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Abstract: Useful for human visual perception, edge detection remains a crucial stage in numerous
image processing applications. One of the most challenging goals in contour detection is to operate
algorithms that can process visual information as humans require. To ensure that an edge detection
technique is reliable, it needs to be rigorously assessed before being used in a computer vision tool.
This assessment corresponds to a supervised evaluation process to quantify differences between a
reference edge map and a candidate, computed by a performance measure/criterion. To achieve this
task, a supervised evaluation computes a score between a ground truth edge map and a candidate
image. This paper presents a survey of supervised edge detection evaluation methods. Considering a
ground truth edge map, various methods have been developed to assess a desired contour. Several
techniques are based on the number of false positive, false negative, true positive and/or true negative
points. Other methods strongly penalize misplaced points when they are outside a window centered
on a true or false point. In addition, many approaches compute the distance from the position where
a contour point should be located. Most of these edge detection assessment methods will be detailed,
highlighting their drawbacks using several examples. In this study, a new supervised edge map
quality measure is proposed. The new measure provides an overall evaluation of the quality of a
contour map by taking into account the number of false positives and false negatives, and the degrees
of shifting. Numerous examples and experiments show the importance of penalizing false negative
points differently than false positive pixels because some false points may not necessarily disturb
the visibility of desired objects, whereas false negative points can significantly change the aspect
of an object. Finally, an objective assessment is performed by varying the hysteresis thresholds on
contours of real images obtained by filtering techniques. Theoretically, by varying the hysteresis
thresholds of the thin edges obtained by filtering gradient computations, the minimum score of the
measure corresponds to the best edge map, compared to the ground truth. Twenty-eight measures
are compared using different edge detectors that are robust or not robust regarding noise. The scores
of the different measures and different edge detectors are recorded and plotted as a function of the
noise level in the original image. The plotted curve of a reliable edge detection measure must increase
monotonously with the noise level and a reliable edge detector must be less penalized than a poor
detector. In addition, the obtained edge map tied to the minimum score of a considered measure
exposes the reliability of an edge detection evaluation measure if the edge map obtained is visually
closer to the ground truth or not. Hence, experiments illustrate that the desired objects are not always
completely visible using ill-suited evaluation measure.
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(a) Image 25 x 25 (b) Gradient magnitude |VI| (c) Gradient direction 7 (d) Contour detected

Figure 1. Example of edge detection on an image. In (c), arrows representing 7 are pondered by |VI]|.

1. Introduction: Edge Detection and Hysteresis Thresholding

A digital image is a discrete representation of a real and continuous world. Each point of an
image, i.e., pixel, quantifies a piece or pieces of gray-scale, brightness or color information. The
transition between dark and bright pixels corresponds to contours. They are essential information
for the interpretation and exploitation of images. Edge detection is an important field and one of
the oldest topics in image processing because the process frequently attempts to capture the most
important structures in the image [1]. Edge detection is therefore a fundamental step in computer
vision approaches. Furthermore, edge detection could itself be used to qualify a region segmentation
technique. Additionally, the edge detection assessment remains very useful in image segmentation,
registration, reconstruction or interpretation. It is hard to design an algorithm that is able to detect the
exact edge from an image with good localization and orientation. In the literature, various techniques
have emerged and, due to its importance, edge detection continues to be an active research area [2]. The
detection is based on the local geometric properties of the considered image by searching for intensity
variation in the gradient direction [1]. There are two main approaches for contour detection: first-order
derivative [3-7] or second-order [8]. The best-known and most useful edge detection methods are
based on gradient computing first-order fixed operators [3,4]. Oriented first-order operators compute
the maximum energy in an orientation [9-11] or two directions [12]. As illustrated in Figure 1, typically,
these methods consist of three steps:

1. Computation of the gradient magnitude |VI| and its orientation 7, see Table 1, using a 3 x 3
templates [3], the first derivative of the filter (vertical and horizontal [4]), steerable Gaussian
filters, oriented anisotropic Gaussian kernels or combination of two half Gaussian kernels.

2. Non-maximum suppression to obtain thin edges: the selected pixels are those having gradient
magnitude at a local maximum along the gradient direction 77, which is perpendicular to the edge
orientation [4].

3. Thresholding of the thin contours to obtain an edge map.

Table 1 gives the different possibilities for gradient and its associated orientations involving

several edge detection algorithms compared in this paper.

Table 1. Gradient magnitude and orientation computation for a scalar image I, where Iy represents the
image derivative using a first-order filter at the 0 orientation (in radians).

Type of Operator Fixed Operator [3-7] | Oriented Filters [9-11] Half Gaussian Kernels [12]
Gradient magnitude VIl =,/I?+ 12 VI| = max |] VIl = max Ip — min I
& V1] 0" n/2 V1] QE[O,H[‘ o V1] ociozn | el

I
Gradient direction n = arctan <"—/2) n = argmax|Ip| + s n= <arg max [y 4 arg min 19> /2
Io o<, | 2 0e[0,27| 0€[0,27t|
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Figure 2. Example of hysteresis threshold applied along a contour chain.

The final step remains a difficult stage in image processing, but it is a crucial operation for
comparing several segmentation algorithms. Unfortunately, it is far from straightforward to choose an
ideal threshold value to detect the edges of the desirable features. Usually, a threshold is fixed in a
function of the objects” contours, which must be visible, but this is not an objective segmentation for
the evaluation. Otherwise, in edge detection, the hysteresis process uses the connectivity information
of the pixels belonging to thin contours and thus remains a more elaborated method than binary
thresholding [4]. To put it simply, this technique determines a contour image that has been thresholded
at different levels (low: 77, and high: 7). The low threshold 1; determines which pixels are considered
as edge points if at least one point higher than 7 exists in a contour chain where all the pixel values are
also higher than 77, as represented with a signal in Figure 2. Segmented real images using hysteresis
thresholds are presented, later in this paper, in Figure 11. On the one hand, this algorithm is able to
partly detect blurred edges of an object. On the other hand, the lower the thresholds are, the more
the undesirable pixels are preserved and the problem remains that thresholds are fixed for both the
segmentation and the evaluation.

In order to compare the quality of the results by different methods, they need to render binary
edge maps. This normally requires a manual process of threshold selection aimed at maximizing the
quality of the results by each of the contending methods. However, this assessment suffers from a major
drawback: segmentations are compared using the (deliberately) chosen threshold, and this evaluation
is very subjective and not reproducible. The aim is therefore to use the dissimilarity measures without
any user intervention for an objective assessment. Finally, to consider a valuable edge detection
assessment, the evaluation process should produce a result that correlates with the perceived quality of
the edge image, which relies on human judgment [13-15]. In other words, a reliable edge map should
characterize all the relevant structures of an image as closely as possible, without any disappearance
of desired contours. In addition, a minimum of spurious pixels should be created by the edge detector,
disturbing at the same time the visibility of the main/desired objects to be detected.

In this paper, a novel technique is presented to compare edge detection techniques by using
hysteresis thresholds in a supervised way, consistent with the visual perception of a human being.
Comparing a ground truth contour map with an ideal edge map, several assessments can be compared
by varying the parameters of the hysteresis thresholds. This study shows the importance of more
strongly penalizing false negative points than false positive points, leading to a new edge detection
evaluation algorithm. The experiment using synthetic and real images demonstrated that the proposed
method obtains contour maps closer to the ground truth without requiring tuning parameters, and
objectively outperforms other assessment methods.

2. Supervised Measures for Image Contour Evaluations

In the last 40 years, several edge detectors have been developed for digital images. Depending
on their applications, with different difficulties such as noise, blur or textures in images, the best
edge detector must be selected for a given task. An edge detector therefore needs to be carefully
tested and assessed to study the influence of the input parameters. The measurement process can be
classified as either an unsupervised or a supervised evaluation criterion. The first class of methods
exploits only the input contour image and gives a coherence score that qualifies the result given by
the algorithm [15]. For example, two desirable qualities are measured in [16,17]: continuation and
thinness of edges; for continuation, two connected pixels of a contour must have almost identical
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gradient direction (). In addition, the connectivity, i.e., how contiguous and connected edge pixels are,
is evaluated in [18]. These approaches obtain a segmentation that could generally be well interpreted
in image processing tasks. Even though the segmentation includes continuous, thin and contiguous
edges, it does not enable evaluation of whether the segmentation result is close to or far from a desired
contour. A supervised evaluation criterion computes a dissimilarity measure between a segmentation
result and a ground truth, generally obtained from synthetic data or expert judgement (i.e., manual
segmentation). Pioneer works in edge detection assessments were directly applicable only to vertical
edges [19,20] (examples for [19] are available in [21]). Another method [22] considers either vertical
contours or closed forms, pixels of contour chains connected to the true contour. Contours inside or
outside the closed form are treated differently. Alternatively, authors in [23] propose an edge detector
performance evaluation method in the context of image compression according to a mean square
difference between the reconstructed image and the original uncompressed one. Various supervised
methods have been proposed in the literature to assess different shapes of edges [21,24-26], the majority
are detailed in this study, and more precisely in an objective way using hysteresis thresholds. In this
paper, the closer to 0 the score of the evaluation is, the more the segmentation is qualified as good.
Several measures are presented with respect to this property. This work focusses on comparisons of
supervised edge detection evaluations in an objective way and proposes a new measure, aimed at
achieving an objective assessment.

2.1. Error Measures Involving Only Statistics

To assess an edge detector, the confusion matrix remains a cornerstone in boundary detection
evaluation methods. Let G; be the reference contour map corresponding to ground truth and D, the
detected contour map of an original image I. Comparing pixel per pixel G; and D, the 1st criterion
to be assessed is the common presence of edge/non-edge points. A basic evaluation is composed of
statistics; to that end, G and D, are combined. Afterwards, denoting | - | as the cardinality of a set, all
points are divided into four sets (see Figure 3):

e  True Positive points (TPs), common points of G; and D.: TP = |G:N D|,

o  False Positive points (FPs), spurious detected edges of D.: FP = |-G;N D|,

e False Negative points (FNs), missing boundary points of D.:  FN = |G¢ N =D¢|,
e  True Negative points (TNs), common non-edge points: TN = |-Gt N =D¢|.

Figure 3 presents an example of G; and D.. Comparing these two images, there are 23 TPs, one FN
and one FP. Other examples are presented in Figure 10 comparing different D, with the same G;.
Several edge detection evaluations involving confusion matrices are presented in Table 2.
Computing only FPs and FNs or their sum enables a segmentation assessment to be performed and
several edge detectors to be compared [12]. On the contrary, TPs are an indicator, as for Absotude Grading
(Ag) and SSR; these two formulae are nearly the same, just a square root of difference, so they behave
absolutely similarly. The Performance measure (Py,, also known as Jaccard coefficient [27]) or Dice
directly and simultaneously considers the three entities TP, FP and FN to assess a binary image. It
decreases with improved quality of detection. Note that |G;| = TP + FN and that |D;| = TP + FP,

T T T 100

777:U 777:U |:| TP pixel ° :Z

. FP pixel T; :2

. FN pixel g :Z

. | EX

] I ] 1 |:| TN pixel ~ 10

I \H (| \H TP FP FN

(a) Gy, (b) D¢, (c) Gt vs. Dy, (d) legend (e) Histogram of
21x21 21x21 21x21 of (c) TPs, FPs and FNs

Figure 3. Example of ground truth (G;) versus (vs.) a desired contour (D).
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so it is easy to observe that Dice*, Ag*, SSR* and P}, behave similarly when FN and/or FP increase
(more details in [21]), as shown in the experimental results. Moreover, considering the original

versions of Dice and P, are widely utilized for medical images assessments, they are related by

. _ 2|GinD¢| __ 2:|GND| |GinDc|\ _ 2P,
Dice = [Ge[+[De] ™ GUD] / 1+\G¢UDC\ = Dutl-

Missclassification Error (ME) represent the same measurement. Indeed, as |I| = TP+ TN + FP + FN,
the ME measure can be rewritten as:

In addition, Localization — error (Pg) and

TP+ TN _ TN+FN+TP+FP TP+ TN

ME (G, D;) =1 — = — = Pr.
(Gi, De) TN+ FN+TP-+FP TN+FN+TP+FP TN+FN+ TP+ FP E
Table 2. List of error measures involving only statistics.

Complemented Dice measure [28] Dice* =1 — . 2-Th
P ~ T 2. TP+FN+FP
Complemented Per formance measure [29-32] P} (G, D) =1— LN P
P : m St 2] = ST IGUD,| ~ TP+FP+FN
Complemented Absolute Grading [33] AL =1~— __r 1-— P
V|Gt| - |Dcl V/(TP+FN)- (TP +FEP)
Complemented Segmentation Success Ratio [34] SSR* =1-— TP =1- TP
P g : =TG- D~ (TPt EN)- (TP + FD)
Localization — error [35] Pr (Gt,D.) = FP ‘J;‘FN
. e TP+ TN
Missclassification Error [36] ME (G¢, D) =1— TN+ EN £ TP+ EP
TPR - TN
3 * -1 -7
Complemented ® measure [37] Q* (G, De) =1 TN £ EP
TPR—-TP—-FP TP+ FP+ FPR
2 2 -1 .
Complemented x“ measure [38] X (G, D;) =1 1 TP _FpP TP+ FD
Complemented F, measure [39] Fi (G, Dc) =1 Prec - TPR with « €]0;1]

" & - TPR+ (1 —a) - Prec’

Another way to display evaluations is to create Receiver Operating Characteristic (ROC) [40]
curves, involving True Positive Rates (TPR) and False Positive Rates (FPR):

TP FP

TPR=zp N ad FPR= 5oy

@

Then, TPR is plotted versus (vs.) FPR by varying the threshold of the detector (see Figure 4
(Section 4 details filters)). The closer the area under the curve is to 1, the better the segmentation, and
an area of 1 represents a perfect edge detection. Finally, the score higher than and furthest from the
diagonal (i.e., line from (0, 0) to (1, 1)) of ROC is considered as the best segmentation (here, H-K in (e) in
Figure 4). However, the score of SF; is poor, but the segmentation seems better than Canny, Sobel and
H-K for this example. Thus, any edge detectors can be called the best by simply making small changes
G; or the parameter set [41]. As TNs are the majority set of pixels, Precision—Recall (PR) [39,42] does
not take into account the TN value by substituting FPR with a precision variable: Prec = TPT7+PFP By
using both TPR and Prec entities, PR curves quantify more precisely than ROC curves the compromise
between under-detection (TPR value) and over-detection (Prec value) (see Figure 4g). An example of
PR curve is available in Figure 4f. The best segmentation is tied to the curve point closest to the point
situated in (1, 1). As shown in Figure 4h,j, results of Sobel and H-K for PR are similar to those obtained
with ROC. These evaluation types are effective for G; having precise locations of edges, as in synthetic
images [14,43], since a displacement of G; or D, points strongly penalizes the segmentation.
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(f) PR curves (g) Prec and TPR (h) Sobel (j)H-K

Figure 4. Receiver Operating Characteristic (ROC) and Precision—-Recall (PR) curves for several edge
detectors. Images in (b—e) and (h—j) represent the best segmentation for each indicated detector tied to
ROC curves and PR curves, respectively. The ground truth image (parkingmeter) is available in Figure
17 and the original image in Figure 16 (Peak Signal to Noise Ratio: PSNR = 14 dB).

Derived from TPR and FPR, the three measures ®, x> and F, (detailed in Table 2) are frequently
used. The complement of these measures translates a value close to 0 as a good segmentation. Among
these three measures, F, remains the most stable because it does not consider the TNs, which are
dominant in edge maps (see [14]). Indeed, taking into consideration TN in @ and x? influences solely
the measurement (as is the case in huge images). These measures evaluate the comparison of two edge
images, pixel per pixel, tending to severely penalize an (even slightly) misplaced contour, as illustrated
in Figure 8.

Consequently, some evaluations resulting from the confusion matrix recommend incorporating
spatial tolerance. Tolerating a distance from the true contour and integrating several TPs for one
detected contour can penalize efficient edge detection methods, or, on the contrary, benefit poor ones
(especially for corners or small objects). The assessment should therefore penalize a misplaced edge
point proportionally to the distance from its true location. More details are given in [21,26], some
examples and comparisons are shown in [21].

2.2. Assessments Involving Spacial Areas Around Edges

2.2.1. The Performance Value Pv,

To judge the quality of segmentation results and the performance of algorithms, the
performance value Pv, in [44] combines four features: location (£), matching (M), unmatching (/)
and spurious (S). In this approach, D, pixels are assimilated as TP when they belong to a disc of
radius r centered on a pixel of Gy, as illustrated in Figure 5; this set of pixels is denoted TP;. Thus,
FN, represents the set of pixels of G located at a distance (In our tests, the Euclidean distance is used,
and the next section exposes different measures using distances of misplaced pixels.) higher than r of
D, and, conversely, FP; the set of points of D, at a distance higher than r of G;. The location criteria
depends on the sum of the distance between each point of TP, and G¢, denoted by: ¥ ,c7p, dg, (p)-
Hence, the four criteria are computed as follows:
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. FN, pixel

) . [] ™ pixel
(a) G¢, (b) D, (c) Gt vs. Dy, (d) Gt vs. D, (e) Gt vs. D, (f) Legend
5x5 5x5 r=20 r=15 r=25 for (c)-(e)

r=0 |[TP,=1] L£=0 | M=02]U=05]S8=08] Pov,_o=087
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r=25| TP, =4 | L=068 | M=08 | U =-1| S=02 | Po,_p5=—0.18

Figure 5. Pv evaluation depends on the r parameter and can produce a negative evaluation. The
variable r is represented by the radius of the circle in (c—e). The higher the value of r, the higher £ and
M are and the smaller ¢/ and S are (or can become negative for ).

L o— ZpETP,th(p)
TP - |Ge|
[De|”
2
, _ G- ITR| _FN, @
|G| |Gl
S |De| —|TP| _ FPr
|Dc| [De|’
Finally, the performance value Pv, is obtained by:
M

The main drawback of Pv, is that the term m can obtain negative or huge values. This
is explainable when r > 1, we can obtain |G| < |TP| (typically when |G;| < |Dc|). Thus, U < 0;
so if U] > M + L+ S, Py, could be negative, as illustrated in Figure 5. Finally, when &/ < 0 and
M+ L+U+ S =0, Po, tends to = infinity (see experiments). Moreover, as illustrated in Figure 8,
Pv,~1 obtains the same measurement for two different shapes because FPs are close to the desired
contour, which is not desirable for the evaluation of small objects segmentation. Note that, when r < 1,
L, and Pv;, is equivalent to Py, since:

_ TP
D[ EN
|G|

Pvrgl(Gt/Dc) =1 .
+FP+TP

2.2.2. The Quality Measure R

In [45], a mixed measure of quality Ryy is presented. This evaluation depends on the number of
FPs and FNs and the calculus focuses on a window W for each mistake (FP or FN). For each point of
FN or of FP, to estimate the evaluation measure Ryy, several variables are computed:

e 1y, the number of FPs in W, minus the central pixel: n, = Y. p — p., with p. = 1 if the central
peFPNW
pixel is a FP point, or 0 otherwise,
e 1y, the number of FNs in W, minus the central pixel: n, = Y, p—pc with p. = 1if the
pEFNNW

central pixel is a FN point, or 0 otherwise.

e  1,, the number of edge points belonging to Gy in W:n, = Y. p,
peGiNW
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Figure 6. R evaluation depends on mistake distances but depends on an area contained in a window
around a mistake point. Ig corresponds to the value of Ry for each pixel. Images representing I in
(d,e) correspond to inverse images. Here, the window size around each mistake is of size W = 3 x 3.

e 1y, the number of FPs in direct contact (i.e., 8-connexity) with the central pixel: for a pixel p,

ifpe FN, ny = Y p — 1, with W3 3 a window of size 3 x 3 centered on p,
pEFNNW3,3
e 1y, the number of FNs in direct contact with the central pixel: for a pixel p, if p € FP, thus

Ny = Y p — 1, with W3 3 a window of size 3 x 3 centered on p.
pEFPNW3 « 3

Then, the final expression of Ryy is given by:

1+b-n 1+h-n
Rw(Gy,De) =K |w- Y 1 b 7 Ch )
perp LT P Mot tpn My, ZFN 1+ CRuter + tnb - Mot

4)

Table 3 contains the (rounded) coefficients determined by a least square adjustment [45]. The
computation of Ry depends on the number of FP(s) and the number of FN(s) in a local window around
each mistake, but not on the distances of misplaced points, as explained in the next section. Figure 6
exposes an example of the error images Ig, representing Ry with the coefficients available in Table 3.

Table 3. Coefficients of Equation (4) determined by a least square adjustment [45].

K w b P ipn h inp  CEuler
1.7 11 0.013 015 45 037 0.086 8.9

2.2.3. The Failure Measure FM

The failure measure [46] is an extension of [20] (see beginning of Section 2). These evaluation
computes four criteria, taking into account a multiple detection zone (MD). The detection zone of the
ideal image can be represented as a dilation of G, creating a rough edge, as illustrated in Figure 7.
Then, the criteria are as follows: (1) False negative (FNFy), (2) False positive (FPry), (3) Multiple
detection (DMFy) and (4) Localization (LOCrp). They are computed by:

N FNFM _ maX(O, |(|:v(t;| ‘— TPMD)
t

Figures 7 and 8), green pixels,

, where TPy p represents the number of points of D, in MD (see

e FPry= \Il—ill\ﬁm’ with FPyp the number of points of D, outside MD and |[MD)| denoting the
number of pixels of MD, see Figures 7 and 8, green and blue pixels,
e DMry= M, TP representing the number of TPs (see above),
IMD| — |G|
e LOCppm = - Lpeg, max(C,d(p, D)), where C is a constant (C = 5 in our experiments) and

1Ge| - C
d(p, D) represents the Euclidean distance between p and D, (see next section). In [20], LOCFp
represents the number of rows containing a point around the vertical edge.
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TRyp

Multiple Detection
zone (MD)

FP outside MD

UENE

TN outside MD

(@) Gt, (b) D, . (d) Gt vs. D, (e) Legend
27%27 27%27 TPyp = 69 TPyp = 97 in (c) and (d)
|G¢| =93 |D.| = 117 FM3.3 = 0.171 FMs5.5 = 0.055

Figure 7. Failure Measure (FM) evaluation with two different Multiple Detection (MD) zones: in (c),
dilation of G; with structuring element 3 x 3, and 5 x 5 in (d). The greater the MD area, the lower the
FM error.

On end, the failure measure (FM) is defined as:

FM(Gt,D;) = - FNppr+ B - FPepp + v - DMy + 6 - LOCpyy, 5)

with («,B,7,06) four positive coefficients such that « + 4+ v + ¢ 1, in the experiments:
x = 04,8 = 04,7 =0.1and ¢ = 0.1. Unfortunately, due to the multiple detection zone, FM behaves
like Pv for the evaluation of small object segmentation, as shown in Figure 8, and FM obtains the same
measurement for two different shapes.

I 1T I 11 ][]
(a) Gt
1G] = 24

(b) Dy
TP =0,FP =16

(c) D
TP =0,FP =16

(d) in (b): multiple

detection zone

(e) in (c): multiple
detection zone

P (G, Dy)=033

Pt (Gr, D)= 0.33

FoM((Gy, D)= 0.3939

FoM(Gy, D;)=0.3939

Fi(G;,Dy)=1

Fi(Gt, Dy)=1

H(Gy, Dy)=1.4142

H(Gy, D;)=5.3852

Pv,_15(Gt, D1)=0.2727

Pv,_15(Gt, Dy)= 0.2727

RDE;_,(Gy, D)= 1.040

RDE;_,(Gy, D7)=1.76

FM3,3(Gt, D1)=0.1526

FM343(Gt, Dy)=0.1526

Sk_,(Gi,Dy)=1.0414

Sk_,(Gi, D)= 1.6993

R(Gy, D1)=52.20

R(Gy, Dy)=30.68

EMM(G;, Dy)=1

EMM(G;, Dy)=1

Y(G;, Dy )=13.223 Y(G;, D, )=13.223 E(Gt, Dp)=1.62 E(Gy, Dy)=123

Figure 8. Different D.: number of false positive points (FP) and false negative points (FN) are the same
for Dy and for D, but the distances of FNs and the shapes of the two D, are different. The legend for
(d,e) is available in Figure 7.

2.3. Assessment Involving Distances of Misplaced Pixels

A reference-based edge map quality measure requires that a displaced edge should be penalized
in function not only of FPs and/or FNs, but also of the distance from the position where it should be
located. Table 4 reviews the most relevant measures involving distances. Thus, for a pixel p belonging
to the desired contour D¢, dg, (p) represents the minimal Euclidian distance between p and G;. If p
belongs to the ground truth Gy, dp_ (p) is the minimal distance between p and D, and Figure 9a shows
the difference between dg, (p) and dp, (p). Mathematically, denoting (xp,yp) and (xt,y:), the pixel
coordinates of two points p and t, respectively; thus, dg, (p) and dp, (p) are described by:
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forpe D.:

dg,(p) = Inf{\/(x,, —x1)?+ (yp —y)2 t € Gt} ,
forp e G :

ch (p) = Inf{\/<xp - xt)z + (yp - yt)z,t € DC} .

These distance functions refer to the Euclidean distance. Figure 9d illustrates an example of d¢, (p)
and dp_(p).

Table 4. List of error measures involving distances, generally: k =lork =2 ,and, x =0.1orx =1/9.

Error Measure Name Formulation Parameters
1 1
Pratt’s Figure of Merit (FoM) [47] FoM (G, D) =1 — . x€]0;1
igure of ( c) max (|G¢|, |De|) pezf)rl"""d%;,(p) 10;1]
L 1 x € ]0;1] and
FoM revisited [48] F(Gy,De) =1— L !
c |G¢[+B-FP p;h 1+x- d%r(p) ﬁ c Rt

Combination of FoM and dy (G DC):%. (Tmeax(\G,\,\DCmZJrFNZ+FP2 ¥ € ]0;1] and

+ FoM2 (Gy, D;)

statistics [49] (max (|G, \Dc\))z BeR"
Edge map quality measure [50] Dy (Gt De) = it Z ; +12.5 (1 L) ke 10;1]
‘” ‘ il 1+ x-d%(p) Gl peEN 1+x-d25(p)
Symmetric FoM [21] SFoM (G, Dc) = L+ FoM (G, D) + % - FoM (D, Gy) x €10;1]
Maximum FoM [21] MFoM (G¢, D) = max (FoM (G, D.), FoM (D, Gt)) x €1]0;1]
Yasnoff measure [51] Y (Gt, D) = % / None
Hausdorff distance [52] H (Gt, D) = max (m%x(dct (p)),m%x(dDL_ (p))) None
pe et
. . 1 1
Maximum distance [24] fade (Gt,Dc) = max | ===+ Y dg, (p), 7=+ Y_ dp. (p) None
|D| peD, |G| €G
P o peG:
1
Distance to Gy [24,26,53] D (G, D) = B L df (p), k=1for[2453] keR*
c pEDL

Oversegmentation [54]

o~

©(Gi,De) = 4 - 4, (p)
D) =rp- & (")

for [54]: k € RT
and o7y € R*+

Undersegmentation [54]

k

Q(G,D) =1 L (dréif,p))

for [54]: k € RT
and oty € R*+

ke R, k=1
1 1 /
Relative Distance Error [24,55,56] RDE; (G, D¢) = D) d’é (p)+ ¢ r a5 (p), for [24], k =2
[De| b, © 1G] peG, for [55,56]
| Lm0+ L b ()
Symmetric distance [24,26] sk (Gt,D¢) = pez pet: ,  k=1for[24] ke Rt
‘DC U Gt‘

Baddeley’s Delta Metric [57]

AN(Gy, D) = W - I Jwldg () ~w(dp, ()

k € Rt and a
convex function

w:R—R
: - _ FP+FN | 2
Magnier et al. measure [58] (G, D;) = [ene L dg,(p) None
' pED.
Complete distance measure [21] Y (G, De) = ‘ \/ Y d(p)+L dzct (p) None
il €G; De peD.
A measure [59] AMGt, De) = None

EpyEN %gD &)+ min (G, ) £ b, 0)
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w2
FN point

42
distance of FPs

4
g B distance of FNs
[T [T
T Tt l:‘ TPs or TNs

(a) Distances (b) Gy, (c) D, (d) Representation (e) legend
in Figure 3¢ 21 x 21 21 x 21 of dg, and dp, of (d)

Figure 9. Example of ground truth (G;) versus (vs.) a desired contour (D.).

On the one hand, some distance measures are specified in the evaluation of over-segmentation
(i.e., presence of FPs), for example: Y, DK, © and T; others are presented and detailed in [21,24]. On the
other hand, the () measure assesses an edge detection by computing only under-segmentation (FNs).
Other edge detection evaluation measures consider both distances of FPs and FNs [14]. A perfect
segmentation using an over-segmentation measure could be an image including no edge points and an
image having the most undesirable edge points (FPs) concerning under-segmentation evaluations [60],
as shown in Figures 10 and 11. In addition, another limitation of only over- and under-segmentation
evaluations are that several binary images can produce the same result (Figure 8). Therefore, as
demonstrated in [14], a complete and optimum edge detection evaluation measure should combine
assessments of both over- and under-segmentation, as f>dg, sk, RDEy, ¥ and A, illustrated in Figure 8.

Among the distance measures between two contours, one of the most popular descriptors is
named the Figure of Merit (FoM). This distance measure has an advantage because it ranges from 0
to 1, where 0 corresponds to a perfect segmentation [47]. Nonetheless, for FoM, the distance of the
FNs is not recorded and are strongly penalized as statistic measures:

B 1 y 1 B 1 y 1
max (IGI,ID.) & 14 a2 (p)  max(IGil, D) 2 1+ - Z (p)
1 rp _ 1 oy
max (|G|, [Dc|)  max (|G|, |Dc|) peppl"'K'd%;t(P)'

FoM (Gt, Dc) =1

For example, in Figure 10, FOM(G;, C) > FoM (G, M), whereas M contains both FPs and FNs
and C only ENs. Furthermore, for the extreme cases, knowing that TP = |G¢| — FN, the FoM measures
takes the following values:

_ TP _, [GI-EN
|Gt G| 7

: — 0 _ TP 1 1
[ ] lfFN—OFOM(Gt,DC)—l—W—wZPEFPW

e ifFP=0: FoM (G, D) =1

When FN>0 and FP are constant, it behaves like matrix-based error assessments (Figure 10). Moreover,
for FP>0, the FoM penalizes over-detection very lightly compared to under-detection. Several
evaluation measures are derived from FoM: F, dy, Dy, MFoM and SFoM. Contrary to FoM, the F
measure computes the distances of FNs but not of the FPs, so F behaves inversely to FoM, it can be
rewritten as:

1 1

F(G, D) =1— = - — s - -
1
—q__TP 1 o
‘Gt“F,B-FP ‘Gt‘+/5-PP peZFN 1 1K d%)g(p)

Therefore, for the extreme cases, the F measures takes the following values:

1
o HFP=0:F(G,D)=1-12_ L.y 1
‘ Gl 1Gl peZPN1+K'd123C<P)
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. N _ TP
] lfFN—O.F(Gt,DC)—l—W-

In addition, the d; measure depends particularly on TP, FP, FN and ~1/4 on FoM, but d4
penalizes FNs like the FoM measure; it is a close idea to the FM measure (Section 2.2). Otherwise,
SFoM and MFoM take into account both distances of FNs and FPs, so they can compute a global
evaluation of a contour image. However, MFoM does not consider FPs and FNs at the same time,
contrary to SFoM. Another way to compute a global measure is presented in [50] with the edge map
quality measure D;. The right term computes the distances of the FNs between the closest correctly
detected edge pixel, i.e., Gt N D¢, Dy, can be rewritten as:

1 1
FP — -~ FN- S
§P1+K'dé(lﬂ) eZP:N1+K'd%;(P)
D,(Gt, D) P oy P '
pRmt e 2|1 =2 |Gy 2- |Gy

Finally, D) is more sensitive to FNs than FPs because of the huge coefficient m

A second measure widely computed in matching techniques is represented by the Hausdorff
distance H, which measures the mismatch of two sets of points [52]. This measure is useful in object
recognition, the algorithm aims to minimize H, which measures the mismatch of two shapes [61,62].
This max-min distance could be strongly deviated by only one pixel that can be positioned sufficiently
far from the pattern (Figure 10). There are several enhancements of the Hausdorff distance presented
in [24,63,64]. Furthermore, f>dg and D¥ are often called "Modified Hausdorff Distance" (abbreviated
MHD) in the literature. As another example, one idea to improve the measure is to compute H with
a proportion of the maximum distances; let us note Hsy,—this measure for 5% of the values [52].
Nevertheless, as pointed out in [24], an average distance from the edge pixels in the candidate image
to those in the ground truth is more appropriate, like S, RDEj or ¥. Thus, the score of the fds

1

corresponds to the maximum between the over- and the under-segmentation (depending on DAl and

ﬁ, respectively), whereas the values obtained by S* represents their mean. Moreover, S* takes small
values in the presence of low level of outliers, whereas the score becomes large as the level of mistaken
points increases [24,26] but is sensitive to remote misplaced points as presented in [21]. On the other
hand, the Relative Distance Error (RDEy) computes both the over- and the under-segmentation errors

\1%7\ and ﬁ, respectively. Otherwise, derived from H, the Delta Metric

(AF) [57] intends to estimate the dissimilarity between each element of two binary images, but is highly
sensitive to distances of misplaced points [14,21]. All of these edge detection evaluation measures
are reviewed in [21] with their advantages and disadvantages (excepted RDEy), and, as concluded in
[21,25], a complete and optimum edge detection evaluation measure should combine assessments of
both over- and under-segmentation, as fds, S¥, Hyse,, RDEj and Y.

separately, with the weights
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(@) Gt (b) M (©C @rT (e) B
O TP pixel -
B Fpoixe
. FN pixel
D TN pixel
(f) Legend (g) Gt vs. M (h) Gy vs. C (i) Gvs. T (j) Gt vs. B
Measure Gy vs M Gy vsC GyvsT Gt vs B
FN 10 10 0 0
FP 10 0 10 7
TP 56 56 66 66
Dice* 0.150 0.080 0.070 0.050
SSR* 0.280 0.150 0.130 0.100
P 0.021] | 00104 | 00104 |  0.007
F; [ 0.1515] | 0.0820 | 0.0704 |  0.0504
P 102632] | 01515 | 01316 | 0.0959
X 0.0989 | | 0.1609| | 0.1413 | 0.1030
P* 1 01619| | 01515 | 00112 |  0.0078
Pv,_3 10217) | 0132 0.078 0.041
Pv,_s 0.037 | |0132] | [-0134] | -0.017
R 52.49 33.35 19.13 13.09
FM3y.3,C=5 | | 0.061 0.061 0.006 0.005
FMs,5,C=5 | 0.056 0.061 0.007 0.005
H 6.000 6.000 | [5.6569 | |6.4031]
Hiso, 14.6713| | 3.7000 3.6217 2.9835
DF 0.1987| | |0.000 | 01726 | 0.1776
f2Ds 0.6036| | 05606 | 05242 || 0.449
Op,,—5 0.7968 0.000 0.7968 | | 09377
Qs,,0—5 10.7400 | | 0.7400 0.000 0.000
FoM 0.0888 | | 0.1515| | 0.07711 |  0.0625
F 02029] | 00822 | 01316 | 0.0959
dy 01385 | 01312 | 01007 | 0.0747
SFoM 0.0411 | [0.0956| | 0.0842 | 0.0629
MFoM 1 05199| | 05199 | 05184 | 05150
D, 10068 | 0.063 0.005 0.003
Y (41498] | 0000 | 41498 | 3.4186
RDE;_; 0.5821| | 02803 | 02621 | 0.2248
RDE;_, 15734] | 07662 | 07522 | 0.7585
sk, 0.5821] | 03033 | 02806 | 0.2361
A 04705 | 02361 | 02344] | [1.1167]
EMM 1 0.021] | | 0.006 0.012 0.010
r 0.0290 | |  0.0000 | 0.0145 | 0.0092
¥ 0.0402| | 00140 | 00145 | 0.0092
A 0.0439 | 00165 | 00145 || 0.0092
) 1 0.890| | 0.630 0.620 0.520

Figure 10. Evaluation measure results for different D, images in (b—e) using the same G; in (a).
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[ TP pixel
B Fpoixel
. FN pixel
D TN pixel

(c) Legend in (g-i)

i)

(d) D, 7, = 0.0, Ty = 0.0, c=1

(h) Gt vs. De, T = 0.0, Ty — 0.1

(l) Gt vs. De, T = 0.1, TH —

Measure 17, =00,74y =00 | 7, =00, 7y =01 | 7, =0.1, 7y = 0.25
Dice* | 047 0.54 | 0.80]
SSR* | 0.72] 0.75 | 0.91]

P [0.101] [0.079] 0.083
1 0.79 0.92
P* 0.43 0.59 0.88
F; 0.47 051 0.80

Po,_3 0.24 0.32 0.46
Po,_s 0.02 0.27 0.46

Rw_3x3 5646.6 5982.2 93417

Ryw—sx5 6728.8 9119.8 1645.5

FMw—3x3 0.08 0.17 0.34

FMw—sys 0.04 0.15 0.34
Df_, 0.07 0.02
H 37.58 44.72 68.77
Hsy, 15.86 26.84 57.78

Q-1 447 2.04 | 1.05
Q1 1.26 6.280 | 18.72]
FoM 0.24 0.37 0.85

F 0.45 0.71

dy | 0.42] 0.47 0.75

D, 10.084 | 0.200 [ 0.404 ]
Y 0.22
f2Ds | 241 3.66 | 1651 |

RDE_» | 2931 4.88 12.06
sk, 3.81 6.25 21.99

A 5.82 10.93 28.18

EMM | 0.00293 | 0.00299 100354 |

r 0.021 [ 0.003
¥ 0.11 0.12 0.37
A 0.11 0.25 3.11
z 489

Figure 11. Evaluation measure results for a real image segmented [4] at different hysteresis thresholds.
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On another note, the Edge Mismatch Measure (EMM) depending on TPs and both dp_ and dg,.
In [36], this measure is combined with others (including ME and DXy in order to compare several
thresholding methods. Indeed, dp_, ¢, (p) is a threshold distance function penalizing high distances
(exceeding a value My;s;) and EMM is represented as follows:

TP
TP+ w [ZpeFN op,(p) + € Lyperp g, (P)}

EMM(G;,D;) =1— (6)

with dp. and dg, two cost functions of dp. and dg, respectively discarding/penalizing outliers [36]:

de,(p), if dg,(p) < Maist
Dyax,  otherwise.

stE(p):{de(’” P o)< M 7)

Diax, otherwise,

and dc,(p) = {

Thus, w is the penalty weighting distance measures dp. and ég,, whereas € represents a weight for
distances of FPs only. For this purpose, the set of parameters are suggested as follows:

° Mdist =0.025- |I‘,

I
° Dipax = %/
w 10
° = —,
1]
e c¢=2

Note that the suggested parameters depend on |I|, the total number of pixels in I. Moreover,
EMM computes a score different from 1 if there exists at least one TP (cf. Figure 8). Finally, when
the EMM score is close to 0, the segmentation is qualified as acceptable, whereas a score close to 1
corresponds to a poor edge detection.

3. A New Objective Edge Detection Assessment Measure

3.1. Influence of the Penalization of False Negative Points in Edge Detection Evaluation

Several edge detection measures have been presented above. Clearly, taking into account both
FP and FN distances is more objective for the assessment. However, there are two main problems
concerning the edge detection measures involving distances. First, a single (or a few) FP point(s) at
a sufficiently high distance may penalize a good detection (see Figure 12¢). This is a well known
problem concerning the Hausdorff distance. Thus, best scores for each measure obtained in an objective
way (cf. next section) are not necessarily tied to the most efficient detector. Secondly, the edge maps
associated with these scores lack many desired contours, because distances of FPs strongly penalize
edge detectors evaluated by the majority of these measures. On the contrary, distances of FN points
are neither recorded (as over-segmentation measures), nor penalized enough (cf. Figure 12b). In other
words, FNs are, generally, as penalized as FPs. Moreover, FNs are often close to detected edges (TPs or
FPs close to G;), most error measures involving distances do not consider this particularity because
YpeEN dp, are less important than YpeFp dg,. Note that RDE; computes YpeEN dp,. and Yperp dg,
separately. In [59], a measure of the edge detection assessment is developed: it is denoted A and
improves the segmentation measure ¥ (see formulas in Table 4). The A measure penalizes highly FNs
compared to FPs (as a function of their mistake distances), depending on the number of TPs. Typically,
contours of desired objects are in the middle of the image, but rarely on the periphery. Thus, using or
fods, SK, A¥, or ¥, a missing edge in the image remains insufficiently penalized contrary to the distance
of FPs, which could be too high, as presented in Figure 13, contrary to A. Another example, in Figure 10,
¥(Gt,C) < ¥(Gy, T), whereas C should be more penalized because of FNs that do not enable the
object to be identified. The more FNs are present in D, the more D, must be penalized as a function of
dg,, because the desirable object becomes unrecognizable, as D, in Figure 11c. In addition, D, should
be penalized as a function of d¢,, of the FN number, as stated above. For A, the term influencing the
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TP
stronger penalty for det, compared to d%c. The min function avoids the multiplication by infinity when

2 2 2
penalization of FN distances can be rewritten as: & (%) = (1 + %) > 1, ensuring a

TP = 0. When |G¢| = TP, A is equivalent to ¥ and I' (see Figure 10, image T). In addition, compared
to ¥, A penalizes more D, having FNs, than D, with only FPs, as illustrated in Figure 10 (images C and

T). Finally, the weight |TG IQ‘;
ENs points are localized close to the desired contours D, the red dot curve in Figure 14 represents this
weight function. Hence, the A function is able to assess images that are not too large, as in Figures 10,
12 and 13; however, the penalization is not enough for larger images. Indeed, the main difficulty
remains the FN + FP coefficient to the left of A; as a result, the image in Figure 11a is considered by
this measure as the best one. The solution is to separate the two entities FN and FP and insert them
directly inside the root square of the measure, firstly to modulate the FPs distances and secondly to

weight the FN distances. Therefore, the new edge evaluation assessment formula is given by:

tunes the A measure by considering an edge map of better quality when

- 1
=600 = 4 (7 £ #0045 )-E 00 ®
t pED, pEG;
with
£(1P) log(FN) - efN, if TP =0, ie., |G| =FN )
= IG¢|
log (FN+1)-eTF, elsewhere.
ua!
(a) Gt (b) St (c) Sp
|G| = 48 FN =20,FP =0 FN =0,FP =5
H(G;, 5:)=3 H(G;,S,)=86 Sk_(Gt,51)=1.29 Sk_ (G, Sp)=0.87
f2d6(Gt, St)= 0.75 f2d6(Gt, Sp)=0.79 S£:2(Gt, Sp)=1 S’1§:2(Gt1 Sp)=1.87
FoM(G;, S¢)=0.55 FoM(G;, S,)=0.08 AX(Gt, S¢)=0.53 AX(Gt, Sp)=2.15
F(Gt,5t)=0.10 F(Gt,Sp)=0.09 RDE;_1(Gt,S)=039 | RDEj_1(Gt, Sp)= 0.40
FMw—3,3(Gt,S¢)=0.17 | FMw—3x3(Gt,Sp)=0.04 | [ RDE;_,(G;,S¢)=1.28 | RDE;_»(Gy, Sp)= 1.29
Rw=3x3(Gt,St)=56.64 | Ry—3x3(Gt, Sp)=9.40 MG, 5¢)=0.13 A(Gt, Sp)=0.04
EMM(G;, S¢)=0.022 EMM(G;, Sp)=0.023 E(Gy, 51)=0.90 E(Gt, Sp)=0.87

Figure 12. A single (or a few) FP point(s) at a sufficiently high distance may penalize a good detection.
Sp represents G; in (a) with only five FPs that penalize the shape using several edge detection
evaluation functions.
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(@) Gy, |G| =41 (b) D, |D.| = 61 (c) FP distances (d) D, |D.| =14 (e) FN distances
Measure | Imagein (b) | Image in (d) Measure | Imagein (b) | Image in (d)
Py 0.33 0.66 S’,ﬁzl 8.34 16.21
FoM 0.32 0.66 sk, 7.61 6.85
F 0.33 0.50 AK 7.30 5.64
H 19.03 17.12 EMM 0.147 0.144
fadg 5.61 5.53 b4 091 0.81
RDE_q 2.80 2.77 A 0.91 2.39
RDE;_, 492 3.97 g 8.38 11.74

Figure 13. Edge detection evaluations must be more sensitive to FN distances than FP distances. In (b),
|Dc| = 61, so there are 20 FPs, whereas, in (d), |D.| = 14, so there are 27 FNs; so FP < FN.

The f function influencing the penalization of FN distances ensures a strong penalty for d%c,
compared to det (see blue curves in Figure 14). There exist several f functions than may effectively
accomplish the purpose. When FN = 0, f (TP) = 0, and only the FP distances are recorded, pondered
by the number of FPs. Otherwise, if TP = 0, so |G| = FN, thus f (TP) = log(FN) - efN to avoid a

division by 0, and log(FN) - efN > log (FN + 1) - e, Finally, by separating the two weights for d%)c
and dZGt penalizes D, images containing FPs and/or D, images with missing edges (FNs).

The next subsection details the way to evaluate an edge detector in an objective way. Results
presented in this paper show the importance to penalize false negative points more severely than false
positive points because the desired objects are not always completely visible using ill-suited evaluation
measure, and Z provides a reliable edge detection assessment.

3.2. Minimum of the Measure and Ground Truth Edge Image

Dissimilarity measures are used to assess the divergence of binary images. Instead of manually
choosing a threshold to obtain a binary image (see Figure 3 in [14]), the purpose is to compute
the minimal value of a dissimilarity measure by varying the thresholds (double loop: loop over
71, and loop over ty) of the thin edges obtained by filtering gradient computations (see Table 1).
Compared to a ground truth contour map, the ideal edge map for a measure corresponds to the desired
contour at which the evaluation obtains the minimum score for the considered measure among the

— f(FN)
- == [GFTF

1 2 3 4 5 6
number of FNs

(@) |Gt =10

— f(FN)
- = = [G TP

600

500

400

300

200

100

— f(FN)
- == [GFTF

0 20 40 60 80

number of FNs

(b) |G| = 100

200

400 600
number of FNs

(c) |G¢| = 1000

800 1000

Figure 14. Several examples of f function evolution as a function of the FN number.
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considerated edge map

er quality measure

Objective research of the ideal edge map for

i . : T ameasure corresponing to the segmentation

Noisy image Normalized thin at which the evaluation obtains the minimum

edge image score using hysteresis thresholds.

Figure 15. Example of computation of a minimum score for a given measure.

Algorithm 1 Calculates the minimum score and the best edge map of a given measure Meas

Require: |VI| : normalized thin gradient image

Require: G; : Ground Truth edge image

Require: Hyster : hysteresis threshold function

Require: Meas : Measure computing a dissimilarity score between G; and a desired contour D,
stepr = 0.01 % step for the loops on thresholds

scorey, = realmax % the largest finite floating-point number
for iy =0 :stepr : 1 do
for 1y =0 :stepr: 1do
if Ty > 17 then
D. < Hyster(|VI|, 1, Tq)
score < Meas(Gy, D)
if score; > score then
scorey < score; % ideal score
Idealp, < D, % ideal edge map
end if
end if
end for
end for

thresholded (binary) images. Theoretically, this score corresponds to the thresholds at which the
edge detection represents the best edge map, compared to the ground truth contour map [14,25,46].
Figure 15 illustrates the choice of a contour map as a function of 7; and 7. Algorithm 1 represents
this argmin function and summarizes the different steps to compute an ideal edge map concerning a
chosen measure.

Since low thresholds lead to heavy over-segmentation and high thresholds may create numerous
false-negative pixels, the minimum score of an edge detection evaluation should be a compromise
between under- and over-segmentation (detailed and illustrated in [14]).

As demonstrated in [14], the significance of the choice of ground truth map influences the
dissimilarity evaluations. Indeed, if not reliable [43], a ground truth contour map that is inaccurate in
terms of localization penalizes precise edge detectors and /or advantages the rough algorithms as edge
maps presented in [13,15]. For these reasons, the ground truth edge map concerning the real image in
our experiments is built semi-automatically, as detailed in [14].
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Original image 109, 689 <489

PSNR 12 dB.

PSNR 17 dB.

PSNR 16 dB.

PSNR 12 dB.

" PSNR 11 dB.

PSNR 10 dB.

Figure 16. Image 109 (top) and image "parkingmeter" (bottom) at different levels of noise (PSNR).
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4. Experimental Results

The aim of the experiments is to obtain the best edge map in a supervised way. The importance of
an assessment penalizing false negative points more severely compared to false positive points has
been shown above. In order to study the performance of the edge detection evaluation measures, the
hysteresis thresholds vary and the minimum score of the studied measure corresponds to the best edge
map (cf. Figure 15). The thin edges of real noisy images are computed by nine filtering edge detectors:

Sobel [3],

Shen [5],

Bourennane [7],

Deriche [6],

Canny [4],

Steerable filter of order 1 (SF;) [9],

Steerable filter of order 5 (SFs5) [10],
Anisotropic Gaussian Kernels (AGK) [11,65,66],
Half Gaussian Kernels (H-K) [12,56].

The kernels of these methods are size-adaptable, except for the Sobel operator that corresponds
to a 3 x 3 mask. The parameters of the filters are chosen to keep the same spatial support for the
derivative information, e.g., o = 1.5 for Gaussians (details of these filters are available in [56]). These
scores of the different measures are recorded by varying the thresholds of the normalized thin edges
computed by an edge detector and plotted as a function of the noise level in the original image,
as presented in Figures 18 and 19. A plotted curve should increase monotonously with noise level
(Gaussian noise), represented by Peak Signal to Noise Ratio (PSNR) values (from 17 dB to 10 dB).
Corrupted and original images are presented in Figure 16, whereas ground truth images (G;) are shown
in Figure 17. Among all the edge detectors, box (Sobel [3]) and exponential (Shen [5], Bourennane [7]
filters do not delocalize contour points [67], whereas they are sensitive to noise (i.e., addition of FPs).
The Deriche [6] and Gaussian filters [4] are less sensitive to noise, but suffer from rounding corners and
junctions (see [67,68]) as the oriented filters SF; [9], SF5 [10] and AGK [11], but the more the 2D filter is
elongated, the more the segmentation remains robust against noise. Finally, as a compromise, H-K
correctly detects contour points that have corners and is robust against noise [12]. Consequently, the
scores of the evaluation measures for the first three filters must be lower than the three last ones, and,
Canny, Deriche and SF; scores must be situated between these two sets of assessments. Furthermore,
as SF5, AGK and H-K are less sensitive to noise than other filters, the ideal segmented image for
these three algorithms should be visually closer to G;. The presented segmentations correspond to the
original image for a PSNR = 14 dB. Therefore, on the one hand, considered segmentations must be tied

(a) Gt for image 109 (b) G for image "parkingmeter"

Figure 17. Ground truth edge images tied to original images available in Figure 16 used in the presented
experiments. These G; images are available in [14].
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to the robustness of the detector. On the other hand, the scores must increase monotonously, with an
increasing order as a function of the edge detector quality. Note that the matlab code of FoM, D¥, Sk and
A¥ measures are available at http:/ /kermitimagetoolkit.net/library /code/. The matlab code of several
other measures are available on MathWorks: https:/ /fr.mathworks.com/matlabcentral/fileexchange/
63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges.
Firstly, the segmented images tied to corrupted images with PSNR = 14 dB, representing the best
edge quality map for 28 different measures, are presented in Figures 20-47. The results concerning
over- and under-segmentation measures (cf. Section 2.3) are not reported because the score will always
attain O for the best edge map which are either full of FPs or devoid of any contour point [14]. The
edge map obtained using the Sobel filter is complicated; indeed, this filter is very sensitive to the noise
in the image, so only few edge points will be correctly detected, the rest being FPs. Furthermore, thin
edges (before thresholding) obtained using Shen, Bourennane and Deriche filters are not reliable, and
it is difficult to choose/compute correct thresholds in order to visualize continuous objects’ contours.
Segmentations obtained by Dice*, Py, and F; are overall visible, with a little too many FPs, except
for AGK and H-K, which are correctly segmented. On the contrary, contour points concerning SSR*
and x?x are less corrupted by FPs, but true edges are missing; in addition, edge maps concerning
Pg are worse. Edge maps tied to ®*, FMy and D, are hugely corrupted by FPs, since most of the
object contours remain unidentifiable. Concerning P,, either edges are missing, when r = 2, or too
many FPs appear, when r = 4. Edge maps obtained by Ry evaluation measures are adequate, even
though object contours are not really visible concerning Shen, Bourennane and Deriche filters and some
spurious pixels appear concerning AGK and H-K (cf. parkingmeter image). The Hausdorff distance H
and A* measures are not reliable because edge maps tied to these evaluations are either too noisy, or
most edges are missing (except for H-K). The edge maps associated with Hse,, f2ds, S’IEZZ and 1 are
similar: not too many FPs, but edges with Shen, Bourennane and Deriche filters are not continuous.
However, edges obtained using f»dg are too noisy with AGK and H-K (cf. "parkingmeter" image), and
the same remark applies to 5112:1 for AGK. Concerning Sk note that, when k = 1, edges are more easily
visible than using k = 2 because the distance measure score expands rapidly for a missing point far
from its true position (demonstrated in [21]). For image 109, edges obtained by EMM are not really
continuous with the Shen, Bourennane, Deriche and Canny filters, whereas spurious pixels appears
for the edges of the "parkingmeter” image. The edge maps obtained using minimum score of FoM are
heavily corrupted by continuous FPs, like hanging objects. This phenomenon is always present, but
less pronounced, with dy. Edge maps are too corrupted by FPs with MFoM and SFoM, even though
objects are visible, whereas FPs remains less present using F and A. The segmentations tied to RDE
are reliable, not too many FPs, although some edges are missing. Lastly, the edges maps using the
proposed measure Z are not corrupted by noise, the objects are visible, even with the Shen, Bourennane
and Deriche filters. In addition, edge maps for Canny and SF; are particularly well segmented.
Secondly, the plotted curves available in Figures 18 and 19 evolve as a function of the noise level
(Gaussian noise). The noise level is represented by PSNR values: from 17 dB to 10 dB. Consequently, the
measure scores and the noise level must increase simultaneously. Moreover, scores of the evaluation
measures associated with the Sobel filter, which is sensitive to noise, must be higher than other
measures; scores concerning Shen and Bourennane filters must be situated just bellow. Finally, measure
scores tied to SF5, AGK and H-K must be plotted at the bottom, and, scores associated with Canny,
Deriche and SF; filters must be situated above, but below the Shen and Bourennane filters. Now,
scores of Dice*, P, SSR*, x*+ and F; measures increase monotonously, but these scores are not
consistent with the computed edge maps. Indeed, considering the segmented images presented
with PSNR = 14 dB, scores concerning Canny and SF filters are better than H-K, whereas the H-K
segmentation is of higher quality than others (continuous contours, less spurious pixels). Concerning
Pr, in particular, this measure qualifies the Sobel, Shen and Bourennane filters better than H-K.
Similarly, ®*, FMy, Dy and ¥ qualify H-K and AGK as the worse edge detectors. Concerning P,
either curves are confused, when r = 2, or scores are negative, when r = 4. By contrast, H, Hse, and


http://kermitimagetoolkit.net/library/code/
https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges
https://fr.mathworks.com/matlabcentral/fileexchange/63326-objective-supervised-edge-detection-evaluation-by-varying-thresholds-of-the-thin-edges
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A scores have a random behavior, even though Hse, seems better, but not reliable (see H-K or Sobel
scores as examples). The curves for FoM, F, d; and MFoM are mixed and confused, F qualifies Shen
and Bourennane filters as the best edge detectors, whereas H-K and AGK are qualified as the worst.
The Deriche filter appears as the best edge detector for d4, although the segmentation using H-K is
clearly better. Curves are mixed using SFoM for the "parkingmeter" image. These plotted scores are
consistent with the images of segmentation, which are heavily corrupted by FPs. No filter can be
really qualified as better than the others. It is also a similar case for A, where the scores are confused,
except with the Sobel filter. Concerning S,E:z, the plotted scores remain unreliable, cf. AGK scores.
When k = 1, S¥ scores evolve properly, even though SF;s is penalized as strongly as the Canny filter.
Therefore, the measures having the correct evolution with the correct filter qualification are EMM,
Rw, RDE, fodg and S’i:l. The scores obtained by E are presented in Figures 48 and 49, where FP and
FN distances are also reported. Although these distances do not evolve monotonously, the final score
remains monotonous and the qualifications of the filters are reliable. Actually, the weights concerning
FN distances allow a reliable final computation of Z scores. Finally, the results gathering reliability
of the segmentation, curve evolution and filter qualification for each edge detection evaluation are
summarized in Table 5.

Table 5. Reliability of the reviewed edge detection evaluation measures.

Measure | Segmentation Reliability | Monotonic Curves | Filter Qualification
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L)
SSR*
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XZ*
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Rw
FMy
H
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Figure 18. Image 109: Comparison of edge detection evaluation evolution as a function of PSNR values.
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Figure 19. Image parkingmeter: Comparison of edge detection evaluation evolutions.
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Figure 40. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 41. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 42. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 43. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 44. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 45. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 46. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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Figure 47. Ideal segmentations for several edge detectors on image parkingmeter, PSNR = 14 dB.
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5. Conclusions

This study presents a survey of supervised edge detection evaluation methods. Several techniques
are based on the number of false positive, false negative, true positive and/or true negative points.
Other methods strongly penalize misplaced points when they are outside a window centered on a true
point. In addition, many approaches compute the distance from the position where a contour point
should be located. Most of these edge detection assessment methods are presented here, with many
examples, exposing the drawbacks for different comparisons of edges with different shapes. Measures
involving only statistics fail to assess objectively when there are no common edge points between
the ground truth (G;) and the desired contour (D.). On the contrary, assessments involving spatial
areas around edges (i.e., windows around a point) remain unreliable if several points are detected for
one contour point. Moreover, these techniques depend strongly on the window size, which enables
misplaced points outside the considered window to be severely penalized. Among assessments
involving spacial areas around edges, only the Ryy measure is suitable. Therefore, assessment involving
distances of the misplaced pixels can evaluate a desired edge as a function of the distances between
the ground truth edges and each point of D.. There exist different implementations to assess edges
using distances (Note that different strategies exist containing some operators other than confusion
matrices of distances to assess edge detectors, they are referenced in [69].). On the one hand, some
methods record only distances of false positive points, or only distances of false negative points. On
the other hand, some assessment techniques are based on both distances of false positives (FPs) and
false negative points (FNs). Among the more prominent measures, the Figure of Merit (FoM) remains
the most widely used. The main drawback of this technique is that is does not consider distances
of false negative points, i.e., false negative points are strongly penalized without considering their
distances; consequently, two different desired contours can obtain the same evaluation, even if one of
them if visually closer to the true edge. Consequently, several edge evaluation methods are derived
from the Hausdorff distance, they compute both distances of FPs and FNs. The main differences
between these edge detection evaluation measures are the weights for the FP and/or FN distances
and the power tied to the distance computations. As FNs are often close to detected edges (TPs or FPs
close to G;), most error measures involving distances do not consider this particularity and are not
sufficiently penalized. Distances of FPs strongly penalize edge detectors evaluated by the majority of
these measures. Only RDE; computes the distances of FPs and FNs separately.

In order to objectively compare all these supervised edge detection assessment methods in an
objective way, based on the theory of the dissimilarity evaluation measures, the objective evaluation
assessed nine 1st-order edge detectors involving the minimum score of the considered measures by
varying the parameters of the hysteresis. The segmentation that obtains the minimum score of a
measure is considered as the best one. The scores of the different measures and different edge detectors
are recorded and plotted as a function of the noise level in the original image. A plotted curve must
increase monotonously with the noise level (Gaussian noise), represented by PSNR values (from 17 dB
to 10 dB). It is proved that some edge detectors are better than others. The experiments show the
importance of the growing increase of the noise level: a given edge evaluation measure can qualify an
edge detector as low for a given noise level, whereas, for a higher noise level, the same edge detector
obtains a better score. Consequently, mixing the results of curve evolution (monotonic or not), filter
qualification (poor edge detector penalized stronger than robust edge detector) and the obtained edge
map tied to the minimum score of a considered measure, a credible evaluation is obtained concerning
the studied measures. These experiments exhibit the importance of dissociating both distances of
FPs and FNs. A minimum of measures involving only statistics can be tied to correct segmented
images, but the evolution of the scores is not reliable as a function of the edge detector robustness.
On the contrary, edge maps are visually closer to the ground truth by considering the distance of
false negative points tuned by a weighting. The same applies to the score evolution, and remains
significant for edge detector qualification. The results gathering reliability of the segmentation, curve
evolution and filter qualification for each edge detection evaluation are summarized in Table 5. Thus,
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the edge detection evaluations that are objectively suitable are the Relative Distance Error (RDE_1)
and the new proposed measure E. The main difference between RDE and & is that RDE separates
the computations of distances of FPs and FNs as a function of the number of points in D, and G,
respectively, whereas E gives a strong weight concerning distances of FNs. This weight depends
on the number of false negative points: the more there are, the more the segmentation is penalized.
This enables an edge map to be obtained objectively containing the main structures, similar to the
ground truth, concerning a reliable edge detector, and a contour map where the main structures of the
image are noticeable. Finally, the computation of the minimum score of a measure does not require
tuning parameters, which is a huge advantage. The open problem remains the normalization of the
distance measures, which could qualify a good segmentation and a poor edge detection close to 0 and
1, respectively. Another open problem concerns the choice of the hysteresis thresholds in the absence
of a ground truth edge map, where the selection of thresholds may be learned thanks to a reliable edge
detection evaluation measure.
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Abbreviations
VI Gradient magnitude of an image I
i gradient orientation
TP set of True Positive pixels
FP set of False Positive pixels
FN set of False Negative pixels
TN set of True Negative pixels
Gt Ground truth contour map
D Detected contour map
Dice Dice measure
Py, Performance measure
SSR Segmentation Success Ratio
Pg Localization-error
ME Missclassiffication Error
[ @ measure
X2 X? measure
F, F, measure
Pv Performance value
Ry Quality Measure Ry focussing on a window W
FM Failure measure FM
FoM Pratt’s Figure of Merit
F Figure of Merit revisited
dy Combination of Figure of Merit and statistics
D, Edge map quality measure

SFoM  Symmetric Figure of Merit
MFoM  Maximum Figure of Merit

Y Yasnoff measure

H Hausdorff distance

fods Maximum distance measure

DX Distance to ground truth, with k a real positive

(S Oversegmentation measure ©

Q Undersegmentation measure ()

RDE} Relative Distance Error, with k a real positive

Sk Symmetric distance measure, with k a real positive
A¥ Baddeley’s Delta Metric

T Oversegmentation measure I

Y Complete distance measure

A A measure

c Z measure

dg,(p)  minimal Euclidian distance between a pixel p and G;
dg,(p)  minimal Euclidian distance between a pixel p and D
Sobel Sobel edge detection method

Shen Shen edge detection method

Bourennane Bourennane edge detection method

Deriche Deriche edge detection method

Canny Canny edge detection method

SF Steerable filter of order 1

SFs Steerable filter of order 5

AGK Anisotropic Gaussian Kernels

H-K Half Gaussian Kernels
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