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A. Mojtabi 
Laboratoire de Modifisation en Mecanique des Fluides, 
Institut de Mecanique des Fluides, Uniuersite' Paul Sabatier, 
118 Route de Narbonne, 31062 Toulouse Ceder, France 

7bo-dimensional thennovibrational convection in rectangular cavities under the condition 
of weightlessness is studied. The problem is based on the system of equations of the mean 
fields of uelociry, pressure, and temperalure. A pseudospeclral Chebysheu collocalion method 
is wed. The case of rectangular cavities fa layer of finite length) is considered subject to 
high-frequency fmnsuersal uibrafions and o longitudi~l temperalure gmdient. In the case 
of a square cauity the instability of the main /Imu exists, and ;he bifircntion to other 
symmetry Ides place. The same behavior is obserued when the cavity is elongated in the 
direction of the temperalure gradienl. It L shown thal the intensity of the thermovibratio~l 
convective Jbw decreases, in general, while the aspect ratio increases in accordance with 
linear stability theory, in which it was proven thal, in the limiting case of an infinitely long 
layer subject to a longitudi~l temperalure gradient and a transverso1 arir of vibrations, the 
absolute smbili~y of the quasi-equilibrium sme takes place. 

INTRODUCTION 

In a closed cavity filled with fluid in the presence of inhomogeneity of 
temperature and high-frequency vibrations, a regular mean flow is generated even 
in the case of weightlessness, i.e., when the static gravity field is absent (the 
phenomenon of thermovibrational convection; see Refs. [I, 21). The description of 
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NOMENCLATURE 

a width of the cavity E dimensional parameter of vibration, 
b  displacement amplitude [=  )( ~ b n ) ~ ]  
L length of the cavity O temperature at x = 0 
n unit vector along the axis of vibrations v kinematic viscosity 
Nu mean Nusselt number p density 
p pressure x thermal diffusivity 
Pr Prandtl number JI stream function 
Ra, vibrational Rayleigh number JI,,,., maximum value of the stream function 

I time 0 angular frequency of vibration 
T temperature 
u velocily vector 
w solenoidal part of Tn Superscript 
x, y coordinates 
p coefficient of thermal expansion n time level 

thermovibrational flows in the limiting case of high frequency and small amplitude 
of vibration may be effectively obtained in the frame of the averaging method, 
which leads to the system of equations for average (mean) fields of velocity, 
pressure, and temperature. The mechanical quasi-equilibrium state is possible (i.e., 
the state at which the mean velocity is absent but the oscillatory component is, in 
general, not zero). Some examples of the mechanical quasi-equilibrium state with 
the results of linear stability analysis are presented in Refs. [l-31. Perhaps the 
simplest case of mechanical quasi-equilibrium is an infinitely long plane layer in 
the presence of vibrations along the longitudinal axis and a transversal temperature 
gradient. This state of quasi-equilibrium becomes unstable when a nondimensional 
parameter, the vibrational analog of the Rayleigh number Ra,, exceeds some 
critical value, which depends on the boundary conditions on the parallel planes 
bounding the fluid layer [I, 21. The periodic system of convective cells appears at 
the threshold of instability. This is the vibrational analog of the classical Rayleigh- 
Benard problem of convective instability of the plane horizontal fluid layer when 
heated from below. 

In the opposite limiting case of an infinitely long plane layer in the presence 
of a longitudinal temperature gradient and harmonic vibrations along the transver- 
sal axis, the quasi-equilibrium state is possible too, but the stability shows this 
quasi-equilibrium configuration as absolutely stable [3]. 

In the case of the layer of finite length (rectangular cavity) the quasi- 
equilibrium state is not possible, and the thermovibritional convective flow sets in 
at infinitely small values of temperature difference. When the intensity of the 
thermovibrational flow is large enough, the nonlinear approach is necessary to 
describe the situation. For the case of rectangular cavities with a longitudinal axis 
of vibration and a transversal temperature gradient, the nonlinear approach has 
been performed using a finite difference method [4]. The structures of the flows 
were studied. It has been demonstrated that the transition from the basic to a 
rnulticellular flow sets in at a critical value of the Ra,. When the aspect ratio 
equals 8 or more, the character of the bifurcation is practically the same as in the 
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limiting case of an infinitely long layer. We do not give here the exhaustive review 
of the thermovibrational convection nonlinear solutions. Additional bibliography 
can be found in Ref. [5]. 

In the present work we consider the opposite case of a thermovibrational 
convective phenomenon in a rectangular cavity, namely, we consider the configura- 
tion when the temperature gradient is longitudinal and the axis of vibration is 
transversal. A pseudospectral numerical method has been used. This method 
employs the "Darcy-Euler" solver developed in Ref. 161 and the Stokes solver 
developed in Ref. [7]. The Helmoltz and Poisson equations obtained are solved 
using a Chebyshev collocation method with the points of Gauss-Lobatto zeros, thus 
allowing a highly accurate solution for problems involving boundary layers (see 
Ref. [91). 

We show that in the cases where aspect ratios do not equal 1, the typical 
picture of the bifurcation connected to the reconstruction of the flow structure 
takes place as in the case of a square cavity. When the aspect ratio is large enough, 
the intensity of the thermovibrational flow decreases. The limiting case of a very 
long cavity corresponds to the state of rest, and the heat transfer is the same as in 
the conductive regime. These results are in conformity with linear stability theory 
Dl. 

PROBLEM DESCRIPTION 

Let us consider a two-dimensional rectangular cavity filled with fluid (Figure 
1). All the boundaries are rigid. The parts of the boundary at x = 0 and x = L are 
isothermal and maintained at constant temperatures T  = O and T = 0, respec- 
tively; the parts of the boundary at y  = 0 and y  = a are thermally insulated, so 
d T / d y  = 0. The whole system (the cavity with the fluid) is subject to linear and 
harmonic vibration along the y  axis. Our consideration is based on the system of 
equations describing the behavior of the average (mean) fields of velocity, pressure, 
and temperature. This approach is valid within the framework of the averaging 
method in the limiting case of high frequency and small amplitude of vibration. 
Using the Boussinesq approximation, the governing equations are 

Here u is the velocity, p is the pressure, T is the temperature, v, X, and P are the 
coefficients of kinematic viscosity, heat diffusivity, and thermal expansion, respec- 
tively, p is the reference value of density (constant), n is the unit vector along the 
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I 
mays 

Figure 1. Geometrical configuration and axis of coor- 
dinates. 

axis of vibration and E = +( /3bR)2 is a dimensional parameter of vibration ( b  is 
the displacement amplitude and R is the angular frequency). The additional 
variable w is the solenoidal part of the field Tn; on the other hand, w is 
proportional to the amplitude of the oscillatory velocity component. We have 
already discussed the boundary conditions for u and T; with regard to w, the 
condition of nonoverflow has to be posed. Thus we have 

Let us now introduce the nondimensional form of the equation system and the 
boundary conditions with the help of the following characteristic quantities: a for 
length, ,y/a for velocity, a2/,y for time, O for temperature and w field, and 
puX/a2 for pressure. Thus we obtain the following nondimensionalized form of the 
system of equations: 

= - V p  + V 2 u  + l 2  Ra, (Vw)(Tn - w) (7) 
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With the boundary conditions 

The nondimensional parameters of our problem are Ra, = $ [ ( p b f h ~ a ~ ) ~ / v ~ ] ,  
Pr = u/x, I = L/a. Here Ra, is the vibrational analog of the Rayleigh number, 
which is determined by the temperature gradient A = O/L, Pr is Prandtl number, 
and I is the aspect ratio. 

SOLUTION METHOD 

The numerical method used here is based on the projection diffusion algo- 
rithm developed in Ref. [7] for solving the two-dimensional/three-dimensional 
unsteady incompressible Navier-Stokes equations. The temporal integration con- 
sists of a semi-implicit second-order finite differences approximation. The linear 
(viscous) terms are treated implicitly by the second-order Euler backward scheme, 
while a second-order explicit Adams-Bashforth scheme is employed to estimate the 
nonlinear (advective) parts. When applied to an advection diffusion equation such 
as 

the method reads 

This last equation can be written in the form of the following Helmholtz equation: 

Here h = 3 /2a  At is the Helmholtz constant, and s is a scalar quantity containing 
all the terms known at time t ,  = n At (n is the time level and At is the time step). 
As one can see, the temporal integration transforms the system of equations, Eqs. 
(7)-(ll), as follows: the energy equation, Eq. (8), becomes a simple Helmholtz one; 
Eqs. (10) and (11) with corresponding boundary conditions form a Darcy-Euler 
problem. A new method [61 based on a Uzawa operator is used to solve this 
problem. Finally, Eqs. (7) and (9) are transformed into a generalized Stokes 
problem modelized by the projection diffusion method of Ref. [7]. All the subprob- 
lems obtained are either Helmholtz or Laplace-like operators. A high-accuracy 
spectral method, namely, the Chebyshev collocation method, with the Gauss- 
Lobatto zeros as collocation points, is used in the spatial discretization of the 
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Helmholtz and Laplace-like operators. The well-known successive diagonalizations 
technique [8] is implemented to inverse these different operators. We have to 
mention that the Stokes and Darcy-Euler solvers are direct and guarantee a 
spectral accuracy solution with a free divergence for the u and w fields on the 
whole domain, including the boundaries. 

RESULTS AND DISCUSSION 

In our calculation presented hereafter, the Prandtl number was fixed at 
Pr = 1, the aspect ratios ranged from 1 to 20, and the values of the vibrational 
Rayleigh number were limited to Ra, = 2.5 x lo5. 

First, we consider the results for the caSe I = 1, which corresponds to the 
square cavity. Under the conditions described, the mechanical quasi-equilibrium 
state is not possible [2], so the steady regimes exist for infinitely low values of Ra,. 
In the region of small Ra, the thermovibrational convective flow is of a four-vortices 
structure (see Figure 2a). This flow is stable up to a critical value Ra, = Ra,, - 
8.5 X 10'. When this value is exceeded, this steady regime becomes unstable, and a 
bifurcation takes place to another inversional symmetry (Figure 26). The main 
branch corresponding to the four-vortices regime may be continued into the region 
of Ra, L Ra, ,, but here, this regime is metastable (i.e., it is stable against 
disturbance of the same symmetry and unstable against disturbance of inversional 
symmetry). 

In Figure 3 the bifurcation diagram is presented in Ra,-Nu coordinates, 
where the Nusselt number Nu isThe mean nondimensional heat flux through the 

Figure 2. Streamlines and isotherms for two steady 
regimes ( I  = 1). 
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Figure 3. Bifurcation diagram in coordinates Ra,-Nu (I = 1). 

cavity. Curve 1 corresponds to the stable four-vortices regime, curve 2 corresponds 
to its metastable continuation, while curve 3 represents the steady inversional 
symmetric regime. The endpoint of curve 2 corresponds to the point of absolute 
instability of the four-vortices regime. The endpoint of curve 3 represents the 
transition to an oscillatory regime of flow. The results presented are in good 
agreement with those of Refs. [4, 51. 

For the cases with other values of I, the situation is qualitatively close to that 
described for the case of I = 1 (see Figures 4 and 5 for cases I = 2 and I = 5, 

Re, = 10'. J,.. = 4.280,l 

Figure 4. Streamlines and isotherms for two steady regimes ( 1  = 2). 
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I((((DIIIJ));)]
Ra" = 104

, tPrnaz = 0.7041

Figure 5. Streamlines and isotherms for two steady regimes (I = 5).

respectively). The same transition from the four-vortices regime to the inversional
symmetric one has been observed. But, of course, all the characteristic points of
the bifurcation diagram depend on the parameter l, In Table 1 the critical values of
Ray for the first bifurcation are listed for different values of l. It is seen that Ray *
increases monotonously as l increases.

Finally, we present in Figure 6 the characteristic of the vibrational convection
intensity-the Nusselt number and the extremum value of the stream function-as
a function of l at a fixed value of Ray (Ray = 1 x 105) . Note that for l large
enough (l 2: 10), this value of Ray belongs to the region of Ray $ Ray *' thus
below the bifurcation point. It is interesting to note also that the dependence of Nu
and «/Im• x on l is not monotonous; there is a maximum intensity of the thermovi-

Table I. Critical Rayleigh Number as a Function of the Aspect Ratio

Value of /

8.5 X 103

2

1.1 X 104

5

3.8 X 104

10

8.6 X 104

6,---------------,

5

4

3

2

o 10

----0-- " mall

20

Figure 6. The Nusselt number and
extremum value of the stream func
tion versus the aspect ratio for Ra , =

1 X 10'.
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brational convection a t  1 - 4. When 1 is large enough, the intensity of convection 
decreases as I increases, and we have Nu + 1 and IC,,,,,, + 0 at 1 + m. This result 
is in good agreement with the linear stability theory, that is, in the limiting case of 
an infinitely long layer with longitudinal temperature gradient and a transversal 
axis of vibration, the quasi-equilibrium state is possible and it is absolutely stable 
Dl. 

CONCLUSIONS 

The nonlinear regimes of two-dimensional thermovibrational convection in 
rectangular cavities subject to a longitudinal temperature gradient and transversal 
axis of vibration are studied numerically by means of the pseudospectral Chebyshev 
collocation method. It  is shown that (1) the transition from a four-vortices regime 
to one of inversional symmetry takes place at some critical value of Ra,, (2) the 
critical value Ra,,  increases monotonously as 1 increases, (3) the intensity of 
thermovibrational convection and heat transfer is maximum at 1 - 4, (4) in the 
region 1 > 4 the intensity of convection and heat transfer decreases as 1 increases, 
and (5) when 1 B 4, the limiting case of rest with conductive heat transfer takes 
place, in agreement with the theory of stability for the case of an infinitely long 
fluid layer. 
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