
HAL Id: hal-01945932
https://hal.science/hal-01945932

Submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ALTARICA WIZARD: AN INTEGRATED
MODELING AND SIMULATION ENVIRONMENT

FOR ALTARICA 3.0
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy

To cite this version:
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. ALTARICA WIZARD: AN INTEGRATED
MODELING AND SIMULATION ENVIRONMENT FOR ALTARICA 3.0. Congrés Lambda Mu 21
“ Maîtrise des risques et transformation numérique : opportunités et menaces ”, Oct 2018, Reims,
France. �hal-01945932�

https://hal.science/hal-01945932
https://hal.archives-ouvertes.fr

ALTARICA WIZARD : UN ENVIRONEMENT INTEGRE DE MODELISATION ET
SIMULATION POUR ALTARICA 3.0

ALTARICA WIZARD: AN INTEGRATED MODELING AND SIMULATION

ENVIRONMENT FOR ALTARICA 3.0


Michel Batteux Tatiana Prosvirnova Antoine Rauzy
IRT SystemX CentraleSupélec NTNU
Saclay, France Gif-sur-Yvette, France Trondheim, Norway

Résumé
Cette communication propose au lecteur une visite guidée
de AltaRica Wizard, un nouvel environnement intégré de
modélisation et simulation pour AltaRica 3.0.
AltaRica 3.0 est un langage de modélisation orienté objet
dédié aux analyses probabilistes du risque de systèmes
complexes. AltaRica Wizard fourni l’ensemble des
fonctionnalités attendues d’un environnement de
conception pour un tel langage. Il permet de gérer les
modèles AltaRica 3.0 en mode projets, qui rassemblent les
différents fichiers source d’un modèle, ainsi que les
fichiers de configuration et de résultats issus des outils
d’évaluation. Il facilite l’écriture, la modification, la
correction et l’évaluation des modèles en fournissant une
interface graphique unifiée.
AltaRica Wizard est actuellement relié à trois chaînes
outillées pour évaluer les modèles AltaRica 3.0 : un
simulateur pas-à-pas, un générateur d’arbres de
défaillances ainsi qu’un simulateur stochastique.

Summary
This article invites the reader to a guided tour of AltaRica
Wizard, a new integrated modeling and simulation
environment for AltaRica 3.0.
AltaRica 3.0 is an object-oriented modeling language
dedicated to reliability engineering of complex technical
systems. AltaRica Wizard provides the expected
functionalities of a development environment for such a
language. It manages AltaRica 3.0 models into projects
that gather the different source files of a model, as well as
the configuration and result files of assessment tools. It
eases authoring, modifying, debugging and assessing of
models by providing a unique, unified graphical interface.
At the time we write these lines AltaRica Wizard embeds
three tool chains to assess AltaRica 3.0 models: a
stepwise simulator, a compiler to fault trees and a
stochastic simulator.

Introduction

This article invites the reader to a guided tour of AltaRica
Wizard, a new integrated modeling and simulation
environment for AltaRica 3.0. AltaRica 3.0 is an object-
oriented modeling language dedicated to reliability
engineering of complex technical systems, see e.g.
(Batteux & al. 2018, c) for an introduction. AltaRica 3.0 is a
very powerful language, more expressive for example than
Figaro (Bouissou & al. 1991), extensions of stochastic
Petri nets such as the one implemented in the GRIF tool
(Signoret & al. 2013) or AltaRica Data-Flow (Boiteau & al.
2006), the previous version of the language. It comes with
a versatile set of assessment tools. As of today,
AltaRica 3.0 is probably the most advance available
technology to perform probabilistic risk and safety
analyses.

AltaRica 3.0 models are stochastic discrete event systems.
Their design and assessment go through several steps,
requiring typically to create auxiliary files describing where
the source files are located, what is the chosen mission
profile, which performance indicators to calculate, what
kind of statistics to get on these indicators, where the
result files should be located and so on. AltaRica Wizard
aims at simplifying these tasks by providing a unique
environment from which everything can be done in a user-
friendly way.

The design of AltaRica Wizard is strongly inspired from
integrated development environments for programming
languages such as Python, C++ or Java. Just as these
tools, AltaRica Wizard is designed to maximize analyst
productivity by providing tight-knit components with similar
user interfaces. It presents a single program in which all
modeling and simulation is done. It provides features for

authoring, modifying, debugging and assessing
AltaRica 3.0 models by means of different technologies.

AltaRica Wizard provides thus the expected functionalities
of a code editor: syntax highlighting, management of copy
and paste, line numbering and so on. It manages
AltaRica 3.0 models into projects that gather the different
source files of a model, as well as the files generated by
assessment tools. At the time we write these lines,
AltaRica Wizard embeds three tool chains to assess
AltaRica 3.0 models:
 A graphical stepwise simulator, also called stepper.

This tool is used to animate models. It can be seen
also as the equivalent of debuggers of programming
languages and plays a central role in the validation of
models (Batteux & al. 2018, a).

 A compiler to fault trees at Open-AltaRica format
(Epstein & al 2009). This compiler is chained with the
powerful fault tree engine XFTA (Rauzy 2012).

 A stochastic simulator. Stochastic simulation is a
versatile tool for performance engineering, see e.g.
(Zio 2013)

A compiler to Markov chains and a generator of critical
sequences will be released in the coming months. Both
tools are currently under test

AltaRica Wizard is designed by the nonprofit AltaRica
Association which has the full copyright of the tool. It is
developed in C++ using the Qt5 framework by the Qt
Company. This makes the development very efficient and
the program portable across different platforms (Windows,
Linux, MacOS). This choice has some legal consequences
the user should know and accept: AltaRica Wizard can be
used, free of charge, for any academic or commercial
purposes. It is however distributed as is in the hope that it
will be useful, but without any warranty of any kind.
Assessment tools embedded in AltaRica Wizard are the

copyrights of their respective owners. Most of them are
either developed at IRT System X, in the framework of the
Open-AltaRica project (which is supported by EADS
Apsys, Safran and Thales) or by the AltaRica Association.
The user is thus invited to check that he or she has all
rights to use these tools for the purpose he or she uses
them. As of today, and as permitted by the LGLPv3 license
of Qt5, AltaRica Wizard is not an open source tool. This
situation will last until the AltaRica Association has
established with its partners the economic model of
AltaRica tools. The mid-term objective is to put in place a
dual licensing model, just as the Qt framework.

The contribution of this article is to provide the reader with
a snapshot of AltaRica Wizard features. Doing so, it

highlights also AltaRica 3.0 expressive power, elegance
and simplicity of use.
The remainder of this article is organized as follows. The
next section gives an overview of the AltaRica 3.0
technology. The following sections present successively
each of the assessment tools. Finally, the last section
concludes the article and gives some perspectives on the
forthcoming developments.

The AltaRica 3.0 Technology at a glance

Figure 1 gives a global picture of the AltaRica 3.0
technology, as of today.

Figure 1. The AltaRica 3.0 Technology at a glance

Projects

AltaRica Wizard manages models through projects. A
project contains one or more files organized into folders.
Files of a project can be not only AltaRica source files
(having usually the extension ".alt"), but also files used to
configure assessment tools and result files generated by
these tools.

Projects can be created, populated with folders and files,
saved and (re)loaded from AltaRica Wizard. Files and
folders of a project are those of the underlying operating
system. In particular, the project itself is located into a
folder of the underlying operating system. All paths to
folders and files are considered relatively to the project
folder and the file describing the project is saved into this
folder. In this way, projects can be moved from one place
to another one just by moving their folder. The same
principle applies indeed to project copy: to duplicate a
project it suffices to copy the folder that contains this
project.

Folders are automatically added to and removed from
projects when adding and removing files. This means that
a project contains a folder if and only if this folder contains
a file of the project (possibly in located in a sub-folder, a
sub-sub-folder … of that folder). A contrario, sub-folders of
the project folder do not belong automatically to the
project. Only those containing a file of the project do.

Projects make it possible to design libraries of reusable
modeling components and to assemble them to create
models, or simply to split a model into several files so to
make it easier to design and to maintain. Projects make
also it possible to add to the model files recording reliability
data. These contains typically cumulative distribution
functions associated with failures of basic components.
They may be automatically extracted from reliability data
bases.

Authoring and Flattening Process

AltaRica models are authored in the AltaRica Wizard code
editor. Figure 2 shows a screenshot of the code editor.
This editor is very classical. Its commands (or opening and
saving files, for cut and paste...) are the usual one. Its look
and feel of the code editor (font type, size and color,
syntax highlighting …) can be modifier at will.

The first step of all AltaRica 3.0 assessment tools consists
in compiling the AltaRica model into a guarded transitions
system. The AltaRica model is made of all declarations
appearing in all AltaRica files of the current project. A
guarded transitions system (GTS) can be seen a “flat”
AltaRica model, i.e. a model made of a single block. This
is the reason why this compilation process is also called
flattening and the compiler a flattener.
For efficiency reasons however, guarded transitions
systems, as implemented by the AltaRica 3.0 tools, are

slightly different from flat AltaRica models. Nevertheless,
the flattening process preserves the semantics of the
original model. For this reason, the analyst does not need
to look at the generated guarded transitions system. We
could even have hide it completely. The general
philosophy of AltaRica is however to give the analyst
access to all intermediate files. This approach makes it
possible to introduce intermediate steps performed outside
of the AltaRica Wizard environment.

The flattening process serves actually two purposes: first,
as the first step of any assessment, it is in charge of
checking the model against syntax errors, missing
declarations, typing problems and the like. Second, it
simplifies greatly the task of assessment tools by
instantiating classes, resolving references and so on.

Figure 2. Screenshot of the AltaRica Wizard code editor

Assessment Tools

As already said in the introduction, at the time we write
these lines, AltaRica Wizard embeds three tool chains to
assess AltaRica 3.0 models:
 A graphical stepwise simulator, also called stepper.
 A compiler into fault trees at Open-PSA format.
 A stochastic simulator.
We shall describe by means of examples the use of each
of these tools in the next sections.

Two additional tool chains will be released in the
forthcoming months:
 A compiler to Markov chains. This compiler produces

exact or approximated Markov chains according to the
principles defined in reference (Brameret & al. 2015).
This makes it possible to assess very large model
without suffering, at least to some extent, of the
combinatorial explosion of the numbers of states and
transitions. The Markov chains generated by the
compiler are then assessed by means of the XMRK
calculation engine. This program is derived from
previous work of one of the author (Rauzy 2004).

 A generator of critical sequences relying of efficient
algorithmic techniques, not published yet.

This versatile set of tool chains, all implementing state-of-
the-art algorithms, makes it possible:
 To use the best suited tool for each analysis purpose.

This is of paramount importance as the assessment of
probabilistic performance indicators is provably
computationally hard, see (Rauzy 2018) for a detailed
discussion on this topic

 To validate models by means of multiple experiments.
For instance, models can be checked by means of
stepwise simulation and critical sequence generation
before assessing them by means of Monte-Carlo
simulation.

 To cross-check results, again by means of multiple
experiments. For instance, results obtained by means
of a compilation into fault trees can be cross-checked

by means of a stochastic simulation or a compilation
into Markov chains.

We shall now present tool chains already available in the
current distribution.

Stepwise Simulation

The stepper, or stepwise simulator, makes it possible to
animate AltaRica 3.0 models by firing and backtracking
transitions, and looking at the value of variables and
observers. For this reason, it is very useful to validate
models. It plays actually a very similar role as debuggers
such as gbd (Matloff & Salzman 2008) of programming
languages. The stepper is a command interpreter. There
are commands to print out the value of variables,
observers and enabled transitions, to fire a given
transition, to undo last the firing, to restart a simulation
from scratch, to save and reload as sequence of transition
firings and so on.

AltaRica Wizard provides a graphical interface that
encapsulates the stepper. This interface makes it easier to
browse models and to enter commands (basically, the
analyst does not need to remember the syntax of
commands). Figure 3 shows a screenshot of this graphical
interface.

The central panel of this interface shows a tree-like view of
the model. Elements (variables, transitions, observers...)
are organized by blocks, sub-blocks, sub-sub-blocks and
so on. Values of variables and observers as well as status
of transitions are displayed in a clear way. Block items are
foldable and expandable so to ease the visualization of
large models. Enabled transitions can be fired just by
double clicking on the corresponding line.

The currently distributed version of the stepper implements
the regular semantics of AltaRica 3.0, except on one point:
the current version ignores delays and expectations
associated with events and transitions. Consequently,

some of the sequences of events that are enabled with the
stepper are impossible to fire with other simulation-based
tools such as the stochastic simulator. Assume for
instance that, at a given step of the simulation, two
transitions have their guards satisfied, and are thus
enabled. Assume moreover that the events of the first and
second transitions are associated respectively with an
exponential distribution and a Dirac(0) distribution. Then,
according to the temporized semantics of AltaRica 3.0,
only the second transition is actually enabled. The stepper
allows however to fire both. It is thus up to the analyst to

ensure that the sequences of events he or she fires are
accepted by the timed semantics of AltaRica 3.0.

This inconvenient has been recently solved by introducing
an abstract semantics for AltaRica 3.0 (Batteux & al. 2018,
a). This abstract semantics verifies that each concrete
execution can be simulated by a unique abstract execution
and each abstract execution corresponds to at least one
concrete execution. The next release of AltaRica Wizard
will implement this abstract semantics, making the stepper
even more interesting to validate AltaRica 3.0 models.

Figure 3. Screenshot of the AltaRica Wizard Stepper

Compilation into Fault Trees

The compilation into fault trees made the initial success of
AltaRica. AltaRica makes it possible reduce the gap
between system specifications and safety model. This gap
makes safety models hard to share with stakeholders and,
even more importantly, to maintain through the life-cycle of
systems. Another advantage of AltaRica is that the same
model can be used to assess several safety goals. The
first efficient algorithm to compile AltaRica Data-Flow
models into fault trees has been proposed in reference
(Rauzy 2002). This algorithm has been lifted-up to
AltaRica 3.0 models (Prosvirnova & Rauzy 2015) and
improved recently (Batteux & al. 2018, b).

The idea of the compilation algorithm is to map each
sequence of transition firings that goes from the initial state
to a failure state onto the conjunction of the events labeling
the fired transition. The set of failure sequences is mapped
onto the disjunction of these conjunction.
Applied directly, this idea would suffer from the
combinatorial explosion of the number of a failure
sequences. To avoid this problem, the model is split into
independent parts, thanks to static analysis techniques.
Disjunctions of conjunctions are then calculated locally on
each independent part and then assembled into a fault
tree.

In general, the resulting fault tree does not look like what a
human would have designed, even though minimal cutsets
are the same. This is the reason why, visualization of fault
tree does not play a fundamental role in the assessment
process. On the contrary, browsing minimal cutsets may
be of great interest. As of today, we rely usually on the tool

“Arbre Analyste” developed by E. Clément (Clément & al.
2014) to visualize fault trees when needed.

The compiler to fault trees needs only a target file to be
ran. It interface is thus minimal. The generated fault tree is
generated at the Open-PSA format (Epstein & Rauzy
2008). This format is read by fault tree assessment tools,
including Arbre Analyste, SCRAM, GRIF and XFTA.

AltaRica Wizard proposes a (limited) graphical interface to
work with XFTA. A specific dialog makes it possible to
create a XFTA command file and then to launch XFTA with
this command file. A screenshot of this interface is given
Figure 4.

This dialog dialog is restricted to relatively simple, although
powerful, scenarios:
 The top event for the analysis is specified and minimal

cutsets are calculated. It is possible to define cutoffs
(maximum order and/or minimum probability) for
cutsets.

 Minimal cutsets can be then printed-out into a file
(together with their order, probability and contribution
to the top-event probability).

Various calculations of indicators can then be performed
from the extract minimal cutsets:
 Top event probability and importance factors of basic

events at a given mission time.
 Sensitivity analysis on the top event probability at a

given mission time.
 Evolution of the system unavailability (probability of

failure on demand), average unavailability and safety
integrity levels (for low demand safety systems)
throughout a period of time.

 Evolution of the conditional failure intensity, average
conditional failure intensity, probability of failure per
hour, approximate system reliability and safety
integrity levels (for high demand safety systems)
throughout a period of time.

The results of these calculations are saved into text files
that can be exploited outside of AltaRicaWizard (typically
in spreadsheet tools).

Mathematical definitions and calculation algorithms can be
found in reference (Rauzy, 2014).

Figure 4. Screenshot of the XFTA interface

Stochastic Simulation

Principle

Stochastic simulation is a versatile tool to assess
performance indicators discrete event systems (Zio 2013).
The principle of stochastic, or Monte-Carlo, simulation is
quite simple. It consists in drawing at random a sample of
executions of the model, to observe a number of quantities
during these executions, and to make statistics on these
observations. To apply this principle, one has to answer
the following questions:
 What are the quantities to observe and how to define

them?
 When to observe these quantities?
 What kind of statistics should be made on these

quantities?
 What is good size of the sample so to get sufficiently

robust results?

Quantities to observe depend indeed on the performance
indicators one wants to obtain. In AltaRica 3.0, they are
defined in two steps: first, one declares observers in the
model. These observers can be either symbolic (Boolean
or symbolic constants) or numerical (integers or real
numbers). In both cases, their values evolve through an
execution. Second, one declares indicators in the
“indicator declaration file” of the stochastic simulator. This
file is automatically generated by AltaRica Wizard.
An indicator defines what to measure about the evolution
of an observer, i.e. on which quantity to make statistics.
Each execution runs from time 0 to a given mission time T.
Statistics are indeed made on the values of indicators at
time T. It may be interesting to make statistics on their
values, at least for some of them, at intermediate times 0 
t1 < t2 <... < tk  T. The mission time as well as possible
intermediate times are described into the mission
description file. This file is automatically generated by
AltaRica Wizard. It contains also the number of executions
the analyst wants to perform.

Process

Figure 5 shows the AltaRica 3.0 stochastic simulation
process.

The first step consists in transforming this model into an
equivalent guarded transitions system. This step is
achieved by the AltaRica 3.0 flattener. Guarded transitions
systems are usually stored in files with extension ``.gts''.

The second step consists in generating a C++ program
from the guarded transitions system and the indicator
description file. This C++ program is a stochastic simulator
specialized for the model and the indicators. This step is
achieved by the AltaRica 3.0 stochastic simulator
generator. Technically, the indicator description file is a
XML file, which usually has the extension ``.idf''.

The third step consists in compiling the C++ file into an
executable file. This step is achieved by a public domain
portable C++ compiler (in the current version, mingw).

The fourth and last step consists in running the stochastic
simulation, i.e. in executing the stochastic simulator. The
executable stochastic simulator takes the mission
description file as input. Consequently, it is possible to use
the same simulator for different missions, i.e. for different
number of executions, different mission time and
intermediate observation dates. Technically, the mission
description file is a XML file, which usually has the
extension ``.mdf''.

The AltaRica Wizard integrated modeling environment
makes it possible to perform these four steps in a
(relatively) transparent way. In particular, the analyst does
not have to learn the syntax of indicator and mission
description files, nor how to call the different tools involved
in the process.

The results of the stochastic simulation can be written out
in different formats: a textual format, the ``.csv'' format that
eases the loading into a spreadsheet tool and a XML
format that eases the loading into a post-treatment tool.

Indicators

They are two types of observers with respect to the
definition of indicators:
 symbolic observers, which include both Boolean

observers and observers taking their value into a finite
set of symbolic constants,

 and numerical observers, which include both integer-
valued and real valued observers.

We shall examine them in a row.

Indicators for symbolic observers are actually defined for
the observer and a particular value of the observer.
Let O be a symbolic observer and v be a constant of the
domain of O. Finally, let t be the time at which the indicator
is assessed. The following indicators can be defined for O,
v and t.

Figure 5. The AltaRica 3.0 stochastic simulation process

 has-value(O, v, t): This Boolean indicator measures

the proportion of executions in which the observer O
takes the value v at time t.

 had-value(O, v, t): This Boolean indicator measures
the proportion of executions in which the observer O
takes at least once the value v from time 0 to time t.

 sojourn-time(O, v, t): This numerical indicator
measures the time spent by the observer O at the
value v from time 0 to time t. This time is averaged
over the executions.

 first-occurrence-date(O, v, t): This numerical indicator
measures the first date at which the observer O takes
the value v from time 0 to time t. This time is averaged
over the executions in which the observer O takes the
value v. The executions in which the observer O never
takes the value v are not considered.

 number-of-occurrences(O, v, t): This numerical
indicator measures the number of times the observer
O takes the value v from time 0 to time t. This time is
averaged over the executions.

 mean-time-between-occurrences(O, v, t): This
numerical indicator measures the mean time between
two successive dates at which the observer O takes
the value v from time 0 to time t. This mean time is
averaged over the executions in which the observer O
takes the value v at least twice. The executions in
which the observer O takes 0 or 1 time the value v are
not considered.

The situation is much simpler for indicators built over
numerical observers as the values of these indicators
cannot be considered individually. Let O be a numerical
observer and t be the time at which the indicator is
assessed. The following indicators can be defined for O
and t.
 value(O, t): This Boolean indicator measures the value

the observer O at time t. This value is averaged over
the executions.

 mean-value(O, t): This Boolean indicator measures the
mean value the observer O from time 0 to time t. This
value is averaged over the executions.

Note that if one is interested in the average time the
system spends in a state where the value of a given
numerical variable is over a given threshold, then it is
possible to define a Boolean observer that describes
exactly this situation.

Statistics

The following statistical measures can be obtained on an
indicator I after n realizations I1, I2, ... In obtained through
n random executions of the model (which statistics should
be made on which indicators is described in the indicator
description file).
 The empirical mean value of the indicator.
 The empirical standard-deviation of the indicator.
 The empirical 95% confidence range of the indicator.

In addition to the above statistical measures, it is possible
to calculate the empirical distribution of the indicator. The
idea is as follows.
 Sort the values I1, I2, ... In in increasing order.
 Divide the n values into k buckets of nearly equal size.

Each bucket contains thus about n/k values (10 or 20
are typical values for k).

 Calculate for each of the buckets the minimum, the
mean and the maximum values in the bucket.

Note that maximum values of each bucket are the k
quantiles of the indicator.

As it is in general not possible to store all of the values,
minimum, the mean and the maximum values of buckets
are calculated on the fly.
This technique gives in general good estimations.

Discussion

The stochastic simulation process described in this section
may seem a bit complex at a first glance. However, it is
both versatile and efficient:
 Available indicators provide a very rich palette of

measures that make it possible to characterize a wide
set of properties of the system.

 These indicators are defined outside the model which
avoid polluting the model with constructs that are not
related to the system behavior.

 Nevertheless, indicators are stored into description
files so to keep track of experimental protocols and to
be able to replay them.

 Mission profiles are also stored into description files,
for the very same reasons.

 The stochastic simulation is performed by compiling
the AltaRica model into an executable program (for a
given set of indicators and via the compilation into
GTS, then C++). This makes it extremely efficient. The
compilation process itself is efficient as both the
AltaRica compiler and the C++ compiler are.

Thanks to AltaRica Wizard this process is greatly
facilitated and made transparent for the analyst: compilers
are installed with the AltaRica Wizard distribution and
description files are automatically generated by filling
forms through the graphical interface.

Conclusion

The AltaRica 3.0 technology is now mature and ready for
industrial deployment. A number of experiments have
been performed, showing its efficiency (several
publications are on the way). A lot has been achieved the
last four years, with eventually relatively limited means: the
AltaRica development team never counted more than
three members at a time, and none of them was working
full time on the project. The sponsoring by Safran of the
chair Blériot-Fabre at CentraleSupélec and the support of
Apsys, Safran and Thalès to the OpenAltaRica project
have been decisive: they simply made the story possible.
Of course, the AltaRica 3.0 language specification will
probably evolve, the AltaRica Wizard environment will be
improved, the assessment tools will be given more
possibilities and will be made more efficient in the future.
But the core of the technology is here that outperforms
already all other implementations of the so-called “model-
based” approach in reliability engineering and system
safety.
To conclude this article, we would like to say few words
about mention graphical representations of models. There
is a debate about this question each time the model-based
approach in reliability engineering is discussed. Our
experience goes against the tide: we believe that, although
graphical representations are very useful as
communication mean, pure graphical modeling is
counterproductive in most of the cases. Analysts spend
eventually more time in making their drawing “elegant”
than in thinking about the system they are studying and
the mathematical object they are designing, namely the
model. If the system under study is complex, models of
this system must be complex as well, or at least simplex in
the sense given to this term by Berthoz (Berthoz 2012). In
a word, complexity cannot vanish. Modeling is not a magic
wand. But as soon a model gets complex, it is not possible
to represent it fully graphically. Models are mathematical
artifacts. Complex models are complex mathematical
artifacts which are better represented by texts. With that
respect, we must draw lessons from decades of software
engineering: all attempts to design graphical programming
languages failed, but for pedagogical purposes (e.g. the
Scratch language from the MIT). Drawings are definitely
useful to understand the global architecture of a program,
but the code remains the ultimate reference. Moreover,
drawings (such as UML class diagrams) are never more
useful than when they are automatically generated from
the code (and not the reverse). We strongly believe that
models engineering will follow the same path. At the end of
the day, mankind invented writing because drawing was
not sufficient to transmit complex thoughts.

References

Michel Batteux, Tatiana Prosvirnova and Antoine Rauzy.
Enhancement of the AltaRica 3.0 stepwise simulator by
introducing an abstract notion of time. Safe Societies in a
Changing World, Proceedings of European Safety and
Reliability Conference (ESREL 2018). Trondheim, Norway.
June, 2018.

Michel Batteux, Tatiana Prosvirnova and Antoine Rauzy.
Advances in the simplification of Fault Trees automatically
generated from AltaRica 3.0 models. Safe Societies in a
Changing World, proceedings of European Safety and
Reliability Conference (ESREL 2018). Trondheim, Norway.
June, 2018.

Michel Batteux, Tatiana Prosvirnova and Antoine Rauzy.
AltaRica 3.0 in 10 Patterns: Submitted to International
Journal of Critical Computer-Based Systems. Inderscience
Publishers. 2018.

Alain Berthoz. Simplexity: Simplifying Principles for a
Complex World. Yale University Press. New Haven, CT,
USA. ISBN 978-0300169348. 2012.

Marie Boiteau, Yves Dutuit, Antoine Rauzy and Jean-
Pierre Signoret. The AltaRica Data-Flow Language in Use:
Assessment of Production Availability of a MultiStates
System. Reliability Engineering and System Safety.
Elsevier. 91:7. pp. 747–755. July, 2006.
doi:10.1016/j.ress.2004.12.004.

Marc Bouissou, Henri Bouhadana, Marc Bannelier and
Nathalie Villatte. Knowledge modelling and reliability
processing: presentation of the FIGARO language and of
associated tools. Proceedings of SAFECOMP'91, IFAC
International Conference on Safety of Computer Control
Systems. Johan F. Lindeberg Ed. Pergamon Press. ISBN
0-08-041697-7. pp. 69–75. Trondheim, Norway. 1991.

Pierre-Antoine Brameret, Antoine Rauzy and Jean-Marc
Roussel. Automated generation of partial Markov chain
from high level descriptions. Reliability Engineering and
System Safety. Elsevier. 139. pp. 179–187. July, 2015.
doi:10.1016/j.ress.2015.02.009.

Emmanuel Clément, Thierry Thomas and Antoine Rauzy.
Arbre Analyste : un outil d'arbres de défaillances
respectant le standard Open-PSA et utilisant le moteur
XFTA. Actes du congrès Lambda-Mu 19 (actes
électroniques). Institut pour la Maîtrise des Risques. ISBN
978-2-35147-037-4. Dijon, France. October, 2014.

Steven Epstein and Antoine Rauzy. Open-PSA Model
Exchange format, version 2.0d. 2008. http://www.open-
psa.org.

Norman Matloff and Peter Jay Salzman. The Art of
Debugging with GDB, DDD, and Eclipse. No Starch Press.
San Fransisco, CA, USA. ISBN 978-1593271749. 2008.

Tatiana Prosvirnova and Antoine Rauzy. Automated
generation of Minimal Cutsets from AltaRica 3.0 models.
International Journal of Critical Computer-Based Systems.
Inderscience Publishers. 6:1. pp. 50–79. 2015.
doi:10.1504/IJCCBS.2015.068852

Antoine Rauzy. Modes Automata and their Compilation
into Fault Trees. Reliability Engineering and System
Safety. Elsevier. 78:1. pp. 1–12. October, 2002.
doi:10.1016/S0951-8320(02)00042-X.

Antoine Rauzy. An Experimental Study on Six Algorithms
to Compute Transient Solutions of Large Markov Systems.
Reliability Engineering and System Safety. Elsevier. 86:1.
pp. 105–115. October, 2004.
doi:10.1016/j.ress.2004.01.007.

Antoine Rauzy. Anatomy of an Efficient Fault Tree
Assessment Engine. Proceedings of International Joint
Conference PSAM'11/ESREL'12. R. Virolainen Ed. ISBN
978-162276436-5. Helsinki, Finland. June, 2012.

Antoine Rauzy. XFTA: an Open-PSA fault-tree engine.
AltaRica Association. 2014.

Antoine Rauzy. Notes on Computational Uncertainties in
Probabilistic Risk/Safety Assessment. Entropy. MDPI.
20:3. 2018. doi:10.3390/e20030162.

Jean-Pierre Signoret, Yves Dutuit, Jean-Pierre Cacheux,
Cyrille Folleau, Stéphane Collas and Philippe Thomas.
Make your Petri nets understandable: Reliability block
diagrams driven Petri nets. Reliability Engineering and
System Safety. Elsevier. 113. pp. 61–75. 2013.
doi:10.1016/j.ress.2012.12.008.

Enrico Zio. The Monte Carlo Simulation Method for
System Reliability and Risk Analysis. Springer London.
London,

