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Onset of stationary and oscillatory convection in a tilted porous cavity saturated with a binary fluid: Linear stability analysis

In the present work, we study the onset of double-diffusive convective regimes in a tilted rectangular cavity, filled with a porous medium, saturated by a binary fluid. Two opposite walls are maintained at different but uniform temperatures and concentrations while the two other walls are impermeable and adiabatic. When the thermal and solutal buoyancy forces are comparable in intensity but have opposite signs, the motionless double-diffusive regime with linear temperature and concentration profiles is a solution of the problem. The first part of the study consists of a linear stability analysis of the motionless regime. We determine the critical thermal Rayleigh number for the onset of stationary and oscillatory convection. Indeed, we point out that there exist primary Hopf bifurcations for the studied problem in porous medium, while in the same configuration with a fluid medium only primary stationary bifurcations exist. When the first primary bifurcation creates a steady state branch of solutions, the bifurcation is either transcritical or pitchfork depending on the aspect ratio, A and the tilt, of the cavity. The onset of oscillatory convection ͑Hopf bifurcation͒ depends not only on A and but also on the Lewis number, Le and the normalized porosity, ⑀. Then, we determine the parts of the ͑Le, ⑀͒ parameter space for which the first primary bifurcation is stationary or oscillatory. In particular, it is found that in the case Leу1 and for ⑀ Le 2 Ͻ1 the first primary bifurcation is always a Hopf bifurcation for any A and except for ϭϩ90°. For ⑀ Le 2 Ͼ1 only stationary primary bifurcations exist. In the case LeϽ1, zones where stationary and oscillatory primary bifurcations exist are separated by a curve depending on A and . The last part of this work consists of a series of numerical simulations. The onset of stationary and oscillatory convection is obtained numerically at the critical Rayleigh number predicted by linear analysis. We also verified the frequency of oscillations for several sets of dimensionless parameters. The numerical simulations show multiple subcritical solutions.

I. INTRODUCTION

Natural convection in porous media is widely encountered in nature and technological processes. Water movement in geothermal reservoirs, underground spreading of chemical waste and other pollutants, grain storage, thermal insulation, evaporative cooling, and solidification are just a few examples where thermal natural convection or doublediffusive convection in porous media are observed.

The majority of the research effort has been devoted to the flow caused by a single buoyancy effect ͑thermal convec-tion͒. Some of this literature has been reviewed by Combarnous and Bories 1 and Cheng. [START_REF] Cheng | Heat transfer in geothermal systems[END_REF] In some natural convection situations the heat transfer aspect cannot completly describe the phenomenon. Both heat and mass transfer must be considered. The presence of thermal and solutal buoyancy forces considerably modifies the flow within the porous media. The current state of knowledge concerning double-diffusive convection in a saturated porous medium is summarized in the studies developed by Trevisan and Bejan [START_REF] Trevisan | Combined heat and mass transfer by natural convection in porous medium[END_REF] and Nield and Bejan. [START_REF] Nield | Convection in Porous Medium ͑Springer[END_REF] Of the many works in the literature related to double-diffusive convection in a cavity, the majority can be classified into two categories: cavities with imposed uniform heat and mass fluxes and cavities with imposed uniform temperature and concentration. It is important to note that most of these works are theoretical. We can mention three experimental studies in double-diffusive convection in porous media. The first was carried out by Griffith. [START_REF] Griffith | Layered double-diffusive convection in porous media[END_REF] He observed a thin diffusive interface in a Hele-Shaw cell with salt and sugar or heat and salt as the diffusing components. He measured salt-sugar and heat-salt fluxes through two-layer convection systems and compared the results with predictions of a model. The second work was carried out by Imhoff and Green. [START_REF] Imhoff | Experimental investigation of double-FIG. 20. Numerical determination of critical frequency of the Hopf bifurcation for Aϭ1[END_REF] They studied double-diffusive groundwater fingers, using a sand-tank model and the salt-sugar system. They observed that doublediffusive groundwater fingers can transport solutes at rates as much as two orders of magnitude larger than those associated with molecular diffusion in motionless groundwater. This could play a major role in the vertical transport of nearsurface pollutants in groundwater. The third experimental work, by Murray and Chen, [START_REF] Murray | Double-diffusive convection in a porous medium[END_REF] is closer to our study and concerns the onset of double-diffusive convection in a finite box filled with porous medium. The experiments were performed in a horizontal layer consisting of 3-mm-diam glass beads contained in a box 24 cmϫ12 cmϫ4 cm high. The rigid top and bottom walls of the box provide a linear basic-state temperature profile but only allow a nonlinear time-dependent basic-state profile for salinity. They observed that when the porous medium is saturated with a fluid having a stabilizing salinity gradient, the onset of convection was marked by a dramatic increase in heat flux at the critical ⌬T, and the convection pattern was three-dimensional, while twodimensional rolls are observed for single-component convection in the same apparatus. They also observed a hysteresis loop on reducing the temperature difference from supercritical to subcritical values.

Concerning the theoretical studies, various modes of double-diffusive convection may exist depending on how both thermal and solutal gradients are imposed relative to each other and also on the numerous nondimensional parameters involved.

In the case of imposed uniform heat and mass fluxes, Trevisan and Bejan 8 considered a vertical porous cavity with imposed horizontal heat and mass fluxes. They developed an analytical Oseen-linearized solution for the boundary-layer regime for Leϭ1, and proposed a similarity solution for heat-transfer-driven flows for LeϾ1. These analytical results were validated by numerical experiments. The same configuration was studied by Alavyoon [START_REF] Alavyoon | On natural convection in vertical porous enclosures due to prescribed fluxes of heat and mass at the vertical boundaries[END_REF] and Alavyoon et al. [START_REF] Alavyoon | On natural convection in vertical porous enclosures due to opposing fluxes of heat and mass prescribed at the vertical walls[END_REF] using numerical and analytical methods and scale analysis. They showed the existence of oscillatory convection in the case of opposing buoyancy forces. An extension of these studies to the case of the inclined porous layer subject to transverse gradients of heat and solute was carried out by Mamou et al. [START_REF] Mamou | Double-diffusive convection in an inclined slot filled with porous medium[END_REF] They obtained an analytical solution by assuming parallel flow in the core region of the tilted cavity. The existence of multiple steady state solutions, for opposing buoyancy forces, has been demonstrated numerically. Mamou et al. [START_REF] Mamou | Multiple solutions for doublediffusive convection in a vertical porous enclosure[END_REF] have also numerically shown that, in a square cavity where the thermal and solutal buoyancy forces counteract each other (NϭϪ1), a purely diffusive ͑motionless͒ solution is possible even for Lewis numbers different from unity. For Leϭ10 and Ra T ϭ100 both the purely diffusive solution and convective states are possible.

The configuration of a horizontal porous layer, where the buoyancy effects are due to vertical or inclined gradients of temperature and concentration, was presented by Nield [START_REF] Nield | Onset of thermohaline convection in a porous medium[END_REF] and Nield et al. [START_REF] Nield | Convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium[END_REF] They studied the onset of convection by linear stability analysis. The same configuration was considered later by Taunton et al. [START_REF] Taunton | Thermohaline instability and salt fingers in a porous medium[END_REF] and Trevisan and Bejan. [START_REF] Trevisan | Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below[END_REF] Taunton et al. [START_REF] Taunton | Thermohaline instability and salt fingers in a porous medium[END_REF] extended Nield's analysis and considered the saltfingering convection case in a porous layer. Trevisan and Bejan [START_REF] Trevisan | Mass and heat transfer by high Rayleigh number convection in a porous medium heated from below[END_REF] studied mass transfer in the case where the buoyancy effect is due entirely to temperature gradients. Rudraiah et al. [START_REF] Rudraiah | Finite amplitude convection in a two-component fluid saturated porous layer[END_REF] applied linear and nonlinear stability analysis and showed that subcritical instabilities are possible in the case of a two-component fluid. Brand et al. [START_REF] Brand | Amplitude equation near a polycritical point for the convective instability of a binary fluid mixture in a porous medium[END_REF] obtained amplitude equations for the convective instability of a binary fluid mixture in a porous medium. They found an experimentally realizable example of a codimension-two bifurcation ͑intersections of stationary and oscillatory bifurcation lines͒.

The configuration of a vertical box with imposed tem-perature and concentration along the vertical sidewalls was considered by Trevisan and Bejan [START_REF] Trevisan | Natural convection with combined heat and mass transfer buoyancy effects in a porous medium[END_REF] and Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Onset of a double-diffusive convective regime in a rectangular porous cavity[END_REF] Trevisan and Bejan 19 considered a square cavity submitted to horizontal temperature and concentration gradients. Numerical simulations are compared to a scaling analysis. They observed the development of a weak convection in the vicinity of NϭϪ1 ͑N being the ratio of the solutal to the thermal buoyancy forces͒. They noticed that the flow disappears if the Lewis number, Le is equal to one and NϭϪ1.

Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Onset of a double-diffusive convective regime in a rectangular porous cavity[END_REF] studied the linear stability of the purely diffusive regime, which exists for NϭϪ1 and any Lewis numbers. They found that this solution is linearly stable up to a critical thermal Rayleigh number depending on the box aspect ratio and the Lewis number.

For the same boundary conditions, double-diffusive convection studies have been carried out in a fluid medium, for the case NϭϪ1, by Gobin and Bennacer, 21 Ghorayeb and Mojtabi, [START_REF] Ghorayeb | Double-diffusive convection in vertical rectangular cavity[END_REF] and Xin et al. [START_REF] Xin | Bifurcation analysis of doublediffusive convection with opposing horizontal thermal and solutal gradients[END_REF] In all these stability analyses the first primary bifurcations lead to steady state solutions.

The purpose of this paper is a linear stability analysis of the purely diffusive solution, which exists when NϭϪ1 in a tilted rectangular or infinite box filled with a porous medium saturated by a binary fluid. We complete the previous results obtained for an horizontal layer by Nield [START_REF] Nield | Onset of thermohaline convection in a porous medium[END_REF] and a vertical cavity by Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Onset of a double-diffusive convective regime in a rectangular porous cavity[END_REF] The influence of the tilt of the cavity on the bifurcation points is analyzed. The most important part of this work concerns the study of the primary oscillatory instabilities which are only obtained in porous medium. In previous works these instabilities were studied only for the horizontal layer. Trevisan and Bejan [START_REF] Trevisan | Natural convection with combined heat and mass transfer buoyancy effects in a porous medium[END_REF] found, for the vertical box, that when Leϭ1 and NϭϪ1 the flow disappears completely. They did not consider unsteady flow. Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Onset of a double-diffusive convective regime in a rectangular porous cavity[END_REF] assumed the principle of exchange of stability to be valid and concluded that the purely diffusive regime is infinitely linearly stable for Leϭ1. Here, we carry out an extended linear stability analysis of this situation and we show the existence of oscillatory instability even for the case where Leϭ1, and for various tilts of the cavity. Of course the case NϭϪ1 would be difficult to obtain experimentally. However we believe that the study of this particular solution, which has not been completely described in previous works, will be useful for a better understanding of the more realistic situations NϭϪ1Ϯ, where is a small parameter.

II. MATHEMATICAL FORMULATION

We consider a tilted rectangular cavity of aspect ratio AϭH/L where H is the height of the cavity and L is the width. All the boundaries are impermeable. The cavity is filled with a porous medium and saturated by a Newtonian binary fluid. Figure 1 shows the geometry and the associated boundary conditions.

The cavity is assumed to be of infinite extent in the z direction. The superscript asterisks denote dimensional variables. The Oberbeck-Boussinesq approximation is applicable in the range of temperatures and concentrations expected. Thus, the fluid and porous material properties are constant, except the density of the fluid in the buoyancy contribution where it varies linearly with both local temperature and concentration

ϭ 1 ͓1Ϫ␤ T ͑ T*ϪT 1 *͒Ϫ␤ C ͑ C*ϪC 1 *͔͒,
where 1 ϭ(T 1 * ,C 1 *) is the reference density, ␤ T ϭϪ(1/ 1 )‪Tץ/ץ() C and ␤ C ϭϪ(1/ 1 )‪Cץ/ץ() T are the coefficients for thermal and solutal expansion. The fluid flow within the porous medium is assumed to be incompressible and governed by Darcy's law. We focus our study on the double-diffusive convection and so neglect the Soret and Dufour effects. The governing equations are We define nondimensional quantities by

"*-V*ϭ0, ͑1͒ ͩ K ͪ V*
͑ x,y,z ͒ϭxϭ ͩ 1 L ͪ x*, tϭ ͩ ␣ m ͑ c ͒ f L 2 ͑ c ͒ m ͪ t*, ͑ u,v,w ͒ϭVϭ ͩ L ␣ m ͪ V*, Tϭ T*ϪT 1 * T 2 *ϪT 1 * , Cϭ C*ϪC 1 * C 2 *ϪC 1 * , Pϭ K͑ P*ϩ 1 g͑Ϫsin x*ϩcos y*͒͒ ␣ m .
The dimensionless governing equations now take the form where AϭH/L is the aspect ratio.

"-Vϭ0, ͑6͒ VϭϪ"Pϩ͑Ra T TϩRa C C ͒k, ͑7͒ ץT ץt ϩV-"Tϭٌ 2 T, ͑8͒ ⑀ ץC ץt ϩV-"Cϭ 1 Le ٌ 2 C, ͑9͒ kϭϪsin xϩcos y, where Ra T ϭ 1 g␤ T KL(T 2 *ϪT 1 *)/␣ m , R a C ϭ 1 g␤ C KL(C 2 *ϪC 1 *)/␣ m
We are mainly interested in the special case where the thermal and solutal buoyancy forces are comparable in intensity but have opposite signs, so we have Ra T ϭϪRa C or the buoyancy ratio Nϭ(␤ C ⌬C*)/(␤ T ⌬T*)ϭϪ1. The number of dimensionless parameters is decreased and the Darcy equation becomes

VϭϪ"PϩRa T ͑ TϪC ͒k. ͑11͒

III. LINEAR STABILITY ANALYSIS

Motionless double-diffusive solution (V 0 ϭ0, T 0 ϭx, C 0 ϭx͒ is a particular solution of the set of equations ͑6͒-͑10͒ and ͑11͒. To study the stability of this solution, we introduce infinitesimal three-dimensional perturbations (v,,c) defined by vϭVϪV 0 , ϭTϪT 0 , cϭCϪC 0 , where V, T, and C indicate the disturbed quantities. The second-order smaller quantities are neglected. Due to the fact that the velocity field components are not coupled, a new system of three independent variables (u,,c) is considered, where u is the component of the velocity field perturbation in the x direction. The linearized equations take the form

'ٌ 2 uϭϪRa Tͫ ץ 2 ͑ Ϫc͒ ץxץy cos ϩ ͩ ץ 2 ͑ Ϫc͒ ץy 2 ϩ ץ 2 ͑ Ϫc͒ ץz 2 ͪ sin ͬ , ͑12͒ ٌ 2 ϭ ץ ץt ϩu, ͑13͒ ٌ 2 cϭLe ͩ ⑀ ץc ץt ϩu ͪ ,

͑14͒

with the boundary conditions uϭϭcϭ0 at xϭ0,1, ᭙y,᭙z,᭙t, ͑ ץu/ץy ͒ϭ͑ ‪yץ/ץ ͒ϭ͑ ץc/ץy ͒ϭ0 at yϭ0,A, ᭙x,᭙z,᭙t. ͑15͒

IV. ONSET OF STATIONARY CONVECTION

In this section we seek instability via stationary convection. The case of oscillatory convection is studied in Sec. V. From the steady state form of Eqs. ͑13͒ and ͑14͒ we deduce ٌ 2 (c/LeϪ)ϭ0. Because of boundary conditions ͑15͒ this last result leads to cϭLe . Under this assumption the perturbation equations can be reduced to a new one with only the temperature perturbation

ٌ 4 ϭRa T ͑ LeϪ1 ͒ ͫ ץ 2 ץxץy cos ϩ ͩ ץ 2 ץy 2 ϩ ץ 2 ץz 2 ͪ sin ͬ .

͑16͒

A. Case of an infinite layer

A cell of infinite extension in directions y and z is considered. The temperature perturbation is written as follows:

ϭ͑x͒e I͑kyϩlz͒ ,

where k and l are the wave number in directions y and z, respectively, and I is the imaginary unit. Perturbation equation ͑16͒ leads to

͑ 4 ͒ Ϫ2͑k 2 ϩl 2 ͒Љϩ͑ k 2 ϩl 2 ͒ 2 ϭRa T ͑ LeϪ1 ͓͒IkЈ cos Ϫ͑k 2 ϩl 2 ͒ sin ͔, ͑17͒
with boundary conditions

ϭЉϭ0 at xϭ0,1, ᭙y,᭙z, ͑18͒
where Љϭd 2 /dx 2 .

Compound matrix method

Equation ͑17͒, and the associated boundary conditions ͑18͒, are solved using the compound matrix method. A very clear description of this method and its application to hydrodynamic stability problems is given by Drazin and Reid [START_REF] Drazin | Hydrodynamic Stability ͑Cambridge[END_REF] and Straughan. [START_REF] Straughan | The Energy Method, Stability and Nonlinear Convection ͑Springer[END_REF] Here, we briefly show how this method is used to find the critical Rayleigh number corresponding to the lowest eigenvalue of ͑17͒. To solve problem ͑17͒ and ͑18͒ by the compound matrix method we let ⌰ ϭ(,Ј,Љ,ٞ) T . To determine the lowest eigenvalue, we retain the two conditions at xϭ0 and the conditions at x ϭ1 on and Љ are replaced by (Ј(0)ϭ1, ٞ(0)ϭ0͒ and (Ј(0)ϭ0, ٞ(0)ϭ1). Thus, the boundary value problem is converted into an initial value problem. The solution can be written as a linear combination of ⌰ 1 and ⌰ 2 with initial condition (0,1,0,0) T and (0,0,0,1) T ,

⌰ϭ␣ 1 ⌰ 1 ϩ␣ 2 ⌰ 2
where ␣ 1 and ␣ 2 are constant. A new vector Y ϭ͑ y 1 ,y 2 ,y 3 ,y 4 ,y 5 ,y 6 ͒ T , is defined as the 2ϫ2 minors of the 4ϫ2 solution matrix whose first column is ⌰ 1 and second ⌰ 2 . So,

y 1 ϭ 1 2 ЈϪ 1 Ј 2 , y 2 ϭ 1 2 ЉϪ 1 Љ 2 ,
y 3 ϭ 1 2 ٞϪ 1 ٞ 2 , y 4 ϭ 1 Ј 2 ЉϪ 1 Љ 2 Ј , y 5 ϭ 1 Ј 2 ٞϪ 1 ٞ 2 Ј , y 6 ϭ 1 Љ 2 ٞϪ 1 ٞ 2 Љ .
By direct calculation from ͑17͒ the initial value problem for Y is found to be Y ЈϭL(Y ) where L is a linear operator defined by 

y 1 Јϭy 2 ,
y 6 Јϭ͓͑k 2 ϩl 2 ͒ 2 ϩRa T ͑ LeϪ1 ͒sin ͑k 2 ϩl 2 ͔͒y 2 ϪI Ra T ͑ LeϪ1 ͒k cos y 4 .
The initial conditions for ͑19͒ are obtained from the initial conditions on ⌰ 1 and ⌰ 2 , Y ͑ 0 ͒ϭ͑ 0,0,0,0,1,0͒ T , the boundary conditions on at xϭ1, ((1)ϭЉ(1)ϭ0), lead to the following condition:

y 2 ͑ 1 ͒ϭ0. ͑20͒
Equation ͑19͒ is solved using a fourth-order Runge-Kutta algorithm. A shooting method is used to reach condition ͑20͒.

Numerical results

Figure 2 shows the critical nondimensional stability parameter Ra T c (LeϪ1) as a function of for several values of wave number l. The associated wave number k ͑which is not plotted͒ corresponds to the critical value for which Ra T c (Le Ϫ1) is minimum. It is found that the critical nondimensional stability parameter Ra T c (LeϪ1) is minimum for lϭ0,᭙. This latter result shows that the most dangerous perturbations in the case of an infinite layer are localized in the ͑xoy͒ plane. Figures 3 and4 give the variations of the critical parameter Ra T c (LeϪ1) and the critical wave number k c with respect to the tilt of the layer. These results are obtained for Lewis numbers higher than one. In this case (LeϾ1), the thermal diffusivity is higher than the mass diffusivity which means that the concentration perturbations are predominant. Thus, the stability of the motionless solution depends directly on the destabilizing effects of the concentration. This behavior is brought out in Fig. 3. One can see that the lowest critical parameter is obtained for ϭϪ90°͑the upside wall is maintained at the highest concentration͒, which corresponds to the case where the concentration field is the most destabilizing. This destabilizing effect decreases with , which induces the increase of critical parameter. For Lewis number lower than one, the stability of the solution will depends on the destabilizing effects of the temperature. The above results hold with the following transformation: →Ϫ,

Ra T ͑ LeϪ1 ͒→Ra T ͑ 1ϪLe͒.
In two extreme limits of , (ϭϮ90°) we have the stability problem analogous to Lapwood's one. [START_REF] Lapwood | Convection of fluid in a porous medium[END_REF] The thermal Rayleigh number of the Lapwood problem is replaced by ϪRa T (LeϪ1). For ϭϪ90°the motionless doublediffusive solution loses its stability for Ra T c ϭ4 2 /(LeϪ1) and the associated wave number is k c ϭ. This previous result was first obtained by Nield. [START_REF] Nield | Onset of thermohaline convection in a porous medium[END_REF] For ϭϩ90°the purely diffusive solution is infinitely linearly stable. For a tilted layer the motionless diffusive solution of the thermal problem is unstable. But, with a double-diffusive problem, the buoyancy force due to the solutal gradient can keep the motionless double-diffusive solution stable, even if the infinite layer is not horizontal. For the particular case of the vertical layer (ϭ0°), Charrier-Mojtabi et al. [START_REF] Charrier-Mojtabi | Onset of a double-diffusive convective regime in a rectangular porous cavity[END_REF] found Ra T c ͉LeϪ1͉ ϭ105.33 and k c ϭ2.51. Table I summarizes the critical Rayleigh and wave number obtained for several tilts of the infinite layer.

Using the compound matrix method, the eigenvector associated to the eigenvalue Ra T c (LeϪ1) is determined and used to calculate the streamfunction at the bifurcation point. Figure 5 shows the evolution of the convective flow pattern at the bifurcation point for several tilts of the layer and for Lewis numbers, higher and lower than one. One can observe a succession of counter-rotating tilted cells. To understand qualitatively the tilt of the cells we consider the case Le Ͻ1. In this case the mass diffusivity is higher than the thermal diffusivity and the fluid needs more time to reach the surrounding temperature than the surrounding concentration.

Accordingly, when we consider a fluid trajectory from the cold wall to the hot wall, the fluid particle on this trajectory is regularly in a hotter environment which deviate it downward. Likewise, there is an upward trajectory when the fluid particle moves from the hot wall to the cold wall. The same arguments explain the tilt of the cells in the case LeϾ1.

B. Case of a rectangular cavity

Now, only two-dimensional perturbations are considered. Equation ͑16͒ is solved using the Galerkin method with ͑x,y ͒ϭ ͚ nϭ1 N ͚ mϭ0 M a nm sin͑nx ͒cos ͩ m y A ͪ .

Figure 6 presents the variations of Ra T c (LeϪ1) for sev-eral aspect ratios A, as a function of the tilt . The curves are compared to the critical value of an infinite cell. The minimum value of the stability parameter is obtained for an infinite cell for any tested tilt. We can conclude that the confinement stabilizes the motionless double-diffusive solution. One can also notice that the situation of heating from the top, where the highest concentration is maintained, is the most unstable situation when the Lewis number is higher than one.

C. Transcritical and pitchfork bifurcation

The type of the bifurcations can be predicted by the symmetry properties of Eqs. ͑12͒-͑14͒ with boundary conditions ͑15͒. As a matter of fact in a rectangular cavity of aspect ratio A, the perturbation equations and the associated boundary conditions are invariant under combined x,y reflection and by the inversion of the velocity, temperature, and concentration perturbation fields. This symmetry property can be described with the operator S: u,,c) is also solution of these equations. Thus Eqs. ͑12͒-͑15͒ possess centrosymmetry. The eigenvectors of the linear stability problem will be centrosymmetric with an odd number of cells or anticentrosymmetric with an even number of cells. The corresponding bifurcation is transcritical for centrosymmetric eigenvector and pitchfork for anticentrosymmetric eigenvector ͑Crawford and Knobloch 27 ͒. In the present study, both transcritical and pitchfork bifurcations are obtained depending of the aspect ratio A and the tilt of the cavity. For a square cavity, the influence of the tilt of the cavity is presented in Fig. 7 and Table II. We can see the evolution of Ra T c (LeϪ1) obtained for transcritical ͑solid line͒ and pitchfork ͑dashed line͒ bifurcations when the tilt increases. We also present the evolution of the streamfunction at the bifurcation points for different values of . The global behavior is the same as for the infinite layer. The increase of the cavity tilt causes lengthening and the tilting of the cells.

S ͩ u c ͪ ͑ x,y ͒ϭ ͩ Ϫu Ϫ Ϫc ͪ ͑ 1Ϫx,AϪy ͒. If (u,,c) is solution of ͑12͒-͑14͒, then S(
Figure 8 shows the influence of the aspect ratio, A, on the bifurcation points for a vertical cavity (ϭ0°). The two curves cross alternately at codimension two bifurcation points. When the aspect ratio increases, the flow patterns at the bifurcation points in the core region of the cavity lead to those observed for an infinite layer. We observe the same behavior for all tested tilts of the cavity ͑Fig. 9͒. One can notice a similar behavior for the same configuration in fluid medium ͑Gobin and Bennacer, 21 Ghorayeb and Mojtabi, [START_REF] Ghorayeb | Double-diffusive convection in vertical rectangular cavity[END_REF] and Xin et al. [START_REF] Xin | Bifurcation analysis of doublediffusive convection with opposing horizontal thermal and solutal gradients[END_REF] ͒.

V. ONSET OF OSCILLATORY CONVECTION

In this section, the full equations ͑12͒-͑15͒ are considered. The term e t is introduced in the perturbation (u,,c) where is defined by ϭ r ϩI with I the imaginary unit. The perturbations are assumed to be two-dimensional and are developed as: The marginal state corresponds to r ϭ0. The Galerkin method is used to solve the linear stability problem. We complete the previous results ͑transcritical and pitchfork bi-furcations͒ by possible Hopf bifurcations. It is found that Hopf bifurcations exist and can appear before or after the transcritical or pitchfork bifurcations. The critical Rayleigh number for the Hopf bifurcation depends not only on the aspect ratio A, the tilt of the cell, and the Lewis number Le, but also on the normalized porosity ⑀. The overall study is difficult to carry out due to the numerous nondimensional parameters. The objective of this part is to identify the type of the first primary bifurcation ͑oscillatory or stationary bi-furcation͒. We denote by stationary bifurcation all bifurcations toward stationary convection ͑transcritical or pitch-fork͒. We first consider the two limit cases of horizontal cells (ϭϮ90°). Then for general cases, we define the parts of the ͑Le, ⑀͒ parameter space for which the first primary bifurcation is stationary or oscillatory depending on the aspect ratio and the angle of tilt of the box.

A. Limit cases: °09؎؍I

n these situations the ''cross-derivative term'' in Eq. ͑12͒ is simplified. The problem can by solved by direct calculation and no numerical approximation is needed. Equations ͑12͒-͑14͒ become

ٌ 2 uϭϪRa T J ͩ ץ 2 ͑ Ϫc͒ ץy 2 ͪ , ͑24͒ ٌ 2 ϭ ץ ץt ϩu, ͑25͒ ٌ 2 cϭLe ͩ ⑀ ץc ץt ϩu ͪ , ͑26͒
where J is defined by ϭϩ90°→Jϭϩ1, ϭϪ90°→JϭϪ1.

The boundary conditions associated with this problem are uϭϭcϭ0 at xϭ0,1, ᭙y, ͑27͒ ͑ ץu/ץy ͒ϭ͑ ‪yץ/ץ ͒ϭ͑ ץc/ץy ͒ϭ0 at yϭ0,A, ᭙x.

Solutions for ͑24͒-͑26͒ of the form ͑21͒-͑23͒ are possible if

B͑Bϩ ͒͑ Bϩ⑀ Le͒ϪRa T CJ͑Bϩ⑀ Le͒ ϩLe Ra T CJ͑Bϩ͒ϭ0, ͑28͒
where

Bϭ͑i ͒ 2 ϩ͑ j/A ͒ 2 , Cϭ͑ j/A ͒ 2 .
At marginal stability, ϭI where is real. The real and imaginary parts of Eq. ͑28͒ become

Ra T CJ͑LeϪ1 ͒ϩ͑ B 2 Ϫ⑀ 2 Le͒ϭ0, ͑Ra T CJ Le͑1Ϫ⑀ ͒ϩB 2 ͑ 1ϩ⑀ Le͒͒ϭ0.
Two solutions are possible: ϭ0, ͑29͒

Ra T ϭJ ͩ B 2 C ͪ 1 ͑ 1ϪLe͒ and 2 ϭ B 2 ⑀ Le 2 ͑ 1Ϫ⑀ Le 2 ͒ ͑ 1Ϫ⑀ ͒ , ͑30͒ Ra T ϭJ ͩ B 2 C ͪ ͑ ⑀ϩ1/Le͒ ͑ ⑀Ϫ1͒ . 

Case: °09؉؍T

he saturated porous medium is heated from below where the highest concentration is imposed. For Lewis numbers higher than or equal to one the motionless doublediffusive solution is infinitely linearly stable, ᭙⑀. For Lewis numbers lower than one, the motionless solution loses its stability via a stationary bifurcation with Ra T c ϭ␥ r /(1 ϪLe͒. ␥ r can be obtained by direct calculation from

␥ r ϭmin i, j B 2 C ϭmin i, j ͩ ͑ i ͒ 2 ϩ ͩ j A ͪ 2 ͪ 2 ͩ j A ͪ 2 .
Figure 10 plots ␥ r versus the aspect ratio A. The limit value of ␥ r when A→ϱ is equal to 4 2 . Thus, for an infinite layer and LeϽ1 the results are identical to those obtained for the Lapwood problem.

Case: °09؊؍T

he saturated porous medium is now heated from the top where the highest concentration is imposed. In this case, and for Lewis numbers higher than one, both stationary and Hopf bifurcations are possible. The direct calculation ͓Eqs. ͑29͒ and ͑30͔͒ gives, for the stationary bifurcation, Ra T c ϭ␥ r /(LeϪ1) and the Hopf bifurcation is defined by

Ra T c ϭ␥ r ͑ ⑀ϩ1/Le͒ ͑ 1Ϫ⑀ ͒ , c 2 ϭ ␥ ⑀ Le 2 ͑ 1Ϫ⑀ Le 2 ͒ ͑ 1Ϫ⑀ ͒ , ͑31͒
where ␥ is defined by ␥ ϭB 2 ϭ((i) 2 ϩ( j/A) 2 ) [START_REF] Cheng | Heat transfer in geothermal systems[END_REF] , where i and j have the same values as those determined for ␥ r . Figure 11 reports ␥ with respect to the aspect ratio. The limit value of ␥ for an infinite horizontal layer is equal to 4 4 . One can observe that ␥ ͑consequently c ͒ is discontinuous for some aspect ratios. This means that for these critical aspect ratios there are two Hopf bifurcations at the same critical Rayleigh number, but with different critical pulsations. This is a codimension-two bifurcation point. The Hopf bifurcation defined by ͑31͒ exists only for ⑀ Le 2 Ͻ1, this condition guarantees that c Ͼ0. For LeϾ1, this condition also guarantees the following relationship: lower than or equal to one only Hopf bifurcations exist, ᭙⑀. These results are corroborated by numerical simulations presented in Sec. VI.

⑀ϩ1/Le 1Ϫ⑀ Ͻ 1 

B. General cases

In general cases ͑for any aspect ratio and for any tilt͒ the analytical resolution of the stability problem is not possible. We use a numerical approach based on the Galerkin method to solve the problem. Three situations are considered, Leϭ1, LeϾ1, and LeϽ1.

Case: Le1؍

The results obtained in Sec. IV show that for the Lewis number equal to one, the motionless double-diffusive solution is infinitely linearly stable. This result is obtained when only the stationary bifurcations are considered. A more complete analysis of this situation shows that the motionless solution can lose its stability via a Hopf bifurcation for Leϭ1. Figures 12 and13 show the influence of the normalized porosity on the critical Rayleigh number and the pulsation corresponding to the Hopf bifurcation in the case of a square cavity and for Leϭ1. We can see that the critical Rayleigh number increases when the normalized porosity increases. This means that ⑀ has a stabilizing effect. In this case, the mass and thermal diffusion coefficients are identical and they do not cause the instability. The cause of instability is the difference between the unsteady temperature and concentration profiles. This difference increases when ⑀ decreases which is consistent with the results presented in Fig. 12. Moreover, for ⑀ϭ1, the temperature and concentration profiles are identical and there are not any sources of instability. The motionless double-diffusive solution is infinitely linearly stable.

Case: Le>1

For Lewis numbers higher than one, the numerical resolution of the perturbation equations shows the existence of two zones in the ͑Le, ⑀͒ parameter space separated by the curve ⑀ Le 2 ϭ1. When ⑀ Le 2 Ͼ1, the first primary bifurcation creates steady state branches of solution and for ⑀ Le 2 Ͻ1, the first bifurcation is a Hopf bifurcation. It is important to observe that these results do not depend on either the aspect ratio or the tilt of the cavity. As can be observed in Fig. 14, the same curve was obtained for all tested angles of tilt.

Case: Le<1

For Lewis numbers smaller than one, the situation is more complicated. There are still two zones in the ͑Le, ⑀͒ parameter space, but they are separated by a curve depending on both the angle of tilt and the aspect ratio. Figure 14 shows the results obtained for a square cavity and for several angles of tilt. For each tested tilt, the zone where the first primary bifurcation is a stationary bifurcation and the zone where the first bifurcation is a Hopf one are separated by a curve of codimension-two bifurcation points. A section of Fig. 14 for ⑀ϭ0.5 is presented in Fig. 15. Figure 15 shows the evolution of critical Rayleigh numbers associated with transcritical and Hopf bifurcation as a function of Lewis number for Aϭ1 and ϭ0°. The curve of Hopf bifurcation crosses the transcritical curve at two codimension-two bifurcation points. For Lewis numbers lower than one the intersection point depends on all nondimensional parameters ͑A, , Le, and ⑀͒. On the contrary, for Lewis numbers higher than one, the intersection point is defined only by ⑀ Le 2 ϭ1, the aspect ratio A and the tilt of the cell do not influence this point. Table III summarizes the values of the critical parameters obtained in the case (Aϭ1, ϭ0°, and ⑀ϭ0.5).

One can notice that for the problem of double-diffusive convection in fluid, in the same configuration the first bifurcation is never a Hopf one. The existence of Hopf bifurcation in porous medium may be explained through the normalized porosity. This parameter induces different evolution in time between the temperature and the concentration. This difference is enhanced when the normalized porosity decreases. Indeed, diffusion and advection of concentration can only be carried out in the space occupied by fluid, thus both diffusion and advection are magnified by ⑀ Ϫ1 compared to diffusion and advection of heat. 

VI. NUMERICAL SIMULATIONS

The governing equations ͑6͒-͑10͒ have been solved by a finite volume method that employs primitive variables on a staggered mesh ͑Patankar 28 ͒. Diffusive and convective fluxes are discretized by central differencing. Solutions are obtained by fully implicit marching in time. The typical time step is 10 Ϫ2 , but for oscillatory convection with high frequency, lower time steps are used (10 Ϫ3 , 10 Ϫ4 ). The grid employed is uniform and consists of 41ϫ41 volumes for a square cavity. The code was validated by comparing our results to those obtained by Goyeau et al. [START_REF] Goyeau | Numerical study of doublediffusive natural convection in a porous cavity using the Darcy-Brinkman formulation[END_REF] and Trevisan and Bejan. [START_REF] Trevisan | Natural convection with combined heat and mass transfer buoyancy effects in a porous medium[END_REF] To corroborate the results obtained with the linear stability analysis several numerical simulations were carried out. These simulations permit us to observe the onset of convection at the critical Rayleigh number predicted by the lin-ear theory. In the case of oscillating convection, the frequencies obtained numerically are compared successfully with those obtained by linear stability analysis. Moreover, the time integration of the full set of nonlinear equations provides more information about the solution just after the bifurcation points. In particular, we get information about the stability of these solutions and the sense of rotation of the cells. We first consider the onset of stationary convection, then the results for oscillating convection are presented.

A. Stationary convection

Numerical simulations are carried out for a square cavity (Aϭ1) with Leϭ2. The normalized porosity ⑀, is kept equal to one, to avoid any primary Hopf bifurcation. The results are presented for four tilts of the cavity (ϭϪ90°, ϭϪ60°, ϭϪ30°, and ϭ0°͒. As seen in Fig. 7 and Table II, for this set of parameters the purely diffusive regime loses stability via a transcritical bifurcation. The supercritical branch of solutions created at the bifurcation point is stable. The numerical values of the critical parameter Ra T c (LeϪ1) are in very good agreement with those obtained by linear stability analysis. In Fig. 16, we report the supercritical convective solution pattern, close to the onset of convection, for a Rayleigh number slightly higher than the critical value. One can see that the streamlines obtained numerically by direct simulation are identical to the eigenvectors presented in Fig. 7. The numerical simulations show that the main center cell has a clockwise rotation. The two small counter-rotating cells located in the upper left-hand and the lower right-hand corners of the box gradually disappear as decreases from 0°to Ϫ90°. At ϭϪ90°the flow is similar to that obtained in a square cavity heated from below. The isotherms and isoconcentrations are not presented, but show a practically conductive state. For ϭ ϩ30°, the time integration of the nonlinear equations shows that the motionless double-diffusive solution loses its stability at the predicted critical Rayleigh number. Numerical simulation is carried out for Ra T ϭ760. The time evolution of the v component velocity is plotted in Fig. 17. The flow pattern obtained before and after the transition is also presented. Before the transition, the flow pattern corresponds to the solution predicted by the linear analysis ͑Fig. 7͒ while after, the streamlines are completly different. Figure 18 represents the associated isotherms and isoconcentrations. They are highly deformed due to high velocity. This latter solution is a subcritical solution and does not correspond to the expected solution at the onset of convection. This would mean that the branch of solution issued from the pitchfork bifurca-tion is unstable. The convective solution persists when the Rayleigh number decreases, even for Rayleigh numbers lower than the critical value.

The complete study of the subcritical solutions is not the subject of the paper. Our numerical simulations show multiple subcritical and supercritical solutions. To describe these flows we must develop a continuation method. For the present work, to illustrate this multiplicity of solutions we have plotted the streamlines, the isotherms, and the isoconcentrations for different solutions obtained in the case A ϭ1, Leϭ2, and Ra T ϭ195 ͑Fig. 19͒. Solution ͑a͒ corresponds to the supercritical solution just after the onset of convection. The corresponding isotherms and isoconcentrations are slightly deformed due to low velocity. On the other hand, isotherms and isoconcentrations associated with solutions ͑b͒ and ͑c͒ are highly deformed. These solutions are part of two subcritical branches of solutions issued from a secondary pitchfork bifurcation.

B. Oscillatory convection

When the first primary bifurcation is a Hopf one, the results of the linear stability analysis are compared with numerical simulation for several situations. For the cavity heated from the top, where the highest concentration is imposed (ϭϪ90°), we consider a square cavity (Aϭ1) filled with a porous medium characterized by ⑀ϭ0.2 and a binary fluid with Leϭ2.

With these parameters, the first primary bifurcation is a Hopf one with Ra T c ϭ3. this situation shows the existence of a stable branch of oscillatory solution just after the predicted critical Rayleigh number ͑Fig. 20͒. The frequency of the oscillations obtained for Ra T ϭ35 is f num Ӎ1.77, which is in good agreement with the analytical results. The structure of the convective flow is a single rotating cell ͑identical to that obtained for stationary convection͒, but the sense of rotation changes periodically in time.

However, for most of the angles of tilt considered, the branch of solutions issued from the Hopf bifurcation is unstable. For several sets of values ͑A, , Le, and ⑀͒ the results of the linear stability analysis are validated by computing the frequency of the vanishing oscillations that occur when a perturbation is induced for a Rayleigh number slightly lower than the critical Rayleigh number predicted by the linear theory.

Figure 21 illustrates the case Aϭ1, Leϭ2, ⑀ϭ0.2, and ϭ0°for which the linear stability predicts a Hopf bifurcation at Ra T c Ӎ170.7 and f c ϭ c /2Ӎ2.24. The numerical simulation gives, for a perturbation generated at Ra T ϭ169, a vanishing oscillation with the frequency f num Ӎ2.3, which is in good agreement with the results of the linear theory.

VII. CONCLUSION

An analytical and numerical study of the onset of double-diffusive convection in a tilted rectangular or infinite box, filled with a porous medium and saturated by a binary fluid, is carried out. In the case of an infinite layer tridimensional perturbations are considered and we show that bidimensional perturbations are the most dangerous. The first primary bifurcation creates either branches of steady solutions or time-dependent solutions via Hopf bifurcation. The type of bifurcation depends on the aspect ratio A, the tilt of the box , the Lewis number Le, and the normalized porosity ⑀. For the same problem in fluid medium the first primary bifurcation is never a Hopf bifurcation.

It is important to note that for most physical situations, the Lewis number is higher than one. Then, the present study shows that the type of the first primary bifurcation ͑stationary or oscillatory͒ depends only on Le and ⑀. The aspect ratio A and the tilt have an influence on the value of the critical parameters and the type of the stationary bifurcation ͑transcritical or pitchfork͒. The curve ⑀ Le 2 ϭ1 in the ͑Le, ⑀͒ parameter space represents a set of codimension-two bifurcation points which separates the region where the first primary bifurcation is a Hopf bifurcation (⑀ Le 2 Ͻ1) from the region where the first primary bifurcation is a stationary one (⑀ Le 2 Ͼ1). For ϭϩ90°the motionless solution is infinitely linearly stable.

For some gas mixtures the Lewis number could be lower than one. In this situation, the regions of Hopf bifurcations and stationary bifurcations are separated by a curve depending not only on Le and ⑀ but also on A and .

Some numerical investigations are carried out for a square cavity. The onset of motion is observed at the predicted Rayleigh number obtained by the linear theory. These nonlinear numerical simulations show the existence of multiple subcritical solutions. This linear analysis has to be completed by a nonlinear study to draw complete bifurcation diagrams for different sets of nondimensional parameters. The continuation method will be useful to follow the branch of solution ͑stable or unstable͒ created at the primary bifurcation points defined in this study.
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 4 FIG. 4. Critical wave number k c vs tilt for LeϾ1.
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 5 FIG. 5. Influence of the Lewis number Le and the tilt on the flow pattern at the bifurcation point.
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 7 FIG.7. Influence of the inclination on the type of the bifurcation for a square cavity. The evolution of streamfunction at the bifurcation points is presented for ϭϪ60°, Ϫ30°, 0°, and ϩ30°. The streamfunctions associated with the first bifurcation are drawn at the bottom.

  sin͑nx ͒cos ͩ m y A ͪ e t , ͑21͒ ͑x,y,t͒ϭ ͚ sin͑nx ͒cos ͩ m y A ͪ e t , ͑22͒ c͑x,y,t ͒ϭ ͚ nϭ1 N ͚ mϭ0 M c nm sin͑nx ͒cos ͩ m y A ͪ e t . ͑23͒

  FIG.10. ␥ r vs aspect ratio.
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 12 FIG. 12. Influence of the normalized porosity ⑀ on the critical Rayleigh number Ra T c of the Hopf bifurcation for Aϭ1 and Leϭ1.

FIG. 14 .

 14 FIG.14. Domains of the existence of stationary and Hopf bifurcations in ͑Le, ⑀͒ parameter space for Aϭ1. For ϭϩ90°and LeϾ1 the motionless solution is infinitely linearly stable.

  FIG.16. Supercritical solution for Aϭ1, Leϭ2, and for ϭϪ90°,Ϫ60°, Ϫ30°,0°. The Rayleigh numbers associated with each solution are slightly higher than the critical values.

FIG. 18 .

 18 FIG.18. Streamlines, isotherms, and isoconcentrations for Aϭ1, Leϭ2, ϭϩ30°, and Ra T ϭ760. Solid lines in streamlines correspond to counterclockwise rotations.
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	͑Darcy͒ velocity, pressure, temperature, and concentration,
	respectively. k*ϭϪsin xϩcos y defines the tilt of the
	cavity and g the gravitational acceleration. The subscripts m
	and f refer to the porous medium and the fluid, respectively.
	The porous matrix is characterized by its permeability K and
	its porosity ⑀Ј. and c denote the viscosity of the fluid and
	the specific heat. ␣ m is defined as the effective thermal con-
	ductivity of the saturated porous medium divided by the spe-
	cific heat capacity of the fluid. Parameter D m represents the
	diffusivity of the constituent through the fluid-saturated po-
	rous matrix. The boundary conditions associated with Eqs.
	͑1͒-͑4͒ are	
	V*-nϭ0 at all boundaries,	
	T*ϭT 1 * , C*ϭC 1 * at x*ϭ0,	
	T*ϭT 2 * , C*ϭC 2 * at x*ϭL,	͑5͒
	͑ ץT*/ץy*͒ϭ͑ץC*/ץy*͒ϭ0 at y*ϭ0 and y*ϭH.

TABLE I .

 I Critical thermal Rayleigh number and the corresponding critical wave number for several tilts of the layer. Influence of three-dimensional perturbations on critical thermal Rayleigh number. Case of an infinite layer and for LeϾ1.

	FIG. 2.	
	Ra T c (LeϪ1)	k c
	Ϫ90°39.478 (4 2 )	3.14 ͑͒
	Ϫ75°40.47	3.13
	Ϫ60°43.65	3.10
	Ϫ45°49.68	3.05
	Ϫ30°59.92	2.95
	Ϫ15°76.93	2.78
	0°105.33	2.51
	ϩ15°154.31	2.15
	ϩ30°245.43	1.73
	ϩ45°442.15	1.28
	ϩ60°1003.08	0.844
	ϩ90°ϱ	0

FIG.

3

. Ra T c (LeϪ1) vs tilt for LeϾ1.

TABLE II .

 II Critical thermal Rayleigh number corresponding to the transcritical and pitchfork bifurcations as a function of the tilt for Aϭ1 ͑Galerkin method with NϭM ϭ20͒.

	Transcritical bifurcation	Pitchfork bifurcation
	Ra T c (LeϪ1)	Ra T c (LeϪ1)
	Ϫ90°39.478 (4 2 )	61.69
	Ϫ60°44.92	69.66
	Ϫ30°70.36	104.75
	0°184.06	227.91
	ϩ30°809.0	754.0

FIG. 8. Evolution of transcritical ͑the solid line͒ and pitchfork ͑the dashed line͒ bifurcations with respect to the aspect ratio for ϭ0°. The streamfunctions associated with the first bifurcation are drawn on the left-hand side (Aϭ2, 3, and 4͒. FIG. 9. Evolution of transcritical ͑the solid line͒ and pitchfork ͑the dashed line͒ bifurcations with respect to the aspect ratio for two slopes.

TABLE III .

 III Critical thermal Rayleigh number for the stationary and Hopf bifurcations for several Lewis numbers, for Aϭ1, ϭ0°, and ⑀ϭ0.5 using the Galerkin method with NϭM ϭ15. ͑ϫ͒ means the Hopf bifurcation does not exist.

	Le	Ra T c ͑stationary͒	Ra T c ͑Hopf͒	c
	0.5	368.12	1591.	259.3
	1.0	ϱ	818.	89.6
	&	444.36	444.36	0
	2.0	184.06	ϫ	ϫ
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