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Unité de Recherche en Mécanique et Energétique,
Ecole Nationale d’Ingénieurs de Tunis, Tunis, Tunisie

A. Mojtabi
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Abstract

Purpose – The purpose of this paper is to present a numerical and an analytical study of the
thermohaline convection with Soret effect in a square enclosure filled with a binary fluid mixture.

Design/methodology/approach – The horizontal boundaries of the enclosure are impermeable
and heated from below while its vertical walls are assumed to be adiabatic and impermeable.
The Navier-Stokes equations under the Boussinesq-Oberbeck approximation are solved numerically.
The results are given for different values of the separation ratio. The critical Rayleigh number at the
onset of convection is determined analytically and numerically. The Hopf frequency at the onset of
convection is obtained.

Findings – The existence of two stable stationary bifurcation branches is illustrated.
Furthermore, it is shown that the existence of stable traveling waves in the transition from one
branch to the other depends on the value of the separation ratio. For some values of Rayleigh number,
asymmetric flows are observed. A good agreement is found between the numerical solution and
analytical analysis.

Originality/value – The present work is the first to consider thermosolutal convection with Soret
effect in a square enclosure.

Keywords Convection, Thermal stability, Numerical analysis

Paper type Research paper

Nomenclature
A ¼ aspect ratio
aij, bij, cij ¼ spectral coefficients
C ¼ concentration
c ¼ perturbed concentration
DT ¼ thermal diffusion coefficient

D ¼ mass diffusion coefficient
f osc ¼ oscillation frequency
g ¼ acceleration of gravity
H ¼ height of cavity
N, M ¼ truncate numbers



Pm ¼ pressure
V ¼ velocity vector (u, w)
T ¼ temperature

Dimensionless numbers
Ra ¼ thermal Rayleigh number
Le ¼ Lewis number
Pr ¼ Prandtl number
CS ¼ separation ratio

Greek symbols
bT ¼ coefficient of thermal expansion
bS ¼ coefficient of concentration

expansion
C ¼ stream function

c ¼ perturbed stream function
k ¼ thermal diffusivity
n ¼ viscosity
r ¼ density
u ¼ perturbation of temperature
t ¼ period
v ¼ Hopf frequency

Subscripts and superscripts
Crit ¼ critical value
e ¼ equilibrium
0 ¼ initial state
1 ¼ value in the bottom
2 ¼ value in the top
max ¼ maximal value

1. Introduction
Rayleigh-Benard convection in binary mixtures has recently attracted much attention
due to it is importance in many industrial applications such as space, petroleum and
biomedical technologies. The coupling between concentration and temperature fields
leads to more complex flow structures and need some further developments. Few
investigations on the topics were reported in the 1960s and 1970. However, theoretical
studies (Veronis, 1965, 1968; Nield, 1967; Hurle and Jakeman, 1971; Schechter et al.,
1972) and experimental one (Lhost and Platten, 1988, 1989a, b) allowed the calculation
of critical Rayleigh numbers, wave numbers and frequencies as a function of the Soret
coefficient S ¼ DT=D or some equivalent parameter, such as the separation ratio:

CS ¼
DT

D
C0ð12 C0Þ

bS

bT

These studies showed a great variety of convective flows; especially they reported the
existence of unstable travelingwaves (TW) (Hopf bifurcation) at the onset of convection.
Rehberg and Ahlers (1985) proved that the heat-transport measurements in a mixture
contained in a porous medium and heated from below show a bifurcation to steady or
oscillatory flow, depending on the mean temperature. Knobloch (1986) studied the
problem of two dimensional oscillatory convection for a binary fluid mixture in an
infinite plane porous layer heated from below. He found different type of convective
flows, standing waves and modulated TW. Stable TW are preferred mod near the onset
of convection. Other authors (Lhost and Platten, 1988, 1989a, b) found a stable state
characterized by a system of stable TW just after the critical point. They determined the
bifurcation point of the stationary stable state (SOC) as the Rayleigh number increases.
Modulated TW were also observed experimentally (Heinrichs et al., 1987).

Most of the thermosolutal studies related to the linear stability analysis have
considered an infinite horizontal fluid layer heated from below. Veronis (1965) studied
the possibility of finite amplitude convection. It was demonstrated that a sub-critical
instability might set in at a Rayleigh number smaller than the values predicted by the
principle of stability exchange. Asymmetric oscillations in thermosolutal convection
were observed by Moore et al. (1998) in a horizontal layer with free boundary
conditions. Hollinger and Lücke (1998) have studied theoretically, in an infinite
horizontal layer heated from below, the influence of the negative Soret coefficient on



stationary and traveling patterns. The current state of knowledge concerning
Rayleigh-Benard convection with Soret effect was summarized by Barten et al. (1995).
Mamou et al. (2001) performed a complete numerical and analytical study of double
diffusive convection without Soret effect in a rectangular enclosure subject to vertical
gradients of heat and solute. They showed that in a square enclosure, the flow evolves
cyclically from clockwise to counterclockwise circulation and vice versa.

In the case where RaT and S have the same sign, i.e. when the concentration gradient
opposes a destabilizing temperature gradient, steady convection is predicted. In a such
case, many linear stability analyses (Legros et al., 1972; Schechter et al., 1974) have
shown that the critical Rayleigh number goes down and asymptotically tends to zero
when CS increase. Also, the critical wave number tends to zero which correspond to a
large size roll at onset of convection. For cells of infinite extension or with large aspect
ratio, convection is characterized by two transition points; the first is relative to the onset
of convection and is characterized by small values of the Nusselt number and the second
transition is characterized by an important increase in the Nusselt number accompanied
by oscillation (Platten and Chavepeyer, 1976; Lhost and Platten, 1989). At this last point,
the value of Rayleigh number is equal to the critical Rayleigh for the equivalent pure
fluid. Recently, Mansour et al. (2004) performed a numerical study of the Soret effect on
multiple steady-state solutions induced by double diffusive convection in a square
porous cavity. It was found that, depending on the value of the Soret parameter, one, two
or three solutions are possible; namely, monocellular trigonometric flow, monocellular
clockwise flow and bicellular flow.

Most of the studies dealing with thermosolutal convection with Soret effect were
devoted to the case of infinite or large confined horizontal layers. The objective of our
study was to determine numerically the different convective behaviours in a square
layer containing a saline solution heated from below with rigid and impermeable
boundaries. In order to validate numerical results at the onset of convection, a linear
stability study was also performed.

2. Mathematical formulation
We consider a binary mixture of incompressible fluid contained in a box of height H
and length L (here we take without loss of generality the case where H ¼ L). The walls
of the container are assumed to be impermeable, heated from below and cooled from
above with thermally insulated sidewalls (Figure 1).

The problem is described by the Navier-Stokes equations with Soret effect and with
the Boussinesq-Oberbeck approximation:

rðT;CÞ ¼ r0ð12 bTðT 2 T0Þ þ bSðC 2 C0ÞÞ ð1Þ

where r0(T0, C0) is the density of initial state:

bT ¼ 2
1

r0

›r

›T

� �
C

and bS ¼
1

r0

›r

›C

� �
T

The x-axis is taken horizontally and the z-axis vertically upward. We introduced
dimensionless variables with the help of the following scales: H for distance,
H 2=k for time, k=H for velocity, k 2r0=H

2 for pressure, DT for temperature, where
DT ¼ T1 2 T2 and T0 ¼ T2 is the reference temperature:

DC ¼ 2C0ð12 C0Þ
DT

D
DT



for concentration and C0 ¼ Cinitial is the reference concentration. The separation ratio is
defined by:

CS ¼
bS

bT
C0ð12 C0Þ

DT

D

The dimensionless equations for conservation of momentum and of continuity could be
expressed, respectively, as:

7V ¼ 0 ð2Þ

›V

›t
þ ðV ·7ÞV ¼ 27Pm þ PrDV1 RaPrðT 1CSC Þk ð3Þ

The dimensionless equation of energy conservation (the Dufour effect is ignored) can
be expressed as:

›T

›t
þ ðV ·7ÞT ¼ DT ð4Þ

The dimensionless equation for the conservation of concentration with Soret effect can
be written as:

›C

›t
þ ðV ·7ÞC ¼

1

Le
ðDC 2 DTÞ ð5Þ

where:

Ra ¼
gbTDTH

3

vk
; Pr ¼

v

k
and Le ¼

k

D
The boundary conditions are as follows:

T ¼ 1;
›T

›z
2

›C

›z
¼ 0 z ¼ 0 ;x

T ¼ 0;
›T

›z
2

›C

›z
¼ 0 z ¼ 1 ;x

›T

›x
¼

›C

›x
¼ 0 x ¼ 0;A ;z

Figure 1.
Scheme of the cavity
configuration used
in this study
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V ¼ 0 z ¼ 0; 1 ;x and x ¼ 0; A;z ð6Þ

Initially, linear fields for both temperature and concentration are imposed, that is:

Te ¼ 12 z; Ce ¼ 12 z and Ve ¼ 0 ð7Þ

The governing equations (1)-(7) were solved numerically using a finite volume method
described in the following section.

2.1 Linear stability
The motionless double diffusive solution:

Ce ¼ 0; Te ¼ 12 z and Ce ¼ 12 z ð8Þ

is particular solution of the set of equations system (1)-(7). In this paragraph, we use the
stream function instead of velocity. To study the stability of this solution (8) we
introduce infinitesimal perturbation defined by:

c ¼ C2Ce; u ¼ T 2 Te; c ¼ C 2 Ce ð9Þ

where (C;T;C) indicate the disturbed solution and (Ce;Te;Ce) indicate the basic
solution. We assume that the perturbation quantities ðc; u; cÞ are small and we ignore
the smaller second-order quantities. After linearization, we obtain the following system
of equations for small disturbances:

1

Pr

›Dc

›t
¼ D2c2 Ra ð1þCSÞ

›u

›x
þCS

›j

›x

� �

›u

›t
þ

›c

›x
¼ Du ð10Þ

›j

›t
þ

›u

›t
þ

›c

›x
¼

1

Le
Dj

where j ¼ c2 u.
The dimensionless boundary conditions associated to these equations are:

c ¼ 0;
›c

›z
¼ 0 z ¼ 0; 1 and c ¼ 0;

›c

›x
¼ 0 x ¼ 0;A

u ¼ 0;
›j

›z
¼ 0 z ¼ 0; 1 and

›u

›x
¼

›j

›x
¼ 0 x ¼ 0;A ð11Þ

The solutions of system (10) with boundary conditions (11) are chosen as follows:

ðc; u; jÞðx; zÞ ¼ ðc ðx; zÞ; uðx; zÞ; jðx; zÞÞe ðs tÞ ð12Þ

where s is a complex and (c ðx; zÞ; uðx; zÞ; jðx; zÞ) are functions which depend on the
variables x and z.

The Galerkin method was used with polynomial trial functions verifying all the
boundary conditions of the problem. The polynomial trial functions are chosen as follows:



cðx; zÞ ¼
XN
i¼1

XM
j¼1

aij 12
x

A

� �2

x iþ1ð12 zÞ2z jþ1

u ðx; zÞ ¼
XM
j¼1

b0; jð12 zÞz j þ
XN21

i¼1

XM
j¼1

bij x
iþ1 12

x

A

i þ 1

i þ 2

� �
ð12 zÞz j

jðx; zÞ ¼
XN21

i¼1

ci;0 x
iþ1 12

x

A

i þ 1

i þ 2

� �
þ

XM21

j¼1

c0; j z
jþ1 12 z

jþ 1

jþ 2

� �

þ
XN21

i¼1

XM21

j¼1

cij x
iþ1 12

x

A

i þ 1

i þ 2

� �
z jþ1 12 z

jþ 1

jþ 2

� � ð13Þ

where N andM are positive integers numbers referred to as the truncation numbers and
the aij; bij and cij are the spectral coefficients. The highest values used for N andMwas
N ¼ M ¼ 7. For many separation ratios values used, the truncation bigger than
N ¼ M ¼ 3 is sufficient.

3. Numerical model
A finite volume method was used with the Goda projection method [20] for temporal
discretization. The solution is updated by using a fully implicit method.

3.1 Temporal discretization
The Goda (1979) projection method consists of decomposing the Stokes problem into
two sub-problems which are solved in two steps.

In the first step an intermediate fieldV* for the velocity is predicted with an explicit
field for pressure:

3V* 2 4Vn þ Vn21

2Dt
þ 7ðVnV*Þ2 V*7Vn ¼ 27P n

m þ PrDV* þ S

V*j›V ¼ 0

where S is the source term in the equation of conservation of momentum.
In the second step, which is the projection step, we correct the velocity field

predicted in step 1 to satisfy the continuity equation and we determine the pressure
and velocity in time (n þ 1):

3

2Dt
ðV* 2 Vn11Þ ¼ 7 Pnþ1

m 2 Pn
m

� �
in V

7 ·Vnþ1 ¼ 0 in V

Vn11·n ¼ 0 on ›V

where V is inside the domain and ›V is on the surface of the domain and n is the
normal vector to ›V. For the equations of energy and concentration, we discredited the
non-stationary term in the same way as for the equation of momentum conservation
using an implicit scheme:

›T nþ1

›t
þ 7ðVn11T nþ1Þ2 T nþ1 ·7Vn11 ¼ DT nþ1



›C nþ1

›t
þ 7ðVn11C nþ1Þ2 C nþ1 ·7Vn11 ¼

1

Le
ðDC nþ1 2 DT nþ1Þ

3.2 Spatial discretization
The concentration and the temperature are calculated in the nodes of the dotted grid
and the velocity components are calculated at intersection points between normal and
dotted grid (Figure 2).

The equations are discredited in such a way that we obtain:

ANXðI ;KÞNI21;K þ CNXðI ;KÞNIþ1;K þ ANZ ðI ;KÞN 1;K21 þ CNZ ðI ; KÞNI ;Kþ1

þ
3

2Dt
2 ANXðI ; KÞ2 CNXðI ;KÞ2 ANZ ðI ;KÞ2 CNZ ðI ;KÞ

� �
NI ;K ¼ SMN ðI ;KÞ

where N represents variables (C;T;f ¼ Pnþ1
m 2 Pn

m, U and V ) at time (n þ 1). In this
case we obtain a pentagonal matrix. The inverse of the matrix is calculated using
procedures form the library NSPCG (www.ma.utexas.edu/CNA/NSPCG/) based on the
conjugate gradient method. In our calculations we used a boundary-fitted grid in order
to be able to detect limit layers when they exist.

3.3 Code validation
In order to validate our program code, the experimental data of Lhost and Platten
(1988) were used as bases of comparison. These authors used a square cell of
dimensions 1:3.6:28 (and height H ¼ 4.15mm), containing a binary mixture of 90
percent water – 10 percent isopropanol heated from below. The experiments were
performed at 218C average temperature and the dimensionless parameters are as
follow: Pr ¼ 13.2, Le ¼ 140.2 and a separation ratio CS ¼ 20.43.

In the present study, we fixed Ra ¼ 3,300 which corresponds to a temperature
difference of DT ¼ 275.88K and aspect ratio A ¼ 10. In numerical analysis 250 £ 30
grids were used, with boundary-fitted grids and a time step Dt ¼ 1022. The
temporal evolution of the vertical component of velocity in the center of the cell is
recorded (Figure 3).

Figure 2.
The grid of spatial

discretization

z

U

W

x

P,T,C



Lhost and Platten (1988) observed the onset of convection at the transition from
DT ¼ 275.97 to 275.98K, and found that the oscillation period at the convection onset is
equal to 53 s (corresponding to the Hopf bifurcation periodicity). We found a dimensional
period of t ¼ 49.8 s. The period of TWwas found to be tw ¼ 1,337.5 s whereas Lhost and
Platten (1988) found tw ¼ 1,280 s. The difference between our value and that found by
Lhost and Platten (1988) is probably due to the fact that we did not take the same aspect
ratio (10 in our study against 28 in Lhost’s experiment). The experiment carry out by
Lhost andPlatten (1988) used a cell of aspect ratio equal 28, the calculationwith this aspect
ratio needs an important computing time, so we have choose for our simulation an aspect
ratio cell equal 10 since the effect of containment side can be neglect starting from this
value.

4. Results and discussion
In the present study we considered a saline solution with 5 percent concentration in
NaCl. The Prandtl and Lewis number for this solution are, respectively, Pr ¼ 7.6 and
Le ¼ 94.3. The analysis is performed for different values of separation ratio (CS ¼ 0.1,
0.0001, 20.0001 and 20.1).

In order to ensure that the results are grid size independent, we performed a grid
study with three different steps (Figure 4). We found that 71 £ 71 grid is appropriate
for values of Ra less than 76,100 and a 91 £ 91 grid for larger values of Ra. Both grids
are boundary-fitted.

Figure 3.
Evolution of velocity in a
point M in the middle of
the cell as a function of
time for Ra ¼ 3,300,
A ¼ 10, CS ¼ 20.43,
Pr ¼ 13.2 and Le ¼ 140.2
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and the frequency of stable travelling waves FTW = 0.008 corresponds to τad = 125. Resolution is 250 × 30



4.1 Onset of convection
In order to determine the critical Rayleigh values at the onset of convection, the
calculations were started from the critical values found by the linear stability analysis.
The same convective behaviors were obtained as for a cavity with a large aspect
ratio or of an infinite extension. The convection onset is delayed when the separation
ratio is larger (in absolute value) for negative separation ratio (CS , 0) and advanced
for positive values of CS (Table I). An unstable state TW with Hopf frequency
vH ¼ 0.94 is observed numerically and analytically for CS ¼ 20.1 (Table I and
Figure 5).

ForCS ¼ 0.1, we observe two bifurcation points. The first transition corresponding
to the onset of convection is characterized byweak velocitywhile the second transition is
associated to very strong increase amplitude velocity (Figure 6).WhenCS ¼ 0.0001, the
first bifurcation is not perceptible and only the second transition is identified (Figure 6).

4.2 Bifurcation diagram
The purpose is to determine the different convective behaviors in a square layer by
looking at the variation ofVmax

z , the maximum of the vertical component of velocity, as
a function of Rayleigh number (Figure 7). The bifurcation diagram is restricted to two
values of separation ratio (CS ¼ 0.1 and 20.1).

Linear stability study Numerical study
N ¼ M ¼ 5 Resolution 71 £ 71

CS Ra crit vH Ra crit vH

20.0001 2,623 – 2,587 –
20.1 3,008 0.95 3,021 0.94
0.0001 2,548 – 2,549 –
0.1 166 – 160 –

Table I.
Values of critical

Rayleigh number in the
square cavity for

different values of CS

found by numerical and
stability studies with

Pr ¼ 7.6 and Le ¼ 94.3

Figure 4.
Evolution of the vertical

component of velocity as a
function of Rayleigh

number for three kinds of
steps (61 £ 61, 71 £ 71

et 81 £ 81)
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Figure 5.
Evolution of the vertical
component of velocity in
the middle of the cavity as
a function of time au for
A ¼ 1, CS ¼ 20.1,
Ra ¼ 3,021, Pr ¼ 7.6 and
Le ¼ 94.3
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Figure 6.
Evolution of the vertical
component of velocity as a
function of Rayleigh
number in the case of a
square cavity Cs ¼ 0.1
and 1024, Pr ¼ 7.6 and
Le ¼ 94.3
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Figure 7.
Evolution of the vertical

component of velocity as a
function of Rayleigh

number in the case of a
square cavity
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In the following, for Ra . 7,610, the convergent fields of velocity, concentration
and temperature found for a given Ra value are used as initial fields for higher Ra
values. This allows us to describe the bifurcation diagram.

From a pattern’s formation perspective, at the onset of convection, the flow is
characterized by a single convective roll. When the Rayleigh number is increased, the
flow structure remains stable until Rayleigh number is equal to near 129,370.
Furthermore, an oscillatory structure with a single roll is observed (Table II); the
variation of frequency of oscillation as function CS is not that significant. For
CS ¼ 0.1, we found that the temperature and concentration fields at the onset of
convection are similar to those of a pure fluid (Figure 7).

For high Rayleigh numbers (Ra ¼ 15,220), a numerical simulation is
performed using the pure diffusive fields as initial conditions. Another
stationary stable flow characterized by two symmetrical contra-rotating rolls is
obtained. For higher values of Ra (near Ra ¼ 76,100), the symmetry of the flow is
broken (Figure 8). It should be noted that when Ra decreases, the second
convective branch meets the first convective branch. The value of Rayleigh
number for the crossing between the two convective branches increases with CS

(Table II).
For CS ¼ 20.1, the results showed that a stable state of TW with low frequency

( ¼ 0.007) exists just below the other convective branch (Figure 9). We showed a
hysteretic phenomenon at transition from the first convective branch to the conductive
state.

5. Conclusions
The different convective behaviors of thermosolutal convection in a square cavity
are determined numerically as a function of the separation ratio. The results
confirm the existence of two stable stationary branches for any value of CS; the
first convective branch is characterized by a single convective roll and ends by an
oscillatory structure with a single roll. The second convective branch corresponds
to two symmetrical contra-rotating rolls and for large values of Rayleigh number,
asymmetric flows are observed. When CS ¼ 20.1, the Hopf frequency at the onset
of convection and the stable TW state, which exist at the crossing of the second to
the first convective branch, are determined numerically and are in good agreement
with the experimental results available.

CS 0.1 0.0001 20.0001 20.1
f osc 0.24 0.25 0.24 0.26
Ra 2!1 13,158 13,051 13,079 13,028

Notes: The values of oscillation frequency for Ra ¼ 129,370 ( f osc) and Rayleigh number for the
crossing between the two convective branches ðRa 2!1Þ for different values of CS. With A ¼ 1,
Pr ¼ 7.6 and Le ¼ 94.3Table II.



Figure 9.
Evolution of the vertical
component of velocity in

the middle of the cavity as
a function of time for
A ¼ 1, CS ¼ 20.1,

Ra ¼ 13,032, Pr ¼ 7.61
and Le ¼ 94.3
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Figure 8.
Stream function,
isotherms and
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