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Résumé  
Cette communication propose au lecteur une visite guidée 
de AltaRica Wizard, un nouvel environnement intégré de 
modélisation et simulation pour AltaRica 3.0. 
AltaRica 3.0 est un langage de modélisation orienté objet 
dédié aux analyses probabilistes du risque de systèmes 
complexes. AltaRica Wizard fourni l’ensemble des 
fonctionnalités attendues d’un environnement de 
conception pour un tel langage. Il permet de gérer les 
modèles AltaRica 3.0 en mode projets, qui rassemblent les 
différents fichiers source d’un modèle, ainsi que les 
fichiers de configuration et de résultats issus des outils 
d’évaluation. Il facilite l’écriture, la modification, la 
correction et l’évaluation des modèles en fournissant une 
interface graphique unifiée. 
AltaRica Wizard est actuellement relié à trois chaînes 
outillées pour évaluer les modèles AltaRica 3.0 : un 
simulateur pas-à-pas, un générateur d’arbres de 
défaillances ainsi qu’un simulateur stochastique. 

Summary  
This article invites the reader to a guided tour of AltaRica 
Wizard, a new integrated modeling and simulation 
environment for AltaRica 3.0. 
AltaRica 3.0 is an object-oriented modeling language 
dedicated to reliability engineering of complex technical 
systems. AltaRica Wizard provides the expected 
functionalities of a development environment for such a 
language. It manages AltaRica 3.0 models into projects 
that gather the different source files of a model, as well as 
the configuration and result files of assessment tools. It 
eases authoring, modifying, debugging and assessing of 
models by providing a unique, unified graphical interface. 
At the time we write these lines AltaRica Wizard embeds 
three tool chains to assess AltaRica 3.0 models: a 
stepwise simulator, a compiler to fault trees and a 
stochastic simulator. 
 

Introduction 

This article invites the reader to a guided tour of AltaRica 
Wizard, a new integrated modeling and simulation 
environment for AltaRica 3.0. AltaRica 3.0 is an object-
oriented modeling language dedicated to reliability 
engineering of complex technical systems, see e.g. 
(Batteux & al. 2018, c) for an introduction. AltaRica 3.0 is a 
very powerful language, more expressive for example than 
Figaro (Bouissou & al. 1991), extensions of stochastic 
Petri nets such as the one implemented in the GRIF tool 
(Signoret & al. 2013) or AltaRica Data-Flow (Boiteau & al. 
2006), the previous version of the language. It comes with 
a versatile set of assessment tools. As of today, 
AltaRica 3.0 is probably the most advance available 
technology to perform probabilistic risk and safety 
analyses. 
 
AltaRica 3.0 models are stochastic discrete event systems. 
Their design and assessment go through several steps, 
requiring typically to create auxiliary files describing where 
the source files are located, what is the chosen mission 
profile, which performance indicators to calculate, what 
kind of statistics to get on these indicators, where the 
result files should be located and so on. AltaRica Wizard 
aims at simplifying these tasks by providing a unique 
environment from which everything can be done in a user-
friendly way. 
 
The design of AltaRica Wizard is strongly inspired from 
integrated development environments for programming 
languages such as Python, C++ or Java. Just as these 
tools, AltaRica Wizard is designed to maximize analyst 
productivity by providing tight-knit components with similar 
user interfaces. It presents a single program in which all 
modeling and simulation is done. It provides features for 

authoring, modifying, debugging and assessing 
AltaRica 3.0 models by means of different technologies. 
 
AltaRica Wizard provides thus the expected functionalities 
of a code editor: syntax highlighting, management of copy 
and paste, line numbering and so on. It manages 
AltaRica 3.0 models into projects that gather the different 
source files of a model, as well as the files generated by 
assessment tools. At the time we write these lines, 
AltaRica Wizard embeds three tool chains to assess 
AltaRica 3.0 models: 
 A graphical stepwise simulator, also called stepper. 

This tool is used to animate models. It can be seen 
also as the equivalent of debuggers of programming 
languages and plays a central role in the validation of 
models (Batteux & al. 2018, a). 

 A compiler to fault trees at Open-AltaRica format 
(Epstein & al 2009). This compiler is chained with the 
powerful fault tree engine XFTA (Rauzy 2012). 

 A stochastic simulator. Stochastic simulation is a 
versatile tool for performance engineering, see e.g. 
(Zio 2013) 

A compiler to Markov chains and a generator of critical 
sequences will be released in the coming months. Both 
tools are currently under test 
 
AltaRica Wizard is designed by the nonprofit AltaRica 
Association which has the full copyright of the tool. It is 
developed in C++ using the Qt5 framework by the Qt 
Company. This makes the development very efficient and 
the program portable across different platforms (Windows, 
Linux, MacOS). This choice has some legal consequences 
the user should know and accept: AltaRica Wizard can be 
used, free of charge, for any academic or commercial 
purposes. It is however distributed as is in the hope that it 
will be useful, but without any warranty of any kind. 
Assessment tools embedded in AltaRica Wizard are the 



copyrights of their respective owners. Most of them are 
either developed at IRT System X, in the framework of the 
Open-AltaRica project (which is supported by EADS 
Apsys, Safran and Thales) or by the AltaRica Association. 
The user is thus invited to check that he or she has all 
rights to use these tools for the purpose he or she uses 
them. As of today, and as permitted by the LGLPv3 license 
of Qt5, AltaRica Wizard is not an open source tool. This 
situation will last until the AltaRica Association has 
established with its partners the economic model of 
AltaRica tools. The mid-term objective is to put in place a 
dual licensing model, just as the Qt framework. 
 
The contribution of this article is to provide the reader with 
a snapshot of AltaRica Wizard features. Doing so, it 

highlights also AltaRica 3.0 expressive power, elegance 
and simplicity of use. 
The remainder of this article is organized as follows. The 
next section gives an overview of the AltaRica 3.0 
technology. The following sections present successively 
each of the assessment tools. Finally, the last section 
concludes the article and gives some perspectives on the 
forthcoming developments. 

The AltaRica 3.0 Technology at a glance 

 
Figure 1 gives a global picture of the AltaRica 3.0 
technology, as of today. 
 
 

 

Figure 1. The AltaRica 3.0 Technology at a glance 

Projects 

AltaRica Wizard manages models through projects. A 
project contains one or more files organized into folders. 
Files of a project can be not only AltaRica source files 
(having usually the extension ".alt"), but also files used to 
configure assessment tools and result files generated by 
these tools. 
 
Projects can be created, populated with folders and files, 
saved and (re)loaded from AltaRica Wizard. Files and 
folders of a project are those of the underlying operating 
system. In particular, the project itself is located into a 
folder of the underlying operating system. All paths to 
folders and files are considered relatively to the project 
folder and the file describing the project is saved into this 
folder. In this way, projects can be moved from one place 
to another one just by moving their folder. The same 
principle applies indeed to project copy: to duplicate a 
project it suffices to copy the folder that contains this 
project. 
 
Folders are automatically added to and removed from 
projects when adding and removing files. This means that 
a project contains a folder if and only if this folder contains 
a file of the project (possibly in located in a sub-folder, a 
sub-sub-folder … of that folder). A contrario, sub-folders of 
the project folder do not belong automatically to the 
project. Only those containing a file of the project do. 

 
Projects make it possible to design libraries of reusable 
modeling components and to assemble them to create 
models, or simply to split a model into several files so to 
make it easier to design and to maintain. Projects make 
also it possible to add to the model files recording reliability 
data. These contains typically cumulative distribution 
functions associated with failures of basic components. 
They may be automatically extracted from reliability data 
bases. 

Authoring and Flattening Process 

AltaRica models are authored in the AltaRica Wizard code 
editor. Figure 2 shows a screenshot of the code editor. 
This editor is very classical. Its commands (or opening and 
saving files, for cut and paste...) are the usual one. Its look 
and feel of the code editor (font type, size and color, 
syntax highlighting …) can be modifier at will. 
 
The first step of all AltaRica 3.0 assessment tools consists 
in compiling the AltaRica model into a guarded transitions 
system. The AltaRica model is made of all declarations 
appearing in all AltaRica files of the current project. A 
guarded transitions system (GTS) can be seen a “flat” 
AltaRica model, i.e. a model made of a single block. This 
is the reason why this compilation process is also called 
flattening and the compiler a flattener. 
For efficiency reasons however, guarded transitions 
systems, as implemented by the AltaRica 3.0 tools, are 



slightly different from flat AltaRica models. Nevertheless, 
the flattening process preserves the semantics of the 
original model. For this reason, the analyst does not need 
to look at the generated guarded transitions system. We 
could even have hide it completely. The general 
philosophy of AltaRica is however to give the analyst 
access to all intermediate files. This approach makes it 
possible to introduce intermediate steps performed outside 
of the AltaRica Wizard environment. 

 
The flattening process serves actually two purposes: first, 
as the first step of any assessment, it is in charge of 
checking the model against syntax errors, missing 
declarations, typing problems and the like. Second, it 
simplifies greatly the task of assessment tools by 
instantiating classes, resolving references and so on. 
 

 

 

Figure 2. Screenshot of the AltaRica Wizard code editor 

Assessment Tools 

As already said in the introduction, at the time we write 
these lines, AltaRica Wizard embeds three tool chains to 
assess AltaRica 3.0 models: 
 A graphical stepwise simulator, also called stepper. 
 A compiler into fault trees at Open-PSA format. 
 A stochastic simulator. 
We shall describe by means of examples the use of each 
of these tools in the next sections. 
 
Two additional tool chains will be released in the 
forthcoming months: 
 A compiler to Markov chains. This compiler produces 

exact or approximated Markov chains according to the 
principles defined in reference (Brameret & al. 2015). 
This makes it possible to assess very large model 
without suffering, at least to some extent, of the 
combinatorial explosion of the numbers of states and 
transitions. The Markov chains generated by the 
compiler are then assessed by means of the XMRK 
calculation engine. This program is derived from 
previous work of one of the author (Rauzy 2004). 

 A generator of critical sequences relying of efficient 
algorithmic techniques, not published yet. 

This versatile set of tool chains, all implementing state-of-
the-art algorithms, makes it possible: 
 To use the best suited tool for each analysis purpose. 

This is of paramount importance as the assessment of 
probabilistic performance indicators is provably 
computationally hard, see (Rauzy 2018) for a detailed 
discussion on this topic 

 To validate models by means of multiple experiments. 
For instance, models can be checked by means of 
stepwise simulation and critical sequence generation 
before assessing them by means of Monte-Carlo 
simulation. 

 To cross-check results, again by means of multiple 
experiments. For instance, results obtained by means 
of a compilation into fault trees can be cross-checked 

by means of a stochastic simulation or a compilation 
into Markov chains. 

We shall now present tool chains already available in the 
current distribution. 
 

Stepwise Simulation 

The stepper, or stepwise simulator, makes it possible to 
animate AltaRica 3.0 models by firing and backtracking 
transitions, and looking at the value of variables and 
observers. For this reason, it is very useful to validate 
models. It plays actually a very similar role as debuggers 
such as gbd (Matloff & Salzman 2008) of programming 
languages. The stepper is a command interpreter. There 
are commands to print out the value of variables, 
observers and enabled transitions, to fire a given 
transition, to undo last the firing, to restart a simulation 
from scratch, to save and reload as sequence of transition 
firings and so on. 
 
AltaRica Wizard provides a graphical interface that 
encapsulates the stepper. This interface makes it easier to 
browse models and to enter commands (basically, the 
analyst does not need to remember the syntax of 
commands). Figure 3 shows a screenshot of this graphical 
interface. 
 
The central panel of this interface shows a tree-like view of 
the model. Elements (variables, transitions, observers...) 
are organized by blocks, sub-blocks, sub-sub-blocks and 
so on. Values of variables and observers as well as status 
of transitions are displayed in a clear way. Block items are 
foldable and expandable so to ease the visualization of 
large models. Enabled transitions can be fired just by 
double clicking on the corresponding line. 
 
The currently distributed version of the stepper implements 
the regular semantics of AltaRica 3.0, except on one point: 
the current version ignores delays and expectations 
associated with events and transitions. Consequently, 



some of the sequences of events that are enabled with the 
stepper are impossible to fire with other simulation-based 
tools such as the stochastic simulator. Assume for 
instance that, at a given step of the simulation, two 
transitions have their guards satisfied, and are thus 
enabled. Assume moreover that the events of the first and 
second transitions are associated respectively with an 
exponential distribution and a Dirac(0) distribution. Then, 
according to the temporized semantics of AltaRica 3.0, 
only the second transition is actually enabled. The stepper 
allows however to fire both. It is thus up to the analyst to 

ensure that the sequences of events he or she fires are 
accepted by the timed semantics of AltaRica 3.0. 
 
This inconvenient has been recently solved by introducing 
an abstract semantics for AltaRica 3.0 (Batteux & al. 2018, 
a). This abstract semantics verifies that each concrete 
execution can be simulated by a unique abstract execution 
and each abstract execution corresponds to at least one 
concrete execution. The next release of AltaRica Wizard 
will implement this abstract semantics, making the stepper 
even more interesting to validate AltaRica 3.0 models. 
 

 

 

Figure 3. Screenshot of the AltaRica Wizard Stepper 

 

Compilation into Fault Trees 

The compilation into fault trees made the initial success of 
AltaRica. AltaRica makes it possible reduce the gap 
between system specifications and safety model. This gap 
makes safety models hard to share with stakeholders and, 
even more importantly, to maintain through the life-cycle of 
systems. Another advantage of AltaRica is that the same 
model can be used to assess several safety goals. The 
first efficient algorithm to compile AltaRica Data-Flow 
models into fault trees has been proposed in reference 
(Rauzy 2002). This algorithm has been lifted-up to 
AltaRica 3.0 models (Prosvirnova & Rauzy 2015) and 
improved recently (Batteux & al. 2018, b). 
 
The idea of the compilation algorithm is to map each 
sequence of transition firings that goes from the initial state 
to a failure state onto the conjunction of the events labeling 
the fired transition. The set of failure sequences is mapped 
onto the disjunction of these conjunction. 
Applied directly, this idea would suffer from the 
combinatorial explosion of the number of a failure 
sequences. To avoid this problem, the model is split into 
independent parts, thanks to static analysis techniques. 
Disjunctions of conjunctions are then calculated locally on 
each independent part and then assembled into a fault 
tree. 
 
In general, the resulting fault tree does not look like what a 
human would have designed, even though minimal cutsets 
are the same. This is the reason why, visualization of fault 
tree does not play a fundamental role in the assessment 
process. On the contrary, browsing minimal cutsets may 
be of great interest. As of today, we rely usually on the tool 

“Arbre Analyste” developed by E. Clément (Clément & al. 
2014) to visualize fault trees when needed. 
 
The compiler to fault trees needs only a target file to be 
ran. It interface is thus minimal. The generated fault tree is 
generated at the Open-PSA format (Epstein & Rauzy 
2008). This format is read by fault tree assessment tools, 
including Arbre Analyste, SCRAM, GRIF and XFTA. 
 
AltaRica Wizard proposes a (limited) graphical interface to 
work with XFTA. A specific dialog makes it possible to 
create a XFTA command file and then to launch XFTA with 
this command file. A screenshot of this interface is given 
Figure 4. 
 
This dialog dialog is restricted to relatively simple, although 
powerful, scenarios: 
 The top event for the analysis is specified and minimal 

cutsets are calculated. It is possible to define cutoffs 
(maximum order and/or minimum probability) for 
cutsets. 

 Minimal cutsets can be then printed-out into a file 
(together with their order, probability and contribution 
to the top-event probability). 

 
Various calculations of indicators can then be performed 
from the extract minimal cutsets: 
 Top event probability and importance factors of basic 

events at a given mission time. 
 Sensitivity analysis on the top event probability at a 

given mission time. 
 Evolution of the system unavailability (probability of 

failure on demand), average unavailability and safety 
integrity levels (for low demand safety systems) 
throughout a period of time. 



 Evolution of the conditional failure intensity, average 
conditional failure intensity, probability of failure per 
hour, approximate system reliability and safety 
integrity levels (for high demand safety systems) 
throughout a period of time. 

 
The results of these calculations are saved into text files 
that can be exploited outside of AltaRicaWizard (typically 
in spreadsheet tools). 

 
Mathematical definitions and calculation algorithms can be 
found in reference (Rauzy, 2014). 
 
 
 
 
 

 

Figure 4. Screenshot of the XFTA interface 

Stochastic Simulation 

Principle 

Stochastic simulation is a versatile tool to assess 
performance indicators discrete event systems (Zio 2013). 
The principle of stochastic, or Monte-Carlo, simulation is 
quite simple. It consists in drawing at random a sample of 
executions of the model, to observe a number of quantities 
during these executions, and to make statistics on these 
observations. To apply this principle, one has to answer 
the following questions: 
 What are the quantities to observe and how to define 

them? 
 When to observe these quantities? 
 What kind of statistics should be made on these 

quantities? 
 What is good size of the sample so to get sufficiently 

robust results? 
 
Quantities to observe depend indeed on the performance 
indicators one wants to obtain. In AltaRica 3.0, they are 
defined in two steps: first, one declares observers in the 
model. These observers can be either symbolic (Boolean 
or symbolic constants) or numerical (integers or real 
numbers). In both cases, their values evolve through an 
execution. Second, one declares indicators in the 
“indicator declaration file” of the stochastic simulator. This 
file is automatically generated by AltaRica Wizard. 
An indicator defines what to measure about the evolution 
of an observer, i.e. on which quantity to make statistics. 
Each execution runs from time 0 to a given mission time T. 
Statistics are indeed made on the values of indicators at 
time T. It may be interesting to make statistics on their 
values, at least for some of them, at intermediate times 0  
t1 < t2 <... < tk  T. The mission time as well as possible 
intermediate times are described into the mission 
description file. This file is automatically generated by 
AltaRica Wizard. It contains also the number of executions 
the analyst wants to perform. 

Process 

Figure 5 shows the AltaRica 3.0 stochastic simulation 
process. 
 
The first step consists in transforming this model into an 
equivalent guarded transitions system. This step is 
achieved by the AltaRica 3.0 flattener. Guarded transitions 
systems are usually stored in files with extension ``.gts''. 
 
The second step consists in generating a C++ program 
from the guarded transitions system and the indicator 
description file. This C++ program is a stochastic simulator 
specialized for the model and the indicators. This step is 
achieved by the AltaRica 3.0 stochastic simulator 
generator. Technically, the indicator description file is a 
XML file, which usually has the extension ``.idf''. 
 
The third step consists in compiling the C++ file into an 
executable file. This step is achieved by a public domain 
portable C++ compiler (in the current version, mingw). 
 
The fourth and last step consists in running the stochastic 
simulation, i.e. in executing the stochastic simulator. The 
executable stochastic simulator takes the mission 
description file as input. Consequently, it is possible to use 
the same simulator for different missions, i.e. for different 
number of executions, different mission time and 
intermediate observation dates. Technically, the mission 
description file is a XML file, which usually has the 
extension ``.mdf''. 
 
The AltaRica Wizard integrated modeling environment 
makes it possible to perform these four steps in a 
(relatively) transparent way. In particular, the analyst does 
not have to learn the syntax of indicator and mission 
description files, nor how to call the different tools involved 
in the process. 
 
The results of the stochastic simulation can be written out 
in different formats: a textual format, the ``.csv'' format that 
eases the loading into a spreadsheet tool and a XML 
format that eases the loading into a post-treatment tool. 



Indicators 

They are two types of observers with respect to the 
definition of indicators: 
 symbolic observers, which include both Boolean 

observers and observers taking their value into a finite 
set of symbolic constants, 

 and numerical observers, which include both integer-
valued and real valued observers. 

We shall examine them in a row. 
 
Indicators for symbolic observers are actually defined for 
the observer and a particular value of the observer. 
Let O be a symbolic observer and v be a constant of the 
domain of O. Finally, let t be the time at which the indicator 
is assessed. The following indicators can be defined for O, 
v and t. 
 

Figure 5. The AltaRica 3.0 stochastic simulation process 

 
 has-value(O, v, t): This Boolean indicator measures 

the proportion of executions in which the observer O 
takes the value v at time t. 

 had-value(O, v, t): This Boolean indicator measures 
the proportion of executions in which the observer O 
takes at least once the value v from time 0 to time t. 

 sojourn-time(O, v, t): This numerical indicator 
measures the time spent by the observer O at the 
value v from time 0 to time t. This time is averaged 
over the executions. 

 first-occurrence-date(O, v, t): This numerical indicator 
measures the first date at which the observer O takes 
the value v from time 0 to time t. This time is averaged 
over the executions in which the observer O takes the 
value v. The executions in which the observer O never 
takes the value v are not considered. 

 number-of-occurrences(O, v, t): This numerical 
indicator measures the number of times the observer 
O takes the value v from time 0 to time t. This time is 
averaged over the executions. 

 mean-time-between-occurrences(O, v, t):  This 
numerical indicator measures the mean time between 
two successive dates at which the observer O takes 
the value v from time 0 to time t. This mean time is 
averaged over the executions in which the observer O 
takes the value v at least twice.  The executions in 
which the observer O takes 0 or 1 time the value v are 
not considered. 

 
The situation is much simpler for indicators built over 
numerical observers as the values of these indicators 
cannot be considered individually. Let O be a numerical 
observer and t be the time at which the indicator is 
assessed. The following indicators can be defined for O 
and t. 
 value(O, t): This Boolean indicator measures the value 

the observer O at time t. This value is averaged over 
the executions. 

 mean-value(O, t): This Boolean indicator measures the 
mean value the observer O from time 0 to time t. This 
value is averaged over the executions. 

 

Note that if one is interested in the average time the 
system spends in a state where the value of a given 
numerical variable is over a given threshold, then it is 
possible to define a Boolean observer that describes 
exactly this situation. 

Statistics 

The following statistical measures can be obtained on an 
indicator I after n realizations I1, I2, ... In obtained through 
n random executions of the model (which statistics should 
be made on which indicators is described in the indicator 
description file). 
 The empirical mean value of the indicator. 
 The empirical standard-deviation of the indicator. 
 The empirical 95% confidence range of the indicator. 
 
In addition to the above statistical measures, it is possible 
to calculate the empirical distribution of the indicator. The 
idea is as follows. 
 Sort the values I1, I2, ... In in increasing order. 
 Divide the n values into k buckets of nearly equal size. 

Each bucket contains thus about n/k values (10 or 20 
are typical values for k). 

 Calculate for each of the buckets the minimum, the 
mean and the maximum values in the bucket. 

 
Note that maximum values of each bucket are the k 
quantiles of the indicator. 
 
As it is in general not possible to store all of the values, 
minimum, the mean and the maximum values of buckets 
are calculated on the fly. 
This technique gives in general good estimations. 

Discussion 

The stochastic simulation process described in this section 
may seem a bit complex at a first glance. However, it is 
both versatile and efficient: 
 Available indicators provide a very rich palette of 

measures that make it possible to characterize a wide 
set of properties of the system. 



 These indicators are defined outside the model which 
avoid polluting the model with constructs that are not 
related to the system behavior. 

 Nevertheless, indicators are stored into description 
files so to keep track of experimental protocols and to 
be able to replay them. 

 Mission profiles are also stored into description files, 
for the very same reasons. 

 The stochastic simulation is performed by compiling 
the AltaRica model into an executable program (for a 
given set of indicators and via the compilation into 
GTS, then C++). This makes it extremely efficient. The 
compilation process itself is efficient as both the 
AltaRica compiler and the C++ compiler are. 

Thanks to AltaRica Wizard this process is greatly 
facilitated and made transparent for the analyst: compilers 
are installed with the AltaRica Wizard distribution and 
description files are automatically generated by filling 
forms through the graphical interface. 

Conclusion 

The AltaRica 3.0 technology is now mature and ready for 
industrial deployment. A number of experiments have 
been performed, showing its efficiency (several 
publications are on the way). A lot has been achieved the 
last four years, with eventually relatively limited means: the 
AltaRica development team never counted more than 
three members at a time, and none of them was working 
full time on the project. The sponsoring by Safran of the 
chair Blériot-Fabre at CentraleSupélec and the support of 
Apsys, Safran and Thalès to the OpenAltaRica project 
have been decisive: they simply made the story possible. 
Of course, the AltaRica 3.0 language specification will 
probably evolve, the AltaRica Wizard environment will be 
improved, the assessment tools will be given more 
possibilities and will be made more efficient in the future. 
But the core of the technology is here that outperforms 
already all other implementations of the so-called “model-
based” approach in reliability engineering and system 
safety. 
To conclude this article, we would like to say few words 
about mention graphical representations of models. There 
is a debate about this question each time the model-based 
approach in reliability engineering is discussed. Our 
experience goes against the tide: we believe that, although 
graphical representations are very useful as 
communication mean, pure graphical modeling is 
counterproductive in most of the cases. Analysts spend 
eventually more time in making their drawing “elegant” 
than in thinking about the system they are studying and 
the mathematical object they are designing, namely the 
model. If the system under study is complex, models of 
this system must be complex as well, or at least simplex in 
the sense given to this term by Berthoz (Berthoz 2012). In 
a word, complexity cannot vanish. Modeling is not a magic 
wand. But as soon a model gets complex, it is not possible 
to represent it fully graphically. Models are mathematical 
artifacts. Complex models are complex mathematical 
artifacts which are better represented by texts. With that 
respect, we must draw lessons from decades of software 
engineering: all attempts to design graphical programming 
languages failed, but for pedagogical purposes (e.g. the 
Scratch language from the MIT). Drawings are definitely 
useful to understand the global architecture of a program, 
but the code remains the ultimate reference. Moreover, 
drawings (such as UML class diagrams) are never more 
useful than when they are automatically generated from 
the code (and not the reverse). We strongly believe that 
models engineering will follow the same path. At the end of 
the day, mankind invented writing because drawing was 
not sufficient to transmit complex thoughts. 
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