
HAL Id: hal-01946083
https://hal.science/hal-01946083

Submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some properties of convective oscillations in porous
medium

Hicham Khallouf, Grigori Z. Gershuni, Abdelkader Mojtabi

To cite this version:
Hicham Khallouf, Grigori Z. Gershuni, Abdelkader Mojtabi. Some properties of convective oscilla-
tions in porous medium. Numerical Heat Transfer, Part A Applications, 1996, 30 (6), pp.605-618.
�10.1080/10407789608913860�. �hal-01946083�

https://hal.science/hal-01946083
https://hal.archives-ouvertes.fr


OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible 

Any correspondence concerning this service should be sent  
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr 

This is an author’s version published in: http://oatao.univ-toulouse.fr/20663 

To cite this version:
Khallouf, Hicham and Gershuni, Grigori Z. and Mojtabi, 
Abdelkader Some properties of convective oscillations in 
porous medium. (1996) Numerical Heat Transfer, Part A: 
Applications, 30 (6). 605-618. ISSN 1040-7782 

Official URL:
https://doi.org/10.1080/10407789608913860 

Open  Archive  Toulouse  Archive  Ouverte 

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/206623


SOME PROPERTIES OF CONVECTIVE
OSCILLATIONS IN POROUS MEDIUM

H. Khallouf
UMR CNRS/INP-UPS 5502, Unioersite Paul Sabatier, 118 Route de Narbonne,
31062 Toulouse Cedex; France

G. Z. Gershuni
Department of Theoretical Physics, Perm State University, Bukireu Str. 15,
614600 Perm, Russia

A.Mojtabi
UMR CNRS/INP-UPS 5502, Unioersite Paul Saba tier, 118 Route de Narbonne,
31062 Toulouse Cedex; France

Convective oSCiJJaJiollS in porous media are studied nUflUirieatly. A two-dimensional square,
differentially heated cavity, fiUed with a saturated porous medium, is considered subject to
linear hannonic oscillations in the vertical direction. The formulation is based on the
Darcy-Boussinesq model. The problem includes three nondlmensional parameters: the
Royleigh number for porous media Ra, its vibrational analogRo", and the nondimensional
frequem:y f. The time-dependent Darcy-Boussinesq equations have been solved using a
pseudo-spectral Chebyshev collocation methad. The instantaneous fields of the established
oscillalory regimes are presented. Also, some instanumeous and mean characteristics are
studied and discussed. The distinctions from the case of viscous fluid atone are emphasized.

INTRODUCTION

This article is devoted to the study of streaming phenomenon in a fluid
saturated porous enclosure induced by oscillatory body forces. Our statement of
the problem is close to that of Refs. [1] and [2] but is formulated for the case of a
porous medium rather than for viscous fluid. This means that, unlike the case of
viscous fluid, one cannot expect the resonance phenomenon, which takes place in
the range of the nondimensional angular frequency wE [102, 103]. In fact, when
the cavity, filled with viscous fluid, vibrates harmonically in the presence of
temperature inhomogeneity, regular mean flows appear (the effect of vibrational
convection [3, 4]). In the case of a porous medium, the effect of vibrational
convection, as is demonstrated here, also exists but only in the case of finite
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NOMENCLATURE 

a cavity side 
b displacement amplitude 
f frequency 
Nu Nusselt number 

(= -JJ aT/axl�-ody) 
k unit vector of the axis of vibrations 
K coefficient of permeability 
p pressure 
r ratio between heat capacities 
Ra thermal Rayleigh number 

(=g{J0Ka/vx) 
Ra. vibrational Rayleigh number 

(= bw2{30Ka/vx) 
t time 
T temperature 
u velocity vector 

x, y coordinates 
{3 coefficient of thermal expansion 
0 temperature at x = 0 
., kinematic viscosity 
p density 
x effective heat diffusivity 
1/J stream function 
w angular frequency of vibration 

Subscript 

max maximum value 

Superscript 

n time level 

frequencies. In the limiting case of high frequency, we find that this effect 
disappears as a result of the simplifications adopted in the Darcy mode!. Generally 
speaking, the porous medium is an example of dynamical systems with a high level 
of dissipation. This leads to smoothing of al! oscillatory phenomena. 

As an exception, we can say that the oscillatory motions that appear in 
porous media are the result of equilibrium convective instability in the presence of 
some specific complications, such as in the case when the fluid saturating the 
medium is a binary mixture (5, 6], or when convection appears in the basic state 
with the transversal-horizontal flow [7, 8). In addition, a well-studied problem is 
that of oscillatory convection that occurs under the action of a static gravity field at 
high Rayleigh numbers. This latter problem has been the subject of several 
investigations in the case of finite boxes heated from below [9, 10]. 

In this work we consider the convective oscillations of the fluid in porous 
media due to vertical vibrations of a square cavity in the presence of a lateral 
temperature gradient. The instantaneous fields of filtration velocity and tempera
ture are presented. Sorne integral characteristics such as mean temperature, heat 
flux, mean stream fonction, and kinetic energy of the mean flow are studied as a 
function of representative values of the nondimensional parameters. Thus we are 
interested in some special case of g-jitter theory for porous media. 

PROBLEM DESCRIPTION 

Consider a fluid-saturated porous medium enclosed in a two-dimensional 
square cavity of side a (see Figure 1). The vertical walls at x = 0 and x = a are 
kept at constant temperatures 0 and 0, respectively, where the horizontal walls are 
thermally insulated. Ail the boundaries are assumed to be rigid and impermeable. 
The entire system, including the cavity and the porous medium, oscillates along the 
vertical axis following the displacement law [b sin(wt)k], where b is the displace
ment amplitude, w is its angular frequency, and k is the unit vector directed 
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Figure 1. Physical configuration.

upward. The convective filtration can be described within the Darcy-Boussinesq
model written in the proper (oscillating) coordinate system. Thus the gravity field
has to be replaced by the sum of the gravity and the vibrational acceleration,

g -> g + b&2 sin(&t)k (l)

in the momentum equation.
Using the velocity of filtration u = (us, uy), the pressure p, and the tempera

ture T as independent variables, the equations of the Darcy-Boussinesq model are

v 1
-u + - Vp = /3T(g + b&2 sin wt)k
K p

V· u = 0

aT
r- + u . VT = X V 2T

at

(2)

(3)

(4)

here v is the kinematic viscosityof the fluid, X is the effective heat diffusivity, /3 is
the coefficient of thermal expansion, p is the reference value of density (constant),
k is the unit vector directed vertically upward, K is the the coefficient of
permeability, and r is the ratio of the heat capacity of the medium to that of the
fluid.

The boundary conditions are

x=O (0 '" y '" a) u x = 0 T=0

x=a (0 '" y '" a) u x = 0 T=O (5)

aT
y = O,a (0 '" x '" a) uy = 0 -=0

ay

The nondimensional form of the equation system and the boundary conditions is
introduced using the following characteristic quantities: a for length, xla for
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velocity of filtration, ra2
/ X for time, and 0 for temperature. In order to simplify

the presentation the same notation has been used for the nondimensional vari
ables. Thus we obtain the following nondimensionalized form of the system of
equations:

u + Vp = T(Ra + Ra, sin wt}k

V· u = 0

aT
- + u· VT= V 2T

at

The boundary conditions are

x=O (0 .;; y .;; 1) u, = 0 T=1

x = 1 (0 .;; y .;; 1) U x = 0 T=O

aT
y = 0,1 (0 .;; x .;; 1) uy = 0 -=0

ay

(6)

(8)

(9)

The problem includes three nondimensional parameters: the filtration Rayleigh
number corresponding to natural convection in porous media Ra, the vibrational
analog Rav> and the nondimensional frequency w, such that

gf30Ka
Ra=--

vx
bw2f30Ka

Ra = ----
v vX

ra2
A

w=-w
X

(10)

For convenience of presentation, the nondimensional frequency f = W/27T is
always used instead of w, the angular pulsation.

The initial value problem, Eqs. (6)-(8), determines the solution of the initial
problem with the boundary conditions, Eq. (9). Hereafter our attention is focused
on the time-periodic established regimes that take place after a transit process for
moderate values of the parameters. In addition to the instantaneous fields of
temperatures and stream function "', we are interested in mean characteristics of
the flow in a time-averaging sense. Here, for a given function h, an overbar is used
to denote average value over the period (T) of forcing:

- 1

f
T

h(x,y) = - h(x,y,t}dt
T 0

The origin of the time integration coincides with the beginning of a vibration cycle
in the asymptotic regime.
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An important characteristic is heat flux through the cavity given by the
Nusselt number Nu. Its instantaneous value is

11 aTINu(l) = - - dy
o ax X~O

Another important characteristic for the description of thermovibrational convec
tion is

E = ~ttii2dxdy
o 0

which is the kinematic energy of the mean flow.

NUMERICAL METHOD

In this section we give a brief description of the numerical method employed
herein, and proof of its accuracy when applied to a problem of natural convection
in a differentially heated square cavity (our physical configuration) filled with a
porous medium. The time-dependent equations, Eqs. (6)-(8), are discretized in
time using a second-order finite difference scheme. Equations (6) and (3) are
simply written at time /n+ 1 = (n + 1) 11/, where n is the time level and 6./ is the
time step. The advection-diffusion energy equation is approximated semi-implicitly
using an implicit second-order Euler backward scheme for linear terms and an
Adams-Bashforth method for the nonlinear term. Hence, in the order of their
solutions, the semidiscrete equations read as follows:

3 2Tn - ITn - 1

V 2T n + 1 yn+l = _ 2 + [2(uVnn
_ (uVnn

-
l ] (11)

2 6./ I1t

v'un+1=0

(12)

(13)

A high-accuracy spectral method, namely, the Chebyshev collocation method [11},
with the Gauss-Lobatto zeros as collocation points, is used to solve the Helmholtz
problem, Eq. (11), and the projection problem, Eqs. (12) and (13). To discretize the
projection problem, we utilize the Darcy solver developed in Ref. [12](also see Ref.
[13} for a full description of the spatial discretization). The well-known successive
diagonalizations technique is implemented to invert the corresponding operators..
We must mention here that the Darcy-Euler solver is direct and guarantees a
spectral accuracy solution with free divergence for the u field on the whole domain,
including the boundaries.

In this study, we limit ourselves to relatively small values of Ra and Ra v

(Ra .. 200, Ra , .. 500). The accuracy of the numerical method is studied for a
static natural convection problem. In Table 1 are given tPmax and Nu for increasing
mesh refinement (polynomial degree) at Ra = 500 and 1000. It can be noted that
Nu is more sensitive than tP to the numerical resolution.



Table 1. Effects of polynomial degree on Nu and the maximum value of t/1 

Nu t/lmu
N Ra� 500 Ra"" 1000 Ra� 500 Ra_. 1000 

20 9.1101 14.652 13.540 20.470 
26 8.9916 13.875 13.539 20.489 
30 8.9788 13.729 13.540 20.489 
36 8.9796 13.652 13.540 20.489 

A high spectral convergence, up to the fourth digit for the two presented
values of Ra, is obtained when N exceeds 30° in each direction. Ali the numerical
results presented in the next section have been carried out using 302 polynomial
modes.

RESULTS AND DISCUSSION 

Before the results of our numerical simulations are presented, it is worth
while to recall some known symmetry properties of the flow structures that are
expected to be retained for both instantaneous and time-averaged fields. The static
natural convection· flows possess the centrosymmetry property generated by the
operator sxsy

, where s:t and s, stand for the reflection symmetries:

S.,[iJ,(x,y),T(x,y)] = [-,J,(1-x,y),1-T(l -x,y)]

Sy[lf,(x,y),T(x,y)] =·[-,J,(x,I -y),T(x,I -y)]

Further, we divide our results into two parts. Our goal in the first part is to analyze
the response of the system in the absence of a static field in order to illustrate
thermovibrational convection in porous media. The second part is concemed with
the interaction between static natural convection and the thennovibrational mech
anism. 

Flow Regimes Under the Condition of Weightlessness 

We begin our explanation of the results from the case of the weightlessness
state (i.e., Ra= 0). A detailed description is given at Ra v = 200; nevertheless, it
has been verified that this description holds qualitatively for a large range of Ra v 

(up to Ra, = 1000). Concerning the flow structures, a general picture applies
independently of both the frequency and the vibrationaJ Rayleigh number. At
every moment the solution possesses the centrosymmetry property Sx S

r 
as steady

natural convection flow. In addition, oscillations of ail the variables have time
symmetry with respect to the middle of the cycle. In particular,

,t,( x, y, t + :) = Sx l,J,(x,y, t)J = Sy [I/J(x, y, t))

r( X, y, t + :) = S
y
[T(x, y, t)]
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T

31t14
Figure 2. Time sequence of '" and T at Ra = 0, Ra, = 200 with f = I, over the first half of a vibration
cycle at intervals of wI = 1T/4.

The latter equation implies that for a forcing of period T the NusseIt number is
T/2 periodic. Furthermore, it is straightforward to show that the mean fields of
temperature and stream function possess the reflection symmetries S, and Sy

In Figures 2 and 3, diagrams of the stream function and the isotherms are
presented during the first half of an oscillating cycle (wt E [0, 7T ]) at frequencies
of 1 and 400, respectively. The aforementioned symmetries allow for extension to
the whole cycle. Two different dynamical behaviors can be recognized, correspond-

T

cot= 0 1t/4 1tI2 31t14
Figure 3. Time sequence of l/J and T at Ra = 0, Ra, = 200 with f = 400, over the first half of a
vibration cycle at intervals of wI = 1T/4.
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ing to the two limiting cases (f --> 0) and (f --> 00) usually considered when studying
the thermovibrational convection of fluids (see, for instance, Refs. [14] and [15]).
Obviously, at very low frequencies, the rate of time evolution of temperature can
be neglected; thus the diffusion mechanism dominates heat transport. From a
dynamical point of view the time-dependent convection at a given time to corre
sponds to the steady convection due to a static source of amplitude Ra , sin wtoTk.
This constitutes the so-called quasi-static regimes [14, 15]. Furthermore, I/J and T
oscillate in phase with the forcing, as is shown in Figure 2 for f = 1, although for a
slight phase difference between T and the source (see the diagrams at t = 0).

The opposite limiting case (f --> 00) is represented in Figure 3 for f = 400.
The most important result is the damping of the temperature oscillation, which is
reduced to a small sinusoidal perturbation around the conductive solution. Also,
this perturbation is in phase quadrature with the source, since at wt = 7T/2 the
solution is perfectly conductive. A description of the time-dependent response
when the frequency varies from low to high values is given in Figure 4 where the
periodic oscillations of the stream function in the center of the cavity and the
Nusselt number are presented versus the phase wt. A quasi-synchronous response
is obtained at f = 1. The increase of the phase difference between Nu and the
source is accompanied by damping of the magnitude of Nu when the frequency
increases. The amplitude of I/J is subject to small variation up to f = 20. When this
value is exceeded, I/J becomes independent of f, and the curves corresponding to
f = 20, 100, and 200 collapse into one sinusoidal curve.

The mean values of the stream function -;jJ and isothermals T are depicted in
Figure 5 for increasing frequencies (f = 10, 20, 100, and 400). This demonstrates
the effect of vibrational convection in porous media, where a regular mean flow is
obtained at relatively low frequencies. The quadrupole flow structure illustrates the
reflection symmetries S, and Sy, as mentioned above. We see that the flow
intensity decreases monotonously as far as f increases. Accordingly, the tempera
ture fields tend to a conductive regime. The effect of vibrational convection
disappears when f --> 00.

Figure 4. Periodic oscillations of (a) IjJ in the center of the cavity and (b) Nu at
Ra v = 200, Ra = 0, and various frequencies.
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, I

(a) (b) (c) (d)

Figure S. Structures of the mean fields of stream function and temperature at Ra, = 200, Ra = 0, and
frequencies (a) 10, (b) 20, (c) 100, and (d) 400.

Figures 6a and 6b summarize the results for the case of weightlessness. The
evolutions of the kinetic energy of the mean flow E and the averaged Nusselt
number Nil given as functions of the frequency f for various values of Ra.. Each
of these characteristics decreases with frequency, and in the limiting case f --> "",

an asymptotic behavior can be derived. In fact, the asymptotics E - r' and
(Nil - 1) - r 2 are valid whatever the value of Ra.,

The results established here are similar to those obtained in the case of a
fluid-filled cavity, but at low frequencies and small amplitude of vibration (see
Refs. [1) and (14)). In the case of viscous fluid, when the amplitude of vibrations is
high enough, the inertial effects allow the temporal symmetry to break around the
middle of the period, leading to a frequency resonance. The present results show
that there is no significant resonance phenomenon in porous media.

10 100
frequency

10 100
frequency

1O~

0----0 Rav=50
G--€l Rav=50

0---<> =100
<>----<> =100 <>---+ =200
<>---+ ·200
b---6 .SOD b---6 .500

1O~

(a) (b)

Figure 6. Kinetic energy of the (a) mean flow and (b) mean Nusselt
number versus the frequency (Ra = 0, Ra, ~ 200).
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Modulated Gravity Flow Regimes

Let us consider now the case of a modulated gravity field (Ra '" 0). Our aim
is to analyze the interaction between natural and vibrational convection. In all the
numerical results presented hereafter, the Rayleigh number was fixed (Ra = 200),
the parameters of our investigations are Ray (Ray E (l00, 200,300,400,SOO}), and
the nondimensional frequency (I E [1,400]). Notice that since Ra '" 0, the symme
try of the forcing with respect to the middle of the cycle is lost. Consequently, the
spatial flow structure retains only the centrosymmetry (SxSy) for both instanta
neous and mean fields.

First, we present a general description of the mean characteristics E and 'iiru
as functions of I. These variables are depicted in Figures 7a and Tb, respectively. It
is seen that at low values of Ray (Ray/Ra .;; 1), the static natural convection flow
is insignificantly influenced by the vibrations over the entire range of frequencies
considered here. The deviation of the mean heat flux is less than 15% from its
value of the static case. An important effect of vibrations is observed when
RaviRa ~ 2. For these values of Ray the numerical results suggest that the most
important modifications of heat flux and flow intensity occur in the region of low
frequencies (Figure 7). This matches well the results carried out under the
condition of weightlessness, where the maximum thermovibrational convection is
obtained at low frequencies. The evolution of 'fi1U is nonmonotonous, where at
Ray = 500 and 1 = 1 the mean heat flux is increased more than 30% from its
value in the static case. Then it decreases to attain a minimum value lower than the
static heat flux. Further, the same figure shows that convergence toward static
values is achieved when 1 is increased independently of Ray.

This behavior is reflected in the structures of the mean flow (stream function
and isotherms), where we found that for RaviRa .;; 1 the basic state flow domi
nates the convective filtration. Hence, we describe only the spatial structure for
higher values of Ray when the thermovibrational effect is high enough. In Figure 8
are given the diagrams of iso-i;; and iso-T at Ra = 200 and Ray = 500 and four

6.5

6.0
340

Nu 5.5 B

290

5.0

(a) (b)

Figure 7. Kinetic energy of the (a) mean flow and (b) mean Nusselt
number at Ra = 200 and various values of Ra, versus the frequency.
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T

(a) (b) (c) (d)

Figure 8. Structures of the mean stream function and the isothermals at Ra = 200 and Ra, = 500, with
a frequency of (a) 1, (b) 10, (c) 25, and (d) 100.

values of the frequency (I = 1,10,25,100). The intensive interaction between the
natural (one-cell) and vibrational (four-cells) convection mechanism leads to im
portant modifications in the spatial structure at low frequencies. Roughly speaking,
the two clockwise rotating cells of the quadrupole (see Figure 5) induce accelera
tion of the flow in the lower left and upper right corners; the others (counterclock
wise) are reduced to two small recirculations in the corresponding corners (Figure
8a). The overall interaction results in a decrease of the main cell intensity.

Increasing the frequency (Figures 8a-8e) causes suppression of the two
counterclockwise recirculations, whereas the intensity of the clockwise (natural)
cell increases gradually to reach its value of the static regime. Also, at 1= 100
(Figure 8d) one can distinguish the well-known natural convection structure. The
evolution of the isotherms presented in the same figure (right) is in confirmity with
that of -;Po The dominance of the thermovibrational mechanism in heat transport is
clearly identified at 1 = 1, where the structure of the isotherms looks like that at
Ra = 0 with a distortion (clockwise rotation) due to the principal circulation. At
this frequency the usual horizontal stratification in natural convection is destroyed.
As the frequency increases, the horizontal stratification in the core region is
reestablished.

The instantaneous fields at 1 = 10 and 1 = 400 are presented in Figures 9
and 10, respectively. The description of these results is the same as in the case of
weightlessness except that the oscillation takes place around the static structure.
Thus at 1= 10, high-magnitude vibrations of '" and T are noticed. An inversion of
the rotation direction occurs when wt E [7T,51T/4]. At 1 = 400 the rotation
direction changes; even so, the isotherms are nearly the same as those obtained
with static convection.
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T T

cot=1t

co t =71t/4
Figure 9. Time sequence of IjJ and Tat Ra = 200, Ra, = 500, and f = 10, over one cycle at intervals of
wI = ",/4.

Again, the main distinction from the case of viscous fluid is that in porous
media there is no expressed resonance phenomenon; thus the complications
characterized by the multiplicity of solutions around the resonance frequency [2,
15] are absent here. In addition, when the thermovibrational effect persists at high
frequencies, as can be shown by application of the method of averaging in the case
of fluid, there is no vibrational effect in porous media.
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T 'If T

rot=1t

Figure 10. Time sequence of ljJ and T at Ra ~ 200, Ra, = 500, and f = 400, over one cycle at intervals
of wi - "./4.

CONCLUSIONS

Conveclive oscillations are considered in porous media in a square, differen
tially heated cavity subject to vertical oscillations. The instantaneous and mean
structures of the streaming flow are studied. A thermovibrational convection effect
is shown even in the case of weightlessness. This effect disappears in the limiting
case of high frequency.
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The influence of convective oscillations on natural convection is also consid
ered. When the vibrational Rayleigh number is high enough (Rav/Ra ~ 2), it is
shown that significant modification of the streaming flow and heat transfer can be
obtained in the range of low frequencies. The thermovibrational effect diminishes
when the frequency is increased, whereas the basic natural convection flow is
established in the limiting case of infinite frequencies (in the framework of the
Darcy model).
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