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2Institute of Continuous Media Mechanics, Perm, 614013, Russia
3Institut de Mecanique des Fluides, Toulouse, 31062, France
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The governing equations and effective boundary conditions to describe thermal
vibrational convection in a near-critical fluid are derived with the help of the multiple-
scale method and averaging procedure. In contrast to Part 1, this paper focuses on
the effects of density non-homogeneities caused not by external heating but by
vibrational and gravity stratifications due to the divergent mechanical compressibility
of near-critical media. It is shown that vibrations generate non-homogeneities in the
average temperature, which result in the onset of thermal convection even under
isothermal boundary conditions. An agreement with the results of previous numerical
and asymptotical analyses and with experiments is found.

1. Introduction
The objective of our work is to investigate of the average effects of translational

high-frequency vibrations on the behaviour of near-critical fluids. We assume that
the period of oscillation of a container is much smaller than the typical convective
time, i.e. ω � (ν/L2, χ/L2), where ν, χ are the coefficients of kinematic viscosity and
thermal diffusivity, ω is the frequency of oscillation, and L is the typical size of the
container. This criterion can be interpreted as small thicknesses of the boundary
layers induced by vibrations, in comparison with the size of the container:

δν =

√
ν

2ω
� L, δχ =

√
χ

2ω
� L. (1.1)

Here δν, δχ are thicknesses of the viscous and thermal skin layers.
According to the main idea of the multiple-scales method we divide all the

hydrodynamic equations into two parts, separately describing average and pulsating
flows. In a similar way we derive the effective boundary conditions by examining the
fluid behaviour inside the boundary layers. An example of the derivation is given in
Part 1 (Lyubimov et al. 2006).

A near-critical fluid implies a medium in a condition close to the thermodynamic
critical point (figure 1).
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Figure 1. Phase diagram in the temperature–pressure plane.

A review of the model and methods we use, together with references on vibrational
convection and developments in the hydrodynamics of near-critical fluids are available
in Part 1. That part dealt with near-critical fluids subjected to translational vibrations
in the presence of imposed external temperature differences. Vibrations were shown
to induce not only pulsational flows, but also the average motion. The necessary
condition to generate the average flows was the imposed temperature gradient.

Nevertheless, owing to mechanical compressibility, temperature gradients might
also be generated by other factors, e.g. vibrational forcing or gravity stratification.
Since the mechanical compressibility of a near-critical medium is divergent, these
temperature gradients become significant.

In Part 1 we supposed that an imposed temperature difference θ was of the second
order in ε, θ = O(ε2) (where ε = (T − Tc)/Tc, and Tc is the critical temperature) and
the above-mentioned additional temperature non-homogeneities were insignificant.
However, if the imposed temperature gradient is even smaller, θ = o(ε2), or absent
(isothermal boundary conditions), the temperature non-homogeneities induced by
vibrations or gravity may result in additional mechanisms for the generation of
average motion.

The paper is organized as follows. In § 2 we formulate the theoretical model of
thermal vibrational convection for the case of weak boundary heating and, as a
particular case, for isothermal boundary conditions. Using the model derived we
examine the stability of a plane fluid layer and the generation of average flows in
a cylindrical cavity subjected to translational vibrations. A comparison with known
results is provided to validate the model. Section 3 is devoted to the situation when
there is neither gravity nor external heating. Nevertheless, under intensive vibrations,
average temperature variations induced at the boundary layers are able to generate
average flows in the bulk. A comparison with available direct numerical simulations
is also provided. In § 4 we formulate the conditions for the selection of a particular
model of thermal vibrational convection (among those obtained in Parts 1 and here).
The main conclusions of the work are summarized in § 5.

2. Weakly non-uniform heating
2.1. Problem formulation

In the framework of the theoretical model developed in Part 1, onset of average
convective motion is impossible without external heating. However, if homogeneity
(or weak non-homogeneity, i.e. θ � ε2) of the thermal boundary conditions is assumed,
some terms that were neglected earlier should be taken into account. We begin from



the same basic equations as in Part 1:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p + η	v + ρg, (2.1a)

ρT

(
∂S

∂t
+ (v · ∇)S

)
= κ	T,

∂ρ

∂t
+ ∇ · (ρv) = 0; (2.1b)

p = p(ρ, T ), S = S(ρ, T ). (2.1c)

Here the same conventional notation is used. Following a derivation similar to that
given in Part 1, the equations and boundary conditions describing weaker average
effects are obtained:

∂u
∂t

+ (u · ∇) u = −∇Π + ν	u + gβT γ , ∇ · u = 0, (2.2a)

∂T

∂t
+ (u · ∇) T +

g

a2
T β

(u · γ ) = χ	T +
∂

∂t
〈T 〉. (2.2b)

Here u, T are the velocity and temperature averaged over the period of vibration; t

is the slow convective time; a2
T , β, ν, χ are, respectively, the square of the isothermal

sound speed, the thermal expansion coefficient, the viscosity and the thermal diffusivity
coefficients, Π is the modified pressure, 〈T 〉 is the temperature averaged over the
container, γ is the unit vector along the z-axis (along gravity), and g is the intensity
of gravity.

Since equations (2.2) do not contain the pulsating variables, we do not need to
formulate the problem for the pulsation flow. The presence of vibrations becomes
apparent in the additional generation of average temperature inhomogeneities, which
is reflected in the effective boundary conditions:

u = 0, T = TB − ω2

4a4
T β

Φ2. (2.3)

Here Φ = ( j · r), where j is the unit vector along the axis of vibration, and r is
the radius vector. The reference point for the potential Φ was discussed in Part 1.
In equations (2.2) the state equation, ρ = ρ0 − ρcβT − (ρcg/a2

T )(γ · r), is used, i.e. the
density non-homogeneities caused by temperature variations are comparable with the
hydrostatic effect. The conservation of the whole fluid mass is also assumed.

If the boundary is not perfectly heat conducting (see § 4.1 in Part 1), then the
temperature boundary condition (second equation in (2.3)) needs to be rescaled by
(1 + b)−2 (here b = (κ/κB)

√
χB/χ , where κ , χ , κB , χB are the heat conductivities and

heat diffusivities of the fluid and wall, respectively).
To obtain dimensionless equations, L, L2/χ , χ/L and θ (the imposed heating) are

used as scales of length, time, velocity and temperature. In the dimensionless form,
problem (2.2) becomes

1

Pr

[
∂u
∂t

+ (u · ∇) u
]

= −∇Π + 	u + RaT γ , ∇ · u =0, (2.4a)

∂T

∂t
+ (u · ∇)T + θg (uγ ) = 	T +

∂

∂t
〈T 〉. (2.4b)

The effective boundary conditions in the dimensionless form are

u = 0, T = TB − θwΦ2. (2.5)



Here we have introduced new dimensionless parameters which characterize the ratios
of imposed temperature difference to two internal generation sources of temperature
non-homogeneities:

θg =
gL

a2
T

1

βθ
, θw =

1

4

(
aω

aT

)2 (
ωL

aT

)2
1

βθ
. (2.6)

2.2. Equilibrium stability of a plane horizontal fluid layer in the absence of vibration

Let us apply equations (2.4) with boundary conditions (2.5) to consider the stability
of a plane layer. The physical statement of the problem is the same as for a
similar problem examined in Part 1 (a horizontal layer of unit length and with
fixed temperatures at the boundaries, +1/2 at the bottom boundary and −1/2 at the
top), except that now we do not apply a vibrational forcing.

Equilibrium corresponds to the heat conducting temperature distribution. The
problem of stability of this state with respect to the plane-normal perturbations can
be reduced to the classical Rayleigh–Bénard problem: the problem of the stability of
a plane horizontal layer of an incompressible fluid (the perturbations are assumed
symmetric, therefore ∂ 〈T 〉 /∂t = 0). The solution of this problem is known – the
critical Rayleigh number Ra′

∗ = 1708, where

Ra′ =
gL3

νχ

(
βθ − gL

a2
T

)
. (2.7)

The effect of compressibility can be thought of as a redefinition of the typical
temperature difference that defines the Rayleigh number, taking into account the
hydrostatic compression of the layer. This criterion is a sum of the Rayleigh and
Schwarzschild criteria, which is in agreement with the theoretical works of Gitterman
& Steinberg (1970), Raspo et al. (1999) and Kogan, Murphy & Meyer (1999), as well
as with experiments by Ashkenazi & Steinberg (1999).

2.3. Convective flow under isothermal boundary conditions

Let us consider the case of isothermal boundary conditions: TB = 0. We rewrite equa-
tions (2.4) and boundary conditions (2.5) using the amplitude of the temperature per-
turbations generated at the boundaries as a typical temperature scale. We then obtain

1

Pr

[
∂u
∂t

+ (u · ∇) u
]

= −∇Π + 	u + RawT γ , ∇ · u = 0, (2.8a)

∂T

∂t
+ (u · ∇) T + θgw (u · γ ) = 	T +

∂

∂t
〈T 〉. (2.8b)

The boundary conditions are

u = 0, T = −Φ2. (2.9)

Here new parameters are introduced:

Raw =
1

4

(aωL)2

νχ

(ωL)2

a2
T

gL

a2
T

, θgw =4
a2

T

(aω)2
a2

T

(ωL)2
gL

a2
T

. (2.10)

Based on these equations and boundary conditions, the fluid behaviour inside a
cylindrical container of circular cross-section subjected to translational vibration
perpendicular to the cylinder axis was considered.

Quasi-equilibrium is impossible in this case. Let us consider the flow structrure at
small values of θgw and Raw , applying the creeping flow approximation. Assume that
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Figure 2. (a) Isotherms (left) and structure (right) of the average flow for horizontal
vibrations. Isothermal boundary conditions, under gravity. (b) Average flow intensity vs.
ratio of hydrostatic to vibrational temperature non-homogeneities at different values of the
Rayleigh number (Raw = 104 to 106) for a square cavity. For Raw = 106 the curves for several
Prandtl numbers (in the range of 1–20) are obtained, which almost coincide.

the axis of vibraition is inclined at an angle α to the horizontal x-axis. The field Φ ,
in this case, may be represented in the form

Φ = r cos(φ − α), (2.11)

where r is the polar radius and φ is the azimuthal angle measured from the horizontal
axis. The steady-state temperature field in the leading approximation may be derived
by solving the Laplace equation with boundary conditions (2.9) at r =1, and the
solution is

T = − 1
2
(1 + r2 cos(2(φ − α))). (2.12)

Then, we introduce the stream function ψ for the average flow through the relation,
u = ∇ψ × k, where k is the unit vector along the cylinder axis. By using (2.8) and
omitting the nonlinear and non-stationary terms, we obtain the following equation
defining ψ:

	ψ =Rawk · (∇T × γ ). (2.13)

The solution of this equation, that satisfies the no-slip boundary condition at r =1, is

ψ = −Raw

192
r(1 − r2)2 cos(φ − 2α). (2.14)

This solution determines flow with a two-vortex structure for any value of angle α.
The plane separating the vortices is given by

φ∗ =
π

2
+ 2α. (2.15)

Thus, the boundary plane between the vortices is vertical in cases of both vertical and
horizontal vibrations. However, the flow directions are opposite: the flow in the centre
of a cavity moves upwards under vertical vibrations (figure 2a), and downwards under
horizontal ones. If the axis of vibration is inclined to the horizontal axis at the angle
α = π/4, the plane separating the vortices is horizontal.



In a cylinder of square cross-section, the flow structure at small θgw and Raw is
qualitatively the same as in the case of a circular cylinder. Numerical calculations
performed for finite values of parameters θgw and Raw show that the quasi-equilibrium
state is also impossible. The average flow has a two-vortex pattern. The growth of
the Rayleigh number leads to intensification of flow, whereas increase of the gravity
stratification (parameter θgw) leads to the reverse effect: the flow intensity strongly
decreases (figure 2b).

3. Isothermal cavity under weightlessness
The most interesting result obtained in the preceding § 2 is a possibility of inducing

the average temperature variations by vibration, which was shown to result in
convective flows even in an isothermal container. Here we examine problems where the
average motion is induced by this near-critical mechanism in zero gravity conditions.
Another aim of the section is to compare the results obtained using the system
of averaged equations with the results by Jounet et al. (2000) obtained by direct
numerical simulations using the Navier–Stokes equations for a compressible medium.

We consider an isothermal container filled with a near-critical fluid under
microgravity conditions. The container undergoes translational vibrations with linear
polarization. The pulsation velocity (the leading term of the pulstational velocity
of the fluid equals the velocity of the container, see Part 1) may be represented as
w0 = aω j cos(ωt), where j is a unit vector of the axis of vibration; the potential of
the pulsation velocity is Φ = aωL( j · r), where r is a non-dimensional radius vector.

The average flow cannot be described with the equations given above: the finer
effects have to be taken into account. To obtain the governing equations we start with
(2.1) and consider small temperature non-homogeneities induced solely by vibrations.
The Boussinesq parameter is chosen as a small parameter of the problem βθw = ε � 1.
Applying the standard averaging procedure (the derivation is almost identical to the
derivation of equations and boundary conditions given in Part 1: the initial equations
are the same, only the small parameter is defined differently, but this does not affect
the course of the derivation), one obtains the equations for average and pulsating
fields:

∂u
∂t

+ (u · ∇) u = −∇Π + ν	u + 2(w · w0)β∇T + (σ − 1)

(
ω

c

)2

Φ2β∇T , (3.1a)

∂T

∂t
+ (u · ∇)T = χ	T +

∂

∂t
〈T 〉, 〈T 〉 =

1

V

∫
V

T dV , (3.1b)

∇ · u = 0; (3.1c)

βT̃ = − a

L

(
ωL

c

)2

γ ( j · r) sin ωt, (3.2)

∇ × w = β∇T × w0, ∇ · w = −
(

ω

c

)2

Φ. (3.3)

Here (. . .) denotes time-averaging. The effective boundary conditions are

T = − a2ω4L2

4a2
T βa2

T

( j · r)2 , u = 0; (3.4a)

wn = aω

(
ωL

c

)2

γ
δχ

L
( j · r)(cos(ωt) + sin(ωt)). (3.4b)



These equations describe convective flows, which could be generated only in a
near-critical fluid (owing to its particular properties). In Part 1, in the resulting
effective boundary condition for pulsation flows, the term proportional to sin(ωt) was
omitted since we focused there on average effects unaffected by this addition. Now
the structure of the pulsation flows is equally important, so we keep this term.

We apply the system (3.1)–(3.4) to consider flows in an isothermal plane layer and
isothermal cylindrical cavities of square cross-section (following Jounet et al. 2000)
and circular cross-section. The model of a near-critical fluid adopted in the works
of Carles & Zappoli (1995) and Jounet et al. (2000) is used, namely: the van der
Waals state equation, constancy of viscosity coefficient, isochoric heat capacity and
isentropic sound speed, together with the following law for the heat conductivity:
κ = κ0(1 + κ1t

−0.5), where κ0 = 10−2 W (mK)−1, κ1 = 0.75, t = (T − Tc)/Tc (values of
κ0, κ1 are taken for CO2). Critical parameters for carbon dioxide CO2 (Tc = 304.1 K,
ρc = 467.8 kg m−3, pc =7.378 MPa, dynamic viscosity: η0 = 3.45 × 10−5 kg (m s)−1) are
applied.

3.1. One-dimensional results

Let us consider a plane layer of a near-critical fluid and subjected to transversal
vibrations. Both boundaries of the layer are maintained at the same temperature.

The problem allows a solution that corresponds to the quasi-equilibrium state.
In this state the average temperature field in a layer is homogeneous and equals
T = −a2ω4L2/(16a4

T β), where L is the layer thickness.
Equations (3.3) give the following quasi-equilibrium distribution of the pulsating

velocity in a layer:

wx = 0, wz = 1
2
aω

(
ωL

c

)2 [(
1
4

− z2 cos(ωt) + γ
δχ

L
(cos(ωt) + sin(ωt))

]
, (3.5)

where z is the dimesionless transversal coordinate in units of L and with origin in the
middle of the layer. The profile coincides with the results of Carles & Zappoli (1995).

Let us estimate the typical orders of different physical values, restricting ourselves
to the following cases:

(a) 	T = 15 mK, A = 0.1 m s−2, f = 5 Hz;
(b) 	T = 0.1 K, A = 10 m s−2, f = 3 k Hz;
(c) 	T = 0.2 K, A= 0.1 m s−2, f = 20 Hz.

The thickness of the layer is L = 1 cm. Here A= aω2 is the amplitude of vibrational
acceleration and f =ω/2π.

The typical values of the pulsation temperature non-homogeneities (according to
(3.2)) are: (a) |T̃ | =1.77 × 10−6 K, (b) |T̃ | =1.77 × 10−4 K, (c) |T̃ | =1.77 × 10−6 K. The
amplitude of the pulsation temperature does not depend on the proximity to the
critical point and is determined by the amplitude and frequency of the vibrational
forcing only.

The values of the average temperature non-homogeneities are: (a) |T | =3.48 ×
10−11 K, (b) |T | =5.20 × 10−9 K, (c) |T | =2.60 × 10−12 K.

3.2. Square cavity

The problem considered by Jounet et al. (2000), which is the main source for
the present comparison, is characterized by the absence of gravity and external
temperature differences. The only reason for fluid motion is diverging compressibility
of a near-critical medium. Perceptible pulsation and especially average flows are



Pr Rav Raa RaPE

(a) 72.7 4.33 × 10−10 1.34 × 10−7 2.39 × 10−7

(b) 46.8 6.08 × 10−7 3.02 7.52 × 10−2

(c) 32.8 2.29 × 10−17 2.02 × 10−10 3.68 × 10−10

Table 1. Values of dimensionless parameters corresponding to real situations.

generated only by sufficiently strong vibrations. Equations and boundary conditions
describing these average and pulsation fields in non-dimensional form are

1

Pr

[
∂u
∂t

+ (u · ∇) u
]

= − ∇Π + 	u + 2
((

w(1) + w(2) · j 0 ∇T

+
σ − 1

2
Raaz

2∇T , (3.6a)

∂T

∂t
+ (u · ∇) T =	T +

∂

∂t
〈T 〉 , (3.6b)

∇ · u = 0; (3.6c)

∇ × w(1) = Rav (∇T × j ) cos(ωt), ∇ · w(1) = 0; (3.7a)

∇ × w(2) = 0, ∇ · w(2) = −Raaz cos(ωt); (3.7b)

w(1)
n = 0, w(2)

n = RaPEz (cos(ωt) + sin(ωt)) . (3.7c)

Here L, L2/χ , χ/L, θ , aω, aωL are used as units of length, time, average velocity,
temperature, pulsation velocity w0 and potential Φ . The quantity w is represented as
the sum of two components with the scale 2νχ/(aωβθL2).

Boundary conditions for the average fields are

T = −z2, u = 0. (3.8)

The following non-dimensional parameters are introduced:

Pr =
ν

χ
, βθ =

a2ω4L2

4a4
T

, Rav =
1

2

(aωL)2

νχ
(βθ)2 , (3.9a)

Raa =
1

2

(aωL)2

νχ
βθ

(
ωL

c

)2

, RaPE =
1

2

(aωL)2

νχ
βθ

(
ωL

c

)2

γ
δχ

L
. (3.9b)

Estimations of these values for the cases enumerated above are given in table 1. As one
can see, the generation of perceptible average flows is possible only for case (b) when
the vibrations are sufficiently strong. Of course, if gravity or external temperature
gradients are added, the average flows become non-negligible as is also the case for
moderate vibrations. The typical values of the temperature non-homogeneities (both
pulsation and average) would be the same as for a plane layer.

Jounet et al. (2000) obtained the square cavity for the pulsation fields for parameters
corresponding to case (c). These fields are used for the present comparison.

The results obtained by the finite-difference method are given in figures 3. The
simple asymptotic equations (3.7a) give precisely the same field structures as reported
in the work of Jounet et al. (2000), which were obtained through difficult numerical
computations. Moreover, we are able to consider the average fields (case b). The
averaging approach also allows the flows in more sophisticated configurations to
be examined, whereas by direct numerical simulations, even a cavity of circular
cross-section could not be treated.



(a) (b)

Figure 3. (a) x- (left) and z- (right) components of the pulsation velocity for ωt = 0. Vibrations
are imposed along the vertical z-axis. 	T = 0.2 K, A=0.1m s−2, f =20Hz. (b) Average
temperature (left) and velocity fields (right). 	T = 0.1 K, A = 10 m s−2, f = 3 k Hz.

(a) (b)

Figure 4. (a) Structure of the pulsation field for const = 0, 0.25, 0.75, 1.25, 1.75, 2.25,
γ /δχL = 0.2, ωt = 0. (b) Structure of average flow for σ =3, Raa = 1. Isothermal boundary,
weightlessness.

3.3. Circular cavity

Let us consider the influence of translational vibrations on a cylindrical cavity of
circular cross-section filled with a near-critical fluid. The cavity walls are maintained
at a fixed temperature. Gravity is not imposed.

The pulsation temperature field generated by such vibrations is

βT̃ = − a

L

(
ωL

c

)2

γ x sin(ωt). (3.10)

The pulsation velocity field is determined by the following equations and boundary
conditions (vibrations are directed along the x-axis):

∇ × w = 0, ∇ · w = −aω

(
ωL

c

)2

x cos(ωt), (3.11a)

r = 1: wr = aω

(
ωL

c

)2

γ
δχ

L
x(cos(ωt) + sin(ωt)). (3.11b)

We cannot introduce the stream function to characterize the pulsation flow since
this field is non-solenoidal. Nevertheless, it is still possible to represent the flows with
integral curves of the velocity field, by integrating the following expression:

dr

dφ
= r

wr

wφ

. (3.12)

These lines are plotted in figure 4 for several constants of integration, const.



Further, the average hydrodynamic fields, defined by

1

Pr

[
∂u
∂t

+ (u · ∇) u
]

= −∇Π + 	u + RaaA∇T , (3.13a)

∂T

∂t
+ (u · ∇) T = 	T +

∂

∂t
〈T 〉, ∇ · u = 0; (3.13b)

A= −r2

8
(1 + 2 cos2 φ) +

σ − 1

2
r2 cos2 φ, (3.13c)

r = 1: u = 0, T = − cos2 φ, (3.13d)

are analysed. Only the stationary solution within the creeping-flow approximation
(Raa → 0) is examined.

Derivations similar to those described in § 2.3 give the following results:

T = −1

2
(1 + r2 cos 2φ), ψ =

Raaσ

768
r2(1 − r2)2 sin 2φ. (3.14)

The temperature profile is the same as for the isothermal cavity under terrestrial
gravity considered in § 2.3 and plotted in figure 2(a). The structure of the average
flow is shown in figure 4(b). This flow consists of four vortices while, under a gravity
field, an isothermal flow is composed of two vortices (figure 2a).

The structures of the flows obtained both for zero gravity and terrestrial conditions
are close to the experimental results (see Beysens & Garrabos 2001; Zyuzgin et al.
2001) on thermal vibrational convection obtained in the framework of the ‘ALICE’
(Analyse des Liquides Critiques dans l’Espace) project. Here, a convective slot was
filled with a near-critical fluid. A heater was placed in the centre and set the
temperature of the fluid. The slot was subjected to transversal vibrations. Under
high-frequency vibrations, average flows were observed with a four-vortex structure
in weightlessness and with two vortices in terrestrial conditions, i.e. the same as in
figures 2(a) and 4(b).

4. Classification of the models
In this section we discuss why, when describing the thermal vibrational convection

in a near-critical fluid, we formulate three different theoretical models described in
Part 1 and here.

The difference in the proposed theoretical models is mainly related to the order of
temperature variations. The non-dimensional temperature variations are defined by
θ = θ ′/Tc (θ ′ is a dimensional quantity). First, as was mentioned at the beginning, we
do not consider the case θ ∼ (T0 −Tc)/Tc = ε since in this case we could not guarantee
that the fluid remained single phase.

The case considered in Part 1 is called ‘non-uniform heating’. That means there is
external heating (or cooling) with typical amplitude θ = ε2. The theoretical model
formulated differs from the model used for incompressible fluids (Gershuni &
Lyubimov 1998): several new effects are introduced by additional parameters, mainly
responsible for the diverging compressibility of a near-critical medium. The intensity
of flows is governed by the thermal Rayleigh number Ra and three analogues of these
numbers: Rav , Raa , and RaPE .

Here, in Part 2, we deal with the case of ‘weakly non-uniform heating’ which means
the external heating is of the order θ � ε2. Against the background of such small
temperature variations, we have to take into account the hydrostatic effect and the



average temperature variations induced by vibrations. The relations between these
quantities and the external temperature difference are characterized by the parameters
θg and θw (2.6). The intensity of convective motion is defined just by the thermal
Rayleigh number Ra and the effects governed by the vibrational analogues of the
Rayleigh number have been proved negligible. Indeed, if one assumes that θw, θg ∼ 1,
then e.g. Ra/Raa = 1

2
(θg/θw)γ → ∞, since γ = cp/cV → ∞. Hence, buoyancy-driven

flows predominate. Since there are three sources of temperature non-homogeneities,
we may make one of them (e.g. external gradients) tend to zero. That gives us the
problem for convective flows under isothermal boundary conditions.

The third theoretical model is formulated in § 3 of this paper. We assume weight-
lessness and the absence of the external temperature differences. In this case only
weak flows of vibrational origin remain. These flows may be significant only under
rather intensive vibrational influence (with a frequency of the order of several k Hz).

5. Discussion and conclusions
In Part 1 and here we have examined the influence of vibration and gravity on

the behaviour of a single-phase near-critical fluid. The main results are two closed
theoretical models of thermal vibrational convection for two different types of imposed
heating, and a model for one exceptional case of isothermal boundaries and weightless
conditions. Anomalously high compressibility and heat conductivity of a fluid result
in qualitative differences of the equations from the standard theory (Gershuni &
Lyubimov 1998).

In the derivation of the equations of Part 1, we assumed that non-homogeneities of
average density appeared in the leading order of expansion. Here we focused on the
effects of vibration and gravity stratifications: we supposed that the average density
was homogeneous at leading order and could vary only at the next orders. The
imposed temperature non-homogeneities are necessarily small in this case (weakly
non-uniform heating). Nevertheless, as was shown, the generation of convective
motion remains possible in a near-critical fluid even in the complete absence of
external heating.

The equations obtained here in § 2 are mainly the same as the equations of thermal
vibrational convection, which take compressibility into account in the acoustical
sense (see Lyubimov 2000). The main difference becomes apparent in the equation
of state. Because of anomalously high mechanical compressibility, density variations
are caused not only by temperature variations, but also by the changes in average
pressure. These changes are determined by two additional factors: average pressure,
related to pulsation velocity field, and hydrostatic stratification.

The sharp distinctions between the present work and the classical theory are in
the new non-trivial boundary condition for the average temperature field (2.3). This
results in a fundamentally new mechanism for the generation of the average flow.
Usually vibrations can generate the average flow through the vibrational force or
through the Schlichting boundary condition. Neither of these mechanisms is at work
but, nevertheless, vibrations are still able to induce non-homogeneities in temperature,
which result in the onset of the usual convective flows under gravity.

In particular, these assumptions explain the difference in the results for stability of
a plane horizontal fluid layer. In Part 1 the temperature gradient, caused by gravity
stratification, was assumed to be small in comparison with external heating of a layer.
That is why the Schwarzschild criterion was unimportant and was not taken into
consideration. Here, the Schwarzschild criterion is essential (2.7).



To derive the governing equations determining the flows in an isothermal cavity
under weightlessness (§ 3), a somewhat different approach was applied. The scale of
non-homogeneities in the temperature field here is associated only with vibrational
forcing. On the basis of this scale we formed the Boussinesq parameter. Assuming
the smallness of this parameter we obtain the equations of vibrational convection.

For this last case we had the possibility to verify the equations obtained by
comparison with previously performed direct numerical simulations (Jounet et al.
2000). Unfortunately, only pulsation flows had been considered by the direct approach,
since the average flows are noticeable only under intense vibrational influence,
unattainable in direct calculations. Nevertheless, the pulsational fields coincide quite
well. We were also able to predict the structures of the average fields, which proved to
be similar to the recent experimental results reported by Beysens & Garrabos (2001)
and Zyuzgin et al. (2001).
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