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Onset of stationary and oscillatory convection in a tilted porous cavity
saturated with a binary fluid: Linear stability analysis

M. Karimi-Fard, M. C. Charrier-Moijtabi, and A. Mojtabi
Institut de Meanique des Fluides, U.M.R. 5502 CNRS-INP-UPS, UniveRsie Sabatier, U.F.R. M.1.G.
118, route de Narbonne, 31062 Toulouse Cedex, France

In the presentwork, we study the onset of double-diffusive convective regimesin a tilted
rectangularcavity, filled with a porousmedium,saturatedy a binaryfluid. Two oppositewalls are
maintainedat different but uniform temperaturesnd concentrationsvhile the two otherwalls are
impermeableand adiabatic. When the thermal and solutal buoyancyforces are comparablein
intensity but have oppositesigns,the motionlessdouble-diffusiveregimewith linear temperature
andconcentratiomprofilesis a solutionof the problem.Thefirst partof the studyconsistsof alinear
stability analysisof the motionlessregime.We determinethe critical thermalRayleighnumberfor
theonsetof stationaryandoscillatoryconvectionlndeedwe point outthatthereexistprimary Hopf
bifurcationsfor the studiedproblemin porousmedium,while in the sameconfigurationwith afluid
medium only primary stationarybifurcationsexist. When the first primary bifurcation createsa
steadystatebranchof solutions,the bifurcationis eithertranscriticalor pitchfork dependingon the
aspectratio, A andthetilt, ¢ of the cavity. The onsetof oscillatory convection(Hopf bifurcation
dependsiotonly on A andg butalsoonthe Lewis number Le andthenormalizedporosity,e. Then,
we determinethe partsof the (Le, €) parameterspacefor which the first primary bifurcation is
stationaryor oscillatory. In particular,it is found thatin the caseLe=1 andfor e Le?<1 the first
primary bifurcationis alwaysa Hopf bifurcationfor any A and¢ exceptfor ¢ = +90°. For e Le?
>1 only stationaryprimary bifurcationsexist. In the caseLe<1, zoneswhere stationaryand
oscillatory primary bifurcationsexist are separatedby a curvedependingon A and¢. The last part
of this work consistsof a seriesof numericalsimulations.The onsetof stationaryand oscillatory
convectionis obtainednumericallyat the critical Rayleighnumberpredictedby linearanalysisWe
also verified the frequency of oscillations for several sets of dimensionlessparameters.The
numericalsimulationsshow multiplesubcriticalsolutions.

I. INTRODUCTION in a cavity, the majority can be classified into two categories:
cavities with imposed uniform heat and mass fluxes and
Natural convection in porous media is widely encoun-cavities with imposed uniform temperature and concentra-
tered in nature and technological processes. Water moveion. It is important to note that most of these works are
ment in geothermal reservoirs, underground spreading aheoretical. We can mention three experimental studies in
chemical waste and other pollutants, grain storage, thermalouble-diffusive convection in porous media. The first was
insulation, evaporative cooling, and solidification are just acarried out by Griffitt® He observed a thin diffusive inter-
few examples where thermal natural convection or doubleface in a Hele—Shaw cell with salt and sugar or heat and salt
diffusive convection in porous media are observed. as the diffusing components. He measured salt—sugar and
The majority of the research effort has been devoted tdeat—salt fluxes through two-layer convection systems and
the flow caused by a single buoyancy effébermal convec- compared the results with predictions of a model. The sec-
tion). Some of this literature has been reviewed by Combarend work was carried out by Imhoff and Gre®ihey stud-
nous and Boriesand Chend. ied double-diffusive groundwater fingers, using a sand-tank
In some natural convection situations the heat transfemodel and the salt—sugar system. They observed that double-
aspect cannot completly describe the phenomenon. Both hediffusive groundwater fingers can transport solutes at rates as
and mass transfer must be considered. The presence of thenuch as two orders of magnitude larger than those associ-
mal and solutal buoyancy forces considerably modifies thated with molecular diffusion in motionless groundwater.
flow within the porous media. The current state of knowl- This could play a major role in the vertical transport of near-
edge concerning double-diffusive convection in a saturatedurface pollutants in groundwater. The third experimental
porous medium is summarized in the studies developed bwork, by Murray and Cheh,s closer to our study and con-
Trevisan and Bejahand Nield and Bejaf.Of the many cerns the onset of double-diffusive convection in a finite box
works in the literature related to double-diffusive convectionfilled with porous medium. The experiments were performed



in a horizontal layer consisting of 3-mm-diam glass beadgerature and concentration along the vertical sidewalls was
contained in a box 24 cm12cmx4cm high. The rigid top considered by Trevisan and Befdrand Charrier-Mojtabi
and bottom walls of the box provide a linear basic-state temet al?° Trevisan and Bejdi considered a square cavity sub-
perature profile but only allow a nonlinear time-dependenmitted to horizontal temperature and concentration gradients.
basic-state profile for salinity. They observed that when théNumerical simulations are compared to a scaling analysis.
porous medium is saturated with a fluid having a stabilizingThey observed the development of a weak convection in the
salinity gradient, the onset of convection was marked by aicinity of N=—1 (N being the ratio of the solutal to the
dramatic increase in heat flux at the criticAll, and the thermal buoyancy forces). They noticed that the flow disap-
convection pattern was three-dimensional, while two-pears if the Lewis number, Le is equal to one awe — 1.
dimensional rolls are observed for single-component convedSharrier-Mojtabiet al®° studied the linear stability of the
tion in the same apparatus. They also observed a hysteregigrely diffusive regime, which exists fdd=—1 and any
loop on reducing the temperature difference from supercritiLewis numbers. They found that this solution is linearly
cal to subcritical values. stable up to a critical thermal Rayleigh number depending on
Concerning the theoretical studies, various modes ofhe box aspect ratio and the Lewis number.
double-diffusive convection may exist depending on how  For the same boundary conditions, double-diffusive con-
both thermal and solutal gradients are imposed relative tyection studies have been carried out in a fluid medium, for
each other and also on the numerous nondimensional paraithe caseN=—1, by Gobin and Bennacét,Ghorayeb and
eters involved. Mojtabi,?? and Xinet al?® In all these stability analyses the
In the case of imposed uniform heat and mass fluxediirst primary bifurcations lead to steady state solutions.
Trevisan and Bejdhconsidered a vertical porous cavity with The purpose of this paper is a linear stability analysis of
imposed horizontal heat and mass fluxes. They developed dhe purely diffusive solution, which exists whéh=—1 in a
analytical Oseen-linearized solution for the boundary-layetilted rectangular or infinite box filled with a porous medium
regime for Le=1, and proposed a similarity solution for saturated by a binary fluid. We complete the previous results
heat-transfer-driven flows for Lel. These analytical results obtained for an horizontal layer by Niéfland a vertical
were validated by numerical experiments. The same configusavity by Charrier-Mojtabet al?° The influence of the tilt of
ration was studied by Alavyodrand Alavyooret all®using  the cavity on the bifurcation points is analyzed. The most
numerical and analytical methods and scale analysis. Theiynportant part of this work concerns the study of the primary
showed the existence of oscillatory convection in the case ofscillatory instabilities which are only obtained in porous
opposing buoyancy forces. An extension of these studies toedium. In previous works these instabilities were studied
the case of the inclined porous layer subject to transversenly for the horizontal layer. Trevisan and Bejafound, for
gradients of heat and solute was carried out by Mamouhe vertical box, that when el andN= —1 the flow dis-
et allt They obtained an analytical solution by assumingappears completely. They did not consider unsteady flow.
parallel flow in the core region of the tilted cavity. The ex- Charrier-Mojtabiet al*® assumed the principle of exchange
istence of multiple steady state solutions, for opposing buoyef stability to be valid and concluded that the purely diffu-
ancy forces, has been demonstrated numerically. Mamosive regime is infinitely linearly stable for Lek Here, we
et al12 have also numerically shown that, in a square cavitycarry out an extended linear stability analysis of this situation
where the thermal and solutal buoyancy forces counteragnd we show the existence of oscillatory instability even for
each other l=—1), a purely diffusive(motionless)solu-  the case where lzel, and for various tilts of the cavity. Of
tion is possible even for Lewis numbers different from unity. course the casii=—1 would be difficult to obtain experi-
For Le=10 and Ra=100 both the purely diffusive solution mentally. However we believe that the study of this particu-
and convective states are possible. lar solution, which has not been completely described in pre-
The configuration of a horizontal porous layer, where thevious works, will be useful for a better understanding of the
buoyancy effects are due to vertical or inclined gradients ofnore realistic situationsl=—1=*u, whereu is a small pa-
temperature and concentration, was presented by Niafdi ~ rameter.
Nield et al}* They studied the onset of convection by linear
stability analysis. The same configuration was considered
later by Tauntoret al’® and Trevisan and Bejaf.Taunton || MATHEMATICAL FORMULATION
et al'® extended Nield’s analysis and considered the salt-
fingering convection case in a porous layer. Trevisan and We consider a tilted rectangular cavity of aspect ratio
Bejart® studied mass transfer in the case where the buoyanc&=H/L whereH is the height of the cavity and is the
effect is due entirely to temperature gradients. Rudraialvidth. All the boundaries are impermeable. The cavity is
et all” applied linear and nonlinear stability analysis andfilled with a porous medium and saturated by a Newtonian
showed that subcritical instabilities are possible in the casbinary fluid. Figure 1 shows the geometry and the associated
of a two-component fluid. Branet al!® obtained amplitude boundary conditions.
equations for the convective instability of a binary fluid mix- The cavity is assumed to be of infinite extent in the
ture in a porous medium. They found an experimentally redirection. The superscript asterisks denote dimensional vari-
alizable example of a codimension-two bifurcati@mersec- ables. The Oberbeck—Boussinesq approximation is appli-
tions of stationary and oscillatory bifurcation lines). cable in the range of temperatures and concentrations ex-
The configuration of a vertical box with imposed tem- pected. Thus, the fluid and porous material properties are
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FIG. 1. Sketch of the problem.

constant, except the density of the fluid in the buoyancy con-

tribution where it varies linearly with both local temperature
and concentration

p=p1[1—Br(T*—=T7)—Bc(C*—C1)],

where p,=p(T},C}) is the reference density,B3;
=—(Up1)(dp/dT)c and Bc= —(1/p1) (dp/ IC)1 are the co-
efficients for thermal and solutal expansion. The fluid flow
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The dimensionless governing equations now take the

within the porous medium is assumed to be incompressible

and governed by Darcy’s law. We focus our study on thevhere

form
V.V=0, (6)
V=-VP+(RaT+RaC)k, (7)
T
E+V-VT=V2T, (8)
e§+V-VC= iVZC, 9)
ot Le
k= —sin X+ cosepy,
Ra=p19BKL(T; —T1)/ pan, Ra

double-diffusive convection and so neglect the Soret and Du= P198cKL(C3 —CY)/pnay, are the thermal and solutal

four effects. The governing equations are

V*.V*=0,

Fly s * p* *

(R)V =—V*P* —pgk*, 2

(pC)m gT* * Tk TH _ * 2T %

o HV VI T =T, 3)
*

€' —5 +V*.V*C*=D,V*?C*, (4)

at*

where V*=(u*,v*,w*),P* T*,C*, are the seepage
(Darcy) velocity, pressure, temperature, and concentratio
respectively.k* = —singx+cosgy defines the tilt of the
cavity andg the gravitational acceleration. The subscripts
andf refer to the porous medium and the fluid, respectively
The porous matrix is characterized by its permeabHitgnd

its porositye’. u andc denote the viscosity of the fluid and
the specific heata,, is defined as the effective thermal con-

n

Rayleigh numbers, respectivelg=¢€'(pc)¢/(pC)y, is the
normalized porosity and Lee,,/D,, the Lewis number.
The boundary conditions become

V-n=0 at all boundaries,

T=C=0 atx=0,
T=C=1 atx=1, (10
(dTlgy)=(dClay)=0 aty=0 andy=A,

whereA=H/L is the aspect ratio.

We are mainly interested in the special case where the
thermal and solutal buoyancy forces are comparable in inten-
sity but have opposite signs, so we have Ra Ra- or the
buoyancy ratioN=(BcAC*)/(B7AT*)=—1. The number
of dimensionless parameters is decreased and the Darcy
equation becomes

V=—-VP+Ra(T-C)k.

(11)

ductivity of the saturated porous medium divided by the spetll. LINEAR STABILITY ANALYSIS

cific heat capacity of the fluid. Paramet@y, represents the
diffusivity of the constituent through the fluid-saturated po-

Motionless double-diffusive solutionV;=0, Ty=X,

rous matrix. The boundary conditions associated with EqsCo=X) is a particular solution of the set of equatiof—

(1)-(4) are
V*.n=0 at all boundaries,
T*=T7, C*=C] atx*=0,
T*=T;, C*=C} atx*=L, ®)

(0T*19y*)=(dC*/gy*)=0 aty*=0 and y*=H.

We define nondimensional quantities by

(10) and (11). To study the stability of this solution, we

introduce infinitesimal three-dimensional perturbations
(v,0,c) defined by
V:V_Vo, 0:T_To, C:C_Co,

where V, T, and C indicate the disturbed quantities. The
second-order smaller quantities are neglected. Due to the fact
that the velocity field components are not coupled, a new
system of three independent variables{,c) is considered,



whereu is the component of the velocity field perturbation in
the x direction. The linearized equations take the form

d*(6—c)
‘ 2 —
Veu X3y COSp
d(6—c) d*(0—c)|
oy + P sine|, (12)
Vze—-a94— (13)
T
Jc
V%ZLG(GE-I—U , (14)

with the boundary conditions
u=6#=c=0 atx=0,1, Vy,VzVt,

(ouldy)=(a6ldy)=(dcldy)=0 at y=0,A, Vx,Vz,Vt.
(15)

IV. ONSET OF STATIONARY CONVECTION

In this section we seek instability via stationary convec-

tion. The case of oscillatory convection is studied in Sec. V.

From the steady state form of Eq4.3) and (14) we deduce
V2(c/Le— 6)=0. Because of boundary conditiof®5) this
last result leads ta=Le 4. Under this assumption the per-

turbation equations can be reduced to a new one with only

the temperature perturbation

2 9’0  5%6
+

ay?

V49=Rar(Le—1) cose+ ?) sing

(16)

IXdy

A. Case of an infinite layer

A cell of infinite extension in directiong andz is con-
sidered. The temperature perturbation is written as follows:

A= H(X)el(kerIZ),

wherek and| are the wave number in directiorysand z,
respectively, and is the imaginary unit. Perturbation equa-
tion (16) leads to

0P —2(k2+12) 0"+ (k*>+1%)20

=Rar(Le—1)[1k#’ cose— (k?+1%)0sine], (17)
with boundary conditions
0=0"=0 atx=0,1, Vy,Vz, (18)

where " =d?6/dx?.

1. Compound matrix method
Equation(17), and the associated boundary condition

retain the two conditions at=0 and the conditions at

=1 on#and@” are replaced byd’'(0)=1, #”(0)=0) and
(6'(0)=0,0"(0)=1). Thus, the boundary value problem is
converted into an initial value problem. The solution can be
written as a linear combination é; and ®, with initial
condition (0,1,0,0) and (0,0,0,1),

@ = 0[1®1+ a2®2
wherea, and «, are constant. A new vector

Y=(Y1.Y2.Y3.Y2.Y5.Ys) ",

is defined as the 22 minors of the 42 solution matrix
whose first column i€, and secon®,. So,

y1=0160,— 0165,
Yo=0165—016;,
ya= 0,65 — 676,
V= 0105~ 6,65,
Y= 6107~ 665,
Y= 0105 — 67 6;.
By direct calculation from(17) the initial value problem

for Y is found to beY’=L(Y) whereL is a linear operator
defined by

y1=Ya,

Y2=Y3+VYa,

y;=1 Rar(Le—1)k cospy,+2(k®+12)y,+ys,

Y4=Vs, (19)

yi=[(k*+1%)2+Rar(Le—1)sinp(k?+12)]y,
+2(K2+12)y4+ Ve,

Ye=[(k*+1%)2+Rar(Le—1)sinp(k®+12)]y,
—1 Ra(Le—1)kcosey,.

The initial conditions for(19) are obtained from the ini-

tial conditions on®, and®,,

Y(0)=(0,0,0,0,1,0",

the boundary conditions oA at x=1, (6(1)=6"(1)=0),

lead to the following condition:

y2(1)=0. (20)

Equation (19) is solved using a fourth-order Runge—
Kutta algorithm. A shooting method is used to reach condi-

Stlon (20).

(18), are solved using the compound matrix method. A very
clear description of this method and its application to hydro-> numerical results

dynamic stability problems is given by Drazin and Ré&id
and Straughaf® Here, we briefly show how this method is

Figure 2 shows the critical nondimensional stability pa-

used to find the critical Rayleigh number corresponding td@meter Ra (Le—1) as afunction ofp for severaI. vaI.ues of
the lowest eigenvalue ofl7). To solve problem(17) and  Wave numbef. The associated wave numbefwhich is not
(18) by the compound matrix method we le® plotted) corresponds to the critical value for which-Rd.e
=(6,60',0",0")7. To determine the lowest eigenvalue, we — 1) is minimum. It is found that the critical nondimensional
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FIG. 2. Influence of three-dimensional perturbations on critical thermal Tilt of the cavity (9)

Rayleigh number. Case of an infinite layer and forle FIG. 4. Critical wave numbek, vs tilt o for Le>1.

stability parameter Ra(Le—1) is minimum forl=0,Y¢.
This latter result shows that the most dangerous perturba- o s
tions in the case of an infinite layer are localized in tkey) In two extreme limits ofg, (¢=90%) we have the
plane. Figures 3 and 4 give the variations of the critical paStability problem analogous to Lapwood's O%GThe ther-
rameter Ra (Le—1) and the critical wave numbds, with mal Rayleigh number of the Lapwood problem is replaced
c _ _ — _one . _
respect to the tilt of the layer. These results are obtained fol?y _Rar(Le .1)' For @ 90_. the motlonlezss double
Lewis numbers higher than one. In this case #l18, the diffusive solution loses its stability for Ra=4m“/(Le—1)
thermal diffusivity is higher than the mass diffusivity which @nd the associated wave numberkis=. Tho's previous
means that the concentration perturbations are predominarfgSult was first obtained by Niefd For ¢ =+90° the purely
Thus, the stability of the motionless solution depends gidiffusive solution is infinitely linearly stable. For a tilted
rectly on the destabilizing effects of the concentration. This@Yer the motionless diffusive solution of the thermal prob-
behavior is brought out in Fig. 3. One can see that the lowedg™ iS unstable. But, with a double-diffusive problem, the
critical parameter is obtained far= —90° (the upside wall buoyancy force due to the solutal gradient can keep the mo-
is maintained at the highest concentrajjowhich corre- tionless double-diffusive solution stable, even if the infinite
sponds to the case where the concentration field is the mo$Yer is not horizontal. For the particular case of the vertical
destabilizing. This destabilizing effect decreases with layer (¢=0°), Charrier-Mojtabiet al" found Ra |Le—1|
which induces the increase of critical parameter. For Lewis= 105.33 ank,=2.51. Table | summarizes the critical Ray-
number lower than one, the stability of the solution will de- leigh and wave number obtained for several tilts of the infi-
pends on the destabilizing effects of the temperature. Thaite Iayer. _ _
above results hold with the following transformation: Using the compound matrix method, the eigenvector as-
sociated to the eigenvalue Fgel_e—l) is determined and

Rar(Le—1)—Ra(1—Le).

e
¢ @ used to calculate the streamfunction at the bifurcation point.
Figure 5 shows the evolution of the convective flow pattern
2000.0 :
TABLE I. Critical thermal Rayleigh number and the corresponding critical
wave number for several tilts of the layer.
1500.0 | .
@ Rar (Le—1) ke
n —-90° 39.478 (4% 3.14 (m)
o 10000 | 1 ~75° 40.47 3.13
& -60° 43.65 3.10
= —45° 49.68 3.05
-30° 59.92 2.95
>00.0 I ~15° 76.93 2.78
0° 105.33 251
+15° 154.31 2.15
00 ‘ s ‘ +30° 245.43 1.73
-90.0 —45.0 0.0 45.0 90.0 +45° 442.15 1.28
Tilt of the cavity (@) +60° 1003.08 0.844
+90° ® 0

FIG. 3. RaTC(Le—l) vs tilt ¢ for Le>1.




Le<1l Le>1 Le<1l Le>1 Le<1l Le>1 1000.0 T \ T T

— Transcritical Bifurcation
***** Pitchfork Bifurcation

~ Va
m 2500 ) ]

0.0 ! .
-90.0 —60.0 -30.0 0.0 30.0 60.0
Tilt of the cavity (@)

@ =-=30°
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. . h FIG. 7. Influence of the inclination on the type of the bifurcation for a
at the bifurcation point.

square cavity. The evolution of streamfunction at the bifurcation points is
presented fokw= —60°, —30°, 0°, and+30°. The streamfunctions associ-
ated with the first bifurcation are drawn at the bottom.

at the bifurcation point for several tilts of the layer and for

Lewis numbers, higher and lower than one. One can observe ) ] ]

a succession of counter-rotating tilted cells. To understan§'l aspect ratiod, as a function of the tilp. The curves are:
qualitatively the tilt of the cells we consider the case Lecompared to the critical value of an infinite cell. The mini-
<1. In this case the mass diffusivity is higher than the ther/mum value of the stability parameter is obtained for an infi-
mal diffusivity and the fluid needs more time to reach thehite cell for any tested tilt. We can conclude that the confine-
surrounding temperature than the surrounding concentratioff?€nt stabilizes the motionless double-diffusive solution. One
Accordingly, when we consider a fluid trajectory from the €@n also notice that the situation of heating from the top,
cold wall to the hot wall, the fluid particle on this trajectory Where the highest concentration is maintained, is the most
is regularly in a hotter environment which deviate it down- Unstable situation when the Lewis number is higher than one.
ward. Likewise, there is an upward trajectory when the fluid

particle moves from the hot wall to the cold wall. The sameC. Transcritical and pitchfork bifurcation

arguments explain the tilt of the cells in the case lle> The type of the bifurcations can be predicted by the sym-
metry properties of Eq$12)—(14) with boundary conditions
B. Case of a rectangular cavity (15). As a matter of fact in a rectangular cavity of aspect

ratio A, the perturbation equations and the associated bound-
ary conditions are invariant under combingg reflection

and by the inversion of the velocity, temperature, and con-

centration perturbation fields. This symmetry property can be

: described with the operatdt:

Now, only two-dimensional perturbations are consid-
ered. Equatiori16) is solved using the Galerkin method with
N M

O(X,y)= n§=:1 m§=:0 anmsin(nwx)cos( mw%

Figure 6 presents the variations of{Rd.e— 1) for sev- u —u
‘ S| 0|(xy)=| =0 (1-xA-y).
c -c

If (u,6,c) is solution of (12)—(14), thenS(u, d,c) is also

180.0 T b solution of these equations. Thus Ed42)—(15) possess
- Aj K centrosymmetry. The eigenvectors of the linear stability
- 7] problem will be centrosymmetric with an odd number of
A / cells or anticentrosymmetric with an even number of cells.
1300 - —— As=infinite ST

/ The corresponding bifurcation is transcritical for centrosym-
metric eigenvector and pitchfork for anticentrosymmetric ei-
genvector(Crawford and KnoblocH). In the present study,
both transcritical and pitchfork bifurcations are obtained de-
pending of the aspect rati and the tilte of the cavity. For

a square cavity, the influence of the tilt of the cavity is pre-
sented in Fig. 7 and Table Il. We can see the evolution of
RaTC(Le—l) obtained for transcriticalkolid line) and pitch-
fork (dashed linehifurcations when the tiltp increases. We
also present the evolution of the streamfunction at the bifur-
FIG. 6. Influence of the aspect ratand the tilty on Ra (Le—1). cation points for different values @f. The global behavior is

Ra_(Le-1)

80.0

2

4n

30.0 1 1 Il 1 Il
-90.0 -750 -600 450 -30.0 -150 0.0
Tilt of the cavity (@)



TABLE II. Critical thermal Rayleigh number corresponding to the trans- 140.0 T T

critical and pitchfork bifurcations as a function of the tilt far=1 (Galerkin
method withN=M = 20). —— Transcritical Bifurcation
1200k  ----- Pitchfork Bifurcation .
Transcritical bifurcation Pitchfork bifurcation |
¢ Rar (Le—1) Rar (Le—1) Y
—90° 39.478 (47) 61.69 = 1000 1 1
-60° 44.92 69.66 8 K
-30° 70.36 104.75 2
0° 184.06 227.91 = 800
+30° 809.0 754.0
60.0
the same as for the infinite layer. The increase of the cavity 400 . . ‘
tilt causes lengthening and the tilting of the cells. 1.0 2.0 3.0 4,0 5.0
Figure 8 shows the influence of the aspect rafipon Aspect ratio (A)

the bifurcation points for a vertical cavityp=0°). The two

curves cross alternately at codimension two bifurcationFIG. 9. Evolution of transcriticaithe solid line)and pitchfork(the dashed
points. When the aspect ratio increases, the flow patterns fipe) bifurcations with respect to the aspect ratio for two slopes.

the bifurcation points in the core region of the cavity lead to

those observed for an infinite layer. We observe the same

behavior for all tested tilts of the cavitfFig. 9). One can N M y

notice a similar behavior for the same configuration in fluid _ : Y| qot

medium (Gobin and Bennacét, Ghorayeb and Mojtal? ey nzl mE:o cnmsn‘(nwx)cos( mwA)e - @)

; 2
and Xinet al.®). The marginal state correspondsdp=0. The Galerkin

method is used to solve the linear stability problem. We
V. ONSET OF OSCILLATORY CONVECTION complete the previous resulsanscritical and pitchfork bi-
furcations) by possible Hopf bifurcations. It is found that

ered. The terme”t is introduced in the perturbationu(6,c) Hopf b_ifurcation; exist and can appear bef.o.re or after the
whereo is defined byo= o, + 1o with | the imaginary unit. transcritical or pitchfork bifurcations. The critical Rayleigh

The perturbations are assumed to be two-dimensional arf&“mber fqr the quf bifurcation depends not iny on the
are developed as: aspect ratioA, the tilt ¢ of the cell, and the Lewis number

Le, but also on the normalized porosiy The overall study
NV ) Y| ot is difficult to carry out due to the numerous nondimensional
u(x,y,t)=nzl mZ:O anmsm(m-rx)cos< m”ﬂ) e”, (21)  parameters. The objective of this part is to identify the type
of the first primary bifurcatior(oscillatory or stationary bi-

. AR furcation). We denote by stationary bifurcation all bifurca-
0(x,y,t)=n§1 mE:O bnmsin(nmx)co mm € (22)  tions toward stationary convectiotiranscritical or pitch-
fork). We first consider the two limit cases of horizontal cells
(¢==90°). Then for general cases, we define the parts of
2000 — ; . the (Le, ¢) parameter space for which the first primary bifur-
cation is stationary or oscillatory depending on the aspect
ratio and the angle of tilt of the box.

In this section, the full equationd2)—(15) are consid-

N M

180.0
A. Limit cases: ¢==90°

In these situations the ‘“cross-derivative term” in Eq.

= 160.0
3 (12) is simplified. The problem can by solved by direct cal-
= culation and no numerical approximation is needed. Equa-
& 1400 tions (12)—(14) become
) 9(6—c)
120.0 Viu=—-RarJ| ———|, (24)
ay
100.0 ' ' ‘ 44
1.0 2.0 30 40 50 V2o= U (25)
Aspect ratio (A)
FIG. 8. Evolution of transcriticafthe solid line)and pitchfork(the dashed 2 (9_C
line) bifurcations with respect to the aspect ratio fo=0°. The stream- Vie= Le( € ot tuj, (26)

functions associated with the first bifurcation are drawn on the left-hand side ) )
(A=2, 3, and 4 wherelJ is defined by



¢=+90°—-J=+1, 70.0 '
¢=-90°-J=—1.
The boundary conditions associated with this problem are 60.0
u=6#=c=0 atx=0,1,Vy,
(aulay)=(a61ay)=(aclay)=0 aty=0A ¥x. @7 .50
Solutions for(24)—(26) of the form(21)—(23) are possible if
B(B+o)(B+eole)—Ra; CI(B+eoLe)

40.0
+LeRa CJ(B+0)=0, (28)
where
30.0 : ‘ —_—
B=(im)?2+(jm/A)2, C=(jmlA) 0.5 2.0 3.5 5.0

. - . Aspect ratio (A)
At marginal stability,c=1w wherew is real. The real

and imaginary parts of Eq28) become FIG. 10. ¥, vs aspect ratio.
Ra; CJ(Le—1)+(B%— ew?Le)=0,
and (30)] gives, for the stationary bifurcation, Ra

w(Ray CILe(1—€)+B?(1+€lLe))=0. _ ety UiV
=1v,/(Le—1) and the Hopf bifurcation is defined by

Two solutions are possible:

(e+1/Le) , Yo (1—eled
0=0, 29) Rar = Yo ' Tl (I-e (31)
RarIJ(—Z) ! wherevy,, is defined byy,,=B2=((im)2+ (j m/A)?)?, where
C/(1-Le) i andj have the same values as those determinedyfor
and I_:ig_ure 11 reportsy,, wit_h re;pect _to the aspecF ratio. The
5 5 limit value of vy, for an infinite horizontal layer is equal to
,_ B” (1—ele’) 47*. One can observe that, (consequentlyw,) is discon-
eLe? (1—¢) tinuous for some aspect ratios. This means that for these
B2\ (e+1/Le) (30) critical aspect ratios there are two Hopf bifurcations at the
Rar=J(—)—. same critical Rayleigh number, but with different critical
C/ (e-1) pulsations. This is a codimension-two bifurcation point. The

Hopf bifurcation defined by31) exists only fore Le?<1,
1. Case: ¢=+90° this condition guarantees that,>0. For Le>1, this condi-

The saturated porous medium is heated from belowion also guarantees the following relationship:

where the highest concentration is imposed. For Lewis num- 1 1/Le 1

bers higher than or equal to one the motionless double- — <5

) . s . ) 1-¢ Le-1

diffusive solution is infinitely linearly stabléye. For Lewis _ _ S _ _
numbers lower than one, the motionless solution loses it&hich means that in this situation the Hopf bifurcation ap-
stability via a stationary bifurcation with Ra=+v,/(1  pears before the stationary bifurcation. For Lewis numbers

Cc

—Le). y, can be obtained by direct calculation from

L (im|3)2 3000.0 : :
gz |Um +(K) )
= min— = min :
Yr Y C y J_7T 2
A

\\\

20 3.5 5.0
Aspect ratio (A)

2. Case: ¢=-—90°

The saturated porous medium is now heated from the top 00,

2000.0 i
Figure 10 plotsy, versus the aspect ratid. The limit
value ofy, whenA— o is equal to 472. Thus, for an infinite »2
layer and Le<1 the results are identical to those obtained for
the Lapwood problem. 1000.0 1
5

where the highest concentration is imposed. In this case, and
for Lewis numbers higher than one, both stationary and Hopf
bifurcations are possible. The direct calculatidgs. (29) FIG. 11. y,, vs aspect ratio.



2500.0 cavity and for Le=1. We can see that the critical Rayleigh

number increases when the normalized porosity increases.
i This means that has a stabilizing effect. In this case, the
mass and thermal diffusion coefficients are identical and they
do not cause the instability. The cause of instability is the
difference between the unsteady temperature and concentra-
tion profiles. This difference increases whendecreases
which is consistent with the results presented in Fig. 12.
Moreover, fore=1, the temperature and concentration pro-
files are identical and there are not any sources of instability.
The motionless double-diffusive solution is infinitely linearly
stable.

2000.0

1500.0

Ra,

1000.0

500.0

0'0 1 1 1
0.0 0.2 0.4 0.6 0.8 10

Normalized porosity (€) 2. Case: Le>1

FIG. 12. Influence of the normalized porosigyon the critical Rayleigh . For Lewis number,S hlgher than one, the numerlcal reso-
number Ra_of the Hopf bifurcation forA=1 and Le=1. lution of the perturbation equations shows the existence of
‘ two zones in thellLe, €) parameter space separated by the

_ _ curve e Le?=1. Whene Le?> 1, the first primary bifurcation
lower than or equal to one only Hopf bifurcations exit, creates steady state branches of solution andefos?<1,

These results are corroborated by numerical simulations prepe first bifurcation is a Hopf bifurcation. It is important to
sented in Sec. VI. observe that these results do not depend on either the aspect
ratio or the tilt of the cavity. As can be observed in Fig. 14,
the same curve was obtained for all tested angles of tilt.

B. General cases

In general casedor any aspect ratio and for any Jilthe
analytical resolution of the stability problem is not possible.

We use a numerical approach based on the Galerkin metho% Case: Le<l

to solve the problem. Three situations are considered 1., e For Lewis numbers smaller than one, the situation is
Le>1, and Le<1. more complicated. There are still two zones in the, )

1. Case: Le =1 parameter space, but they are separated by a curve depending

on both the angle of tilt and the aspect ratio. Figure 14 shows

The results obtained in Sec. IV show that for the Lewisthe results obtained for a square cavity and for several angles
number equal to one, the motionless double-diffusive soluyf tjit. For each tested tilt, the zone where the first primary
tion is infinitely linearly stable. This result is obtained when pifyrcation is a stationary bifurcation and the zone where the
only the stationary bifurcations are considered. A more comgirst bifurcation is a Hopf one are separated by a curve of
plete analysis of this situation shows that the motionless sozodimension-two bifurcation points. A section of Fig. 14 for
lution can lose its stability via a Hopf bifurcation for Ed.  ¢=05 is presented in Fig. 15. Figure 15 shows the evolution
Figures 12 and 13 show the influence of the normalized popf critical Rayleigh numbers associated with transcritical and
rosity on the critical Rayleigh number and the pulsation COrHopf bifurcation as a function of Lewis number fér=1
responding to the Hopf bifurcation in the case of a squargind =0°. The curve of Hopf bifurcation crosses the tran-

scritical curve at two codimension-two bifurcation points.
2000 — : : : For Lewis numbers lower than one the intersection point
depends on all nondimensional parametésp, Le, ande).

o On the contrary, for Lewis numbers higher than one, the
1500 | i ‘P=015° | intersection point is defined only byLe?=1, the aspect ra-

' = tio A and the tilt of the cellp do not influence this point.
) T =300 Table Ill summarizes the values of the critical parameters
obtained in the caseA=1, ¢=0°, ande=0.5).

One can notice that for the problem of double-diffusive
convection in fluid, in the same configuration the first bifur-
cation is never a Hopf one. The existence of Hopf bifurcation
1 in porous medium may be explained through the normalized
porosity. This parameter induces different evolution in time
between the temperature and the concentration. This differ-
0.0 - ! ' ' ence is enhanced when the normalized porosity decreases.

0.0 0.2 04 0.6 08 10 Indeed, diffusion and advection of concentration can only be
Normalized porosity (¢) carried out in the space occupied by fluid, thus both diffusion

B .o _1 . .
FIG. 13. Influence of the normalized porosiéyon the pulsationw, for A and adveCt_'(m are magnified ky = compared to diffusion
=1 and Le=1. and advection of heat.

e @=415°

1000

Pulsation ()

500




D Hopf l:l Stationary 1500.0 ' ' '
1.0 ' i " : Transcritical Bifurcation
R & ——= Hopf Bifurcation
I b =
(-90°) 3 o5 | - 'é 1000.0
. g
| | =)
0.0 ! z
, 1 1 1 >~.
& 5000
1.0 | : ; —ar g
N 5
—15° / . |
( } ) 203 //. .‘\""x_ 0.0 1 1 L L L
| 700 0.5 1.0 L5 2.0 2.5 3.0
y Lewis number (Le)
00—~ - : :
10 . ] _ . FIG. 15. Critical Rayleigh number vs Lewis number, for=1, ¢=0, and
' PN €=0.5.
y
0° = | / Ty | ot ;
©) 2os 4 R ear theory. In the case of oscillating convection, the frequen-
£ .y cies obtained numerically are compared successfully with
- / . . those obtained by linear stability analysis. Moreover, the
' time integration of the full set of nonlinear equations pro-
Lo - / vides more information about the solution just after the bi-
| furcation points. In particular, we get information about the
G15%) o fl stability of these solutions and the sense of rotation of the
2057 cells. We first consider the onset of stationary convection,
"| then the results for oscillating convection are presented.
0.0 . A. Stationary convection
L0 Numerical simulations are carried out for a square cavity

(A=1) with Le=2. The normalized porosity, is kept equal
to one, to avoid any primary Hopf bifurcation. The results
05:1 Stable ' are presented for four tilts of the cavityp& —90°, ¢
=-60°, ¢p=—30°, and¢=0°). As seen in Fig. 7 and
. | Table I, for this set of parameters the purely diffusive re-
0050 05 1.0 L5 20 gime loses stability via a transcritical bifurcation. The super-
Lewis number (Le) critical branch of solutions created at the bifurcation point is
) i i ) . _stable. The numerical values of the critical parameter
FIG. 14. Domains of the existence of stationary and Hopf bifurcations in _ . . .
(Le, €) parameter space fékx=1. For ¢=+90° and Le>1 the motionless Rafc( Le 1) are in very gOOd agreement with those obtained
solution is infinitely linearly stable. by linear stability analysis. In Fig. 16, we report the super-
critical convective solution pattern, close to the onset of con-
vection, for a Rayleigh number slightly higher than the criti-
VI. NUMERICAL SIMULATIONS cal value. One can see that the streamlines obtained
numerically by direct simulation are identical to the eigen-

finite volume method that employs primitive variables on gVectors presented in Fig. 7. The numerical simulations show

staggered mes(rPatankaZrB). Diffusive and convective fluxes that the main cente_zr cell has a clock_W|se rotation. The two
are discretized by central differencing. Solutions are ob-Small counter-rotating cells located in the upper left-hand

tained by fully implicit marching in time. The typical time

. 2 . . . .
step is 10¢, but for oscillatory convection with high fre- taBLE I11. Critical thermal Rayleigh number for the stationary and Hopf
quency, lower time steps are used (#8010 %). The grid hbifurcations for several Lewis numbers, =1, ¢=0°, ande=0.5 using
employed is uniform and consists of 4#1 volumes for a the Galerkin method wittN=M = 15. (X) means the Hopf bifurcation does
square cavity. The code was validated by comparing our re2°t &ist

(+90°)

(e)

The governing equatior($)—(10) have been solved by a

suIFs tlo9 those obtained by Goyeatial = and Trevisan and Le Ray_ (stationary) Ra (Hopf) o
Bejan. o
To corroborate the results obtained with the linear sta- fl’-g 368.12 1:%3[' 258%%
oy . - - - . . 0 . .
bility analy5|_s sev_eral nume_rlcal simulations were carried 5 444,36 44436 0
out. These simulations permit us to observe the onset of con- 5 184.06 % X

vection at the critical Rayleigh number predicted by the lin




-90° -60°

FIG. 18. Streamlines, isotherms, and isoconcentrationé&fell, Le=2, ¢
=+30°, and Ra=760. Solid lines in streamlines correspond to counter-
clockwise rotations.

tion is unstable. The convective solution persists when the
Rayleigh number decreases, even for Rayleigh numbers
lower than the critical value.

The complete study of the subcritical solutions is not the
subject of the paper. Our numerical simulations show mul-
tiple subcritical and supercritical solutions. To describe these
flows we must develop a continuation method. For the
)bresent work, to illustrate this multiplicity of solutions we
have plotted the streamlines, the isotherms, and the isocon-
centrations for different solutions obtained in the case
=1, Le=2, and Rg=195 (Fig. 19). Solution(a) corre-

and the lower right-hand corners of the box gradually disap- " U
pear asp decreases from 0° to 90°. At o= —90° the flow sponds to the supercritical solution just after the onset of

is similar to that obtained in a square cavity heated fro convection. The corresponding isotherms and isoconcentra-
below. The isotherms and i ?] nirati ny re not ;ntions are slightly deformed due to low velocity. On the other
clow. € isotherms a soconcentrations are not p eﬁand, isotherms and isoconcentrations associated with solu-

iegé?d’thbu:. Sh(?v‘; a ptr.actlcﬂla/ con?.uctlve sta’[tg. EG#h tions (b) and (c) are highly deformed. These solutions are
» the ime integration of the noniinear equations show art of two subcritical branches of solutions issued from a

that the motionless double-diffusive solution loses its stabil- . . :

ity at the predicted critical Rayleigh number. Numerical secondary pitchfork bifurcation.

simulation is carried out for Ra 760. The time evolution of

the v component velocity is plotted in Fig. 17. The flow

pattern obtained before and after the transition is also pre- When the first primary bifurcation is a Hopf one, the

sented. Before the transition, the flow pattern corresponds ttesults of the linear stability analysis are compared with nu-

the solution predicted by the linear analy$i§g. 7) while ~ merical simulation for several situations. For the cavity

after, the streamlines are completly different. Figure 18 repheated from the top, where the highest concentration is im-

resents the associated isotherms and isoconcentrations. Thegsed (= —90°), we consider a square cavitA{1)

are highly deformed due to high velocity. This latter solutionfilled with a porous medium characterized by-0.2 and a

is a subcritical solution and does not correspond to the exbinary fluid with Le=2.

pected solution at the onset of convection. This would mean  With these parameters, the first primary bifurcation is a

that the branch of solution issued from the pitchfork bifurca-Hopf one with Ra =3.5m°=34.54 andw?=1.257" [ob-
tained analytically from{31)]. The corresponding critical fre-
qguency isf.=w/27w=1.756. The numerical simulation of

Il

FIG. 16. Supercritical solution foA=1, Le=2, and fore=—90°,—60°,
—30°,0°. The Rayleigh numbers associated with each solution are slightl
higher than the critical values.

B. Oscillatory convection

1.0 T T

0.0

-10

Velocity (v)

20

-3.0 ! !
0.0 50.0 100.0 150.0
Time (t) FIG. 19. Streamlines, isotherms, and isoconcentrationé&fefl, Le=2, ¢
=0°, and Ra=195. Solid lines in streamlines correspond to counterclock-
FIG. 17. The evolution in time of the velocity at the onset of convection for wise rotations(a) Supercritical solution(b) and(c) solutions on subcritical
A=1, Le=2, ¢=+30°, and Ra=760. branches.




2.0-01 ' ' ' vanishing oscillation with the frequendy,,,=~ 2.3, which is

in good agreement with the results of the linear theory.

1.5¢-01 1 VIl. CONCLUSION

An analytical and numerical study of the onset of
10601 | | double-diffusive convection in a tilted rectangular or infinite
box, filled with a porous medium and saturated by a binary
fluid, is carried out. In the case of an infinite layer tridimen-
5.00-02 50.0 55"0 00 - sional_ perturbations are considered and we show that bi_di-
L Time () mensional perturbations are the most dangerous. The first

Power

primary bifurcation creates either branches of steady solu-
, , . tions or time-dependent solutions via Hopf bifurcation. The
5.0 10.0 15.0 20.0 type of bifurcation depends on the aspect ra&iathe tilt of
Frequency (f) the box¢, the Lewis number Le, and the normalized porosity

FIG. 20. Numerical determination of critical frequency of the Hopf bifur- 6‘_ For the §ame problem in _ﬂUId medlum the first primary
cation forA=1, Le=2, e=0.2, ande=—90°. bifurcation is never a Hopf bifurcation.

It is important to note that for most physical situations,
the Lewis number is higher than one. Then, the present study

o . shows that the type of the first primary bifurcati(station-
this situation shows the existence of a stable branch of osc:|lary or oscillatory depends only on Le and The aspect ratio

latory solution just after the predicted critical Rayleigh num- A anq the tilty have an influence on the value of the critical
ber (Fig. 20). The frequency of the oscillations obtained for parameters and the type of the stationary bifurcattoan-
Rar=35 is fn=1.77, which is in good agreement with the gcritical or pitchfork. The curvee Le?=1 in the (Le, €) pa-
analytical results. The structure of the convective flow is agmeter space represents a set of codimension-two bifurca-
single rotating cellidentical to that obtained for stationary tjgn points which separates the region where the first primary
convection), but the sense of rotation changes periodically ipjfyrcation is a Hopf bifurcationd Le?< 1) from the region

time. ] . where the first primary bifurcation is a stationary one
However, for most of the angles of tilt considered, the(¢ | ¢2>1). For o= +90° the motionless solution is infi-

branch of solutions issued from the Hopf bifurcation is un-pjtely linearly stable.
stable. For several sets of valugs ¢, Le, ande) the results For some gas mixtures the Lewis number could be lower
of the linear stability analysis are validated by computing thehan one. In this situation, the regions of Hopf bifurcations

frequency of the vanishing oscillations that occur when &gng stationary bifurcations are separated by a curve depend-
perturbation is induced for a Rayleigh number slightly Iowering not only on Le anck but also onA and ¢.

than the critical Rayleigh number predicted by the linear = gome numerical investigations are carried out for a

theory. _ square cavity. The onset of motion is observed at the pre-
Figure 21 illustrates the case=1, Le=2,€=0.2, and  gjcted Rayleigh number obtained by the linear theory. These

¢=0° for which the linear stability predicts a Hopf bifurca- nonlinear numerical simulations show the existence of mul-

tion at Rg =170.7 andfc=wc/2m=2.24. The numerical {ple subcritical solutions. This linear analysis has to be com-

simulation gives, for a perturbation generated af-R#69, a  pleted by a nonlinear study to draw complete bifurcation
diagrams for different sets of nondimensional parameters.
The continuation method will be useful to follow the branch

. ——— of solution (stable or unstablejreated at the primary bifur-

. . cation points defined in this study.

0.0e+00
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