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Abstract

It is not unusual for a Soret coef®cient to change sign with temperature. We develop
the theory for the onset of convection in such systems, heated from below or from
above, provided that the mean temperature is precisely that at which the change of
sign occurs. We also consider the realistic case of rigid, conducting, impervious
boundaries for later comparison with laboratory experiments.

1. Introduction

The Soret coef®cient DT=D of an aqueous solution of NaCl (0.5 M/1) has unusual
behaviour [1], being negative below 12 �C and positive above. If a solution, initially
homogeneous in composition is heated from below, the Soret effect will induce a
vertical concentration distribution that will drastically modify the condition for the
onset of free convection. When the mean temperature of the system T0 is maintained at
12 �C, then, in the lower hot part, the Soret coef®cient is positive and salt migrates
towards the cold, i.e. upwards. On the contrary, in the upper cold part the Soret
coef®cient is negative and the solute goes towards the hot side, i.e. downwards. In a
certain sense, the solute is concentrated in the middle part of the layer, with the top-
cold and bottom-hot parts having lower salt concentrations. Alternatively, one could
heat the solution from above. Now, the upper part being hot, the Soret coef®cient is
positive and salt migrates to the cold region, i.e. downwards. In the lower, cold part,
the Soret coef®cient is negative and salt migrates to the hot region, i.e. upwards. Here
too, the solute is concentrated in the middle of the layer. Thus, in both cases,
convection may arise since a more concentrated solution lies on top of a less con-
centrated solution at the lower boundary, independent of the temperature gradient,
normal or adverse. To be complete, one could also consider a solution for which the
Soret coef®cient is positive below some characteristic temperature T0; and negative



above T0: Examples are found in water-ethanol systems for which DT=D > 0 at a
given mass fraction (e.g. N0

1 � 0:27 in ethanol) decreases with T and could become
negative at high temperatures [2]. In such a case the opposite effect is observed: the
denser component leaves the middle of the layer and the solution becomes more
concentrated in the heavier component near the boundaries. This could also induce
convection at the most unexpected time, since a top-heavy solution rests on the middle
layer, where the denser component is less concentrated. We will show that the steady
concentration pro®le of the heavier component is parabolic, instead of being linear as
in all previous studies [3]. The goal of this paper is to study the in¯uence of such a
parabolic concentration pro®le on the onset of free convection and later to compare
with laboratory experiments using Laser Doppler velocimetry to detect convection.
Therefore we adopt realistic boundary conditions: rigid, conducting and impervious,
as in an experimental cell with lower and upper boundaries made of copper plates.

2. Formulation of the problem

The starting point will be the conservation equations for an incompressible ¯uid in the
`̀ partial'' Boussinesq approximation
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Notations are conventional; here N1 represents the mass fraction of the denser
component, of mean value N0

1 , such that the mass expansion coef®cient � is positively
de®ned:
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and N0
2 � 1ÿ N0

1 :

By `̀ partial'' Boussinesq approximation we mean that the thermal diffusion coef®cient
DT in Eq. (4) is temperature dependent, and we will take a linear law:

DT

D
� D�T ÿ T0�: �6�

The slope D may be either negative or positive. Obviously, the change of sign of the
Soret coef®cient DT=D is solely due to DT , since the isothermal diffusion coef®cient D



is strictly positive. Therefore D will be considered as a constant in the Boussinesq
approximation.

We now take, for the length scale, the depth h of the liquid layer; for the velocity scale,
a=h where a is the thermal diffusivity �=�0Cp; for pressure �0 a2=h2; and for time
h2=a. The non-dimensional temperature is de®ned by �T ÿ T0�=�T0 where

T0 � Tl � Tu

2
; �T0 � Tl ÿ Tu where Tl is the temperature of the lower plate (at

z � 0) and Tu that of the upper plate (at z � 1). Thus �T0 > 0 for a bottom heated
system and �T0 < 0 for a top heated system.

The new mass fraction is de®ned by �N1 ÿ N0
1�=N0

1 N0
2. We shall not use new symbols

(e.g. primed symbols) for nondimensional quantities. Eqs (1)±(4) become (~k is the unit
upward vector)
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Here Pr is the usual Prandtl number and RaT is the thermal Rayleigh number (positive
when the system is heated from below and negative when the system is heated from
above), whereas Ras is analogous to a solutal Rayleigh number

Ras � g�N0
1N0

2 h3

a�
: �11�

Finally Le is the Lewis number de®ned by

Le � a

D
� �=D

�=a
� Sc

Pr
; �12�

where Pr � �=a is the Prandtl number already mentioned and Sc is the Schmidt
number. In a liquid phase, since the thermal diffusivity is much higher than the mass
diffusivity, a value of Le � 100 seems quite reasonable.

Using Eq. (6) for DT=D, written with a nondimensional temperature, Eq. (10) becomes

@N1

@t
� ~V � rN1 � 1

Le
r � �rN1 � ST � rT� �100�

� 1

Le
�r2N1 � ST � r2T � S�rT�2� �1000�



where S � D��T0�2 represents the contribution of the Soret effect through the slope

D of
DT

D
. Let us once again emphasize that D > 0 or D < 0:

In order to solve Eqs. (7)±(10) or (100) or (1000) we adopt realistic boundary
conditions: no slip, prescribed temperature and zero mass ¯ux at the boundaries:

At z � 0 : ~V � 0; T � 1=2;
@N1
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� S

2
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� 0

At z � 1 : ~V � 0; T � ÿ1=2;
@N1

@z
ÿ S

2

@T

@z
� 0:

�13�

3. Steady conductive state

To the motionless state ~V � 0, corresponds a mass fraction pro®le �N1, a temperature
pro®le �T , a pressure �p, and solutions of

ÿr�p� Pr�RaT
�T ÿ Ras

�N1�~k � 0 �14�

r2 �T � 0; or �T � 1=2ÿ z �15�

r � �r�N1 � S�Tr�T� � 0: �16�

Thus, as already written in the boundary conditions (13), the temperature of the lower
boundary in a reduced form is always 1/2, and that of the upper boundary is ± 1/2,
independent of the direction of heating, which only affects the sign of the Rayleigh
number RaT. At the steady state (zero mass ¯ux across the layer), Eq. (16) and the
temperature distribution (15), imply

@ �N1

@z
ÿ S�1=2ÿ z� � 0 �17�

from which the steady mass fraction distribution is deduced,

�N1 � S

2
�ÿ1=6� zÿ z2�; �18�

the integration constant of (17) being determined by the additional condition�1

0

�N1�z�dz � 0: �19�

At the two boundaries z � 0 and z � 1, we have

�N1�0� � �N1�1� � ÿ S

12



and in the centre of the cavity

�N1�1=2� � � S

24
:

This exactly describes the enrichment of the center of the cavity in component 1
(the heavier) at the expense of the boundaries when S > 0, or the depletion of
component 1 in the center when S < 0; in the latter case, the boundaries are enriched
in component 1. This has been discussed qualitatively in the introduction. Finally,
from Eq. (14) the pressure ®eld �p�z� (cubic) could be deduced, but this will not be
done here.

4. Linearized equations and boundary conditions

The steady solution described in the previous paragraph can be perturbed

~V � 0�~v; p � �p� �; T � �T � #; N1 � �N1 � n1 �20�

and the equations are linearized into the disturbances ~v; �; # and n1, all dependent on
time and space:
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Taking twice the curl of Eq. (22) in order to eliminate the pressure �, using the
notation W for the vertical component of ~v and r2

x;y for the Laplace operator in the

horizontal plane, r2
x;y �
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, we get
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The normal mode analysis �W ; #; n1� � �W�z�; #�z�; n1�z��ei�kxx�kyy�e�t leads to
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In a ®rst step, we restrict ourselves not only to marginal stability � � 0� i!, but also
to the non-oscillatory marginal stability ! � 0: We shall come back to this point later
in order to verify this strong hypothesis.

Subsequently, Eqs. (28)±(30) reduce to

�D2 ÿ k2�2W ÿ k2RaT#� k2Rasn1 � 0 �31�
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The natural boundary conditions for rigid and perfectly conducting walls are

W � DW � # � 0 at z � 0 and 1 �34�

associated with boundary conditions for n1, deduced from Eq. (13), namely

Dn1 � S

2
D# � 0 at z � 0

Dn1 ÿ S

2
D# � 0 at z � 1:

�35�

These boundary conditions are `̀ non-symmetrical''. Therefore we de®ne a new ®eld
� by:

S� � n1 � S
1

2
ÿ z

� �
# �36�

such that the boundary conditions (35) are transformed into

D� � 0 at z � 0 and 1: �37�



With this new ®eld, differential equations (31)±(33) are transformed into

�D2 ÿ k2�2W ÿ k2 RaT � RS

1

2
ÿ z

� �� �
#� k2RS� � 0 �38�

�D2 ÿ k2�#�W � 0 �39�

�D2 ÿ k2�� ÿ Le
1

2
ÿ z

� �
W � 0 �40�

W � DW � # � D� � 0 at z � 0 and 1; �41�

where RS stands for the product Ras S:

RS � g�N0
1 N0

2 h3D�T2
0

a�
: �42�

5. Galerkin technique, trial functions and numerical results

A very simple choice for W, # and � satisfying the conditions (41) could be

W �
XN

i�1

Ai sin�z sin i�z �43�

# �
XN

i�1

Bi sin i�z �44�

� �
XN

i�1

Ci cos�iÿ 1��z: �45�

The reason for the expansion in cos�iÿ 1��z is to consider a constant term C1 in �.
The application of the Galerkin technique is classical, and no more details will be
given here. The MAPLE software was used for the symbolic calculations of the
residues and of the 3N � 3N determinant.

Without the thermodiffusion effect �RS � 0� we already ®nd with N � 2, Racrit
T � 1825,

i.e. a discrepancy of only 7% from the exact value 1708. This accuracy is suf®cient,
considering the experimental error on a Rayleigh number which is of the same order
of magnitude (say 1% on each of the parameters �;�T ; h; a and �). We have
calculated the variation of the critical point with RS. However, results will not be given
here with the trigonometric sets.

Indeed, it is well known from the usual Benard problem that a polynomial expansion
yields a much better result, namely Racrit

T � 1750 instead of 1825 at the lowest level of



approximation, and that the convergence of Racrit
T is much faster. Therefore the

following set is more suitable:

W �
XN

i�1

Aiz
2�1ÿ z�2 zÿ 1

2
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�46�

# �
XN

i�1

Biz�1ÿ z� zÿ 1

2
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�47�

� � C1 � C2 1ÿ 3

2
z2 � z3

� �
�
XN

i�3

Ciz
2�1ÿ z�2 zÿ 1

2

� �iÿ3

: �48�

In writing a polynomial expansion for �, we take care that � 6� 0 at the boundaries
by putting a constant C1, and that the lowest approximation such that D� � 0 (z � 0
and 1) is cubical �7 1ÿ 3

2
z2 � z3

ÿ �
. This justi®es the choice (48).

Three approximations were used, namely N � 2; 4 and 6, since at each higher
approximation, we want to add an odd and an even function for W ; # and �. Indeed the
eigenfunctions do not fall into two noncombining groups of even and odd functions
owing to the 1

2
ÿ z

ÿ �
term in differential equations (38)±(40). At each level of approx-

imation the symbolic calculation of the 3N � 3N determinant was achieved using the
MAPLE software. Then, terms in the different powers of RS were collected. We
veri®ed that only even powers of RS were present in the determinants. This implies
that opposite values of RS would produce the same critical thermal Rayleigh number.
In other words, the critical Rayleigh number is symmetrical with respect to the RS � 0
line.

Numerical results are listed in Table 1 and the converged values are displayed in
Figure 1 only up to jRSj � 350 (the paths Oa, Ob, Oa0,Ob0 correspond to experiments ±
see discussions x 6 below). From the computed points shown in Figure 1, the variation
of RaT is (to a good approximation) given by:

Racrit
T � 1705:2ÿ 3:6741 10ÿ2R2

S � 1:2375 10ÿ8R4
S: �Le � 100� �49�

This is suf®cient for comparison between experiments, since for RS � 0 we ®nd
Racrit

T � 1705:2 instead of 1708. A lower approximation (i.e. parabolic) is less suitable
because it gives Racrit

T � 1687 for RS � 0. Before ending this paragraph concerned
with numerical results, we would like to come back to the hypothesis of non-
oscillatory marginal stability � � 0. First of all, in the two-component Benard problem
with constant Soret coef®cient [3], the ®rst bifurcation may be non-oscillatory or, on
the contrary, of Hopf type, depending on the sign of DT=D: When DT=D > 0, a
destabilizing case when the system is heated from below, it has been demonstrated that
the principle of exchange of stability holds. However, when DT=D < 0, a stabilizing
effect when the system is heated from below, a Hopf bifurcation characterized by its
frequency !, is observed provided that jDT=Dj exceeds a given value. Remembering
also the Benard problem with rotation or with a magnetic ®eld [4], the critical
Rayleigh number increases with the so-called Taylor number measuring the Coriolis



forces, or the so-called Hartmann number measuring the intensity of the Lorentz force.
In both cases `̀ overstability'' (using the old nomenclature of Chandrasekhar), or a
Hopf bifurcation is found, but once more provided that the stabilizing forces exceed a
given value, itself depending on the Prandtl number. Summarizing, an oscillatory onset
of convection in liquid layers heated from below is observed, in all cases studied up to
now, only when a stabilizing force is applied. In the problem studied in the present
paper, the Soret effect has a destabilizing effect, and therefore a Hopf bifurcation is not
expected on the basis of the preceding observations, but of course this is not a proof.
Therefore in Eqs. (28)±(30) we leave � as a possible complex eigenvalue and next we
use the new ®eld � de®ned in Eq. (36). As a matter of fact, Eqs. (38)±(40) will be
modi®ed. They now read

�D2 ÿ k2�2W ÿ �

Pr
�D2 ÿ k2�W � k2 RaT � RS

1

2
ÿ z

� �� �
#� k2RS� � 0

�50�
�D2 ÿ k2 ÿ ��#�W � 0 �51�

�D2 ÿ k2 ÿ �Le�� � �Le
1

2
ÿ z

� �
#ÿ Le

1

2
ÿ z

� �
W � 0: �52�

We now use the same Galerkin technique and the same expansions as before. The new
determinant is a function of RaT , RS, k, Le and �; the goal being eventually to ®nd an

Table 1. Relation between Rs and RaT on the neutral stability curve, together with critical
wavenumber. Le � 100.

N � 2 N � 4 N � 6

Rs Racrit
T kcrit Racrit

T kcrit Racrit
T kcrit

0 1749.98 3.117 1708.55 3.117 1707.762 3.117
10 1746.62 3.12 1704.82 3.12 1704.04 3.116
40 1696.79 3.10 1648.92 3.11 1648.24 3.11
60 1630.55 3.09 1574.58 3.10 1574.03 3.10

100 1419.94 3.05 1338.14 3.06 1337.86 3.06
140 1107.76 2.98 987.28 3.01 987.06 3.01
160 914.72 2.94 770.08 2.97 769.72 2.97
180 697.68 2.90 525.65 2.94 525.00 2.94
200 457.13 2.85 254.45 2.89 253.32 2.89
220 193.50 2.79 -43.12 2.85 ÿ44.94 2.85
240 ÿ92.78 2.74 ÿ336.71 2.80 ÿ369.42 2.80
260 ÿ401.39 2.68 ÿ716.02 2.74 ÿ719.85 2.74
280 ÿ732.02 2.62 ÿ1090.83 2.68 ÿ1096.00 2.69
300 ÿ1084.00 2.55 ÿ1490.99 2.62 ÿ1497.70 2.63
350 ÿ2059.62 2.38 ÿ2601.87 2.46 ÿ2613.17 2.47
400 ÿ3168.65 2.22 ÿ3870.86 2.30 ÿ3887.50 2.31
450 ÿ4411.80 2.06 ÿ5299.33 2.15 ÿ5321.67 2.16
500 ÿ5789.78 1.91 ÿ6889.10 2.00 ÿ6917.21 2.01
600 ÿ8956.37 1.65 ÿ10558.90 1.75 ÿ10598.18 1.76
700 ÿ12676.44 1.44 ÿ14889.82 1.55 ÿ14939.34 1.55

1000 ÿ27206.00 1.03 ÿ31884.45 1.13 ÿ31960.08 1.13



oscillatory instability � � 0� i! at a Rayleigh number RaT smaller than that at which
non-oscillatory marginal stability � � 0 is observed.

Thus, at prescribed values of RS, Le and k we scanned a large range of thermal
Rayleigh numbers (from zero up to several tens of thousands) and asked for all the
eigenvalues � at a given level of approximation in the Galerkin technique. The most
dangerous eigenvalue, i.e. with a real part changing sign when scanning a very large
range of RaT ; was always real. Some complex conjugate roots � � �R � i! did
appear, but always with a negative real part. Thus we conclude that we possess
`̀ numerical proof'' of non-oscillatory marginal stability.

6. Discussion

In any experiment, we start with the equilibrium state, i.e. no temperature difference,
with a mean temperature such that DT=D � 0 (e.g. 12 �C for a 0.5M/1 NaCl aqueous

Fig. 1. Variation of Racrit
T with RS for Le � 100.



solution). The temperature difference is increased by steps. That means that in one
experiment we follow (Figure 1) the parabolic path Oa or Ob when we heat from
below, depending on the spacing h together with the values of the physical parameter
of the solution (or Oa0 or Ob0 if we heat from above) since, due to the �T2

0 in RS, the
latter parameter increases more rapidly than RaT : The intersection of the different
paths with the critical curve gives the experimental critical points �Racrit

T ;Rcrit
S � with a

critical thermal Rayleigh number always smaller than 1707.762 if we heat from below.
When we heat from above �RaT < 0� the absolute value of Racrit

T may be very large
(very negative, like in an experiment described by the path Ob0) since the destabilizing
solute gradient (more or less pronounced) has to oppose a stabilizing temperature
gradient. On the other hand, we would like to de®ne a non dimensional parameter
characterizing the Soret effect in our particular situation, which does not contain the
imposed temperature gradient (as is the case with RS), which only re¯ects the physical
properties of the solution similar to the separation ratio  for systems with constant
Soret coef®cient DT=D and de®ned as:

� �

�
N0

1 N0
2

DT

D
: �53�

Let us recall here that this separation ratio represents the contribution of the salt
gradient ���N1=h to the density gradient ��; relative to the contribution of the
temperature gradient ÿ���T=h:

� ÿ���N1

���T
; �53 bis�

where ��N1=��T � ÿN0
1 N0

2 DT=D:

Here, we may not simply replace DT=D by D�T ÿ T0� in (53) because T is space
dependent. From dimensional arguments, there must exist a non-dimensional quantity:

� �

�
N0

1 N0
2 D � Tr�ef �54�

that characterizes the Soret effect, in which a suitable `̀ reference temperature'' Tref is
representative of the physical parameters of the solution, and not dependent on the
imposed temperature gradient which is continuously varied in an experiment. It seems
that Tref � a�=�gh3 is a good choice. Thus we generalize the notion of separation
ratio in our problem by de®ning

� �

�
N0

1 N0
2D

a�

�gh3
: �55�

We arrive at the same conclusion considering that RaT is proportional to �T0 and RS is
proportional to �T2

0 . It follows that RS is proportional to Ra2
T . Let us write:

RS � Ra2
T � : �56�



If we put the de®nition of RS and RaT into (56), then de®nition (55) for  is found
again. In other words, this simply means that we could use other scalings for the
dimensional quantities than the ones used in Sect. 2. In particular we could scale the
temperature not by �T0; but by a�=g�h3, and the mass fraction by a�=g�h3. These
scalings were adopted by LuÈcke's group for example [5]. With these new scales, it
may be veri®ed that Eqs. (7) and (9) are unaffected, whereas Eqs. (8) and (1000)
become

@~V

@t
� ~V � r~V � ÿrp� Prr2~V � Pr�T ÿ N1�~k �57�

@N1

@t
� ~V � rN1 � 1

Le
�r2N1 �  T � r2T �  �rT�2�: �58�

In these new equations the thermal Rayleigh number has disappeared, but is now in the

steady temperature gradient such that:
@�T

@z
� ÿ1 is replaced by

@�T

@z
� ÿRaT and thus

the thermal Rayleigh number is reintroduced into the perturbation equations via the
nonlinear term ~V � rT in the energy equation instead of in the momentum equation.
We do not feel it is necessary to reformulate the eigenvalue problem, so we simply
use the transformation (56) in Eq. (49), and get a good approximation (i.e. for
ÿ3000 < RaT < �1750).

ÿ1:2375 10ÿ8Ra8
T

4 � 3:6741 10ÿ2Ra4
T

2 � RaT ÿ 1750 � 0: �Le � 100�
�59�

For any value of 	, we ®nd the two interesting (i.e. the smallest in modulus) real roots
for RaT (one positive that tends to 1705 when 	! 0, and one negative that tends to
ÿ1 when 	 becomes small). These two roots are given in Table 2. Thus we may
easily transform Figure 1 into Figure 2, more appropriate for comparison with

Table 2. Variation of critical thermal
Rayleigh numbers with  .

Ra
�2�
T Ra

�1�
T

0.00000 ± 1705.0
0.00001 ÿ7178.0 1676.0
0.00002 ÿ4630.0 1607.0
0.00004 ÿ3031.0 1448.0
0.00006 ÿ2381.0 1313.0
0.00008 ÿ2012.0 1208.0
0.00010 ÿ1768.0 1123.0
0.00020 ÿ1193.0 869.0
0.00040 ÿ813.9 652.2
0.00060 ÿ653.5 545.6
0.00080 ÿ560.1 479.2
0.00100 ÿ497.4 432.7



experiments. Indeed, for a given solution, 	 may be computed from the knowledge of
the physical properties. Next the two critical thermal Rayleigh numbers are deduced
from Eq. (59).

7. Experimental relevance

Let us now proceed to some estimations concerning the critical temperature difference
in experiments on the onset of convection in H2O-NaCl (0.5 M/1) solutions, compared
to what is expected in pure water, all the experiments being conducted at a mean
temperature of 12 �C.

The following properties at To � 12 �C are found in tables [6] for pure water:
Density: � � 0:9994974 g=cm

3

Viscosity: � � 1:235� 10ÿ2 g=cm � sec
Kinematic viscosity: � � 1:236� 10ÿ2 cm2/sec

Fig. 2. Variation of Racrit
T with  for Le � 100.



Thermal conductivity: � � 5:83� 10ÿ3 Joule/sec � cm �K
Speci®c heat: Cp � 4:1893 Joule/g �K
Thermal diffusivity: a � 1:392� 10ÿ3 cm2/sec

Prandtl number: Pr � �
a
� 8:9

Expansion coef®cient: � � 1

�

@�

@T
� 1:1408� 10ÿ4 Kÿ1.

Therefore we estimate the Rayleigh number as:

RaT � 6504:6��T � h3

or from its critical value Racrit
t � 1708

�Tcrit � h3 � 0:26258��C � cm3�:
Thus, a 4-mm-deep layer would give �Tcrit � 4:1 �C, a very convenient value to
verify and compatible with a Boussinesq approximation since the cold plate would be
at a temperature close to 10 �C, thus far from 4 �C where the expansion coef®cient of
pure water vanishes.

Concerning the salt solution, most values were taken from tables [6], followed by
interpolation, simply because the required quantities are not given exactly at 12 �C, but
rather at 5, 10, 15, 20 �C etc. Also the mean mass fraction of salt (N0

1 � 0:0287,
corresponding to 0.5 M/1 or 29.25 gr/1) is such that the physical parameters are not
given at this precise mass fraction or concentration. We have found relevant
parameters in tables at different molalities in mol/kg of water, as e.g.: 0.1; 0.25; 0.5;
0.75 etc.

Thus, one has to interpolate between values given in tables and this can be dangerous,
not so much for the primary properties like viscosity, thermal conductivity, density, but
certainly for their derivatives, in particular the two expansion coef®cients � and �.
Therefore the densities, and consequently the expansion coef®cients, were measured
in our lab using a vibrating quartz U tube densitometer manufactured by PAAR with a
resolution of 10ÿ6 g/cm3. The solution was prepared by weighing 2.87 g NaCl and
97.13 g water, corresponding exactly to a salt mass fraction of N0

1 � 0:0287 and a
concentration of 0.5 M/1. The following densities were obtained:

T(�C) ��g=cm3�
11 1.020485
11.5 1.020398
12 1.020308
12.5 1.020214
13 1.020118

Thus � � �18:00� 0:16�10ÿ5 Kÿ1.

Similarly, by changing the mass fraction of salt slightly, keeping To � 12 �C

� � 1

�0

@�

@N1

� �
T�12

� 0:718:



Let us note that the thermal expansion coef®cient of the salt solution is 50% higher
than that of pure water, owing to the fact that the density maximum at 4 �C disappears
for the salt solution. Vergaftik [6] gives the viscosity of NaCl solution with mass
fractions from 5% to 25% between ÿ10 �C and �80 �C. Interpolation is thus possible:

� � 1:28 cp or � � 0:0125 cm2=sec. The dynamic viscosity � increases by� 4% due
to the addition of salt, but so does the density. As a consequence, the kinematic
viscosity is almost unchanged.

The thermal conductivity � can be estimated from the International Critical Tables

� T ;N0
1

ÿ � � �0�T� 1ÿ 248 � 10ÿ5 � N0
1

ÿ �
;

where �0�T� is the temperature dependent thermal conductivity of pure water.

Finally for the solution at 12 �C:
� � 0:0058 watt/cmK (almost the same as pure water)

Cp � 4:023 J/gr K

and a � 0:00141 cm2/sec.

The last parameter still to be estimated is D (cf Eq. (6)). From ®gure 4 of Ref [1], we
estimate with reasonable accuracy:

DT

D
� ÿ0:001 Kÿ1 at T � 2 �C

DT

D
� �0:001 Kÿ1 at T � 23 �C

and therefore:

D � 0:002

21
� 0:95 10ÿ4 Kÿ2:

We are now able to estimate the parameter  de®ned by Eq. (55) for a 4 mm layer

� 1:6475� 10ÿ5:

One has also to keep in mind that the Lewis number Le is not exactly 100 for the salt
solution and therefore the results presented in Table 1 cannot be used for the salt
solution. The isothermal diffusion coef®cient is estimated to be:

D � 1:00207 10ÿ5 cm2=sec:

Therefore,

Le � 1:41 10ÿ3

1:00207 10ÿ5
� 140:7:



We recalculated Racrit
T for Le � 140 and the results are given in Table 3 and displayed

in Figure 3 for ÿ3000 < RaT < 1750: Instead of (59) we now have

ÿ4:3843 10ÿ8 Ra8
T

4 � 7:1510 10ÿ2 Ra4
T

2 � RaT ÿ 1705 � 0: �Le � 140�
�60�

If we put the value  � 1:6475� 10ÿ5 corresponding to the 4 mm salt solution and
solve (60) for RaT ; we ®nd:

Ra
�1�
T � 1583

Ra
�2�
T � ÿ4242:

It happens that the decrease in Racrit
T from 1708 to 1583 is not so pronounced as we

could have hoped (even if it corresponds to �T � 2:47 �C). On the other hand, the
second solution (heating from above) corresponds to �T � ÿ6:62 �C; a result which
should be easy to check.

By decreasing the depth of the layer, one increases  .

Let us try a 3 mm layer, which for pure water corresponds to �Tcrit � 9:7 �C. The new
value is now:

� 3:9052� 10ÿ5

Table 3. Relation between RS and RaT on the neutral stability curve, together with critical
wavenumber. Le � 140.

Le � 140 N � 2 N � 4 N � 6 N � 8

RS Racrit
T kcrit Racrit

T kcrit Racrit
T kcrit Racrit

T kcrit

0 1749.976 3.116 1708.550 3.116 1707.762 3.116 1707.762 3.116
10 1743.50 3.115 1701.28 3.115 1700.50 3.115 1700.50 3.11
40 1646.55 3.094 1592.41 3.099 1591.85 3.099 1591.83 3.10
60 1518.00 3.067 1447.99 3.078 1447.60 3.078 1447.59 3.07

100 1111.64 2.98 991.07 2.99 990.75 3.00 990.69 3.01
140 514.48 2.86 317.85 2.90 316.97 2.90 316.66 2.90
160 147.54 2.78 ÿ96.71 2.84 ÿ98.72 2.84 ÿ98.93 2.84
180 ÿ263.45 2.70 ÿ561.91 2.77 ÿ565.32 2.77 ÿ565.61 2.77
200 ÿ717.59 2.62 ÿ1076.99 2.70 ÿ1082.29 2.69 ÿ1082.70 2.69
220 ÿ1214.20 2.53 ÿ1641.70 2.60 ÿ1649.13 2.61 ÿ1649.66 2.61
240 ÿ1752.84 2.43 ÿ2255.61 2.51 ÿ2265.57 2.51 ÿ2256.26 2.52
260 ÿ2333.24 2.34 ÿ2918.81 2.42 ÿ2931.62 2.43 ÿ2932.42 2.43
280 ÿ2955.34 2.25 ÿ3631.44 2.33 ÿ3647.28 2.34 ÿ3648.22 2.34
300 ÿ3619.20 2.16 ÿ4393.77 2.24 ÿ4412.77 2.25 ÿ4413.85 2.25
350 ÿ5462.55 1.94 ÿ6519.13 2.03 ÿ6546.25 2.04 ÿ6547.66 2.04
400 ÿ7571.02 1.75 ÿ8961.89 1.85 ÿ8997.00 1.86 ÿ8998.65 1.85
450 ÿ9947.82 1.58 ÿ11725.74 1.68 ÿ11767.42 1.67 ÿ11770.28 1.68
500 ÿ12595.45 1.45 ÿ14813.07 1.54 ÿ14862.96 1.55 ÿ14865.06 1.55
600 ÿ18714.02 1.22 ÿ21963.32 1.32 ÿ22026.22 1.33 ÿ22028.54 1.33
700 ÿ25922.57 1.05 ÿ30417.69 1.15 ÿ30492.39 1.12 ÿ30482.14 1.12

1000 ÿ54183.02 0.74 ÿ63613.85 0.83 ÿ63720.23 0.83 ÿ63722.01 0.84



and the two solutions of (60) are:

Ra
�1�
T � 1347 ��T � 4:98 �C�

Ra
�2�
T � ÿ2519 ��T � ÿ9:31 �C�:

And for a 2 mm layer, which for pure water gives (mathematically) �Tcrit � 32:8 �C
(an impossible experiment around 12 �C)

� 1:3180� 10ÿ4

Ra
�1�
T � 899 ��T � 11:22 �C�

Ra
�2�
T � ÿ1250 ��T � ÿ15:60 �C�:

Fig. 3. Variation of Racrit
T with RS for Le � 140.



All these results suggest typical experiments using e.g. Laser-Doppler velocimetry to
detect the onset of convection, and also to verify the wavenumber by recording the
velocity component along the horizontal coordinate. Of course, one important
remaining problem is to know which velocity component to measure and where to
measure it, when watching for the onset of convection.

Normally, the type of experiments performed by Lhost and Platten [7] on water-
alcohol systems could be repeated for the salt solution but, with small spacings like 2
or 3 mm, it is very unlikely that the vertical velocity could be recorded because the two
laser beams would hit the lower and upper boundaries. There is of course no problem
in measuring the horizontal velocity component Vx, but at which elevation z? Without
the thermodiffusional effect �D � 0�; the solution is symmetrical and one has to
measure Vx at z � 1=4 or 3=4. With the Soret effect, the solutions are no longer
symmetrical. When D > 0, the middle layer with its higher salt concentration rests on
top of the bottom layer with its lower concentration. Thus convection should be
stronger near the lower boundary than near the upper boundary. Thus, in order to

Fig. 4. Variation of the horizontal velocity Vx with elevation z:



correctly catch the onset of convection, one should have a good knowledge of the
eigenfunctions of the linear problem. Computing the eigenvector (Ai;Bi;Ci), see
Eqs. (43±45), we may construct W and, from the continuity equation, Vx , and therefore
the streamlines. Results are given in Figure 4 for a very unsymmetrical case
(RS � 330; RaT � ÿ5000; Le � 140), the goal being to show that Vx vanishes at
z � 0:38 (instead of 0.5) and that it is preferable to measure Vx near the hot boundary
around z � 0:16 (instead of z � 1=4 or 3=4).

8. Conclusions

We have shown that a non-Boussinesq Soret effect with a zero mean Soret coef®cient
always destabilizes a two-component liquid layer, simply because there is in some part
of the layer an unstable concentration strati®cation, independent of whether heating is
from below or from above. This effect has been quanti®ed using a linear hydro-
dynamic stability theory approach, and experiments are shown to be, if not easily
achievable, at least possible. Hopefully such experiments will be undertaken in the not
too distant future.
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