D͒ structure, while in the longitudinal rolls the three velocity components are excited. In the case of ducts of infinite lateral extension ͑the transversal aspect ratio Bϭl/hϭϱ, where l and h are, respectively, the channel width and height͒, the longitudinal rolls are shown to appear first ͓Fig. 1͑a͔͒, since the critical Rayleigh number for the longitudinal rolls, Ra ʈ *ϭ1708, is always smaller than Ra Ќ * ͑the critical Rayleigh number for the transversal rolls͒.

For finite rectangular ducts ͓Fig. 1͑b͔͒, the lateral confinement has two effects: first, it tends to stabilize the basic flow ͓when B decreases, Ra*ϭmin(Ra Ќ * ,Ra ʈ *) grows;

Ra*Ͼ1708͔; second, the vertical lateral boundaries promote the appearance of the transversal rolls at Re smaller than a critical value Re*; when ReϾRe*, the main flow favors the longitudinal rolls. Note that Ra Ќ * depends not only on Re and B, but also on the Prandtl number Pr: when Pr increases, Ra Ќ * increases. Since Ra ʈ * is not modified by Pr, Re* dimin- ishes when Pr increases. Thus, for PrϷ0.7 ͑air͒ Re*Ϸ7 ͑see Refs. 14 and 15͒ and for PrϷ6.4 ͑water͒ Re*Ϸ0.3 ͑see Refs. 14 and 16͒. The very small value of Re* explains why, for a long time, only a few works have been devoted to the transversal roll behavior or to the transition R Ќ -R ʈ , comparing with the literature dealing with the longitudinal rolls.

It is important to note that the stability diagram in Fig. 1 is the result of a linear analysis, only valid near the critical Rayleigh number Ra*. When investigating the nonlinear behavior of the PBF, the structure of the flow becomes much more complex. Experimental works by Ouazzani et al. [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF][START_REF] Ouazzani | Intermittent patterns in mixed convection[END_REF] or by Chiu and Rosenberger, 9 recent 3-D numerical simulations [START_REF] Chen | Laminar, buoyancy induced flow structures in a bottom heated, aspect ratio 2 duct with throughflow[END_REF][START_REF] Schro | Three-dimensional convection in rectangular domains with horizontal throughflow[END_REF] and studies based on a weakly nonlinear Ginzburg-Landau model [START_REF] Brand | Simple model for the Be ´nard instability with horizontal flow near threshold[END_REF][START_REF] Mu ¨ller | Rayleigh-Be ´nard problem with imposed weak through-flow: Two coupled Ginzburg-Landau equations[END_REF] have shown that the transition R Ќ -R ʈ is not as sharp as it is represented in Fig. 1. Near the triple transition point K ͓Fig. 1͑b͔͒, the transversal and longitudinal rolls compete and periodic or intermittent patterns can arise. [START_REF] Ouazzani | Intermittent patterns in mixed convection[END_REF] Furthermore, in some conditions, transversal or longitudinal rolls, can be observed for the same set of the dimensionless parameters, according to the initial conditions.

Considering first only transversal rolls, Mu ¨ller et al. [START_REF] Mu ¨ller | Convective patterns in horizontal flow[END_REF] have applied the concept of convective instability in the PBF and defined a new critical Rayleigh number for the transversal rolls, Ra Ќ conv ϾRa Ќ * ͑Fig. 2͒. When Ra Ќ *ϽRaϽRa Ќ conv , the flow is convectively unstable: a local perturbation, appearing at time t 0 at xϭx 0 ͑cf. Fig. 2͒, will be allowed to increase with time in a moving frame of reference, but it will be damped, at each point of the duct, for a long enough time. [START_REF] Deissler | Spacially growing waves, intermittency and convective chaos in an open flow system[END_REF] In our case and in the domain of convective instabilities, it will be necessary to sustain a perturbation by a forcing ͑or a white noise͒ to create a global pattern, i.e., transversal rolls. When RaϾRa Ќ conv , the flow is absolutely unstable: any local perturbation ͑Fig. 2͒ will grow at all points of the duct until it asymptotically reaches saturation and the establishment of the transversal rolls.

In their study, Mu ¨ller et al. [START_REF] Mu ¨ller | Convective patterns in horizontal flow[END_REF] carry out a 2-D numerical simulation of the PBF, for the transversal roll configuration and for Prϭ1, in order to validate the Ginzburg-Landau amplitude equation. Recently, Ouazzani et al. [START_REF] Ouazzani | Etude de la convection mixte entre deux plans horizontaux a `des tempe ´ratures diffe ´rentes -3[END_REF] have adapted the results of the preceding study to the case of water ͑Pr ϭ6.4͒ to compare with experiments based on LDA investigations; they show that the transition between the thermally stratified Poiseuille flow and the transversal rolls favorably compares with Ra Ќ conv , but not with Ra Ќ * : the transition closely corresponds to the convective instability curve, not to the neutral one.

In the present paper results are reported on the transversal roll behavior obtained by a 2-D direct numerical simulation. A part of these results refer to the experiments of Ouazzani et al. [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] in order to quantitatively compare experiments and theory. Therefore, the Prandtl number of the fluid is equal to 6.4; the flow is systematically studied for Reynolds and Rayleigh numbers such that ReϽ3 and RaϽ6000. Thus, all the presented results cover a wide range of dimensionless parameters, from the linear to the nonlinear domain. Whenever possible, comparisons with the studies of Mu ¨ller et al. [START_REF] Mu ¨ller | Convective patterns in horizontal flow[END_REF][START_REF] Ouazzani | Etude de la convection mixte entre deux plans horizontaux a `des tempe ´ratures diffe ´rentes -3[END_REF][START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] are also given. The specific problems linked with the numerical simulation of convective patterns and open flows on finite computational domains are presented; in particular, the influence of the boundary conditions at the outlet of the channel and that of the periodic boundary conditions will be dealt with.

After having presented the methodology used to compute the PBF, the results are discussed in five distinct parts.

First, quantitative comparisons with Ouazzani's experiments, are made concerning the evolution of the vertical velocity component W with Ra and Re; most of the experimental measurements of this velocity component, obtained by LDA in Ref. 16, are numerically reproduced with amazing accuracy. Simultaneously, the horizontal velocity component, U, and the average Nusselt number, Nu, on the top and bottom plates for the fully established transversal roll flow, are recorded and discussed.

Then, for numerous values of Ra and Re, the space development of the transversal rolls is visualized by means of a stationary intensity envelope of W. The characteristic growth length, l e , of the transversal rolls is deduced from these envelopes and is shown to be in very good agreement with the result obtained by the Ginzburg-Landau theory. [START_REF] Ouazzani | Etude de la convection mixte entre deux plans horizontaux a `des tempe ´ratures diffe ´rentes -3[END_REF] In the next part, the stability map of the 2-D numerical PBF is presented. It shows the transition between the Poiseuille flow and the transversal rolls ͑the only two configurations that can be observed by 2-D simulation͒ in the Ra-Re plane. Ra Ќ * , Ra Ќ conv and the different convective patterns encountered in Ouazzani's experiments are projected on this map. The good agreement with the criterion of convective instability can be verified.

Then, the space and time average Nusselt number, ͗Nu͘, is favorably compared with a theoretical formula given by Mu ¨ller [START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] and valid on a weakly nonlinear domain ͑Ra Ͻ2500͒. The numerical values of ͗Nu͘ are obtained from two different configurations of the computational domain, using two different kinds of inlet and outlet boundary conditions. By means of the Nusselt number, the transition from the transversal rolls to the Poiseuille flow is shown to satisfy the criterion of convective stability when open boundary conditions ͑OBC͒ are used at the outlet of the domain, whereas the criterion of linear stability is verified when periodic boundary conditions are imposed.

Finally, we focus on the transversal roll frequency f , wavelength , and velocity. To our knowledge, the present work is one of the few studies dealing with the wavelength evolution in the PBF, for a wide range of the parameters in a nonlinear domain. On the other hand, it is well known [START_REF] Hasnaoui | Mixed convective heat transfer in a horizontal channel heated periodically from below[END_REF][START_REF] Luijkx | Influence de la pre ´sence de parois late ´rales sur l'apparition de la convection libre, force ´e et mixte[END_REF][START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Chen | Laminar, buoyancy induced flow structures in a bottom heated, aspect ratio 2 duct with throughflow[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF][START_REF] Schro | Three-dimensional convection in rectangular domains with horizontal throughflow[END_REF][START_REF] Ouazzani | Etude nume ´rique et expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes[END_REF] that the transversal roll velocity, Vr, can be from 10% to 50% higher than the average velocity, U°, of the flow; the ratio Vr/U°is also shown to decrease linearly with Ra, but to be independent of Re. In this paper, we present several results for Vr/U°at Prϭ6. 4 and we show that it is possible to precisely reproduce the results obtained by the Ginzburg-Landau model. [START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] 

II. METHODOLOGY

The numerical code used to simulate the 2-D PBF solves the three conservation equations ͑mass, momentum, and en-ergy͒ on a rectangular domain of length L and height h, uniformly heated from below ͑at temperature T h ͒ and cooled from above ͑at temperature T c ͒; the no slip boundary conditions are applied to the velocity on the top and bottom plates. A Newtonian and incompressible fluid is considered and the Boussinesq approximation is assumed to be valid. Thus, the dimensionless governing equations in primitive variables ͑velocity vector V, pressure P, temperature T͒ can be written as

"-Vϭ0, ͑1͒ ץV ץt ϩ͑V-" ͒VϭϪ"Pϩ 1 Re ⌬Vϩ Ra Re 2 Pr Tk, ͑2͒ ץT ץt ϩV-"Tϭ 1 Re Pr ⌬T, ͑3͒
where the characteristic length, velocity, pressure, and temperature for scaling are h, U°, ͑U°͒ 2 , and (T h ϪT c ), respectively. Therefore, the Reynolds number ReϭU°h/, the Rayleigh number Raϭg␤(T h ϪT c )h 3 /␣, and the Prandtl number Prϭ/␣. Here is the mass per unit volume, the kinematic viscosity, g the gravitational acceleration, ␤ the thermal expansion coefficient, and ␣ the thermal diffusivity. [START_REF]145ϫ10 Ϫ6 m 2 /s, thermal expansion coefficient ␤ϭ237.62ϫ10 Ϫ6 K Ϫ1 , kinematic[END_REF] In addition, k is the upward vertical unit vector. The numerical code used to treat the incompressibility constraint and the velocity-pressure coupling between the mass and momentum equations, is based on the augmented lagrangian method [START_REF] Fortin | Me ´thodes de Lagrangien Augmente ´[END_REF][START_REF] Glowinski | Numerical Methods for Non-linear Variational Problems[END_REF] and the use of a Uzawa-type algorithm. [START_REF] Arrow | Studies in Nonlinear Programming ͑Stanford[END_REF] ͑For more details about the method and the numerical aspects see Ref. 30.͒ The equations are discretized by a finite volume method on a staggered grid. The convective terms are discretized by a second-order centered differencing and the diffusive terms are approximated by secondorder centered derivatives. The time scheme is Gear's second-order backward implicit scheme; the time step ⌬t ϭ0.0005 is used for all the unsteady computations. The linear systems are solved with a preconditioned conjugate gradient method. [START_REF] Nicolas | Augmented Lagrangian method and open boundary conditions in the 2D simulation of the Poiseuille-Be ´nard channel flow[END_REF] All the computations have been realized on the same geometrical configuration ͑noted config-1͒ but, in a few cases, two other configurations ͑config-2 and config-3͒ have been studied.

Config-1: ͓Fig. 3͑a͔͒ this is a ten aspect ratio duct (A ϭL/hϭ10). ͑However, in some cases clearly mentioned, this aspect ratio will be equal to 20.͒ The inlet boundary conditions are a Poiseuille profile for velocity and a linear profile for temperature. At the outlet boundary, several OBC have been tested and compared; [START_REF] Nicolas | Augmented Lagrangian method and open boundary conditions in the 2D simulation of the Poiseuille-Be ´nard channel flow[END_REF] an Orlanski [START_REF] Orlanski | A simple boundary condition for unbounded hyperbolic flows[END_REF] -type boundary condition has been chosen allowing the smallest amplitude perturbation at the outlet. The boundary conditions are summarized in Table I.

All the computations with config-1 have been achieved with the following space steps in the axial and spanwise directions: (⌬x;⌬z)ϭ͑0.1; 0.05͒. This configuration allows 

U(0,z,t)ϭ6(zϪz 2 ) U(x,0,t)ϭ0 U(x,1,t)ϭ0 ץU ץt ϩU 0 ץU ץx ϭ0 W(0,z,t)ϭ0 W(x,0,t)ϭ0 W(x,1,t)ϭ0 ץW ץt ϩU 0 ץW ץx ϭ0 T(0,z,t)ϭ1Ϫz T ( x ,0,t)ϭ1 T(z,1,t)ϭ0 ץT ץt ϩU 0 ץT ץx ϭ0
us to observe the space amplification of the perturbation until nonlinear saturation occurs; when thermoconvection develops in the PBF, three zones can be distinguished ͓Fig. 3͑a͔͒: ͑1͒ for 0рxрx in , the entrance zone in which the perturbation is growing; then, after its saturation, ͑2͒ for x in рxрx out , a fully established periodic flow of transversal rolls; and ͑3͒ near the outlet, for x out рxрL/h, a small zone where the rolls are slightly distorted by the OBC. In most of our simulations, the length of this third zone is smaller than h but can be higher in a few runs due to its divergence at the critical point. [START_REF] Nicolas | Augmented Lagrangian method and open boundary conditions in the 2D simulation of the Poiseuille-Be ´nard channel flow[END_REF] Note that, for a fixed Rayleigh number, the length of the entrance zone increases when the Reynolds number increases; sometimes, transversal rolls do not even appear in the domain of computation at high Reynolds numbers, especially for small Rayleigh numbers. Numerically, this configuration allows us to compute the characteristic growth length, l e , of the transversal rolls, and consequently, to determine Ra Ќ conv , defined by the divergence of l e . 21 Config-2: to be able to analyze the fully established thermoconvective flow, especially for small Ra, periodic boundary conditions have been implemented 30 ͓Fig. 3͑b͔͒. Furthermore, as at each time step, a transversal roll that leaves the computational domain is simultaneously sent to the inlet, config-2 allows us to determine Ra Ќ * ; indeed, when being in the convectively unstable flow phase, the perturbations at the outlet are continuously reinjected at the entrance: a kind of forcing is maintained at the inlet of config-2.

The transversal roll wavelength, , is imposed by the aspect ratio A of the domain. Computations with config-1 having shown that Ϸ1.95, we take here Aϭ3.9; thus, four transversal rolls may develop in config-2. Furthermore, (⌬x;⌬z)ϭ͑0.078; 0.05͒.

Config-3: taking advantage of the fact that, in config-2, the flow is periodic from the entrance to the outlet of the computational domain, it is possible to make the flow stationary with a frame of reference moving at the same velocity as the transversal rolls. Thus, config-3 is the same as config-2 except that, using a very simple change of variable in Eqs. ͑1͒-͑3͒ the rolls are made stationary. Note that it has then been possible to take ⌬tϭ0.01, instead of ⌬tϭ0.0005, without losing accuracy.

To be complete, it can be added that, whatever the configuration, two initial conditions have been used: either an isothermal Poiseuille flow ͑at temperature T c ͒, or an already thermoconvective flow of transversal rolls; no hysteresis phenomenon has been observed with these conditions.

III. RESULTS AND DISCUSSION

All the results presented in the five following parts were obtained in the case of config-1, unless otherwise stated.

A. Comparison with experiments -preliminary observations

As a first result of the numerical simulation of the PBF, four particular flows are presented in Figs. 4, Nu͑t ͒ϭ 1

x 2 Ϫx 1 ͵ x 1 x 2 1 2 ͫͩ ץT ץz ͪ zϭ0 ϩ ͑ x,t ͒ ϩ ͩ ץT ץz ͪ zϭ1 Ϫ ͑ x,t ͒ ͬ dx.

͑4͒

The average over the length of the duct is taken between x 1 ϭ4 and x 2 ϭ8.5 in order to avoid the inlet and outlet zones in the evaluation of the mean. This is usually sufficient, except for extremely small Rayleigh numbers. In Figs. 4͑a͒ and4͑b͒, the sinusoidal behavior of W around a zero mean value characterizes traveling transversal rolls. W Ќ max ͑the maximum vertical velocity component of the transversal rolls at midheight͒ increases with Ra and its square ͑W Ќ max ͒ 2 is a linear function of Ra. The two signals, experimental and numerical, agree with each other, both in amplitude ͑except at Raϭ1804͒ and in frequency f . At Re ϭ0.21, f keeps constant whatever the Rayleigh number. It is approximately equal to 6.5ϫ10 Ϫ3 s Ϫ1 in Fig. 4͑a͒ and 7.15ϫ10 Ϫ3 s Ϫ1 in Fig. 4͑b͒, that is to say a difference of 10%.

Concerning the amplitude, Table II gives W Ќ max for the experimental and numerical signals of Figs. 4, 5, 6, and7. The maximum discrepancy between the two sets is less than 5%, except at the smallest Rayleigh number, Raϭ1804, where it can reach as much as 40%. This can partially be attributed to the difficulty of determining precisely the value of the Rayleigh number in the experiments ͑as already discussed in Ref. 23͒. Subsequently, as W Ќ max is proportional to ͑Ra/Ra Ќ conv Ϫ1͒ 1/2 , the relative error on W Ќ max increases when Ra tends to Ra Ќ conv . On the other hand, a part of the error can also be attributed to the position of the ''measuring probe:'' xϭ15.7 in the experiments and xϭ7.5 for the numerical simulations. At Raϭ1804, at xϭ15.7, the flow is fully developed, whereas, at xϭ7.5, we could still be in the entrance zone of the PBF, where the amplitude of W has not yet reached its maximum.

In Fig. 4͑c͒, the signal of U becomes bichromatic, showing the fundamental frequency f ͑the same as for W͒ and the first harmonic 2 f . Their amplitudes increase with Ra. The harmonic 2 f has already been observed in the classical Rayleigh-Be ´nard convection. [START_REF] Berge | Rayleigh-Be ´nard instability: Experimental findings obtained by light scattering and other optical methods[END_REF][START_REF] Normand | Convective instability: A physicists approach[END_REF] A detailed analysis of all our numerical results shows that the amplitudes of the two modes are independent of the Reynolds number, at least in the fully developed zone ͓this is, however, not clearly visible in Figs. 5͑c͒, 6͑c͒, and7͑c͔͒. In all cases, the mean value of U corresponds exactly to the maximum Poiseuille velocity.

Figure 4͑d͒ shows the increase of the Nusselt number with Ra. The weak oscillations in the signal are due to the finite arbitrary width of the interval [x 1 ,x 2 ] in the computation of Nu ͓cf. Eq. ͑4͔͒, which do not necessarily contain a finite number of rolls. Consequently, we will note ͗Nu͘ the time average Nusselt number over these oscillations:

͗Nu͘ϭ 1 t 2 Ϫt 1 ͵ t 1 t 2 Nu͑t ͒dt, ͑5͒
where the time interval (t 2 Ϫt 1 ) excludes the small initial transient phase when increasing the Rayleigh number.

In each of the Figs. 5, 6, and 7, the Rayleigh number is constant. If the Reynolds number is small enough ͑for the values listed in Table II͒, stabilized transversal roll flows are observed: W Ќ max ͑and ͗Nu͘ in a lesser extent͒ keeps constant with Re ͑cf. Table II͒. In addition, the roll frequency increases linearly with Re ͑shown in detail later͒. In Fig. 5͑a͒, when Re increases, the flow undergoes experimentally a transition to longitudinal rolls (RaϾRa ʈ *), characterized by a nonzero and constant vertical velocity component, at Ra ϭ2420 and Reϭ0.83; in the 2-D numerical simulation, the transition is to the Poiseuille flow, at Reϭ2, characterized by Wϭ0 and a constant U signal together with a Nusselt number equal to 1 ͓Figs. 5͑b͒-5͑d͔͒. In Fig. 6, at a lower Rayleigh number ͑Raϭ2024͒, the scenario remains the same, except for the so-called ''intermittent pattern'' [START_REF] Ouazzani | Intermittent patterns in mixed convection[END_REF] in the experimental signal at Reϭ0.5. In Fig. 7, for a still lower Ra ͑Raϭ1804͒, a transition to the Poiseuille flow is observed in the two cases since now RaϽRa ʈ * ; it occurs between Re ϭ0.18 and Reϭ0.25 in the experiments, and between Re ϭ0.25 and Reϭ0.5 in the numerical simulations ͑a more precise determination yields Reϭ0.36͒. When the Reynolds number is reduced to the previous value Reϭ0. 13, transversal rolls with the same amplitude and the same frequency are restored.

As already mentioned before, an aspect ratio L/hϭ10 computational domain is unsufficient to get fully established flows at the lowest Ra ͑Raϭ1804 in Table II͒. So, in the FIG. 7. The same as Fig. 4 for Raϭ1804 and Reϭ0.04, 0.13, 0.18, and 0.25 ͑plus Reϭ0.5 for the numerical simulation͒; ͑a͒ for the experiment, [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] transition to the Poiseuille flow at Reϭ0.25; ͑b͒,͑c͒,͑d͒ for the 2-D numerical simulation, transition to the Poiseuille flow at Reϭ0.5. subsequent paragraphs and figures, for Raϭ1804 and 1836, L/hϭ20 is always used and results in better agreement with the experimental values of Table II.

B. Space development of the transversal rolls

As was already stated in the Introduction, the observed critical Rayleigh number compares with Ra Ќ conv and not with Ra Ќ * . In this paragraph, we want to numerically recover, for Prϭ6.4, previous results obtained experimentally and theoretically concerning Ra Ќ conv ; eventually, we also want to show that the numerical tool allows us to give results at high Rayleigh numbers, where a Ginzburg-Landau-type approach certainly fails to produce accurate results. Therefore, in Figs. 8 and9, at different Ra and Re, we present numerous stationary envelopes of the maximum vertical velocity component along the axis of the channel. More precisely, the plots of the figures give W max as a function of x, where

W max ͑ x ͒ϭ max t͓t 1 ,t 2 ͔ ͑ max z͓0,1͔ W͑x,z,t ͒͒, ͑6͒
with t 2 Ͼt 1 and t 1 Ͼt t , where t t is the time marking the end of the transient flow phase.

As an example, let us focus on the graph drawn at Ra ϭ1836 for which the computational domain has been extended to L/hϭ20 in order to avoid the effect of the OBC, clearly important at small Ra and Re. The saturation amplitude W s , defined by

W s ϭ max x͓x in ,x out ͔ W max ͑ x ͒, ͑7͒
is equal to 102 m/s. The characteristic growth length l e is defined by W max (l e )ϭW s /2. For each Reynolds number, l e has been determined from the plots of Fig. 8, and is given in Fig. 10. Its divergence at ReϷ0.44 is clearly seen to coincide with the result of the amplitude equation [START_REF] Ouazzani | Etude de la convection mixte entre deux plans horizontaux a `des tempe ´ratures diffe ´rentes -3[END_REF] flow is reached when W max (x)ϭ0 for all x[0, L/h]; it is only shown for ͑Ra, Re͒ϭ͑1804, 0.5͒, ͑2024, 0.8͒, and ͑2420, 1.5͒ in Fig. 8, and for ͑Re, Ra͒ϭ͑0.5, 1875͒ and ͑1, 2200͒ in Fig. 9.

In Fig. 11, the saturation amplitude of the vertical velocity component, W s , is shown to be independent of the Reynolds number ͑as it should be͒, and is compared with the experiments of Ouazzani et al. [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] The maximum discrepancy between the results of the two studies is at most 14 m/s.

C. Stability diagram in (Ra-Re) plane

Figure 12 presents the stability diagram in the Ra-Re plane. The results of the linear [START_REF] Luijkx | Influence de la pre ´sence de parois late ´rales sur l'apparition de la convection libre, force ´e et mixte[END_REF] and of the convective [START_REF] Mu ¨ller | Convective patterns in horizontal flow[END_REF][START_REF] Ouazzani | Etude de la convection mixte entre deux plans horizontaux a `des tempe ´ratures diffe ´rentes -3[END_REF][START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] stability theory, together with the experimental results of Ouazzani et al. [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] are superimposed to the results of the present numerical work. The theoretical results apply to 2-D flows, whereas the experimental results are 3-D; consequently, the experiments allow more flow configurations and transitions.

Numerically, the nature of each point of the diagram, Poiseuille flow, or transversal rolls, is determined by following the evolution of a given transversal roll flow as initial conditions and updating Re and/or Ra. In some cases, we have verified that the choice of the initial conditions do not lead to hysteresis effects: the same transversal roll flow is computed starting with a conductive solution of the PBF and adding a small sinusoidal perturbation on W equal to 5% of the final amplitude of the rolls. In practice, very long CPU times are needed to compute the points near the transition FIG. 9. For fixed Re and several Ra, stationary envelopes representing the space evolution of the maximum vertical velocity component along the axis of the channel, from the inlet to the outlet of config-1 domain; for Reϭ0.21, 0.5, and 1, AϭL/hϭ10; for Reϭ0.31, Aϭ20. FIG. 10. Characteristic growth length over which the vertical velocity envelope of the transversal rolls, W max (x), increases from the inlet to half its value of saturation ͑W s /2͒, as a function of Re; at Raϭ1836, comparison with Ouazzani's experiment [START_REF] Ouazzani | Etude de la convection mixte entre deux plans horizontaux a `des tempe ´ratures diffe ´rentes -3[END_REF] and with a result obtained from the amplitude equation theory by Mu ¨ller. [START_REF] Ouazzani | Etude de la convection mixte entre deux plans horizontaux a `des tempe ´ratures diffe ´rentes -3[END_REF] curve. Consequently, only 19 points have been computed to determine its position. Furthermore, to save computational time, all the computations, even for the smallest Rayleigh numbers, have been realized with config-1 for L/hϭ10. However, a few times, L/hϭ20 has been used in order to assess the presence of the transversal rolls; for example, in Fig. 9, at Reϭ0.31 and Raϭ1780, i.e. close to Ra Ќ conv , the instability seems to develop only after xϭ10. Nevertheless, this remark is a function of the criterion used to determine the nature of the flow; in this study, it is considered that the transversal rolls disappear for the benefit of the Poiseuille flow when the following criterion is verified: ͭ ᭙x͓0,10͔, W max ͑ x ͒Ͻ0.1 m/s, and ͗Nu͘Ϫ1Ͻ10 Ϫ6 .

͑8͒

Figure 12 shows that the numerical results coincide quite well with the results of the amplitude equation; therefore, the 2-D numerical simulations of the PBF with config-1 satisfies the convective stability criterion, not the linear one.

Experimentally, the stability diagram of the 3-D flow is much more complex. Ouazzani et al. [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] have identified five regions ͑cf. Fig. 12͒: for the small Rayleigh numbers ͑zone I͒, the Poiseuille flow keeps stable; for the bigger Rayleigh numbers the flow is thermoconvective: transversal rolls are always observed in II and longitudinal rolls in III; between these two zones, in IV, there are either transversal or longitudinal rolls, depending on the initial conditions; and, in the small zone V, the flow structure shows an intermittent character for which the vertical velocity W oscillates around a nonzero mean value. [START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF][START_REF] Ouazzani | Intermittent patterns in mixed convection[END_REF] Except for the smallest Reynolds 

D. Nusselt number

In Fig. 13, the space and time average Nusselt number ͗Nu͘ is plotted as a function of Re for several values of Ra. The results of the numerical simulations, computed with config-1 and config-2, are compared with those obtained by Mu ¨ller [START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] and valid for a 2-D flow. From the amplitude equation, Mu ¨ller proposes the following formula to compute the horizontally average Nusselt number:

͗Nu͘ϭ1ϩ 1 ␥ RaϪRa Ќ * Ra , ͑9͒ 
where, for Prϭ6. For the numerical computations with config-1 at Ra ϭ1804, the Nusselt number is averaged from x 1 ϭ10 to x 2 ϭ18 ͓cf. ͑4͔͒ because Aϭ20; in the other cases, Aϭ10 and the average is taken, as said before, from x 1 ϭ4 to x 2 ϭ8.5. For config-2, Aϭ3.9 and ͗Nu͘ is averaged from x 1 ϭ0.2 to x 2 ϭ3.7.

In the three different studies, the Nusselt number decreases with Re. It tends to ͗Nu͘ϭ1, corresponding to the conductive Poiseuille flow. With config-1, this limit is reached when crossing the Ra Ќ conv curve, as it can be seen at Raϭ1804, 2024, and 2420. Obviously, ͗Nu͘ obtained with config-1 and config-2 coincide very well whatever Ra, for small values of Re, i.e., for the cases where, in config-1, the transversal roll amplitude has reached its stationary value between x 1 and x 2 .

For config-2, ͗Nu͘ decreases slightly with Re, until the value ͗Nu͘ϭ1 is reached when crossing the neutral critical curve Ra Ќ * . It has been computed earlier [START_REF] Luijkx | Influence de la pre ´sence de parois late ´rales sur l'apparition de la convection libre, force ´e et mixte[END_REF] that Ra Ќ * ϭ 1804 at Reϭ2.27 and Ra Ќ * ϭ 2024 at Reϭ4.12. We find here that ͗Nu͘ drops to 1 at Raϭ1804 when ReϷ2.05 instead of 2.27 ͑see the lower curve of Fig. 13͒, and at Raϭ2024 when Re Ϸ4.2 instead of 4.12 ͑not shown in Fig. 13͒. The Nusselt number computed with Eq. ͑9͒ is in agreement with the numerically found values, at least at small Rayleigh numbers ͑Raр2420͒. At higher Ra, Eq. ͑9͒ cannot remain a good approximation.

E. Transversal roll frequency, wavelength, and velocity

In Fig. 14, the transversal roll frequency f , computed with config-1, is plotted as a function of Re, for several Rayleigh numbers. The frequency has been determined from the same type of signals as those presented in Figs. 4567. For a fixed Rayleigh number, f is a linear function of Re. It has been verified that f does not vary with x, as long as xϽx out . The numerical results are in good agreement with the experimental results of Ouazzani. [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF] The fact that all the curves do not pass through the origin is attributed to the outlet OBC, a fact already observed and discussed in Ref. 18. With the use of periodic boundary conditions ͑config-2͒, all the curves do pass through the origin. In contradistinction with Ref. 18 ͑a study realized at a totally different Prandtl number Prϭ530͒, in which the authors found that f decreases when Ra increases whatever Re, we find in our simulations that this is only the case for ReϽ0.26; beyond, f increases slightly when Ra increases. This is due to the small mismatches of the wavelength in the two studies, conducted at very different Prandtl numbers.

The dimensionless wavelength, , is plotted in Fig. 15. Here, is computed averaging from the signals of U, W, and FIG. 13. Space and time average Nusselt number as a function of Re and Ra; comparison of the numerical solutions obtained on config-1 and config-2 with the linear stability result obtained by Mu ¨ller. [START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] T recorded for x 1 рxрx 2 , at eight different time steps for tуt t . From a single signal, when Aϭ10, ⌬xϭ0.1, and x 2 Ϫx 1 ϭ4.5, is approximately evaluated within Ϯ0.05. But, by multiplying the number of signals ͑both for U, W, and T at eight different times, i.e. 24 signals͒, the error on for each point of Fig. 15 is estimated to be less than 0.015 ͑the error bars are drawn only for a few points͒. So, in spite of an inaccuracy linked to the mesh size, is shown to weakly decrease when Re and Ra increases ͑except for the smallest Reynolds numbers Reр0.3͒. This is in good qualitative agreement with the result of the 2-D numerical simulation by Mu ¨ller et al. [START_REF] Mu ¨ller | Convective patterns in horizontal flow[END_REF] at Prϭ1, and with those of Schro ¨der and Bu ¨hler, [START_REF] Schro | Three-dimensional convection in rectangular domains with horizontal throughflow[END_REF] who found the same tendency for , even at Prϭ530.

Figure 16 presents Vr/U°ϭ/ϭ͓h 2 /͑ Re͔͒f as a function of Ra ͑where is the dimensionless time period, the dimensionless wavelength plotted in Fig. 15, but f is the frequency in s Ϫ1 plotted in Fig. 14͒. As already said in the Introduction, the four plotted curves, corresponding to Ouazzani's experiment, [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] Mu ¨ller's 2-D theory, [START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] and to the present numerical results obtained with config-1 and config-3, decrease linearly with Ra and are independent of Re. The three 2-D studies give nearly the same curves, and the linear stability result obtained by Luijkx 12 in the case of infinite lateral extension ducts ͑Vr/U°ϭ1.29 interpolated for Prϭ6.4͒ is exactly reproduced by the amplitude equation theory and by the present simulations with config-3. Ouazzani's 3-D result is also in good agreement with the linear stability theory, [START_REF] Luijkx | Influence de la pre ´sence de parois late ´rales sur l'apparition de la convection libre, force ´e et mixte[END_REF] where we estimate Vr/U°Ϸ1.5 at the critical point for Bϭl/hϭ3.6. Therefore, the difference between Vr/U°ϭ1.29 and 1.5 is clearly due to the lateral confinement of the fluid. The slope of the only available experimental curve has never been theoretically verified yet; a 3-D numerical simulation would be necessary.

For config-1, the curve of Fig. 16 is the result of the linear interpolation of Vr/U°computed from f and ; since f increases with Ra ͑when Reу0.26͒, the decrease of Vr/U°i s due to the faster decrease of . The Re independence of Vr/U°is determined within Ϯ0.03. The line equation is Vr/U°ϭ1.254Ϫ0.95ϫ10 Ϫ5 Ra. Mu ¨ller's curve and that of the simulation with config-3 merge into one single straight line in the validity domain of the Ginzburg-Landau equation: for RaϽ2500, Vr/U°ϭ 1.308Ϫ1.32ϫ10 Ϫ5 Ra. The curve with config-2 ͑not drawn in the graph͒ is parallel and at 0.02 units below the curve of config-3. With the periodic boundary conditions, since is constant, Vr/U°is more precisely determined than when varies; the Re independence is once more verified, within Ϯ0.01 for config-2 and within Ϯ0.002 for config-3. Furthermore, Vr/U°is not modified when the longitudinal aspect ratio A of these two configurations varies between 3.5 and 4.5: the roll frequency adjusts itself to the imposed wavelength so that the roll velocity remains the same. Finally, let us note that Hasnaoui et al. [START_REF] Hasnaoui | Mixed convective heat transfer in a horizontal channel heated periodically from below[END_REF] have found a result very close to our finding for the roll velocity, also using periodic boundary conditions similar to config-2; their line equation, for Prϭ7, is Vr/U°Ϸ1.284-0.90ϫ10 Ϫ5 Ra.

IV. CONCLUSION

In this study, numerous results characterizing the PBF, in a wide range of the dimensionless parameters Ra and Re, [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] and with Mu ¨ller's theoretical result [START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] ͑the limit of validity of this theory, RaϷ2500, is indicated by a vertical line͒. All the curves are independent of Re. have been presented in detail; each time possible, they are validated thanks to quantitative comparisons with the already published experimental and theoretical works.

For the transversal roll configuration, the time evolution of the vertical velocity and the frequency have been shown to be in a very good agreement with the experiments of Ouazzani et al., [START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] as soon as RaϾ2000. The theoretical results of Mu ¨ller et al., [START_REF] Mu ¨ller | Convective patterns in horizontal flow[END_REF][START_REF] Ouazzani | Etude de la convection mixte entre deux plans horizontaux a `des tempe ´ratures diffe ´rentes -3[END_REF][START_REF] Mu ¨ller | Thermische Konvection in horizontaler Scherstro ¨mung[END_REF] based on the Ginzburg-Landau amplitude equation and valid for RaϽ2500, are also well reproduced: particularly, the results concerning the absolute instability-convective instability transition between the transversal rolls and the Poiseuille flow, the characteristic growth length l e , the variation of the velocity Vr/U°with Ra, and the variation of the Nusselt number with Re. However, a 3-D numerical simulation seems to be necessary in view of an explanation of the experimental slope concerning Vr/U°, and, obviously, concerning the reproduction of the stability map and the numerous varieties of flow patterns experimentally observed ͑longitudinal rolls, intermittent patterns,...͒.

Finally, it has been shown that the simulations with a computational configuration with OBC at the outlet ͑config-1 type͒ give the convective stability curve Ra Ќ conv , whereas a config-2 type configuration ͑with periodic boundary condi-tions͒ simulates the linear stability curve Ra Ќ * .

FIG. 1 .

 1 FIG. 1. Schematic presentation and stability diagram ͑result of the linear stability theory͒ of different configurations encountered in the PBF; ͑a͒ PBF between two infinite horizontal plates; ͑b͒ PBF in a channel with infinite longitudinal aspect ratio and finite lateral aspect ratio.

FIG. 3 .

 3 FIG. 3. Schematic presentation of the transversal roll development and of the boundary conditions for the two main computational configurations used; ͑a͒ config-1: thermally stratified Poiseuille flow at the inlet and open boundary condition at the outlet; ͑b͒ config-2: periodic boundary conditions.

  5, 6 and 7. 

Figure 4

 4 represents the time evolution of the experimental ͑part a͒ and computed ͑part b͒ vertical velocity component W, of the computed horizontal velocity component U ͑part c͒ and of the space average Nusselt number Nu on the top and bottom plates ͑part d͒, at Reϭ0.21 for an increasing Rayleigh number. Figures 5, 6, and 7 represent the same quantities for an increasing Re, respectively, for Raϭ2420, 2024, and 1804. The computed velocity components, U and W, are recorded at midheight of the channel ͑zϭ0.5͒, at xϭ7.5. The numerical signals obtained by recording the dimensionless W at each time step are presented dimensionally ͑in m/s͒ in view of a comparison with the equivalent experimental data obtained by LDA in Refs. 14 and 16. These experimental recordings are realized at midheight, at 6.5 cm from the entrance of the channel, i.e., at (x,z)ϭ͑15.7, 0.5͒. For convenience, they are reproduced in Figs. 4͑a͒, 5͑a͒, 6͑a͒, and 7͑a͒ of this paper: these are, respectively, the Figs. 6 and 7 of Ref.

FIG. 4 .

 4 FIG. 4. Time evolution in the transversal roll phase, of the vertical [W(t)]and horizontal [U(t)] velocity components and of the space average Nusselt number ͓Nu(t)͔ for Reϭ0.21, Raϭ1804, 2074, 2490, 2896, and 3460, and for Prϭ6.4; ͑a͒ W(t) at (x,z)ϭ͑15.7, 0.5͒ from the experiments of Ouazzani et al.;[START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] ͑b͒,͑c͒,͑d͒, respectively, W(t), U(t), and Nu(t) at (x,z)ϭ͑7.5, 0.5͒ for the present numerical work ͑config-1͒.

FIG. 5 .

 5 FIG.5. The same as Fig.4for Raϭ2420 and Reϭ0.19, 0.53, 0.65, and 0.83 ͑plus Reϭ1 and Reϭ2 for the numerical simulation͒; ͑a͒ for the experiments,[START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] transition to longitudinal rolls at Reϭ0.83; ͑b͒,͑c͒,͑d͒ for the 2-D numerical simulations, transition to the Poiseuille flow at Reϭ2.

  FIG.8. For fixed Ra and several Re, stationary envelopes representing the space evolution of the maximum vertical velocity component along the axis of the channel, from the inlet to the outlet of config-1 domain; for Raϭ1804 and Raϭ1836, AϭL/hϭ20; for Raϭ2024, 2420, 3460, and 4700, Aϭ10.

FIG. 11 .

 11 FIG. 11. Saturation amplitude of the vertical velocity component as a function of Re, for the experiments of Ouazzani et al. 14,16 and for the present numerical work.

FIG. 14 .

 14 FIG. 14. Transversal roll frequency, computed on config-1, as a function of Re and Ra and for Prϭ6.4; comparison with Ouazzani's experiment 14 at Raϭ2024 and 2420.

FIG. 15 .

 15 FIG. 15. Transversal roll dimensionless wavelength ͑with error bars drawn for a few points͒, computed on config-1, as a function of Re and Ra and for Prϭ6.4.

  

  

  

  

TABLE I .

 I Boundary conditions used to compute the PBF with config-1.

	Inlet ͑xϭ0͒	Bottom ͑zϭ0͒	Top ͑zϭ1͒	Outlet (xϭL/h)

TABLE II .

 II Comparison of the maximum vertical velocity component during the transversal roll phase, as a function of Ra and Re, obtained experimentally by Ouazzani et al.[START_REF] Ouazzani | Transferts thermiques et me ´canique des e ´coulements de convection mixte[END_REF][START_REF] Ouazzani | Etude expe ´rimentale de la convection mixte entre deux plans horizontaux a `tempe ´ratures diffe ´rentes-2[END_REF] and numerically in the present work.

		Ra	Re	W Ќ max ͑m/s͒ at xϭ15.7 Experimental work 14,16	max ͑m/s͒ at xϭ7.5 W Ќ Present numerical work	Discrepancy ͑%͒
	Fig. 4	1804	0.21	106	71	39.5
		2074		197	189	4.1
		2490		292	289	1.0
		2896		357	365	2.2
		3460		432	455	5.0
	Fig. 5	2420	0.19	273	274	0.4
			0.53	273	273	0.0
			0.65	273	273	0.0
	Fig. 6	2024	0.15	180	174	3.4
			0.27	180	174	3.4
			0.42	180	173	4.0
	Fig. 7	1804	0.04	106	84	23.2
			0.13	104	75	32.4

  4, ␥ϭ0,699, i.e. 1/␥ϭ1.4306 ͑see Ref. 23͒. On the other hand, Schlu ¨ter et al. 34 give a formula valid on a linear domain for pure free convection and an infinite roll pattern between two horizontal plates: ϭ1.4308 for Prϭ6.4. Therefore, Mu ¨ller's formula ͑9͒ is nothing else but the Schlu ¨ter et al. formula ͑10͒ in which 1708, is replaced by Ra Ќ * ; thus, ͗Nu͘ in ͑9͒ is a function of Re through Ra Ќ * and it is valid only for small Rayleigh numbers.

				Kϭ	1 0.699 42Ϫ0.004 72/Prϩ0.008 32/Pr 2
	͗Nu͘ϭ1ϩK	RaϪ1708 Ra	,	͑10͒
	where			

ACKNOWLEDGMENTS

This work was supported by CNRS/CGRI-FNRS ͑Grants EB/EUR-94/No. 41 and EB/EUR-95/No. 123͒. The numerical simulations were performed on the IBM-SP2 computer of the CNUSC ͑South University National Center of Computation͒. The authors would like to thank the staff of the CNUSC for his availability concerning the technical support and the training.