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Two-dimensional numerical analysis of the Poiseuille—Be  “nard flow
In a rectangular channel heated from below

X. Nicolas and A. Mojtabi

Institut de MécaniquedesFluides, UMR CNRS/INP-UP$502, Universite Paul Sabatier,UFR MIG,
118 route de Narbonne,31062ToulouseCedex,France

J. K. Platten
Laboratoire de Chimie Gengale, Faculte de Medecine,Universifede Mons-Hainaut,7000 Mons, Belgium

The Poiseuille—Enardflow (PBF) is studiedby a two-dimensionalnumerical simulation for a
Prandtinumberequalto 6.4 (that of waterat 23 °C) andfor a wide rangeof Rayleigh(Ra) and
Reynolds (Re) numbers:Ra<6000and Re<3. The two observedflow configurationsare (1)
thermally stratified Poiseuilleflow and(2) thermoconvectivéransversatolls superimposedo the
basicPoiseuilleflow. Thetime evolutionof the velocity componentsthe spatialdevelopmenof the
transversalolls, their frequency,wavelengthand velocity, the Nusseltnumber,togetherwith the
stability mapin the Ra—Replane arestudiedin detail. Wheneveipossible guantitativecomparisons
are madevith published results: most of the experimerttata, based on laser-Dopplaremometry
(LDA), arerecoveredvith amazingaccuracya goodagreementvith resultsof convectivestability
deducedfrom a weakly nonlinearGinzburg—Landauheory is also obtained.

I. INTRODUCTION average flow; they can be considered like a quasi-two-
o _ _ dimensional(2-D) structure, while in the longitudinal rolls
~ The P_0|seU|IIe.—B|eard flow (PBF) is a mixed convec- the three velocity components are excited. In the case of
tion flow in a horizontal rectangular channel heated fromdycts of infinite lateral extensiofthe transversal aspect ratio
below. This problem has been widely studied, particularlyg=|/h=c, where| and h are, respectively, the channel
first half century, research on this subject attempted to exfirst [Fig. 1(a)], since the critical Rayleigh number for the
plain certain meteorological phenomena like the cloudy ba”%ngitudinal rolls, RA=1708, is always smaller than Ra
alignment under the action of the er_’ld.More recently, (the critical Rayleigh number for the transversal rplls
applications have been concerned with technological progq finjte rectangular ductiFig. 1(b)], the lateral confine-
cesses like the cooling of electronic componghter the ot has two effects: first, it tends to stabilize the basic
production of thin films in CVD(chemical vapor deposition) flow [when B decreases, Ra-min(Rd ,Rd) grows;

—10 .
reactors,™® these works have mainly focused on the hea a >1708]; second, the vertical lateral boundaries promote

transfer enhancement related to thermoconvective structur?ﬁe appearance of the transversal rolls at Re smaller than a
in the flow. Because of the richness of its dynamical behav-

. . . : critical value Ré&; when Re>Re*, the main flow favors the
ior, the PBF has also given rise to fundamental studies on th Sngitudinal rolls. Note that Radepends not only on Re and
stability of the different thermoconvective patterns that ar 9 : b Y

. . . . . , but also on the Prandtl number Pr: when Pr increases,
liable to arise. The present paper is in keeping with thes?Zi increases. Since Rds not modified by Pr, Redimin-
studies. ' l !

The PBF is the result of the superimposition of two con-iSheS when Pr increases. Ihus, fo%r?éair) Re"~7 (see
vective sources(1) a horizontal pressure gradient giving rise REfS- 14 and 15and for Pr~6.4water)Re" ~0.3 (see Refs.

to a forced flow, characterized by its Reynolds number Rel4 @nd 16. The very small value of Reexplains why, for a
and(2) a vertical temperature gradie(tharacterized by its fong time, only a few works have been devoted to the trans-
Rayleigh number Rathe source of thermoconvective struc- Versal roll behavior or to the transitidR, —R, , comparing
tures. with the literature dealing with the longitudinal rolls.

Results of linear hydrodynamic stability thedty**have It is important to note that the stability diagram in Fig. 1
shown that the thermally stratified Poiseuille fl¢the “ba- is the result of a linear analysis, only valid near the critical
sic flow”) keeps stable as long as Ra does not exceed Rayleigh number Ra When investigating the nonlinear be-
certain critical value Ra(cf. Fig. 1). Beyond this value, the havior of the PBF, the structure of the flow becomes much
basic flow becomes unstable and two kinds of thermoconmore complex. Experimental works by Ouazzanal %47
vective structures, called “transversal rolls” and “longitudi- or by Chiu and Rosenberger,recent 3-D numerical
nal rolls,” may appear. The transversal rolR, (respec- simulations®*® and studies based on a weakly nonlinear
tively longitudinal rolls, R,) have their axes perpendicular Ginzburg—Landau mod€t*® have shown that the transition
(respectively parallelto the direction of the mean flow. R, —R;is not as sharp as it is represented in Fig. 1. Near the
While the longitudinal rolls are stationary structures, thetriple transition point K[Fig. 1(b)], the transversal and lon-
transversal rolls are carried away out of the channel by thgitudinal rolls compete and periodic or intermittent patterns



a) Infinite lateral extension b) Finite lateral extension damped, at each point of the duct, for a long enough ffme.
Ra (B=l/h=2) Ra Ra* In our case and in the domain of convective instabilities, it
L

A A will be necessary to sustain a perturbation by a forcimga
KA evinina s white noise)to create a glo_bal pattern, i.e., transversal rolls.
F— Rar When Ra>R¥"™, the flow is absolutely unstable: any local
N perturbation(Fig. 2) will grow at all points of the duct until
1708 po::i:;i;:l rols Raj) 1708 Fobeutlefiow it asymptotically reaches saturation and the establishment of
»Re - »Re the transversal rolls.

In their study, Miier et al?! carry out a 2-D numerical
simulation of the PBF, for the transversal roll configuration
and for Pr=1, in order to validate the Ginzburg—Landau am-
plitude equation. Recently, Ouazzaeti al>® have adapted
the results of the preceding study to the case of wéRer
=6.4) to compare with experiments based on LDA investi-
gations; they show that the transition between the thermally
stratified Poiseuille flow and the transversal rolls favorably

[==== Ra*=min(Rat,Ra%)]

e = ith RE™, but not with R4 : the transition
GGG Rkt compares Wi , h R e
i PERONCRNCHNLRE)  Re<Rer closely corresponds to the convective instability curve, not to

ll/ the neutral one.

] In the present paper results are reported on the transver-
Th . . . . .
o sal roll behavior obtained by a 2-D direct numerical simula-
, Longitudinal rolls tion. A part of these results refer to the experiments of Ouaz-
A Re > Re* zaniet al}*18in order toquantitativelycompare experiments
W and theory. Therefore, the Prandtl number of the fluid is

equal to 6.4; the flow is systematically studied for Reynolds
and Rayleigh numbers such that<R& and Ra<6000. Thus,
FIG. 1. Schematic presentation and stability diagtaesult of the linear @il the presented results cover a wide range of dimensionless
stability theory)of different configurations encountered in the PBd;PBF parameters, from the linear to the nonlinear domain. When-
bet\/\{een_ two infinite h_orizonte_ll _platesb) PBF in a c_hannel with infinite ever possible, comparisons with the studies of'listu
longitudinal aspect ratio and finite lateral aspect ratio. et al2123245re also given. The specific problems linked with
the numerical simulation of convective patterns and open
can arisé-’ Furthermore, in some conditions, transversal orflows on finite computational domains are presented; in par-
longitudinal rolls, can be observed for the same set of thdicular, the influence of the boundary conditions at the outlet
dimensionless parameters, according to the initial condition®f the channel and that of the periodic boundary conditions
Considering first only transversal rolls, Mer et al?*  will be dealt with.
have applied the concept of convective instability in the PBF  After having presented the methodology used to com-
and defined a new critical Rayleigh number for the transverpute the PBF, the results are discussed in five distinct parts.
sal rolls, R&">Rd&" (Fig. 2). When R&<Ra<Rg°", the First, quantitative comparisons with Ouazzani's experi-
flow is convectively unstable: a local perturbation, appearingnents, are made concerning the evolution of the vertical ve-
at timet, at x=x, (cf. Fig. 2), will be allowed to increase locity componentV with Ra and Re; most of the experimen-
with time in a moving frame of reference, but it will be tal measurements of this velocity component, obtained by
LDA in Ref. 16, are numerically reproduced with amazing
accuracy. Simultaneously, the horizontal velocity compo-
R*}l Ra*™ Ra* nent,U, and the average Nusselt number, Nu, on the top and
bottom plates for the fully established transversal roll flow,

S .
T are recorded and discussed.
‘1>‘o-j . Then, for numerous values of Ra and Re, the space de-
b l" ; A ’ velopment of the transversal rolls is visualized by means of a
solute y onvective y : H ) ot
unsiable unstable stationary intensity envelope 9. The characteristic growth

length,l, of the transversal rolls is deduced from these en-

. S velopes and is shown to be in very good agreement with the
= result obtained by the Ginzburg—Landau theGry.
Absolutely stable In the next part, the stability map of the 2-D numerical
> Re PBF is presented. It shows the transition between the Poi-

seuille flow and the transversal rolithe only two configu-

FIG._2. Crltlcal_ Rayleigh number_s for th(_a‘tran_sve‘rsal roll con_flguratlon ac-rations that can be observed by 2-D simulatidn the
cording to the linear and convective stability criteria; schematic presentatio

onv H 5
of the space and time evolution of a small perturbation in the cases o?'?a_Re plane. Riai Ri and the dlﬁerept convective p?‘t'
absolutely stable flows and convectively and absolutely unstable flows. terns encountered in Ouazzani’'s experiments are projected



on this map. The good agreement with the criterion of con- a) Config-1

vective instability can be verified. L

Then, the space and time average Nusselt nungien, ey TGUWO
is favorably compared with a theoretical formula given by — }
Muller’* and valid on a weakly nonlinear domaifRa — \/@@@@@ COBC';'
<2500). The numerical values @Nu) are obtained from  “o% o el UsWoo ' P 1=Uh=1o'
two different configurations of the computational domain, Enrance Fully developped flow 7
using two different kinds of inlet and outlet boundary condi- zone bx;elr;:rgidc
tions. By means of the Nusselt number, the transition from
the transversal rolls to the Poiseuille flow is shown to satisfy b) Config:2
the criterion of convective stability when open boundary T =0;U:=w -
conditions (OBC) are used at the outlet of the domain, Li N I
whereas the criterion of linear stability is verified when pe- D@@@«
riodic boundary conditions are imposed. =0 —

Finally, we focus on the transversal roll frequenty =0 Ti=l, UsWS0 - xelh=39
wavelengthn, and velocity. To our knowledge, the present Fully-developped flow

work is one of the few studies dealing with the WavelengthFIG 3 Schemati ation of the ¢ ! roll devel +and of

f . : . 3. Schematic presentation of the transversal roll development and o
evolytlon in the P_BF’ for a wide range of the par_am_eters N 3o boundary conditions for the two main computational configurations
nonlinear domain. On the other hand, it is well ysed:(a)config-1: thermally stratified Poiseuille flow at the inlet and open
knowr{12:14-16.18.284¢ the transversal roll velocit¥r, can boundary condition at the outlety) config-2: periodic boundary conditions.
be from 10% to 50% higher than the average velodity,

of the flow; the ratioVr/U° is also shown to decrease lin- 29

early with Ra, but to be independent of Re. In this paper, wé!g0rithm== (For more details about the method and the nu-
present several results fafr/U° at Pr=6.4 and we show merical aspects see Ref. B0 he equations are discretized

that it is possible to precisely reproduce the results obtainefY @ finite volume method on a staggered grid. The convec-
by the Ginzburg—Landau mod#. tive terms are discretized by a second-order centered differ-

encing and the diffusive terms are approximated by second-
order centered derivatives. The time scheme is Gear's
Il. METHODOLOGY second-order backward implicit scheme; the time sidp

The numerical code used to simulate the 2-D PBE solves 0.0005 is used for all the unsteady computations. The lin-
the three conservation equatioftsass, momentum, and en- €ar systems are solved with a preconditioned conjugate gra-
ergy) on a rectangular domain of length and heighth,  dient method?
uniformly heated from belowat temperaturd},) and cooled All the computations have been realized on the same
from above(at temperaturd,); the no slip boundary condi- geometrical configuratior{noted config-1)but, in a few
tions are applied to the velocity on the top and bottom plateséases, two other configuratiofsonfig-2 and config-Bhave
A Newtonian and incompressible fluid is considered and théeen studied.

Boussinesq approximation is assumed to be valid. Thus, the Config-1:[Fig. 3(a)]this is a ten aspect ratio duch(
dimensionless governing equations in primitive variables=L/h=10). (However, in some cases clearly mentioned,

(velocity vectorV, pressureP, temperaturd) can be written ~ this aspect ratio will be equal to 20The inlet boundary
as conditions are a Poisedille profile for velocity and a linear

profile for temperature. At the outlet boundary, several OBC

V-v=0, (1) have been tested and compaf&dn Orlanski-type bound-

N 1 Ra ary condition has been chosen allowing the smallest ampli-

3 +(V-V)V=—-VP+ R—eAV+ REPr Tk, (2 tude perturbation at the outlet. The boundary conditions are
summarized in Table I.

oT 1 All the computations with config-1 have been achieved

G PV VT=ap AT (3)  with the following space steps in the axial and spanwise

o ) directions: Ax;Az)=(0.1; 0.05). This configuration allows
where the characteristic length, velocity, pressure, and tem-

perature for scaling ate, U°, p(U°)? and (T,—T.), respec-
tive|y_ Therefore, the Reyno|ds numberRe°h/v, the Ray- TABLE |. Boundary conditions used to compute the PBF with config-1.
leigh number RagB(T,—T.h%va, and the Prandtl

number Pr=/a. Herep is the mass per unit volume, the Inlet (x=0) Bottom(z=0)  Top(z=1)  Outiet k=L/h)
kinematic viscosity,g the gravitational acceleratiorg the U(0Z.)=6(z—3) UX00=0  U(x11)=0 EJFUOEZO
thermal expansion coefficient, andx the thermal a X
diffusivity.?® In addition k is the upward vertical unit vector. o Wexon=0  Wixin=o MW MW _g
The numerical code used to treat the incompressibility ot X
constraint and the velocity—pressure coupling between the g T
mass and momentum equations, is based on the augmentEd?9=1-2 x0n=1  T1H=0  —+U°—=0

lagrangian methdd?® and the use of a Uzawa-type



us to observe the space amplification of the perturbation until (a) Re=0.21

nonlinear saturation occurs; when thermoconvection devel- . w(um 9 Ra=3460
ops in the PBF, three zones can be distinguidifégl. 3(a)]: Rom24g0 02896

(1) for 0=<x=x;,, the entrance zone in which the perturba- Ra=2074 :

tion is growing; then, after its saturatiof®) for X, <X=<Xqy, Ra=1804

a fully established periodic flow of transversal rolls; &84 . MMMA MAM

near the outlet, for,,=x=<L/h, a small zone where the rolls }WWWWWW I )
are slightly distorted by the OBC. In most of our simulations, e
the length of this third zone is smaller thénbut can be I

higher in a few runs due to its divergence at the critical
point3° Note that, for a fixed Rayleigh number, the length of
the entrance zone increases when the Reynolds number in-
creases; sometimes, transversal rolls do not even appear in
the domain of computation at high Reynolds numbers, espeﬁ:
cially for small Rayleigh numbers. Numerically, this con-
figuration allows us to compute the characteristic growthZ
length, 1., of the transversal rolls, and consequently, to de-2
termine R&", defined by the divergence bf %

Config-2:to be able to analyze the fully established ther- .
moconvective flow, especially for small Ra, periodic bound- Ra=1804  Ra=2074  Ra=2490  Ra=2896
ary conditions have been implemeni®fFig. 3(b)]. Further- ' ‘
more, as at each time step, a transversal roll that leaves the
computational domain is simultaneously sent to the inlet,
config-2 allows us to determirRa} ; indeed, when being in
the convectively unstable flow phase, the perturbations at the
outlet are continuously reinjected at the entrance: a kind of
forcing is maintained at the inlet of config-2. :

The transversal roll wavelengti, is imposed by the S0 et a0  Rac2490  Ras28%  Ras3460
aspect ratioA of the domain. Computations with config-1
having shown thak~1.95, we take her&=3.9; thus, four
transversal rolls may develop in config-2. Furthermore, 161
(Ax;Az)=(0.078; 0.05).

Config-3:taking advantage of the fact that, in config-2,
the flow is periodic from the entrance to the outlet of the
computational domain, it is possible to make the flow sta-
tionary with a frame of reference moving at the same veloc- 10 i
ity as the transversal rolls. Thus, config-3 is the same as 00 881.8 s (;6"5"‘ sz 0
config-2 except that, using a very simple change of variable
in Egs.(1)—(3) the rolls are made stationary. Note that it hasrig. 4. Time evolution in the transversal roll phase, of the vertive(t)]

then been possible to taket=0.01, instead ofAt=0.0005, and horizontal J(t)] velocity components and of the space average Nusselt
without Iosing accuracy. number[Nu(t)] for Re=0.21, Ra=1804, 2074, 2490, 2896, and 3460, and

. for Pr=6.4;(a) W(t) at (x,z) =(15.7, 0.5)from the experiments of Ouazzani
To be complete, it can be added that, whatever the con, al. 1435 (b) (c),(d), respectivelyW(t), U(t), and Nut) at (x,2)=(7.5,

figuration, two initial conditions have been used: either ano.s)for the present numerical wortconfig-1).
isothermal Poiseuille flowat temperaturd ), or an already

thermoconvective flow of transversal rolls; no hysteresis

phenomenon has been observed with these conditions.

18 | (d) L

bottom plates(part d), at Re=0.21 for an increasing Ray-
leigh number. Figures 5, 6, and 7 represent the same quanti-

IIl. RESULTS AND DISCUSSION ties for an increasing Re, respectively, for-R&120, 2024,
All the results presented in the five following parts wereand 1804. _
obtained in the case of config-1, unless otherwise stated. The computed velocity componentd, and W, are re-

corded at midheight of the chann@=0.5), atx=7.5. The
numerical signals obtained by recording the dimensiorléss
at each time step are presented dimension@yum/s) in

As a first result of the numerical simulation of the PBF, view of a comparison with the equivalent experimental data
four particular flows are presented in Figs. 4, 5, 6 and 7obtained by LDA in Refs. 14 and 16. These experimental
Figure 4 represents the time evolution of the experimentatecordings are realized at midheight, at 6.5 cm from the en-
(part a)and computedpart b) vertical velocity component trance of the channel, i.e., ax,g) =(15.7, 0.5). For conve-
W, of the computed horizontal velocity componéhfpartc)  nience, they are reproduced in Figéay 5a), 6(a), and 1a)
and of the space average Nusselt number Nu on the top ard this paper: these are, respectively, the Figs. 6 and 7 of Ref.

A. Comparison with experiments — preliminary
observations
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w({pms) w(pums
400 - 400 pms) .
Rem0 Re=0.19 "® 0%Rec065  Rem0.83 Res
- A h 0 015 ' 0.27
o i A : ‘1 \ :: ((s) (] 3 T ¥ Bl T N
HiY t(s)
o
-400 o 23008
®) ;
E
B -
Re=0.19 Re=0.53 Re=0.65 Re=0.83 Re=1. Re=2.
650 - (c) b
550
g 450 b -
g 350 E
S 250 - =
150 M/J =
50
15 Re=0.19 Re=0.53 Re=0.65 Re=0.83‘Re=1. Re=2. 200
’ 230 Re=0.15 Re=0.27 Re=0.42Re=046Re=0.5 Re=0.6
b U (© '
sk : 180 [
- 2 AV
2 g "
1.2 z 130 | :
b > sl MANNN,
10 @ :
. - NN
0.0 731.0 1028.0 12844 1496416723 30 i
Time (s) 124 Re=0.15 Re=0.27 Re=0.42Re=0.46 Re=0.5 Re=0.6
_ @ :
FIG. 5. The same as Fig. 4 for R&420 and Re=0.19, 0.53, 0.65, and 0.83 1.22
(plus Re=1 and Re=2 for the numerical simulajior(a) for the
experiment$16 transition to longitudinal rolls at Re=0.88b),(c),(d) for 120 F
the 2-D numerical simulations, transition to the Poiseuille flow atRe 2 "V-M
118 |
16, Figs. 5-18 of Ref. 14, and Fig. 10 of Ref. 16. The time "¢}
evolution of U and Nu are only given for the numerical L1a L e YRR YT TYRTY
simulations since these quantities were not measured in the ' T timetsy ' ’

experimental available papers. Nu is defined as follows:
FIG. 6. The same as Fig. 4. for R2024 and Re0.15, 0.27, 0.42, 0.46,

Nu(t) = t J'XZ E ﬂ (X,t) and 0.5 (plus Re=0.6 for the numerical simulatipn(a) for the
Xo=Xq Jx, 2 0z ! experiment? transition to “intermittent pattern” at Re0.5; (b),(c),(d) for
z=0" the 2-D numerical simulation, persistence of the Poiseuille flow until Re
=0.6.
aT q 4
+ 7z 1 (x,t)|dx. 4)
y=1-

rolls. W (the maximum vertical velocity component of the
The average over the length of the duct is taken betweetransversal rolls at midheightincreases with Ra and its
x;=4 andx,=8.5 in order to avoid the inlet and outlet zones square(W®)? is a linear function of Ra. The two signals,
in the evaluation of the mean. This is usually sufficient, ex-experimental and numerical, agree with each other, both in
cept for extremely small Rayleigh numbers. amplitude(except at Ra=1804and in frequencyf. At Re

In Figs. 4a) and 4(b), the sinusoidal behavior ¥ =0.21,f keeps constant whatever the Rayleigh number. It is
around a zero mean value characterizes traveling transversapproximately equal to 6:610° s™! in Fig. 4a) and
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FIG. 7. The same as Fig. 4 for R4804 and Re-0.04, 0.13, 0.18, and 0.25
(plus Re=0.5 for the numerical simulatipria) for the experiment®tran-
sition to the Poiseuille flow at Re0.25; (b),(c),(d) for the 2-D numerical
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simulation, transition to the Poiseuille flow at R@.5.

7.15x10° s 1 in Fig. 4(b), that is to say a difference of

10%.

Concerning the amplitude, Table Il givés¥® for the

7207

of the Rayleigh number in the experimerits already dis-
cussed in Ref. 23 Subsequently, a8/ is proportional to
(Ra/RE°™—1)2 the relative error otW™ increases when
Ra tends to R&™. On the other hand, a part of the error can
also be attributed to the position of the “measuring probe:”
x=15.7 in the experiments and=7.5 for the numerical
simulations. At Ra=1804, at=15.7, the flow is fully devel-
oped, whereas, at=7.5, we could still be in the entrance
zone of the PBF, where the amplitude ¥f has not yet
reached its maximum.

In Fig. 4(c), the signal ofJ becomes bichromatic, show-
ing the fundamental frequendy(the same as fow) and the
first harmonic . Their amplitudes increase with Ra. The
harmonic 2f has already been observed in the classical
Rayleigh—Beard convectioi?*3 A detailed analysis of all
our numerical results shows that the amplitudes of the two
modes are independent of the Reynolds number, at least in
the fully developed zonghis is, however, not clearly visible
in Figs. 5(c), &c), and 7(c)]. In all cases, the mean value of
U corresponds exactly to the maximum Poiseuille velocity.

Figure 4(d)shows the increase of the Nusselt number
with Ra. The weak oscillations in the signal are due to the
finite arbitrary width of the interval{; ,x,] in the computa-
tion of Nu [cf. Eq. (4)], which do not necessarily contain a
finite number of rolls. Consequently, we will noBlu) the
time average Nusselt number over these oscillations:

1 ty
(Nu>=t2_ Jt Nu(t)dt, (5)

1

where the time intervalt{—t;) excludes the small initial
transient phase when increasing the Rayleigh number.

In each of the Figs. 5, 6, and 7, the Rayleigh number is
constant. If the Reynolds number is small enoufgr the
values listed in Table II), stabilized transversal roll flows are
observedW® (and(Nu) in a lesser exteitkeeps constant
with Re (cf. Table Il). In addition, the roll frequency in-
creases linearly with Reshown in detail later). In Fig. 5(a),
when Re increases, the flow undergoes experimentally a
transition to longitudinal rolls (RaRg’), characterized by a
nonzero and constant vertical velocity component, at Ra
=2420 and Re=0.83; in the 2-D numerical simulation, the
transition is to the Poiseuille flow, at Re=2, characterized by
W=0 and a constant) signal together with a Nusselt num-
ber equal to IFigs. 5(b}-5(d)]. In Fig. 6, at a lower Ray-
leigh number(Ra=2024), the scenario remains the same,
except for the so-called “intermittent patterit” in the ex-
perimental signal at Re=0.5. In Fig. 7, for a still lower Ra
(Ra=1804), a transition to the Poiseuille flow is observed in
the two cases since now Ra<{Rait occurs between Re
=0.18 and Re=0.25 in the experiments, and between Re
=0.25 and Re0.5 in the numerical simulation&a more
precise determination yields R®.36). When the Reynolds
number is reduced to the previous value=Rel3, transver-

experimental and numerical signals of Figs. 4, 5, 6, and 7sal rolls with the same amplitude and the same frequency are
The maximum discrepancy between the two sets is less thanestored.

5%, except at the smallest Rayleigh number,=R804,

As already mentioned before, an aspect ratih=10

where it can reach as much as 40%. This can partially beomputational domain is unsufficient to get fully established
attributed to the difficulty of determining precisely the value flows at the lowest R4dRa=1804 in Table )l So, in the



TABLE Il. Comparison of the maximum vertical velocity component during the transversal roll phase, as a
function of Ra and Re, obtained experimentally by Ouazearil ' and numerically in the present work.

W (um/s) at x=15.7 W (um/s) at x=7.5 Discrepancy
Ra Re Experimental work*'6 Present numerical work (%)
Fig. 4 1804 0.21 106 71 39.5
2074 197 189 4.1
2490 292 289 1.0
2896 357 365 2.2
3460 432 455 5.0
Fig. 5 2420 0.19 273 274 0.4
0.53 273 273 0.0
0.65 273 273 0.0
Fig. 6 2024 0.15 180 174 34
0.27 180 174 3.4
0.42 180 173 4.0
Fig. 7 1804 0.04 106 84 23.2
0.13 104 75 324

subsequent paragraphs and figures, forR804 and 1836, =0.8)at Ra=~2024. As a matter of fact, the procedure can be

L/h=20 is always used and results in better agreement withepeated for all the Rayleigh numbers presented in Fig. 8 and

the experimental values of Table II. the divergence ol appears at higher Reynolds numbers
when Ra increase@ot shown in Fig. 10 The Poiseuille

B. Space development of the transversal rolls

As was already stated in the Introduction, the observedg e
critical Rayleigh number compares with Rd and not with 3 T Reots
Ra . In this paragraph, we want to numarically recover, for § T Retas
Pr=6.4, previous results obtained experimentally and theo-= = Re=030
retically concerning REA™; eventually, we also want to ™ —
show that the numerical tool allows us to give results at high § n,,,.,--;j':"’/’/" /,/«/" TF] Res0l6
Rayleigh numbers, where a Ginzburg—Landau-type approachf «} 1 /7, e " pecisss — 7 Reas

. . . . < P e =. — = Re=0.
certainly fails to produce accurate results. Therefore, in Figs.§ «{ /:7,7 .~ - e Rex035
: g w0l G 7 - o— -+ Re=040

8 and 9, at different Ra and Re, we present numerous sta~ ° 72—, -~

tionary envelopes of the maximum vertical velocity compo- L L A

nent along the axis of the channel. More precisely, the plots

of the figures giveVN,,.« as a function ok, where 5 1% [ T RS
H 130 4 =" |- - Re=027
z — — Re=042

Wiha{X)= max ( max W(x,z,t)), (6) E % T Res0s0

telty,ty] ze[0,1] g +— -« Re=0.70

with t,>t; andt,;>t,, wheret, is the time marking the end
of the transient flow phase.

As an example, let us focus on the graph drawn at Ra
=1836 for which the computational domain has been ex-#
tended toL/h=20 in order to avoid the effect of the OBC, E

‘max (10e-6 m/s)

= ™| —— Re=0.18
clearly important at small Ra and Re. The saturation ampli- § « 7% e o R0l
tude W, defined by Twof f7 ,« Z Reos
> S wof A T Ra=3460 - reost
/ ’  ~ Rem200
W= max Wq(X), 7) = e
X € [Xin Xoutl - p - e
7/ i — — - Re=050
is equal to 102um/s. The characteristic growth lengthis %400 A /’/ Rt 700 — - Reon0
defined byW,.{l.)=W/2. For each Reynolds numbdg, R /2 p TR0
has been determined from the plots of Fig. 8, and is givenin™ T
Fig. 10. Its divergence at ReD.44 is clearly seen to coincide ° : e ’ *

with the result of the amplitude equatfdrand to agree fairly

well with the experimentg¢dashed line). The results at Ra FIG. 8. For f_lxed Ra and s_everal Re_, stationary envelopes representing Fhe
. . . space evolution of the maximum vertical velocity component along the axis
=1804 and 2024 are also reported; of course, the divergencg e channel, from the inlet to the outlet of config-1 domain; forrR804

of I, is found earlier(Re~0.36)at Ra=1804 and latefRe  and Ra=1836A=L/h=20; for Ra=2024, 2420, 3460, and 4708~=10.
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FIG. 9. For fixed Re and several Ra, stationary envelopes representing the space evolution of the maximum vertical velocity component along the axis of the
channel, from the inlet to the outlet of config-1 domain; for=Re21, 0.5, and 1A=L/h=10; for Re=0.31,A=20.

flow is reached wheW,,,(x) =0 for all xe [0, L/h]; it is
only shown for (Ra, Re)=(1804, 0.5)(2024, 0.8), and
(2420, 1.5)in Fig. 8, and for(Re, Ra)=(0.5, 1875and (1,

2200)in Fig. 9.
le *  Ra=1836:20;
Quazzani (23]
12 -t
[ PN Bttt Ra=1836 ; interpolation
[ ! of Quazzani's results
10 + Ra=1836 ; Miiller [23]

—O— Ra=1804
—O—— Ra=1836

—X— Ra=2024

——— Ra=2420
——0—— Ra=3460

—X—— Ra=4700,

Re

In Fig. 11, the saturation amplitude of the vertical veloc-
ity componentWs, is shown to be independent of the Rey-
nolds number(as it should be), and is compared with the
experiments of Ouazzart al'*® The maximum discrep-
ancy between the results of the two studies is at most 14
pum/s.

C. Stability diagram in (Ra—Re) plane

Figure 12 presents the stability diagram in the Ra—Re
plane. The results of the linddrand of the convective?324
stability theory, together with the experimental results of
Ouazzaniet al1*1® are superimposed to the results of the
present numerical work. The theoretical results apply to 2-D
flows, whereas the experimental results are 3-D; conse-
quently, the experiments allow more flow configurations and
transitions.

Numerically, the nature of each point of the diagram,
Poiseuille flow, or transversal rolls, is determined by follow-
ing the evolution of a given transversal roll flow as initial
conditions and updating Re and/or Ra. In some cases, we
have verified that the choice of the initial conditions do not
lead to hysteresis effects: the same transversal roll flow is

FIG. 10. Characteristic growth length over which the vertical velocity en- computed starting with a conductive solution of the PBF and

velope of the transversal roll®y,,.(X), increases from the inlet to half its

value of saturationWy/2), as a function of Re; at Ral836, comparison

with Ouazzani’s experimefitand with a result obtained from the amplitude

equation theory by Mier.?®

adding a small sinusoidal perturbation @hequal to 5% of
the final amplitude of the rolls. In practice, very long CPU
times are needed to compute the points near the transition



Ws (10e-6 m/s) assess the presence of the transversal rolls; for example, in
700 Fig. 9, at Re=0.31 and R&1780, i.e. close to R3", the
; o Ra=4700 4 instability seems to develop only aftgr=10. Nevertheless,
600 p « this remark is a function of the criterion used to determine
i ——— Fresentwor the nature of the flow; in this study, it is considered that the
e Quazzani [14, 16] . . . .
500 T Ra=3460 transversal rolls disappear for the benefit of the Poiseuille
[ PR TR ak x flow when the following criterion is verified:
400 T
F Vxe[0,10], W(X)<0.1 um/s,
300 Ra=2420 ) and ®)
200 _5 _“Ra_=2_(_)_2f1_ <NU> —-1<1078,
5 ) N Figure 12 shows that the numerical results coincide quite
100 ¢ well with the results of the amplitude equation; therefore, the
; Ra=1836 L L L 2-D numerical simulations of the PBF with config-1 satisfies
0 ' ' ' ' the convective stability criterion, not the linear one.
0 0.2 04 Re 06 08 1 Experimentally, the stability diagram of the 3-D flow is

much more complex. Ouazzasi al1*®have identified five

FIG. 11. Saturation amplitude of the vertical velocity component as a funcyegions(cf. Fig. 12: for the small Rayleigh numbergone

tion of Re, for the experiments
numerical work.

of Ouazzaetiall*1®

and for the present

1), the Poiseuille flow keeps stable; for the bigger Rayleigh
numbers the flow is thermoconvective: transversal rolls are
always observed in Il and longitudinal rolls in Ill; between

curve. Consequently, only 19 points have been computed tthese two zones, in 1V, there are either transversal or longi-
determine its position. Furthermore, to save computationatiudinal rolls, depending on the initial conditions; and, in the
time, all the computations, even for the smallest Rayleigtsmall zone V, the flow structure shows an intermittent char-

numbers, have been realized with config-1 foth=

10.  acter for which the vertical velocityv oscillates around a

However, a few timesl./h=20 has been used in order to nonzero mean valu&:'’ Except for the smallest Reynolds

Ra
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the Poiseuille flow and ...
the transversal rolls.

Linear stability (Luijkx [12])
Convective stability
(Miller [21, 23, 24])

1,0 Re

Experimental work (3D) - Ouazzani et al. [14, 16];
Separation line between the following different zones:
I  Poiseuille flow

II  Transversal rolls

III Longitudinal rolls

IV Trans. or long. rolls according to the initial conditions

V  Intermittent patterns

0,5 0,6 0,7 0,8 0,9

FIG. 12. Stability diagramof the different configurationsencounteredn the PBF with Pr=6.4. The numericalresultsof the presentwork are obtainedwith
config-1; other alreadgublished results are superimposed to the numeswiation.



Amplitude eq. ——O—— Present work ~~--O---- Present work K= 1
Miller [24] Config-1 Config-2 0.699 42-0.004 72/Pr-+0.008 32/Pt
<Nu> —1.4308 for Pr=6.4.
L At s B ) _ .
2 +Ra=4700 T TTTm== f Therefore, Miler's formula (9) is nothing else but the

Schiiter et al. formula (10) in which 1708, is replaced by

184 mo—omi Rd" ; thus,(Nu)in (9) is a function of Re through Raand it
: Ra=3460 TR LI o is valid only for small Rayleigh numbers.

E I For the numerical computations with config-1 at Ra
=1804, the Nusselt number is averaged froop=10 to
X,=18][cf. (4)] becausé=20; in the other case# =10 and

the average is taken, as said before, fropr4 to x,=8.5.

For config-2,A=3.9 and({Nu) is averaged fronx;=0.2 to
X>=3.7.

In the three different studies, the Nusselt number de-
creases with Re. It tends #Nu)=1, corresponding to the
conductive Poiseuille flow. With config-1, this limit is
reached when crossing the RY curve, as it can be seen at
FIG. 13. Space and time average Nusselt number as a function of Re arld@=1804, 2024, and 2420. Obviousl{ju) obtained with
Ra; comparison of the numerical solutions obtained on config-1 andconfig-1 and config-2 coincide very well whatever Ra, for
config-2 with the linear stability result obtained by Neu.** small values of Re, i.e., for the cases where, in config-1, the
transversal roll amplitude has reached its stationary value
betweenx; andx,.

For config-2,{Nu) decreases slightly with Re, until the

16 £

0 0,5 1 1,5 2 Re

numbers(<Re* ~0.3), it is difficult to compare the experi- ] ) o
mental stability diagram with the others: a 3-D numericalV&lU€{Nu)=1 is reached when crossing the neutral critical

simulation would be necessary. Nevertheless, two 3-D nuSuUrve R4 . Ithas been computed earfiéthat R4 = 1804 at
merical studies of the PBF can be pointed out: in Ref. 15, &€=2-27 and Ra = 2024 at Re=4.12. We find here that
zone IV is observed for a flow in a transversal aspect ratio 24NU) drops to 1 at Ra=1804 when Re~2.05 instead of 2.27
duct and for P=0.7 (even though this result seems to be (S€€ the lower curve of Fig. 13and at Ra=2024 when Re
linked with a numerical artefact: the choice Af); in Ref. ~ ~%2 instead of 4.1Znot shown in Fig. 13). The Nusselt
18, withB=1/h=4.1 and Pr=53silicon oil), Schraler and "umber computed with Eq9) is in agreement with the nu-
Bihler show flow configurations where transversal and lonmerically found values, at least at small Rayleigh numbers
gitudinal rolls superimpose; these solutions could be favor(R@=<2420). At higher Ra, Eq9) cannot remain a good
ably compared with certain experimental signals obtained if@PProximation.

region V by Ouazzangt al1*!’

D. Nusselt number E. Transversal roll frequency, wavelength,

) ) and velocity
In Fig. 13, the space and time average Nusselt number

(Nu) is plotted as a function of Re for several values of Ra. IN Fig. 14, the transversal roll frequendy computed

The results of the numerical simulations, computed withWith config-1, is plotted as a function of Re, for several Ray-
config-1 and config-2, are compared with those obtained bjigh numbers. The frequency has been determined from the
Miiller?* and valid for a 2-D flow. From the amplitude equa- S&me type of signals as those presented in Figs. 4-7. For a

tion, Milller proposes the following formula to compute the fixed Rayleigh numberf is a linear function of Re. It has

The numerical results are in good agreement with the experi-
mental results of Ouazzaff. The fact that all the curves do
’ (9) not pass through the origin is attributed to the outlet OBC, a
Ra fact already observed and discussed in Ref. 18. With the use
of periodic boundary conditiong&onfig-2), all the curves do
where, for P=6.4, y=0,699, i.e. 14=1.4306(see Ref. 28 pass through the origin. In contradistinction with Ref. (&8

On the other hand, Schkr et al®* give a formula valid ~ study realized at a totally different Prandtl number=BB0),
on a linear domain for pure free convection and an infinitein Which the authors found that decreases when Ra in-

roll pattern between two horizontal plates: creases whatever Re, we find in our simulations that this is
only the case for Re0.26; beyond,f increases slightly
when Ra increases. This is due to the small mismatches of
, (10)  the wavelength in the two studies, conducted at very differ-
Ra ent Prandtl numbers.
The dimensionless wavelength, is plotted in Fig. 15.
where Here,\ is computed averaging from the signalslbfw, and

1 Ra—R4
(NUp=1+ - —=

Ra—1708
(NUy=1+K —=——
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FIG. 14. Transversal roll frequency, computed on config-1, as a function of IG. 16. Ratio of the transversal roll velocityy, to the average velocity of

Re and Ra and for Pr6.4; comparison with Ouazzani's experiménat the flow,U°, as a function of Ra and for R16.4; comparison of the numeri-
Ra=2024 and 2420. cal solutions obtained on config-1 and config-3 with the experimental results

of Ouazzaniet al*® and with Muler's theoretical resuit (the limit of
validity of this theory, Ra=2500, is indicated by a vertical lineAll the

T recorded forx; <x<x,, at eight different time steps for CUrves are independent of Re.

t=t,. From a single signal, whe=10, Ax=0.1, and
X=X, =4.5, \ is approximately evaluated withirt0.05. e |inear stability result obtained by Luijikin the case of
But, by multiplying the number of signalboth forU, W, ixfinite |ateral extension ducty/r/U°=1.29 interpolated for
andT at eight different times, i.. 24 signalshe error ol py_g 4 is exactly reproduced by the amplitude equation
for each point of Fig. 15 is estimated to bg less tha_n O'Ql%eory and by the present simulations with config-3. Ouaz-
(the error bars are drawn only for a few points). So, in spite,anig 3.p result is also in good agreement with the linear
of an inaccuracy linked to the me§h size,is shown to stability theory'? where we estimat¥r/U°~1.5 at the criti-
weakly decrease when Re and Ra incredsasept for the .| nint forB=1/h=23.6. Therefore, the difference between
smallest Reynolds numbers R6.3). This is in good quali- y/y/yo=1 29 and 1.5 is clearly due to the lateral confinement
tative agreement with the result of the 2-D numerical Simu-yf the fluid. The slope of the only available experimental
lation by M;‘g'er etal™at Pr=1, and with those of Scfier e has never been theoretically verified yet; a 3-D nu-
and Bihler™ who found the same tendency far even at . arical simulation would be necessary.
Pr=530. o 2 For config-1, the curve of Fig. 16 is the result of the

Figure 16 presentsV/r/U°=M7=[h"/(vRe)F\ as @ jinear interpolation ofr/U° computed fromf and\; since
function of Ra(where 7 is the dimensionless time perion, f increases with Ravhen Re=0.26), the decrease\of/U®
the dimen;iorllfss Wave_length plotted in Fig. 15, b_iﬂ_the is due to the faster decrease xaf The Re independence of
frequency in S” plotted in Fig. 14). As already said in the \;;° js determined within=0.03. The line equation is
Introduction, the four plotted curves, corresponding to Ouazy,,/jo—=1 254—0.95%10° Ra

" ; 4,16 N ey 24 e ) ’ . . . .
zani's experiment"'® Milller's 2-D theory:" and to the Miiller's curve and that of the simulation with config-3
present numerical results obtained with config-1 andyerge into one single straight line in the validity domain of
config-3, decrease linearly with Ra and are independent qf,o Ginzburg—Landau equation: for Ra<250¥/U°
Re. The three 2-D studies give nearly the same curves, and4 30g_1 32%10° Ra. The curve with config-gnot c;rawn

in the graph)is parallel and at 0.02 units below the curve of
config-3. With the periodic boundary conditions, sincés

2 : constantVr/U® is more precisely determined than when
195 £ varies; the Re independence is once more verified, within
; +0.01 for config-2 and within=0.002 for config-3. Further-
194 - more, Vr/U° is not modified when the longitudinal aspect
o Raz1836 N ratio A of these two configurations varies between 3.5 and
2185 1 %\\ \“{\\ | 4.5: the roll frequency adjusts itself to the imposed wave-
T Ra=2024 \"-\g Ty length so that the roll velocity remains the same. Finally, let
1,8 1 --o-- Ra=2420 q\\\\ us note that Hasnaoet al* have found a result very close to
175 | —— Ra=3460 \‘\_\ - our fi_n_ding er Fhe roll vel(_)city, alsp gsing periqdic boundary
’ | conditions similar to config-2; their line equation, for=Ff,
N : : : is Vr/U°~1.284-0.90x 10° Ra.
0,1 03 0,5 0,7 09 Re

IV. CONCLUSION

FIG. 15. Transversatoll dimensionlessvavelength(with error barsdrawn . ..
for afew pointg, computedon config-1,asa function of ReandRaandfor In this StUdy* numerous results CharaCte”ng the PBF,

Pr=6.4. in a wide range of the dimensionless parameters Ra and Re,
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