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Introduction

As an important innovation of the last decades, there exists nowadays an intrinsically
discrete physical theory called Discrete Mechanics (DM). It is intrinsically discrete
since it does not originate in the discretization of continuous equations but is rather
built upon already discrete fundamental principles. DM is a new, variational theory
of classical motion. Our leading assumption in examining the implications of DM for
the representation of time is that DM is a “good” physical theory, at least as good as
our best physical theories for all practical purposes, and even better, because it allows
for easier and more precise predictions due to its straightforward implementation on
computers. This assumption will be argued for below in the paper.

The purpose of the paper is to examine the consequences of adopting of this
discrete physical theory on the way we can represent time in physics. We focus on
two main consequences. The first is the use of a discrete representation of time, the
second is the representation of time as a dynamical variable rather than a parameter. In
his seminal paper on DM, the Nobel Prize winner Tsung Dao Lee raises the following
questions:

In place of treating time as a continuous parameter, we may ask: (1) Can
time be a discrete parameter (discrete time formulation)? (2) Can time be
discrete and treated as a bona fide dynamical variable (discrete mechanics)?
(Lee 1983, p. 217)

We take on Lee’s questions and analyze the implications of positive answers to both.

In the first section of the paper, we give a brief presentation of DM, emphasizing
that it can be considered a genuine physical theory, not merely a numerical method.
In section 2, we argue that DM points out that the continuous representation of time
is dispensable and discuss the implications of this claim. In section 3, we explain why
the time symbol is a dynamical variable in DM and present some implications of this
original feature of DM.
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1 Discrete Mechanics

In order to answer the question we are interested in about the implications of using
a discrete representation for time, we first present in some details the way scientists
introduce discrete representations of time in their models. In section 1.1, we review
various discretization practices and in section 1.2, we focus on the recent technique
of variational integrators, which leads us to present Discrete Mechanics, the theory
we are going to analyze further in the remaining of the paper. Finally, in section 1.3,
we make clear that DM is not merely a numerical technique but has to be viewed as a
discrete physical theory or, at least, as a discrete formulation of classical mechanics.

1.1 Discretizing time in computer models

All attempts at building up a discrete theory of mechanics originate in the computer
era, that is, in a context in which discrete models proliferate. In order to better capture
the specificity of DM, it is useful to first present how time and other magnitudes are
discretized in order to benefit from the machines’ computational power.

For sure, computers are a tremendous help for solving the equations given by the
physical theories. However, computational power has a cost, as using computers re-
quires to transform the continuous equations into discrete ones because they can only
deal with discrete values. As a result, contemporary modeling practice is through-
out defined by the need for designing algorithms to transform continuous equations
into discrete ones that can be solved by computer algorithms. In this section, we first
present some common types of numerical integrators and we compare their respective
merits, focusing on the more efficient ones, the variational integrators.

1.1.1 Types of integrators

The transformation of continuous equations into discrete ones is obtained by numer-
ical integrators. Among the different numerical integrators, we focus on the simplest
ones: the forward/explicit Euler integrator and the backward/implicit Euler integra-
tor. The first numerical integrator transforms the time derivative dx/dt = y into the
discrete equation (xx41 — xx)/h = yi. With the second integrator, the time derivative
dx/dt =y is transformed into the discrete equation (xg1 —xx)/h = yri1-

Consider, as an example, the motion equations of a simple pendulum solved with
these integrators. Two differential equations have to be transformed. The first one
represents the definition of the angular speed dgq/dt = v, with q is the pendulum’s
angle with the vertical. The second equation represents the evolution of the angular
speed with respect to the size of the pendulum 1 and the acceleration of gravity g:
dv/dt = —g/Isin(q). For each integrator, both differential equations are transformed
into discrete equations according to the previous rules. With the forward Euler inte-
grator, the differential equations are transformed into the discrete equations:

(g1 —qi)/h=vi and (v —vi)/h = —g/lsin(qx) (1)

With the backward Euler integrator, they are transformed into:
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Fig. 1 The simple pendulum in the phase space (g, v) solved with three Euler integrators: forward Euler
(left), backward Euler (middle), symplectic Euler (right). For each integrator, there are six different trajec-
tories that correspond to different initial conditions. The bold lines in each of the three figures correspond
to the same initial condition. (Stern & Desbrun 2008, p. 77)

(@1 —q)/h=viy1 and  (vipr —vi) /h = —g/lsin(qr41) 2)

Let us introduce another numerical integrator to solve the simple pendulum: the

variational/symplectic Euler integrator. It is a mix of the first two Euler integrators

since the first differential equation is solved with the backward integrator and the sec-

ond equation, with the forward Euler integrator. In this case, the differential equations
are changed into:

(@r1 —q)/h=vir1 and  (viyr —vi) /b= —g/lsin(qy) 3)
1.1.2 Comparison

Numerical tests of have been performed by Stern and Desbrun (2008) in order to com-
pare the three Euler integrators. The result of the comparison is presented in Figure 1,
in which the phase space trajectories of the pendulum are computed for six different
initial conditions for each integrator. Continuous Newtonian mechanics requires that
the trajectories of the pendulum be closed curves since it is a conservative system.
However, as we can see on the left, the trajectories obtained with the forward Euler
integrator are increasing spirals due numerical instability. With the backward Euler
integrator (in the middle), on the contrary, the trajectories are decreasing spirals due
to numerical dissipation. Only the symplectic Euler integrator (on the right) exhibits
the right behavior: the trajectories are closed curves, which means that the energy of
the pendulum is conserved.

Hairer et al. (2002) performed similar numerical tests for the computed trajecto-
ries of the planets of a reduced solar system. Numerical computations of the motion
of the five outer planets relative to the Sun, over a time period of 200 000 days, are
carried out with the forward, backward and symplectic Euler integrators (Figure 2).
They lead to similar behaviours. With the forward integrator, the trajectories are insta-
ble: the planets leave their stable orbits. With the backward integrator, the trajectories
are not even periodic: the planets collapse on the sun.

As shown in the figures, variational integrators generally give better results than
traditional ones. The main reason for this difference is that most traditional algo-
rithms are non-symplectic: they do not preserve the geometric properties of the sys-
tem’s dynamics. This is especially inconvenient when the represented systems are
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explicit Euler, h = 10 implicit Euler, h = 10

Fig. 2 The trajectories of the planets of a reduced solar system computed with three Euler integrators:
forward Euler (at the top left), backward Euler (at the top right), symplectic Euler (below). A 10 day
time step is used with the forward and backward Euler integrators while a 100 day step is used with
the symplectic Euler. For each integrator, the initial conditions correspond to the positions of planets on
September 5, 1994 at 0h0O (Hairer et al. 2002, p. 14).

conservative. In this case, the problem of the traditional algorithms is that they can-
not be conservative unless they include artificial mechanisms guaranteing a not-too-
incorrect resulting behavior. However, introducing a mechanism of this type is bound
to distort the results. By constrast, variational integrators are symplectic: they nat-
urally preserve the global geometry of the system’s dynamics and do not need any
artificial, parasitic mechanism to remain stable.

1.1.3 The value of variational integrators

Using traditional algorithms requires one to apply the following strategy: first, write
down local, specific equations and second, discretize these specific equations. The
price of this strategy is the risk of introducing numerical artefacts that are sometimes
necessary to guarantee correct global properties. By contrast, using variational in-
tegrators allows one to focus on the correct representation of global structures and
invariants. Kang Feng, who has been a major contributor to the field of variational in-
tegration, realized in the 1970’s that the choice between the two strategies has major
consequences. As his brother emphasizes in the foreword of a Kang Feng’s posthu-
mous book:

[Kang Feng] fully realized that different mathematical expressions for the
same physical law, which are physically equivalent, can perform different
functions in scientific computing [...]. In this way, for classical mechanics,
Newton’s equations, Lagrangian equations and Hamiltonian equations will
show a different pattern of calculations after discretization. Because the Hamil-
tonian formulation has a symplectic structure, he was keenly aware that, if the
algorithm can maintain the geometric symmetry of symplecticity, it will be
possible to avoid the flaw of artificial dissipation of this type of algorithm and
design a high-fidelity algorithm. (Kang Feng and Mengzhao Qin 2010, p. x)
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At first view, the difference between traditional and variational algorithms might
appear a purely technical one, only relevant to applied mathematics. However, this
judgment would be a reductive conception of the field of discretized models. The
development of this field has indeed given rise to researches that are not confined
to applied mathematics but also pertain to physical theory. We present these recent
advances in the next section.

1.2 Variational integrators and Discrete Mechanics

Discrete Mechanics, which is our main focus in this paper, originates in two research
trends. The first one is based on the need to design discrete integration algorithms,
and the second one is what we shall call the “geometrical turn” of physical theories.
Since the second half of the twentieth century, modern geometrical formulations of
Lagrangian and Hamiltonian mechanics have been developed and, nowadays, dif-
ferential geometry is the “mother tongue” of physical theories (Butterfield 2006a;
2006b). As a result, it is common to consider the geometric structure of the investi-
gated systems as very important. This is the reason why discrete models preserving
this geometric structure are now favored over other models. As Stern and Desbrun
have it,

the very essence of a mechanical system is characterized by its symmetries
and invariants. Thus preserving these symmetries and invariants (e.g., certain
momenta) into the discrete computational setting is of paramount importance
if one wants discrete time integration to properly capture the underlying con-
tinuous motion. (Stern & Desbrun 2008, p. 75)

Discrete mechanics results from the will to respect the global geometrical of me-
chanical behaviors and from the enhanced power of the induced integrator

Under its Lagrangian form, classical mechanics can be treated from a geometri-
cal point of view as it is grounded on a variational principle, the principle of least
action. In Lagrangian mechanics, the trajectories of bodies are viewed as geodesic in
a state space. Discrete mechanics also adopts a geometrical point of view to describe
mechanical behaviors as it is but a discrete version of Lagrangian mechanics. Conse-
quently, the link between variational integrators and discrete mechanics is strong, as
emphasized by Stern and Desbrun in the following quote:

The driving idea behind discrete geometric mechanics is to leverage the vari-
ational nature of mechanics and to preserve this variational structure in the
discrete setting. [...] [I]f one designs a discrete equivalent of the Lagrangian,
then discrete equations of motion can be easily derived from it by parallel-
ing the derivations followed in continuous case. In essence, good numerical

! We would like to emphasize that, at the beginning of the 1980s, Tsung-Dao Lee (1983, 1987) devel-
oped a Discrete Mechanics for another reason still. It was to solve the well-known divergence problems of
Quantum Field Theory. He wanted to build up a Discrete Mechanics conceived as a first step toward fully
discrete fundamental theories in which divergences could not occur. The idea was first to try to develop
one discrete theory in order to generalize it to others. To our knowledge, it did not go very far toward QFT.
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methods will come from discrete analogs to the Euler-Lagrange equations
—equations that truly derive from a variational principle. (Stern & Desbrun
2008, p. 79)

Among the discrete versions of Lagrangian mechanics, some are more or less ad
hoc, but DM is anything but ad hoc as its starting point is the discretization of the
variational principle itself. Having such a sound foundation is the main virtue of DM
since it enables its users to preserve the geometrical properties of variational mechan-
ics. Consequently, the discrete motion equations derived from the discrete principle
— the discrete Euler-Lagrange equations — also preserve the geometrical properties of
mechanical behaviors. Most importantly, symplecticity and other physical properties
like the conservation of momenta are preserved in DM.

In order to make clear how DM is linked with variational integrators, we introduce
a few formulae in order to present how the simple pendulum is treated within DM. In
the continuous Lagrangian mechanics, the equations of motion are derived from the
minimization of the action S.. It is defined as the integral over time of the Lagrangian
L. of the system: S, = [ L.dt. In the case of the simple pendulum, the Lagrangian is:

1
L .= imlzv2 +mglcos(q) 4)

with g the pendulum’s angle with the vertical, v = dq/dt, the angular speed, m the
mass of the body, / the length of the pendulum, and g the acceleration of gravity. The
minimization of S, leads to the equations of motion introduced in section 1.1.1:

dv/dt = —g/Lsin(q) 3

Similarly, in DM, the discrete action S; is defined as S; = Y. L;h where L; is the
discrete Lagrangian of the system and S, its sum over discrete timeEl In the case of
the simple pendulum, the discrete Lagrangian can be defined as:

Lg = 1/2mi*v + 1+ mgl cos(g;) (6)

Where the pendulum’s angle is g, and the angular speed vi. 1 = (qrs1 — qx)/h. The
minimization of S, leads to the discrete equation of motion:

(Vks1 —vi)/h = —g/Lsin(qy) (7N

We now see how DM is linked with variational integrators. Equation and the
definition of the discrete angular speed are precisely the discrete equations that cor-
respond to the symplectic Euler integrator introduced in the section 1.1.1.

To sum up, DM is a discrete version of classical mechanics with a discrete least
action principle as first principle, from which the discrete motion equations are de-
rived. These discrete equations are very important in a numerical context. They are

2 We would like to emphasize that there is no single way to define a discrete Lagrangian for a me-
chanical system. The choice of another discrete Lagrangian for the simple pendulum leads to a different
equation of motion that corresponds to another variational integrator. In other words, it can be admitted
that there are as many DMs — or versions of DM — as ways to define discrete Lagrangians. We go back to
this point in the conclusion of the paper.
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variational integrators that, as we have seen in section 1.1.2, lead to very stable com-
putations.

A last point has to be made clear. Two slightly different versions of DM have
to be distinguished: a “standard version” and an “extended version”. Until now, we
have focused on the “standard version”. This version requires constant time step 4.
Time is represented as a series of equally spaced instants, 1, f3, #3 ... t;_1, ... Where
th—t =183 —t) =t —tr_; = ... = h. By contrast, the “extended version” of DM
requires a variable time step /. Within this version, the instants #1, 2, #3 ... #; ... are
not equally spaced.

The standard version is a particular case of the extended version for which the
discrete time step /i is constrained to be constant. This standard version is developed
in order to build variational integrators, like the previous symplectic Euler integrator.
It allows indeed for efficient numerical computation. The extended version is gen-
erally less easy to implement on computers. However, it leads to a more satisfying
theory in the sense that it enables for mechanical systems to have more conserved
quantities. Like the standard version, the extended version preserves symplecticity
and the momenta. But in addition, it preserves energy exactly. J.E. Marsden, one of
the major creators of DM, makes clear how to go from the standard version to the
general theory:

Unlike the standard discrete variational mechanics [...] however, we extend
the framework to include time variations in addition to the usual configuration
variable variations, as in Lee (1983) and (1987). [...] [W]e obtain an extra
equation which exactly ensures preservation of a quantity we can identify
as the discrete energy. In this way, both the definition of the discrete energy
and the fact that it is preserved arise naturally from the variational principle.
(Marsden et al. 2001, p. 463)

As we have seen in this section, energy is reasonably well conserved when the
symplectic Euler integrator based on the standard version of DM is used. This is one
of the main virtues of such integrators with respect to the traditional ones. However,
energy is not exactly conserved within the standard version. Energy oscillates around
a mean value. By contrast, within the extended version, energy is exactly conserved.
In the remaining of the paper, we focus on the extended version as the fundamental
version of DM, the standard version being a simplified version for practical needs.

1.3 DM as a physical theory

As should be clear from section 1.2, the principles governing the development of dis-
crete mechanics are very different from the recipes allowing physicists to implement
their models on a computer. The strategy is not: write out the equations first, and then
find out a way to solve them on the computer, but rather: let us begin with discrete
fundamental equations and find out the solutions of the specific equations within this
general framework. Therefore, we argue that discrete mechanics is a genuine discrete
physical theory rather than a mere set of numerical models or numerical techniques.
This claim agrees with the terminology used by one of the first creator of DM, the
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1957 Nobel Prize of Physics T.D Lee, who calls DM a “new theory” (Lee 1987,
844). In this section, we review some reasons why DM can be considered a genuine
physical theory.

First, DM possesses an empirical content. Its equations can be interpreted as
providing information about physical phenomena. In particular, the discrete Euler-
Lagrange equations can be interpreted as describing the dynamics of mechanical sys-
tems. We present below the cases of two elementary physical systems, a falling body
subjected to the gravitational potential and a harmonic oscillator (Section 2.3.2). We
will see in these examples how DM allows one to represent the temporal evolution of
physical systems.

Current developments of DM strongly suggest that DM is empirically adequate
as continuous classical mechanics is. In other words, DM and continuous mechanics
are empirical equivalent. The first indication of the equivalence is that the equations
of DM tend to the equations of continuous mechanics when discrete time steps go to
zero (D’Innocenzo et al. 1987, p. 246). Therefore, one can assume that if the discrete
time steps are taken sufficiently small, the predictions of DM cannot be distinguished
from those of continuous mechanics. We do not have space enough to discuss this
point. However, to make this point clear, let us take the example of the harmonic
oscillator system. It can be proved that the frequency of the oscillator within DM
differs from the frequency within continuous mechanics by a factor 22(D’Innocenzo
et al. 1987, p. 250). Consequently, if the time step h is taken sufficiently small, the
frequencies are as close to each other as we want and, thus, cannot be distinguished
by any physical measureﬂ

Secondly, let us focus on the way its theoretical statements are linked to each
other. DM has its own first principle: a principle of least discrete action. The laws
of DM, like the discrete equations of motion and the discrete law of conservation of
energy, are deduced from this first principle. Other properties like the symplecticity
of the equations of motion are also deduced form this first principle. As a result, DM
is a physical theory from the point of view of its deductive architecture: it is a set of
hierarchically ordered theoretical statements.

Thirdly, DM allowing for exact results for some its equations provides another
argument in favor of its being a genuine physical theory. For instance, it is possible
to exactly solve, without relying on numerical computation, the equations of motion
of a harmonic oscillator. As we show in section 2, exact results are important in
physical theories because they enable scientists to describe and explain the behavior
of elementary physical systems.

Even though DM possesses some important features of physical theories, it is
unclear whether it is an independent theory from continuous classical mechanics or
rather a formulation thereof. If the latter, DM’s first principle and fundamental laws
would be discrete versions of the principles and the laws of continuous classical me-
chanics rather than autonomous statements. The only difference between DM and
continuous classical mechanics would be notational and would by no means affect
empirical content.

3 We emphasize that there is not a unique DM but a family of DM depending on the (initial) value of
the discrete time step. Thus, when we claim that DM and continuous are empirically equivalent, we mean
more precisely that it exists at least one DM that is empirically equivalent to continuous mechanics.
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The claim that DM has the same empirical content as continuous classical me-
chanics but is differently formulated is consistent with the way DM is used in physics.
The main use of DM is indeed the numerical study of the behavior of mechanical sys-
tems. Consequently, contributors to the development of DM define it explicitly as “a
formulatiorﬂ of mechanics in discrete-time that is based on a discrete analogue of
Hamilton’s principle, which states that the system takes a trajectory for which the
action integral is stationary” (Lee et al. 2009, p. 2001). But DM being a formulation
of classical mechanics rather than an independent theory of classical motion does not
mean that it does not call for analysis. On the contrary, the existence of different,
however equivalent, formulations of a same theory calls for a specific analysis.

Even though they have the same empirical content, different formulations of the
same theory do not say exactly the same about their common domain of phenomena.
They describe them with the help of different equations, requiring different concepts.
For example, the Newtonian formulation of mechanics requires the concept of force
whereas the Hamiltonian formulation requires the concept of energy. Even though
this distinction is not empirically relevant, in the sense that no physical measure could
make any difference, it may be relevant from a theoretical or metaphysical point of
view. Therefore, in order to discuss the metaphysical consequences of a physical
theory, attention has to be paid to its formulations.

For instance, in the case of continuous classical mechanics, J. North argues that,
even though they are empirical equivalent, Lagrangian and Hamiltonian formulations
have “irreconcilable differences’:

Lagrangian and Hamiltonian mechanics may be equivalent for the purpose
of doing classical mechanics. Nonetheless, there are important differences
between them. There are differences in structure. (North 2009, p. 72)

The two formulations are based on different state spaces. The state of a mechan-
ical system is described by the position ¢ and its derivative dg/dt within the La-
grangian formulation while it is described by q and its conjugate momentum p within
the Hamiltonian formulation. The state spaces do not have the same mathematical
structure: the former is a Riemannian manifold and the latter a symplectic manifold.
Even though they are connected by an isomorphism (North 2009, p. 84), the differ-
ence is by no means negligible:

Modern geometric formulations of physics suggest that there is more to a the-
ory’s empirical content than its set of dynamically possible histories. There
is also the statespace in which those histories are traced out. And there is
the structure of that space. The equivalence of theories is not just a matter
of physically possible histories, but of physically possible histories through a
particular statespace structure. Hamiltonian and Lagrangian mechanics are
not equivalent in terms of that structure. This means that they are not equiva-
lent, period. (North 2009, p. 79)

The equivalence is thus only empirical, but does not extend to other aspects.
Similarly, the state space of DM, and more precisely the state space of discrete
Lagrangian mechanics, is different from the state space of continuous Lagrangian

4 We emphasize.
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mechanics. As there is no velocity variable dg/dt within DM, the state spaces have
different structures. In DM, there are only discrete positions at successive instants
qi and gy 1. The notion of speed is not fundamental; rather, motion is represented
by series of discrete positions. Therefore, there are also “irreconcilable differences”
between DM and continuous Lagrangian mechanics. The differences might be even
more irreconcilable than in the case discussed by North since, as Marsden et al. em-
phasize, the state space of DM “is not locally isomorphic to the [...](traditional) La-
grangian state space” (2001, p. 473).

To sum up, even if their predictions cannot be distinguished by physical mea-
sures, DM and continuous Lagrangian mechanics are not equivalent throughout. In
the remaining of the paper, we discuss the implications of the use of DM for the
representation of time.

2 What does it imply to use a discrete representation of time?

As made explicit in Section 1, the use and development of DM relies on the adoption
of a discrete representation of time. In this section, we answer the question: What
does it imply to use a discrete representation of time when doing physics, that is,
when trying to describe, predict and explain physical phenomena? We study three
possible answers to this question in turn. The first tentative answer is that it implies
using equations that are not as fundamental as continuous equations. We dismiss
this answer. The second answer is that it implies to dispense with the mathematical
continuum. We also dismiss this answer and explain why. The last answer we discuss
is that it implies that it is possible to dispense with the continuous representation of
time in physics. As the meaning of this answer is difficult to capture, we first endeavor
to give a precise meaning to the dispensability of the continuous representation of
time in physics. Then we give some arguments showing that this answer is highly
plausible.

2.1 Discrete equations and fundamental laws

It is generally assumed that differential equations, which are continuous, are more
fundamental than difference equations, which are discrete. This opinion relies on
the belief that difference equations necessarily derive from differential equations.
Even though difference equations are pervasive in current physics as well as in other
scientific domains, they are commonly considered as inessential substitutes of the
continuous equations.

For sure, most of the discretized equations that are used on a day-to-day basis
are derived from general, continuous equations associated with a lot of restricting,
idealizing, and approximating hypotheses. They are thus very specific to the model at
hand. However, as it should be clear from Section 1.2, not all difference equations are
model-specific. DM’s difference equations are perfectly general equations, as discrete
mechanics is not devoted to finding out the solutions to specific-purpose models. Here
is the way Lee presents the contrast between differential and difference equations
within DM:
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For more than three centuries we have been influenced by the precept that fun-
damental laws of physics should be expressed in terms of differential equa-
tions. Difference equations are always regarded as approximations. Here, I
try to explore the opposite: Difference equations are more fundamental, and
differential equations are regarded as approximations. (Lee 1987, p. 859)

It is clear from this quote that using a discrete representation of time does not
imply using less fundamental equations within DM. In Lee’s theory, difference equa-
tions are assumed to be the first equations of the theory. Accordingly, differential
equations derive from difference equations. They result from a limit procedure on
difference equations, when the discrete time steps tend to zero. Thus, while in con-
tinuous mechanics differential equations are fundamental and difference equations
result from a discretization procedure, in DM difference equations are fundamental
and differential equations result from a /imit procedure.

2.2 Discrete equations and mathematical continuum

Now that we have dismissed the claim according to which using a discrete repre-
sentation of time necessarily implies using non-fundamental equations, we turn to
the question whether using a discrete representation of time implies dispensing with
the mathematical continuum altogether. The answer to this question is simple and
factual, as DM, although using a discrete representation of time, does not dispense
with real numbers. On the contrary, the restriction to rational numbers would amount
to a dramatic loss in predictive and explanatory power. In order to argue in favor of
these two points, we first show how DM makes use of real numbers. Then, we briefly
describe an older version of DM whose purpose was precisely to dispense with the
mathematical continuum, in order to make the limits of this previous version clear.

In the version of DM we focus on, the discrete time symbol is defined as #; = khy
where k is a natural number and k£ < N, with N fixed, and the time steps h; are real
numbers (Marsden et al. 2001, p. 370); as a result, the “instants” #; are also real
numbers. It is important to recall that when a variable takes its value within a discrete
set, it is not necessarily rational for all that. The discrete set in question may be
composed of real numbers. Thus, the difference between a discrete representation of
time and a representation of time by rationals only is best expressed in terms of the
cardinality of the sets of instants. In the continuous representation, a time interval
is represented by an uncountable infinite set of instants. On contrary, in the discrete
representation, no representation of intervals is available, but only representations of
sets of time points, represented by discrete sets of real numbers.

Let us complete this factual point about the discrete representation of time not
being restricted to rational numbers by pointing out that real numbers play a truly
important role within DM for another reason yet: the proof of certain general results
in DM actually requires the use of real numbers and mathematical operators defined
on real numbers. For instance, a discrete Noether theorem can be proved within DM
by relying on real numbers. It is an important theorem since it states that physical
quantities are conserved when a mechanical system satisfies some symmetry. More
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precisely, Noether theorem refers to differentiable symmetries of the system’s La-
grangian. For instance, if a mechanical system behaves in the same way regardless of
where it is located, the system is symmetric under translations in space. By Noether
theorem, the linear momentum of the system is conserved. Further, if a system is rota-
tionally symmetric, Noether theorem states that its angular momentum is conserved.
As far we know, Noether theorem and its proof, in DM as well as in conventional me-
chanics, require using differential calculus, and, as such, they rely on real numbersﬂ

In order to better appreciate the importance of real numbers in DM, we now
present the limitations that are inherent to an older version of DM whose project
was to precisely dispense with real numbers. It was indeed Donald Greenspan’s pur-
pose to develop a discrete physical theory that would appeal to real numbers in none
of its descriptions or computations. During the 1970s and 1980s, Greenspan devel-
oped what he called a “discrete mechanics” (Greenspan 1973, p. 10) that is different
from the theory we focus on in this paper. His discrete mechanics consists in refor-
mulating traditional Newtonian mechanics with a discrete representation of time. In
Greenspan’s discrete mechanics, time is represented by a discrete parameter tk where
tk = kh, k being a natural number and h a rational number. The differential equation
expressing Newton’s second law is replaced by a difference equation with a discrete
acceleration and a discrete force ma; = Fy. The discrete acceleration ay is defined
as the ratio (vg1 — v¢)/h, with ry the discrete velocity vector, and the discrete force
F;, as a function of a discrete potential energy. More precisely, the discrete force is
written as:

V(r1) = V() Tesr +1%

Fi,= ®)
T+l — T Fit1 + Tk

with V(ry) the discrete potential energy and ry the discrete position vector at the
instant .

Greenspan and LaBudde show that, under few assumptions, all the main con-
servation laws of the traditional Newtonian classical mechanics can be established
within their version of discrete mechanics, for discrete linear momentum, energy and
angular momentum are exactly conserved (LaBudde and Greenspan 1974).

For Greenspan and LaBudde, the best argument in favor of their version of a dis-
crete mechanics is that exact conservation of discrete quantities, like energy, allows
for more stable numerical computations. Since energy and momenta are constrained
to be equal to their initial values, they cannot diverge and thus cannot lead to insta-
ble computations. Greenspan argues that the development of his discrete mechanics
shows that scientists can study physical phenomena without relying on the mathemat-
ical continuum. At the beginning of his book on discrete mechanics, he emphasizes:

The concept of infinity and the consequential concepts of limit, derivative, and
integral are reasonable for the pure mathematical study of real numbers and
real functions, but are not reasonable for the modeling of physical phenomena.
[...]

Dynamical behavior [of mechanical systems] will be studied entirely in terms
of arithmetic, or more precisely, in terms of high-speed arithmetic, for it is

5 For details on Noether theorem, see (Butterfield 2006b).
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the availability of the modern digital computer which will make our approach
both reasonable and practical. The dynamical equations of our models will
be difference equations which, whether linear or nonlinear, well easily be
solvable. Thereby, it is hoped that if an applied scientist is willing to learn
the simple language of a computer, then he need be equipped only with the
rudimentary mathematical knowledge of arithmetic and algebra in order to
study highly complex physical phenomena. (Greenspan 1973, p. 4)

According to Greenspan, differential equations and real numbers can be eliminated
from the study of mechanical systems. As the dynamics of mechanical systems is
described by DM, its equations of motion are solved on computers, and as comput-
ers can only deal with natural and rational numbers, real numbers are not required
to describe physical phenomena. Real numbers can be approximated on computers
but this requires the use of rational or decimal numbers. Instead, one does not need
this transformation in solving on computers the equations of DM formulated with
rationals.

We disagree with Greenspan’s evaluation of the capacities of his version of DM.
By choosing to only use rational numbers, Greenspan severely restricts then expres-
sive power of difference equations, for even though difference equations are by defi-
nition discrete, they may in general accept any real number as a solution (or any com-
plex number in some cases). The restriction to rationals enables one to approximately
solve Greenspan’s DM equations on computers, but it is impossible or, at least, very
difficult to solve them exactly or analytically without using the real numbers. Now,
as we shall emphasize in section 2.3.2, exact results are extremely important in order
to assess the performance of a physical theory.

Second, the only use of rational numbers may be not sufficient to describe physi-
cal phenomena even on computers. Greenspan himself acknowledges that, within his
DM “classical continuous mathematics will be used [] in the study of stability, where
properties of sets of rational numbers can be derived most easily by considering these
numbers as subsets of the real number systems” (Greenspan 1973, p. 4). As a result,
Greenspan’s DM turns out to be unserviceable unless relying on real numbers. Thus,
the development of Greenspan’s DM does not imply that physics can dispense with
the mathematical continuum for describing and explaining the behavior of mechani-
cal systems.

2.3 The continuous representation of time and dispensable representations

Let us now present the answer we favor to the question of what the discrete represen-
tation of time in DM implies. According to this answer, the discrete representation
of time in DM implies that physics can dispense with the continuous representation
of time. In order to argue in favor of this claim, we first give some details about the
conditions at which a physical theory can dispense with the continuous representa-
tion of time. The main condition is that the theory dispensing with the continuous
representation of time should be usable by physicists, that is, it should enable physi-
cists to describe, predict and explain physical phenomena. Second, we show that DM
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satisfies this condition and thus argue that the use of a discrete representation of time
in DM implies that the continuous representation of time is dispensable in physics.

2.3.1 Usable theories

We begin our inquiry into the question whether the continuous representation of time
is dispensable in physics by recalling that the notion of “dispensable” is stronger than
the notion of “eliminable”. In the original debate on the dispensability of various
mathematical entities, a mathematical entity is said to be dispensable in a theory if it
can be eliminated from the theory without any loss in its scope, the resulting theory
being a good one (cf. Colyvan, 2001).

First, we suggest to extend the question of dispensability to mathematical repre-
sentations, or mathematical tools of representation. The original debate focused on
mathematical entities. However, in this paper, we are not interested in the question
whether mathematical entities like numbers, sets, functions do exist but only in an-
alyzing the notion of dispensability. There is no reason, in our view, to restrict this
notion to entities.

Secondly, while “dispensability” is not “eliminability”, it is unclear in the original
debate, as Colyvan himself emphasizes, what a “good” theory is supposed to be. To
remedy this deficiency, we suggest, that an entity or a mathematical representation
can be said dispensable in a theory if it can be eliminated from the theory without
any loss in its scope, the resulting theory being usable: it should be able to allow
for description, prediction, and explanation of phenomena. Equipped with the notion
of a usable theory, we can safely discard formal reconstructions of theories that (i)
dispense with certain entities and (ii) are logically equivalent to the original ones, but
(iii) cannot be used to investigate phenomena. These theories do not fall within the
scope of the interesting theories for our purpose.

However, we reject Colyvan’s criterion according to which the resulting theory
should be preferable to the original theory, or at least more attractive. To our mind,
it is not necessary to compare the resulting theory to the original one in order to de-
cide whether an entity or a mathematical representation is dispensable in the former.
The comparison constitutes a different, independent step in the analysis. For exam-
ple, it seems that the notion of “force” can be eliminated from classical mechanics.
Hamiltonian mechanics only seems to require the notion of “energy” as a fundamen-
tal concept (Wilson 2007, p. 175). If this is true, we would certainly be inclined to
say that the notion of force is dispensable even if it is hard to say — and maybe not
decidable — whether Newtonian or Hamiltonian mechanics is preferable. Maybe they
are equally attractive or the one is preferable in some contexts and the other is prefer-
able in other contexts. However, in our view, the notion of “force” is said dispensable
in classical mechanics because it is eliminable and the resulting theory, Hamiltonian
mechanics, is a usable theory.

2.3.2 DM is a usable theory

Let us now examine whether the version of DM we focus on in this paper can be said
to be usable. Our main argument in favor of this claim is that the equations of motion
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for (at least some) mechanical systems can be given explicit solutions (D’Innocenzo
et al. 1987). Explicit solutions are those expressed as functions of time. For instance,
the equations of motion for a body subjected to a constant force and the harmonic
oscillator system can be given explicit solutions. Let us briefly present these solutions
(see Appendix [5.1]for more details).

Continuous Newtonian mechanics describes the phenomenon of falling bodies
on Earth with the Newton’s second law of motion, which is a vectorial differential
equation:

md®r/dt* = mg 9)

The product of the mass by the acceleration on the left, where r is the position vector,
is equal to the gravity force mg on the right. The x and z components of this vectorial
equation have each an explicit solution, which are:

x(t) = vt +x and z(t) = —1/2gt* +v it +z (10)

where x and z are the horizontal and vertical components, x;, z;, Vx,i, Vz,; the initial
conditions for position and speed, and g the gravity constant. Similarly, in DM, we
have, as explicit solutions for the two components:

Xp = veitk +xi and zp = —1/2gt7 + (voi+gh)ty + 2 (11

where there is in addition the discrete time step 4. The harmonic oscillator can also
be solved explicitly within DM. In that case, the solution is:

X =Ag COS(a)dlk) + By Sin((i)dlk) (12)

where #;, is the discrete time, A4, B; two constants depending on the discrete time step
h, and @y, the discrete pulsation also function of /. These two examples illustrate that
some equations of motion can be solved explicitly within discrete mechanics.

The fact that some equations have explicit solutions within DM is remarkable
because most equations of motion, both in continuous mechanics and in DM, do
not have any explicit solutions. In continuous mechanics, the explicit solutions to
most differential equations are indeed unknown or impossible to derive. However,
even if only very few explicit solutions are known, scientists value their existence
because an explicit solution provides them with a good understanding of the mechan-
ical phenomenon. For instance, knowing the explicit solution of equation of motion
of a falling body better enables one to grasp the phenomenon than only knowing a
numerical solution on computer. That is because explicit solutions are both general
and exact, which are two features that make them explanatory, as emphasized by Paul
Humphreys:

The switch from analytic mathematics to numerical mathematics [...] has one
immediate consequence: we often lose both the great generality and the poten-
tially exact solutions that have traditionally been desired of scientific theories.
(Humphreys 2004, p. 64)
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Let us review these two properties in turn.

- Generality: Explicit solutions are general in the sense that within them the posi-
tion, as well as other variables, is a function of the relevant variables and parameters,
thus requiring no specification of their numerical values. The explicit solutions ex-
press a relation between possibly all particular values of the parameters and variables
of the function. For instance, in the case of the falling body problem, the solution
xi represents the trajectory whatever the numerical values of the gravity constant g,
or the initial conditions x; and v;. It is a single formula describing a large range of
different physical phenomena, for instance a falling body on Earth, or on the Moon,
and with any value for its initial speed.

Generality, as a property of mathematical functions, is a key component in the ex-
planatory role of explicit solutions. Explicit results provide explanations of physical
phenomena in the sense that they show how the variations of some physical variables
imply the variations of the other variables.

- Exactness: Explicit solutions being exact also accounts for their explanatory
power. Exact solutions are such that, when put in place of the equations, they lead
to an identity. For instance, V/2 is an exact solution to the equation x2—2 =0 since,
when put in place of x, the identity 0 = 0 can be derived. In the same way, the explicit
solutions of the falling body system with DM, equations (II)) are exact solutions of
the motion equations of DM (equations (I8] [I9) and (2] 22))) since, put in place of
them, they lead to the identity 1=1.

Because there are exact, explicit solutions can be used to deduce other results
about the system. Consequently, other features or properties of the system can be
known and better understood. For instance, consider again the free falling body. As
said above, the equations of motion for this system can be solved explicitly within
DM: the positions x; and z; are functions of #,. With these explicit solutions (TT),
it is first possible to derive the trajectory of the falling body. After some algebraic
manipulations, the time #; is eliminated and the altitude z; is expressed as a function
of the distance x; (see Appendix [5.2):

v. i+ gh
2e(x) = — 302 (o — )P 82

>Vx, o (X —xi) +z (13)

In this case, the deduced trajectory is a parabola. This provides a geometrical (vs.
dynamical) representation of the phenomenon. It exhibits global information about
the position of the falling body, enabling us to grasp the general behavior of falling
bodies.

Second, specific, quantitative features of the trajectory can be deduced from the
trajectory equation, increasing our knowledge of the system (for details, see Ap-
pendix[5.2)). For instance, the highest position can be deduced via a few mathematical
operations. It is the position where the partial derivative z; with respect to x; vanishes.
It is reached at

Xp=vei(vei+gh)/g+x and zp = (v, +gh)*/(28) +z (14)

It is also possible to deduce the distance x; at which the falling body reaches the
ground. Such deductions increase the explanatory power of the explicit solutions of
the motion equations in enabling us to broaden our knowledge of the system.
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MD being able to provide explicit solutions to some mechanical problems is a
strong argument to consider it as a usable theory. In particular, the existence of ex-
plicit solutions gives its principles the explanatory power that is expected from a
usable physical theories. Needless to recall, MD being a discrete theory ensures that
it can easily yield predictions, because it speaks the same language as computers.

Having argued that MD is a bona fide usable physical theory, we can claim that
its existence, together with its predictive and explanatory powers, show that the con-
tinuous representation of time is dispensable in physical theories. In the next section,
we discuss the implications of this claim.

2.4 Dispensability and the structure of time

Can we draw any conclusion about the structure of time from the dispensability ar-
gument we have just presented? Relying on existing discussions on this topic in the
literature (Carnap 1966, Newton-Smith 1980, Maddy 1997), it seems that it should
be so. In this section, we briefly review how this theme has been analyzed so far and
present our own view.

The starting point of discussions about the relationship between the representa-
tion of time and the structure of time is the following observation. The use of the usual
t parameter in classical mechanics and other continuous theories is commonly asso-
ciated, at least implicitly, with the assumption that the structure of time is continuous,
in the following sense:

If time is continuous the set of all instants under the ordering given by being
temporal before will be isomorphic to the reals or to some sub-sequence of
the reals. (Newton-Smith 1980, p. 114)

This assumption seems to be generally accepted. For instance, in their textbook in
classical mechanics, Kibble et al. adopt it as an explicit hypothesis of the theory
(2004, p. 2). In Suppes’ axiomatic reconstruction of classical mechanics, the state-
ment according to which time is continuous (Suppes, 1999, p. 294) is presented as
an axiom of the theory. In the chapter entitled “Indispensability and Scientific Prac-
tice” in her Naturalism in Mathematics, Maddy also asserts that the use of the real
parameter t in physical theories presupposes that time is continuous (1997, p. 155).
If one assumes that adopting the continuous representation of time is tantamount
to hypothetizing that it has a continuous structure, as do Kibble et al., Maddy, Newton-
Smith, and Suppes, it is clear that one should admit that the dispensability of the
continuous representation has an impact on what is possible to claim about the struc-
ture of time. For instance, Newton-Smith claims, as far as we understand him, that
the dispensability of the continuous representation of time implies that the structure
of time is empirically undecidable (1980, p.126). More precisely, for the sake of his
argument, he introduces two physical theories whose only difference resides in the
way they represent time. The first one represents time by a parameter defined on real
numbers and the second by a parameter defined on rationals. He shows that these
theories are empirically equivalent. From this result, he concludes that the structure
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of time is empirically undecidable, thus relying on a property of the representation
of time to argue about the structure of tim

Can Newton-Smith’ argument be transposed to DM so as to conclude that the dis-
pensability of the continuous representation of time in DM leads to a similar undecid-
ability result about the structure of time? Let us first emphasize that Newton-Smith
does not distinguish between using the continuous representation of time and using
real numbers in the representation of time. His inquiry focuses on the difference be-
tween reals and rationals as to their usefulness, or indispensability, in physic{l On
the contrary, as we have made explicit in section 1, DM being a discrete theory does
not forbid it to use real numbers. This is a first important difference between the case
imagined by Newton-Smith and the DM case, implying that Newton-Smith’ argu-
ment cannot be transposed without important transformations to the DM case.

Admitting that we were willing to work out the relevant transformations, would
it be appropriate to transpose Newton-Smith’s argument? If it were the case, one
could conclude from the study of DM that “time is continuous” is an undecidable
statement. However, in our view, the very question whether “time is continuous” is
undecidable is not legitimate. Let us make this point clear. Newton-Smith’s argument
in favour of the undecidability of the structure of time seems to presuppose that the
way temporal parameters are used in physical theories puts constraints on the way we
should conceive of the structure of time. Here is the answer Newton-Smith proposes
to the question “why do we tend to regard time as continuous?”:

[it] is quite simply that the best physical theories we have in fact constructed
of the physical world require in their mathematical formulation a time param-
eter that ranges over the elements of the real number system. [...] We take
individual real numbers as denoting instants and project back onto the inter-
val a non-denumerably infinite number of extensionless parts or instants, one
corresponding to each real number in the interval. That is, our belief in the
continuity of time [...] arises from our projecting onto the world the richness
that is present in the mathematical system which we have found to date to
be essential to the construction of viable physical theories. (Newton-Smith,
1980, p. 118)

Consequently, according to Newton-Smith, “if our best theories should in the end
turn out to involve representing time by a discrete time variable, we would have at

6 Newton-Smith then asks: “How ought we to respond to this undecidability result?”’(1980, p. 126).
According to him, the statement “time is continuous” can be interpreted as an empirical statement whose
truth value is impossible to assess because there is no evidence to be had about it - this is “the Ignorance
response”. However, it can also be interpreted as a non-empirical statement describing a theoretical frame-
work within which to describe empirical facts — this is “the Arrogance response”. We do not discuss these
interpretations since, as we make clear below in this Section, we deny that any conclusion about the unde-
cidabilty of the structure of time can be drawn from physical theories, like DM, which represent time as
discrete.

7 His line of inquiry thus continues Carnap’s, who examined the following question: “Because irrational
numbers are always the results of calculations, never the result of direct measurement, might it not be
possible in physics to abandon irrational numbers altogether and work only with the rational numbers?
That is certainly possible, but it would be a revolutionary change.” (Carnap 1966, p. 88-89) As clear in the
main text, this question is irrelevant to our own inquiry about the implications of the discrete representation
of time in DM.
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least as much reason to regard time as discrete as we now have for regarding it as
continuous”(ibid.). Here, we see that Newton-Smith is willing to read the structure of
time off the physical theories. However, such an assumption is shaky; accordingly, we
reject it. Indeed, we do not feel committed to regard time as “as a non-denumerably
infinite number of extensionless parts or instant” even if physical theories represent
time by the continuous parameter ¢. The reason why physical theories do so might be
that they are not interested in investigating the structure of time and just use time as
an element of the general framework in which the descriptions of phenomena hold.

Maddy also denies that the use of a continuous temporal parameter in physical
theories commits us to claim that time is continuous. Her argument is slightly dif-
ferent. As we have seen above in the main text, she claims that representing time
as continuous in physical theories amounts to hypothesizing that time is continuous.
However, she argues that this hypothesis, and more generally “the physical structural
assumptions underlying the application of the mathematics are not held to the same
epistemic standard as ordinary physical assumptions” (Maddy 1997, p. 156). Even
if the hypothesis of the continuity of time is actually made in physical theories, it is
not endorsed by scientists. We agree with Maddy’s conclusion. However, we reach it
in a different way, by denying from the start that representing time by a continuous
parameter amounts to hypothesizing that time is continuous. Accordingly, we claim,
pace Newton-Smith, that the dispensability of the continuous representation of time
is not sufficient to argue that the structure of time is undecidable.

At first glance, before any philosophical enquiry, the possible answers to the ques-
tion whether time is continuous seem to be “yes” or “no”. Thanks to Newton-Smith’
work, it has been discovered that the answer may also be “undecidabe”. In our view,
the logical space is even more extended for there is a preliminary question to be
asked: is the question legitimate? After having opened up the logical space, we close
it by claiming that the question is illegitimate, thus making the former answers irrel-
evant. Our argument is that the use of a particular representation of time in physical
theories (continuous, discrete or even another one) is not relevant to investigation
on the structure time. Neither Carnap, Newton-Smith, or Maddy seems to consider
the possibility we have mentioned. However, it allows one to understand why DM
is viewed by its authors as having no implication whatsoever on an inquiry on the
structure of time.

2.5 Conclusion

Our aim in this section has been to answer the question: What does it imply to use
a discrete representation of time in physics? We have examined two answers that we
found implausible. First, we have shown that adopting a discrete representation of
time does not imply to use equations that are not as fundamental as continuous equa-
tions. In DM, the use of a discrete representation of time does not imply that discrete
equations are model-specific and inevitably derived from fundamental, differential
equations. In DM, the fundamental equations of motion are themselves discrete. Sec-
ond, we have shown that the use of a discrete representation of time does not entail
dispensing with the real numbers. For us, it is an important consequence. As far as we
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know, the distinction between representing time as continuous and using real num-
bers to represent time has not been introduced yet in the literature. We have made
clear that in DM, time is represented as discrete even if instants are defined on real
numbers.

We have then argued that an actual implication of the use of a discrete represen-
tation of time in physics is that physics can accordingly dispense with the continuous
representation of time. In order to make explicit the meaning of this claim, we have
first introduced the notion of a usable physical theory. It is a theory which enables one
to actually describe, predict, and explain physical phenomena. Second, we have dis-
tinguished our dispensabilist implications from more ancient, similar claims, namely
Carnap’s and Newton-Smith. In our view, the question of the (continuous or discrete)
structure of time cannot be legitimately asked when investigating how time is rep-
resented in (continuous and discrete) physical theories. We have suggested that the
statement “time is continuous”, besides being judged true, false, or undecidable, can
also be judged irrelevant.

3 Time symbols and their interpretation

The aim of this section is to present another important feature of DM with respect
to the representation of time, besides its being discrete. Within DM, the time symbol
can be either a parameter, as it is the case in most physical theories, or a variable.
This state of affair is distinctive of DM. We investigate its consequences. In order to
do so, we first present how it comes that the time symbol is a dynamical variable in
DM. In order to study what we can draw from this fact, we analyze the distinction
between a variable and a parameter and how it applies to the time symbol. Finally,
we discuss what difference it makes to treat the time symbol as a dynamical variable
in a physical theory.

3.1 The time symbol as a dynamical variable in DM

In this section, we present the reason why the time symbol has to be considered
a dynamical variable vs. a parameter in discrete mechanics. The parameter-variable
distinction is not as obvious as it seems to be. A preliminary version of this distinction
is that dynamical variables vary with respect to parameters, whereas parameters refer
to the quantities with respect to which variables vary. In the following sections, we
shall make this distinction more precise, but we begin with the presentation of the
situation in DM.

To put it briefly, in DM, it is necessary to represent time as a dynamical variable
unless energy conservation is lost. This is due to the Ge-Mardsen theorem whose
content, in a nutshell, is the following. It states that when using discrete variational
principles, that is, variational principles involving discrete time and space, it is im-
possible to have two desirable properties together if the time step is kept constant.



The Representation of Time in Discrete Mechanics 21

These desirable properties are (i) the conservation of geometric properties, like sym-
plecticity, and (ii) energy conservatio (see Appendix for more details).

So the Ge-Mardsen theorem seems to block up from the start the very possibility
of building up satisfying discrete models — if time step is kept constant. Or, seen
from the other side, the theorem entails that time-step adaptation (i.e. variability of
the time-step) is needed to have symplectic-energy-momentum conservation. Thus,
when one wants to preserve energy conservation in variational discrete models, the
distribution of the time steps should be determined but by minimizing the discrete
action. More precisely, as emphasized by D’Innocenzo et al. :

In the continuous case, energy conservation is a consequence of Newton’s
equations for conservative systems for which the Lagrangian does not depend
explicitly on time. This is not automatic in an ad hoc discrete mechanics, on
the contrary, only by treating both r and t as dynamical variables does one ob-
tain both Newton’s law and discrete energy conservation laws from the least-
action principle. Therefore the asymmetry present in continuous mechanics
(where time is not treated on the same basis as the spatial coordinates) is
eliminated. (D’Innocenzo et al. 1987, p. 246)

The sense in which time is represented by a discrete dynamical variable vs. a discrete
parameter is thus that within DM, the time symbol is a variable with respect to which
the action must be minimized. This means that its values are not arbitrary in the
following sense: they are not determined by any external rule, like the rule #;.1; =
tx + h that is used in traditional discrete models such as models based on backward or
forward Euler integrators (Section 1.1.1). The values of the time variable are instead
determined by the evolution of the other variables.

Now that we have presented the reason why the time symbol is a discrete dynam-
ical variable in DM, we turn back to the analysis of the variable-parameter distinction
in the following section. This will allow us to draw some conclusion about the time
symbol being a dynamical variable in DM.

3.2 Variables and parameters

In order to better capture the distinction between variables and parameters, we begin
by briefly presenting a type of models in which the distinction is quite straightfor-
ward, namely causal models. Then we turn to the distinction as it holds in the general
case. From this background, we move to the way time is represented in various phys-
ical theories. A last step will be necessary before examining further the status of
the time symbol(s) in DM: we shall describe how time is represented in traditional
discrete models.

8 “Given the importance of conserving integrals of motion and the important role played by the Hamilto-
nian structure in the reduction procedure for a system with symmetry, one might hope to find an algorithm
that combines all of the desirable properties: conservation of energy, conservation of momenta (and other
independent integrals), and conservation of the symplectic structure. However, one cannot do all three of
these things at once unless one relaxes one or more of the conditions. [...]

It is interesting to note that when adaptive time steps are used, the arguments above no longer apply and
indeed in this case it is possible to find integrators that are, in an appropriate sense, symplectic, energy
preserving and momentum preserving, as shown in (Kane et al. 1999).” (Marsden 2009, p. 178).
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3.2.1 Variables and parameters in scientific models

Because the distinction between variables and parameters is difficult to capture, we
first present a case in which it is reasonably clear.

The distinction between variables and parameters is well defined only in the
context of a given model. It is largely a matter of the aims of modelling, a con-
sequence of the somewhat arbitrary but unavoidable division between what is
endogenous and what is left exogenous and what is considered as changeable
and what fixed. Causal relations are change relating and what are perceived to
be the relevant causal relations depends, to some extent, on what kinds of pos-
sible changes are thought to be relevant. If the modeller is interested in how
some features of a system are determined by other features of a system, she
endogenizes these features as dependent variables. If some features are taken
for granted or possible changes in these features are thought to be unlikely or
irrelevant, they are left as parameters (Kuorikoski, 2012, p. 368)

In causal models, a parameter thus describes the background against which vari-
ables vary, whereas variables are used to represent the causal relations one is inter-
ested in. It may be noted that according to the model’s purpose, a quantity may be
sometimes represented as a variable, and by a parameter when the modelers is inter-
ested in another question.

Let us now turn to physical models. Not all physical theories represent causal
relationships; however, the distinction between variables and parameters still holds
in non-causal theories, with the same general meaning. It reflects the different ways
the represented quantities may depend on each other. A variable can depend on the
variations of a parameter, whereas a parameter has its own source of variation, which
is independent of the variation of the other represented quantities.

To sum up, a variable is a symbol of a magnitude whose variations are the topic
of the formulae; a parameter helps formulae to say something about the variations of
variables.

3.2.2 The case of the time symbol

Equipped with this understanding of the distinction between variables and parame-
ters, we now turn to the fate of the time symbol in physical theories, where it is a
parameter more often than a variable. For instance, the time symbol is a parameter in
classical mechanics, statistical mechanics, quantum mechanics, in hydrodynamics,
electromagnetism. As these theories describe the evolution of physical phenomena
over time, time is in the background, so to speak. It is not an object of investigation in
itself. By contrast, in cosmology, the time symbol can be a variable: it can vary with
the scale factor or with temperature. Thus, in contemporary physical theories, there
is no uniform representation of time: it is usually a parameter, but it is a variable in
some theories.

The general situation in physics is that the physical theories do not have anything
to say about time proper. They just use it as an element of the general framework in
which the descriptions of phenomena hold. The symbol ¢ has a life of its own in the
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equations, so to speak. It is independent of the physical laws in the sense that it does
not enter into the equations otherwise than in “going further”, or “stepping further”,
that is, in going from one instant to the next.

Two remarks may complement this brief description. (i) Things were different at
the beginning of physical theorizing. As is well-known, Newton devoted a few pages
of the Principia to a discourse about space and time. In his view, a physical theory
like his own had to say something about space and time: he conceived space and time
as proper objects of physical theorizing and his discourse about them as a necessary
component of his theory. (ii) Within modern theories, fragmented as they are, it is
striking that the theories which represent time by a parameter are deliberately at odds
with the theories that say something about time. For instance, in classical mechanics
as well as in non-relativistic quantum theory, time is represented as entirely separated
from space. It is as if these theories did not take seriously what relativity (special
and general) has to say about the nature of time. For sure, the formal and empirical
relationships among these theories are relatively clear and the separation of space
and time in non-relativistic theories does not raise any problem of consistency, let
alone empirical problems. However, it is notoriously difficult to translate these math-
ematical relationships into conceptual relationships. Even though the intertheoretical
relationships are well-controlled, this does not imply that the conceptual relationships
are as controlled. There is a sort of blind spot here: the concept of time in classical
mechanics, say, is clearly different from the concept of time in relativity, and the
difference cannot be reduced to any approximation relation.

To sum up, there is no uniform representation of time in physical theories, past or
modern. The representation of time is even so diverse that it is difficult to articulate
the roles played by the symbols representing time in the various theories.

3.2.3 The time symbol(s) in discrete models

In order to complete our review of the various ways time is represented in physics,
we now inquire into the way time is represented in traditional discrete models, that
is, discrete models not relying on DM.

In traditional discrete models, the discrete symbol #; is always a parameter in the
sense that it is not an object of investigation but rather a vehicle of the investigation.
The discrete variables evolve from one f;, to ; + h, etc. In these models, “stepping
further” means going from one instant to the nexﬂ The main difference with contin-
uous models lies in the fact that the set of possible values for tk is discrete rather than
continuoug™}

There is another difference, however. Contrary to the continuous time-symbol #,
the time-symbol #; is associated to two different temporal notions, namely #; and k.

9 There are further aspects to the use of time symbols in discrete models. On the one hand, there are
numerical methods with “stage” like the Runge-Kutta methods. Here, intermediate discrete instants # ;,
where i is an integer, are introduced between two consecutive instants # and #; 4+ h. Two levels of time
discretization are thus used. On the other hand, there are discrete models with adaptive discrete time
symbols: the time step between two consecutive discrete time symbols #; and #; is variable. At each
discrete instant, the time step is adapted according to criteria of computational accuracy.

10° All these notions differ from “the time of the simulation”, i.e., the time spent by the computer to solve
the discrete model’s equations. In the remaining of the paper, we shall put this notion aside.
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The discrete time-symbol #; plays the same role as the continuous time-symbol ¢: it
represents the time over which phenomena occur. k, on the other hand, represents the
“time in the model”, so to speak. It represents the time over which the representations
of the phenomena occur. The rule “k — k+ 17, by which k is “stepping further”,
governs the evolution of symbol #; in traditional discrete models.

Let us take the example of a free particle. With a continuous model, its motion
can be described by the equation x = v;¢ + x;, where x represents the position of the
particle, v; and x; the initial conditions, and ¢ the time over which the particle is
moving. Within a discrete model, the motion of the particle can be described by the
equation x; = v;fx +x;. Like ¢, #; represents the time over which the particle is moving.
It can be expressed in seconds, minutes, days etc. depending on the phenomena. #;, is
defined as the product of & by k, where £ is the discrete time step and k, an integer.
k is a mathematical parameter that marks the discrete instants; it does not represent
the time over which phenomena happen. However, the increment “+1” in the passage
from k to k+ 1 determines the evolution of discrete time from the instant #; to its
successor f;41. Depending of the size of the time step 4, the same increment “+1”
corresponds to different evolutions of the time parameter #, e.g., one micro-second,
one second, one day etc. Thus, because the rule “k4 — k+ 1 governs the evolution
of the discrete time #;, we call it the “time of the model”. It is the clock, so to speak,
that makes the discrete time parameter f;, evolveE-l In the following section, we shall
investigate the fate of both temporal notions in the framework of DM.

3.2.4 The time symbol in DM

In order to analyze the time symbol # as it is used in DM, it seems to us useful
to introduce some distinctions concerning the temporal notions that are at play in
physical theories and models. They are meant to summarize and develop the above-
mentioned points about time symbols.

(i) We first have to mention the ordinary time, that is, the time in which the inves-
tigated phenomena take place, or the time over which the states of the investigated
systems change. Let us name it “time*”.

(ii) In physics, time* is represented by a time-symbol written either ¢, or, in discrete
models and DMs, #; . As emphasized about, t and #;, are often parameters.

(>iii) It is also important to include the “time of the model” in the discussion, i.e.,
the time over which the representations of the phenomena change, from one state
to another. In continuous models and theories, there is not difference between the
representation of time* and the time of the model: the same symbol ¢ holds for both.

1" We interpret k in a temporal way, as the “time of the model”. However, it seems that one might also
interpret it in a spatial way since the change “k — k+ 17 governs also the evolution of the position x;
to xz+1. Nevertheless, at least within DM, k seems to be more a temporal parameter than a spatial one.
One reason would be that, to our knowledge, the parameter k shares with #; an order property: when
k < k+ 1 one cannot have #; > #;;. In other words, k and #; have the same direction. On contrary, while
k < k41, one can have x; < x;; as well as x; > x1. Besides, when discrete equations are implemented
on computers, there might be other kinds of “clocks”. For example, the computation of the coordinates
(%k+1,2+1) might be implemented in a device before the computation of the coordinates (xx,#). There
would be a clock that commands to use k + 1 before k. Since we do not discuss implementation issues and
focus on the equations of DM, we leave aside this point.
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In discrete models and in DM, by contrast, it is noted k, k being an integer. k cannot
be but a parameter.

The main difference between DM and other discrete models is that in DM, the
way the “time of the model” goes from # to #;; is determined by the equations
of the investigated system rather than by a rule that is unconnected to the system’s
equations. Therefore, #; is a variable relative to the parameter k. As a result, the rep-
resentation of time has a dual nature in DM: whereas time* is represented by #;, the
“time of the model” is represented by k. This builds up a sharp contrast with both
continuous models and traditional discrete models.

3.3 Discussion

Let us now to analyze the implication of the dual representation of time in DM. We
first examine whether it is indispensable in DM. Then we introduce a new distinction
within the notion of representation, from which we argue that the indispensability of
the dual representation of time may be interpreted in a deflationary fashion.

3.3.1 Is the dual representation of time indispensable in DM?

How are we to interpret the difference between k and #;, within DM? Two options are
available. The first one is to claim that the difference between k and #; is a necessary
feature of DM and cannot be dispensed with. This would imply that discrete mechan-
ics allows for new insights about time: according to this interpretation, the fact that
1y, varies with the other physical variables says something about the nature of time*.
The second option is to consider the difference between k and #; as an artefact of DM.

The second option looks disappointing because it does not do justice to the fact
that within DM, #; actually depends on the system’s dynamics. In order to consider
this as an artefact of the representation being discrete, some explanation has to be
given why and how an artefact could transform a symbol that is very commonly a pa-
rameter into a variable. Now, this explanation looks difficult to find out. Accordingly,
in the following, we focus on the first option.

3.3.2 Representing by vs. representing as

According to the first above-presented option, the difference between k and #; is a
necessary feature of DM, which seems to imply that DM has something new to say
about time*. To what extent is this implication sound? In this section, we investigate
whether adopting the first option necessarily involves jumping to the conclusion that
DM says something new about the structure of time*.

In order to do so, let us introduce a distinction within the concept of represen-
tation. In what follows, we shall call “a representation” any concrete item (like ink
imprints) that is used as a representation by an agent, and understood as such by an-
other agent, the receiver. According to this definition, a representation relates four
items: the user of the representation, its content, the receiver, and the medium of the
representation (e.g., line-drawing, painting, newspaper article, etc.) Here, we focus on
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FLEURS, FRUITS & LEGUMES DU JOUR

Attaed LePelit

I —

M. THIERS

Fig. 3 “Fleurs, fruits et Iégumes du jour — La poire — M. Thiers”, Alfred Le Petit (1871). ©Picture RMN-
Grand Palais - M. Bellot.

the relationship between the content of the representation and the medium. In some
cases, this relationship is based on physical interactions, like in photographs, but in
many cases, it is only based on conventions. For instance, one may decide that this
pencil represents a railway. In this case, the railway is represented by the pencil. The
pencil, associated with the appropriate convention, is the medium of the representa-
tion. However, the medium of the representation may also play another role. Let us
take the classical example of the French politician Thiers represented as a pear (see
Fig. (3)). In this caricature, Thiers is not represented by a pear but as a pear. This
difference may be subtle, but it is important to understand it in order to rightly inter-
pret the meaning of representations. If someone understood the caricature of Thiers
as meaning that he is a gardener, it would be a gross errOIEl The difference between
“represented by’ and “represented as” is central in the way we use pictures and sym-
bols to communicate and share meanings.

Prima facie, the difference between “represented by” and “represented as” seems
relevant to the interpretation of symbols in physics. Let us now suggest how this
distinction is usually applied to the symbols that are usually used in physics.

On the one hand, when the physical quantity X is represented by the symbol x,
the symbol x holds for X in the picture provided by the theory in which x is used. “x”
is not only a letter; in physics, it is always presupposed to be the name of a variable,
taking its values within this or that set of numbers (the integers, the reals, or a discrete
set of the reals, etc.). The set may be chosen because it is supposed to be faithful to
the nature of X, or for commodity reasons. As an example of the second case, X can

12 In the 19" century, pear is known in France to be a metaphor for bourgeois monarchy. This caricature
shows thus the affinity of Thiers with this political regime.
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be represented by a symbol taking its value in a discrete (resp. continuous) set of
numbers without any implication on the discrete (resp. continuous) nature of X.

On the other hand, representing a physical quantity X as an A or a B, for instance,
as a variable or as a parameter, involves interpreting X as endowed with the properties
of the As or Bs. For instance, representing time as a variable involves interpreting
time as dependent of other variables, whereas interpreting it as a parameter involves
interpreting it as independent of other variables. Representing X as an A or a B thus
involves a (more or less implicit) a claim about the nature of X.

3.3.3 Representing by, representing as, variables, and parameters

The above examples seem to imply that physical quantities are represented as vari-
ables or parameters. This seems to be the common way to use the variable-parameter
distinction. In this last section, we want to suggest that it is also possible to inter-
pret “variable” and “parameter” as naming different mediums of representation rather
than as saying anything about the nature of the represented quantities. Accordingly,
we claim that some physical quantities can be represented by variables or parameters,
in the very same way as they can be represented by real numbers.

Let us now present the implications of our claim. According to it, representing a
physical quantity by a variable does not involve any claim about its nature. It does
not involve that it is intrinsically linked to other variables, for instance. To put it in
other words, in our view, variables and parameters are just representational tools, de-
prived of any further content or presupposition. In particular, #; being a variable in
DM, whereas k is a parameter whose role is similar to the role of the usual contin-
uous parameter t in continuous theory, does not imply that DM reveals that time* is
endowed with a double nature.

We do not generalize our conclusion from the variable #; in DM to other variables
and parameters in physical theories. As already discussed in the Section 2.4, time
plays a special role in physical theories. They do not generally investigate time. That
is why we claim that time should be viewed as represented by rather represented as
variables and parameters. However, we do not extend this claim to other physical
magnitudes.

To put it in a nutshell, our claim is that the indispensable, dual representation of
time* in DM has not implication about the nature of time*. Indispensability is no
guide toward ontological conclusions, but rather a guide toward a complete analysis
of the means we use to represent quantities in physics.

3.4 Conclusion

In this section, we have first presented the reasons why #; can be said to be a dy-
namical variable within DM, whereas ¢ is usually a parameter in continuous physical
theories. In order to better appreciate the meaning of 7, being a dynamical variable,
we have then discussed the distinction between variables and parameter as it is used
in empirical sciences. At last, we have argued that the dual representation of time in
DM, even though it is indispensable, has no ontological implications if one accepts
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to consider that it is possible to represent a physical quantity by a variable (resp. a
parameter) instead of representing it as a variable (resp. a parameter).

4 Concluding remarks

Our aim in this paper has been to investigate into the consequences of adopting a
discrete physical theory on the representation of time. By doing so we have found out
that the fundamental opposition between a continuous and a discrete representation
has to be supplemented with three other oppositions.

The first one is the opposition between a discrete representation only using natural
and rational numbers (as focused on by Carnap and Newton-Smith) and a discrete
representation by means of discrete sets of real numbers, as currently used in DM.
The availability of the second type of discreteness radically changes the terms of the
old discussion about the dispensability of the continuous representation of time, as we
have shown in section 2. In particular, we have argued that one can dispense with the
continuous representation of time in physical theories. However, we have emphasized
that one should not draw any consequence from this result on the structure of time.
“Is the structure of time continuous?” is sometimes an irrelevant question when one
focuses on how time is represented in physical theories.

The second opposition is between variables and parameters. This opposition is
widely used, but its interpretation varies from one domain to the other. We have tried
to make clear its meaning in physical theories in section 3.

The third opposition we have uncovered is between two sorts of representing,
namely representing by and representing as. It is commonly assumed that when a
physical quantity is represented by a discrete symbol, i.e., a symbol taking its value
in a discrete set of numbers, there is no reason to interpret such a use as meaning
that the quantity is conceived of as discrete. Representing by a discrete symbol does
not indicate any wish to foster any metaphysical assumption. By contrast, it is com-
monly assumed that representing a physical quantity as a dynamical variable implies
that this quantity plays a certain role among other relevant quantities. Representing
as a dynamical variable fosters substantial assumptions about the quantity so repre-
sented. In section 3, we have shown that these common assumptions are misleading.
The current state of DM induces us to claim that there is no reason to associate sub-
stantial assumptions with the act of representing as a variable or a parameter. The
variable/parameter opposition should be viewed as of the same type as the continu-
ous/discrete opposition: it does not involve any interpretation advice. Accordingly, it
is more appropriate to use the expression “representing by a variable (resp. a param-
eter)” instead of “representing as variable (resp. a parameter)”.

The conclusion we have just summed up not only applies to DM, but virtually
to every other physical theories as well, even continuous ones. It sheds light on the
richness of the practices of representing time in physics and helps distinguish between
aspects that only pertain to representational skills and aspects that are linked with
scientific hypotheses about time.
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5 Appendix
5.1 Discrete Mechanics and some applications

Let us call A, the action in Discrete Mechanics (for details see (D’Innocenzo et al.
1987; Marsden et al. 2001, chapter 4)):

N—1
Ag=Y Ly (tig1 — 1) (15)
=0

with L, the discrete Lagrangian. The principle of least action states that : A, = 0.
It results the following twofold discrete Euler-Lagrange equations (DEL). The first
discrete Euler-Lagrange equation is:

OLg (tks Gies k15 Gt 1)
dqy

Ly (ti—1,qr—1,t, k)
gy

(e —tx-1) + (tkp1 — 1) =0 (16)

The second discrete Euler-Lagrange equation is:

d J
a0 [(t — te—1) La (t—1,Gr—1, 1, qi)) + ET (i1 — 1) La (t; Gies i1, G1)] = 0

a7
Let us follow d’Innocenzo et al. for the choice of the discrete Lagrangian :

2
1 i1 — Gk Qi1+ gk
Ld(QkkaH,th):zm( ;k ) -V +2
+

with hy, 1 =ty — ;. Under these conditions, let us solve (i) the free particle system,
(ii) the one dimension falling body problem and (iii) the one dimension harmonic
oscillator system.

(1) The free particle is the system with V = V;. The DEL become:

Vak+1 — Vxk -0 (18)
iyt
1 5 [
Mkl = 5MVik (19)
with v, = % The solution of the equations is:

X = Vy ity + X (20)

with the initial conditions 7y = 0, x; = X, Vx; = %
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(ii) The one dimension falling body problem is the system where V (zx,7x41) =
mgw. Thus, the DEL are :

8
Vaktl = Vek = =5 (ter1 —te-1) (21)
15 Gita 1, %+ 21
5V je1 M= = SMVy Mg ———— 22)

with v, = % I follow the resolution of d’Tnnocenzo et al. (1987) with different

notations. The solution of the equations is #; = & and :
_ 82
k== itk + (vei+gh)tk +zi (23)
with the initial conditions 7 = 0, z; = zp v,,; = 2.
(iii) The one dimension harmonic oscillator system is the system where V (xg, xx11) =

1 g (k1 % 2 Th .
3 5 . Thus, the DEL are:

K
m (Vg1 — Vik) = 1 [k +20—1) P + (1 +xx) 1] (24)
1 1 (e 4+x\> 1 1 (xe+xe1)°
Emvikﬂ + EK <2 = Emvik-ﬁ— EK # (25)

Following d’Innocenzo et al. (1987) with different notations (in particular see (Cies-
linski & Ratkiewicz 2006)), we have:

x1 —xp cos (@gh)
sin (@yh)

with @y = %arctan (%) and @ = \/g

X) = X0 COS ((Odtk) + sin(a)dtk)

5.2 Trajectory of a falling body in DM

Since x; = vy ity + Xo (see equation in Appendix) then, #; = (x; — x;)/vx;. Hence,
put it in the equation in Appendix, we derive the equation of the trajectory :

%= —gt,%-&- (vei+gh)t+z
g s Vgitgh
= -5 (—x)" + —— M —xi) +z
ZV)ZH»( k O) Vx,i ( k l) i

Now, we can deduce the highest position of the body. It is the position where the

. . . : . 9z —
partial derivative z; with respect to x; vanishes : Tx,li(xz) = 0. Hence,

(v.: L oh
Xl = Vx,i (Vz;Jrg ) Fx;

(Vz,i + gh)2

29 +2z;

g =zu(x%) =
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5.3 Ge-Marsden Theorem

We report here the Ge-Marsden theorem and its proof as they are formulated in the
original paper:

We recall that there are algorithms which exactly preserve energy, some of
which also preserve other quantities [...]. However, these algorithms cannot
be symplectic, according to the following result of Ge :

Let H be a Hamiltonian which has no conserved quantities (in a given class
J, for example analytic functions) other than functions of H. That is, if
{F,H} =0, then F(z) = Fy(H(z)) for a function Fy. Let ®,, be an algorithm
which is defined for small Az and is smooth. If this algorithm is symplectic,
and conserved H exactly, then it is the time advance map for the exact Hamil-
tonian system up to a reparametrization of time. In other words, approximate
symplectic algorithms cannot preserve energy for nonintegrable systems.
This result is in fact easy to prove. The algorithm being symplectic, is gener-
ated by a dependent function F(z,¢), which we assume belong to . Since
@4, preserves H, and H is assume to be time independent, F' commutes with
H, and so F(z) = Fy(H(z)). It follows that the hamiltonian vector fields of F
and H are parallel, so their integral curves are related by a time reparametriza-
tion. (Ge & Marsden 1988, p. 135).

As far we understand this result, while the Hamiltonian system is assumed to be non-
integrable — i.e that exact solution cannot be constructed — if the symplectic algorithm
exactly preserves energy, the solution of the algorithm would be the exact solution of
the system modulo a reparametrization. This contradicts the assumption according
to which the system is nonintegrable (see also (Ge 1991, p. 380; Marsden 2009, p.
178)). However, as Marsden (2009, p. 179) emphasizes, if the time step is variable,
the previous result does not hold and symplectic algorithms can exactly preserve en-

ergy.
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