
HAL Id: hal-01945908
https://hal.science/hal-01945908

Submitted on 5 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliability assessment of phased-mission systems with
AltaRica 3.0

Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy, Liu Yang

To cite this version:
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy, Liu Yang. Reliability assessment of phased-
mission systems with AltaRica 3.0. 3rd International Conference on System Reliability and Safety
(ICSRS 2018), Nov 2018, Barcelone, Spain. �hal-01945908�

https://hal.science/hal-01945908
https://hal.archives-ouvertes.fr


Reliability assessment of phased-mission systems
with AltaRica 3.0

Michel Batteux
IRT SystemX

Palaiseau, France
Email: michel.batteux@irt-systemx.fr

Tatiana Prosvirnova
LGI, CentraleSupélec, Université Paris-Saclay

Gif-sur-Yvette, France
Email: tatiana.prosvirnova@centralesupelec.fr

Antoine Rauzy, Liu Yang
MTP, NTNU

Trondheim, Norway
Email: antoine.rauzy@ntnu.no,

liu.yang@ntnu.no

Abstract—In this article, we show how phased-mission systems
can be described and assessed by means of the AltaRica 3.0
technology. AltaRica 3.0 is a formal, object-oriented modeling
language dedicated to probabilitic risk/safety analyses. We illus-
trate here its power by introducing a modeling pattern making
it possible to represent phased-mission systems in an elegant
way. This modeling pattern fits with the CESAMES framework
for systems engineering. We show that AltaRica 3.0 models for
phased-mission systems can be assessed efficiently by means of
the stepwise simulator and the stochastic simulator we developed
for the language.

Index Terms—phased-mission systems, AltaRica 3.0, modeling
patterns

I. INTRODUCTION

It is often the case that the mission of complex systems
can be decomposed into successive phases. Such systems are
called phased-mission systems (PMS). Typically, the flight
of an aircraft involves take-off, ascent, level-flight, descent,
and landing phases. During each of these phases, the aircraft
has to accomplish a specific task and is subject to different
stresses as well as different dependability requirements, hence
justifying different reliability assessment models. Phases are
however not independent: if a certain capacity is lost during
a phase, it has good chance to remain lost for the subsequent
phases. Reference [16] presents a state of the art on different
techniques and assessment methods for PMS.

In this article, we show how phased-mission systems can
be described and assessed by means of the AltaRica 3.0
technology. AltaRica 3.0 is a formal, object-oriented modeling
language dedicated to probabilitic risk/safety analyses [13].
AltaRica 3.0 can be seen as a combination of two parts:

• Its mathematical framework, based on guarded transition
systems (GTS) [7], [15];

• Its set of structuring constructs, based on the system
structure modeling language (S2ML) [6].

GTS are stochastic state automata. They have been designed
to increase as much as possible the expressive power of the
language without increasing the computational cost of the
assessment algorithms. S2ML gathers and unifies structuring
constructs stemmed from object-oriented programming [2],
and prototype-oriented programming [12]. The combination
of GTS and S2ML results in a powerful, versatile language
which exploits assessment algorithms in an optimum way.

One of the big advantages of high level modeling is the
possibility to reuse modeling components within models and
between models. In this way, the modeling process is made
both more efficient and less error prone. In languages such as
Modelica [9], reuse is achieved via the design of libraries of
“on-the-shelf” modeling components. This approach is also
feasible in probabilistic risk and safety analyses, but to a
much lesser extent. The reason is that these analyses represent
systems at a high level of abstraction. Modeling components,
except for very basic ones, tend thus to be specific to each
system.

In AltaRica 3.0, reuse is mostly achieved by the design
of modeling patterns, i.e. examples of models representing
remarkable features of the system under study. Once identified,
patterns can be duplicated and adjusted for specific needs [4].
Patterns are not only a mean to organize and to document
models, but also and more fundamentally a way to reason
about systems under study.

In this article, we introduce a new modeling pattern dedi-
cated to the phased-mission systems. We show that this mod-
eling pattern fits into the CESAMES framework for systems
architecting [10]. We illustrate the proposed approach by ap-
plying this pattern to model a satellite communication system.
We show how phased-mission systems can be assessed using
the AltaRica Wizard modeling and simulation environment.

The remainder of this article is organized as follows. Sec-
tion II presents a phased-mission system used as an illustrative
example throughout this article. Section III gives an overview
of the key concepts of the AltaRica 3.0 modeling language.
Section IV describes the modeling pattern for phased-mission
systems and applies it to the case study. Section V discusses
why this pattern fits into the CESAMES framework. Sec-
tion VI gives some numerical results. Finally, section VII
concludes the article.

II. CASE STUDY

As an illustrative example, we shall consider a phased-
mission system borrowed from [11], which represents the
communication mission between a given satellite Sat and the
ground stations F1 and F2, as shown Fig. 1.

Telecommunications between the satellite Sat and the
ground stations rely on different equipment at different pe-
riods of time. Generally there are two channels available



for Sat to communicate with the stations: the first channel
uses geostationary satellites SatRelay1 and SatRelay2 as the
relay (and then SatRelay1 or SatRelay2 retransmit images to
the stations); the second channel allows the satellite Sat to
communicate directly with the stations when they are visible to
each other. The communication channel can be considered as a
subsystem which may contain antennas, batteries, transmitters,
and receivers as shown in the reliability block diagrams Fig. 1.

Fig. 1. Satellite communication system.

The satellite Sat orbits the Earth for 300 laps, each orbital
lap contains four phases. The subsystems used in each phase
are represented by the reliability block diagrams shown Fig. 2.
The durations of the different phases are given Table I.
The satellite communication system is thus a PMS made
of 28 independent components and operating through 1200
successive phases.

Fig. 2. Phases of the satellite communication system.

All components may fail in operation even if they are not
in use during the considered phase. The radar (ground station)
components can be repaired while the satellite components
cannot. Failure and repair rates are shown in Table I.

Our objective is to assess the reliability of this phased-
mission system for a 3600 hours mission.

III. ALTARICA 3.0
A. Guarded Transition Systems

Guarded transition systems, introduced in [15], are at the
core of AltaRica 3.0. Formally, a guarded transition system is

TABLE I
PARAMETERS

Parameters Values
Failure rates 10−5h−1

Repair rates for radars 0.025h−1

Phase duration D1 = D3 = 2h, D2 = 1h, D4 = 7h

a quintuple 〈V,E, T,A, ι〉, where:
• V is a set of variables. Each variable v of V has a

type, i.e. can take its value in a certain set of constants
(Booleans, integers, reals or set of symbolic constants),
called its domain and denoted by dom(v). V is actually
the disjoint union of two subsets S and F , where S is
the subset of state variables and F is the subset of flow
variables.

• E is a set of events. Each event e of E can be associated
with a non-decreasing invertible function delaye from
[0, 1] to R+∪{+∞}. The inverse delay−1

e of this function
is a cumulative probability distribution.

• T is a set of transitions. A transition t is a triple 〈e, g, a〉,
denoted by g

e−→ a, where e is an event of E, g is a
Boolean condition on variables of V called the guard of
the transition, and a is an instruction, called the action
of the transition, that changes the value of (some of) the
state variables.

• A is an instruction, called the assertion, that calculates the
values of flow variables from the values of state variables.

• Finally, ι is a function that gives the initial value of state
variables and the default value of flow variables.

As an illustration, we shall consider a non-repairable com-
ponent in Fig. 3.

1 class NonRepairableComponent
2 Boolean vsWorking (init = true);
3 event failure (delay = exponential(pLambda));
4 parameter Real pLambda = 1.0e-5;
5 transition
6 failure: vsWorking -> vsWorking := false;
7 end

Fig. 3. AltaRica 3.0 code representing a non-repairable component.

This modeling component is reused in many different mod-
els and often many times within a model. For this reason, it
is declared as a class in the code of Fig. 3. A class is an on-
the-shelf modeling component. It can be instantiated as many
times as necessary into models. The state of a component
is represented by a Boolean variable named vsWorking
(declared line 2). Initially, the component is working, so the
attribute init of the variable vsWorking is set to true. This
attribute indicates also that vsWorking is a state variable.
The component has a failure transition (declared line 6) that
goes from the state working to the state failed. In the code of
Fig. 3, the event failure (declared line 3) is associated with
a delay obeying the inverse of a negative exponential distri-
bution of parameter pLambda. This parameter is declared at



line 4. AltaRica 3.0 provides several built-in distributions, like
Dirac, exponential, Weibull as well as empirical distributions
(given as a list of points).

AltaRica 3.0 comes with a standard library that declares a
number of classes such as NonRepairableComponent to
represent various types of components.

B. Composition

The class NonRepairableComponent involves no flow
variable and therefore no assertion. Flow variables are mainly
a mean to connect components. The composition of two
(or more) guarded transition systems is actually a guarded
transition system. Formally, let M1 : 〈V1, E1, T1, A1, ι1〉 and
M2 : 〈V2, E2, T2, A2, ι2〉 be two guarded transition systems.
Then M1 ⊗ M2 is simply the guarded transition system
〈V,E, T,A, ι〉 such that V = V1 ∪ V2, E = E1 ∪ E2,
T = T1 ∪ T2, A = A2 ◦A1 and ι = ι2 ◦ ι1.

Larger models can thus be obtained by composing smaller
models.

Consider the satellite subsystem of our illustrative example.
It is composed of two batteries, two transmitters and two
receivers. All the components may fail in operation and
cannot be repaired. They can be represented as instances of
the class NonRepairableComponent. The model of the
whole satellite subsystem is given Fig. 4.

1 class NonRepairableInOutComponent
2 extends NonRepairableComponent;
3 Boolean vfInput, vfOutput(reset = false);
4 assertion
5 vfOutput := vsWorking and vfInput;
6 end
7

8 class SatelliteSubSystem
9 NonRepairableInOutComponent Battery1;

10 NonRepairableInOutComponent Battery2;
11 NonRepairableInOutComponent Transmitter1;
12 NonRepairableInOutComponent Transmitter2;
13 NonRepairableInOutComponent Receiver1;
14 NonRepairableInOutComponent Receiver2;
15 Boolean vfOutput( reset = false );
16

17 assertion
18 Battery1.vfInput := true;
19 Battery2.vfInput := true;
20 Transmitter1.vfInput := Battery1.vfOutput
21 or Battery2.vfOutput;
22 Transmitter2.vfInput := Battery1.vfOutput
23 or Battery2.vfOutput;
24 Receiver1.vfInput := Transmitter1.vfOutput
25 or Transmitter2.vfOutput;
26 Receiver2.vfInput := Transmitter1.vfOutput
27 or Transmitter2.vfOutput;
28 vfOutput := Receiver1.vfOutput
29 or Receiver2.vfOutput;
30 end

Fig. 4. AltaRica 3.0 code implementing the satellite subsystem.

This code declares first the class
NonRepairableInOutComponent (lines 1-6). This
class inherits from the class NonRepairableComponent
(via the extends clause, line 2). This means

that a NonRepairableInOutComponent is a
NonRepairableComponent with additional properties. In
this case, Boolean flow variables vfInput and vfOutput
are declared (line 3). Their default values are set to false
via the attribute reset. This attribute indicates also that
vfInput and vfOutput are flow variables. Finally, the
assertion line 4 tells how the value of the flow variable
vfOutput is calculated from the value of the state variable
vsWroking and the flow variable vfInput.

The satellite subsystem itself is encoded as a class as
it shall be reused several times in the model (lines 8-
30). The class SatelliteSubSystem declares as many
instances of NonRepairableInOutComponent as there
are components (lines 9-14) and a Boolean flow variable
vfOutput (line 15). The assertion consists then simply in
connecting together the inputs and outputs of the components
(lines 18-29). Variables declared inside a component (proto-
type or instance of class) are accessed via the dot notation:
Battery1.vfInput denotes the variable vfInput of the
component Battery1.

Note that as in the code Fig. 3, the values of the parameters
pLambda can be redefined at instantiation, if necessary. It
is even possible to change the distributions themselves at
instantiation. This makes it possible to design generic classes
for components.

To represent the radar subsystem from our
illustrative example, we need first to define a class
RepairableInOutComponent which inherits from
the class NonRepairableComponent and defines a new
event repair and the associated transition; second we shall
use this class to define the class RadarSubSystem in
the same way as the class SatelliteSubSystem given
Fig. 4.

C. Aggregation

Composition describes a “is-part-of” relation. This relation
assumes that a component cannot belong to two different
parent components. There are cases however where the same
component is used in several places or to contribute to different
functions of the system. This kind of “uses” relations can be
described by means of aggregation.

As an illustration, consider again our satellite communica-
tion system. This system is made of five sub-systems; these
sub-systems are further decomposed, and so on. This structural
breakdown is correct, but does not represent the whole system.
The system description is completed by the reliability block
diagrams Fig. 2 for each phase of the system. These reliability
block diagrams encode more functional than physical group-
ings. Physical components are shared by different reliability
block diagrams. Therefore, we need to be able to describe
hierarchical breakdowns with branches sharing components.
This is the very purpose of the notion of aggregation. It is
implemented in AltaRica 3.0 by the “embeds-as” clause.

The AltaRica 3.0 code describing the 1st phase of the
satellite communication system is shown Fig. 5



1 block SatelliteCommunicationSystem
2 /* System breakdown structure */
3 SatelliteSubSystem Sat, SatRelay1, SatRelay2;
4 RadarSubSystem F1, F2;
5 ...
6 /* Subsystem used during the 1st phase */
7 block Phase1
8 embeds main.Sat as Sat;
9 embeds main.F1 as F1;

10 Boolean vfWorking (reset = false);
11 assertion
12 vfWorking := F1.vfOutput and Sat.vfOutput;
13 end
14 ...
15 end

Fig. 5. AltaRica 3.0 code describing phase 1.

The satellite communication system itself is encoded as
a prototype, i.e. a modeling component with a unique
occurrence (lines 1-15). There is a little chance for
this modeling component to be reused somewhere. It
is specific to the system under study, conversely to
the components NonRepairableInOutComponent or
RepairableInOutComponent that are reused several
times in this and other models. Prototypes are introduced by
the keyword block.

The block SatelliteCommunicationSystem is
composed of five subsystems defined as the instantiation of
the previously defined classes SatelliteSubSystem and
RadarSubSystem (lines 3-4).

The block Phase1 aggregates (via the clause embeds)
the components used during the 1st phase (lines 7-13). It
also defines a Boolean variable vfWorking (a flow variable)
which is true when the system is working and false otherwise
(line 10). The assertion (lines 11-12) defines the value of the
flow variable vfWorking according to the outputs of all the
components.

IV. ARCHITECTURAL PATTERN FOR PHASED-MISSION
SYSTEMS

Fig. 6 gives a snapshot of the architectural modeling pattern
we designed for phased-mission systems. This pattern consists
in organizing the model in 4 parts:

1) The system breakdown structure (the hierarchy of com-
ponents together with their behavior);

2) A unit that monitors the changes of phases, called “Phase
controller”;

3) The set of modeling units representing each phase of
the system. Each phase unit aggregates the components
used during this phase and declares interactions between
them.

4) The global assertion, called “Multiplexer”. This asser-
tion describes whether the system is able to perform its
mission in the current phase (decided by the phase con-
troller). Performance indicators (e.g. system reliability)
are calculated thanks to this assertion.

Connections between the 4 parts are described by two types
of relations:

• “Flow propagation” by means of assertions, represented
by plain arrows Fig. 6.

• “Aggregation” relation, represented by dashed arrows
Fig. 6;

Fig. 6. Architectural pattern for phased-mission systems

As an illustration consider the satellite communication sys-
tem described Section II. The structure of the AltaRica 3.0
model representing this system is given Fig. 7.

Inside the block SatelliteCommunicationSystem,
the breakdown structure of the whole system is de-
scribed lines 3-4) by instantiating previously defined classes
SatelliteSubSystem and RadarSubSystem. This part
corresponds to the block 1 in Fig. 6.

Second, the unit representing changes of phases is defined
by the block PhaseController (lines 7-9). This block
is specific to this system, that is why it is defined as a
prototype. Its behavior is detailed Fig. 9. Changes of phases are
represented by an automaton graphically represented Fig. 8.
The phase is represented by a state variable vsPhase which
is an Integer and can take 4 values. Changes of states are
represented by the transitions which are labeled by determin-
istic events. Each event is thus associated with a deterministic
delay defined by the parameters Dj. Their values are taken
from Table I.

Note that it is possible to use an enumeration to define
different phases. For example,
domain PhaseDomain {PHASE1, PHASE2, PHASE3, PHASE4}

This block corresponds to the block 2, “Phase Controller”,
Fig. 6.

Third, the architecture of the subsystem used during each
phase is defined by the blocks Phase1, Phase2, Phase3
and Phase4 (lines 10-34). Consider for instance the block
Phase4. This block aggregates (via the clause embeds) the



1 block SatelliteCommunicationSystem
2 /* System breakdown structure */
3 SatelliteSubSystem Sat, SatRelay1, SatRelay2;
4 RadarSubSystem F1, F2;
5 Boolean vfWorking (reset = false);
6 /* Unit representing the changes of phases */
7 block PhaseController
8 // behavior of the block PhaseController
9 end

10 /* Subsystem used during the 1st phase */
11 block Phase1
12 // definition of the block Phase1
13 end
14 /* Subsystem used during the 2nd phase */
15 block Phase2
16 // definition of the block Phase2
17 end
18 /* Subsystem used during the 3rd phase */
19 block Phase3
20 // definition of the block Phase3
21 end
22 /* Subsystem used during the 4th phase */
23 block Phase 4
24 embeds main.F1 as F1;
25 embeds main.F2 as F2;
26 embeds main.Sat as Sat;
27 embeds main.SatRelay1 as SatRelay1;
28 embeds main.SatRelay2 as SatRelay2;
29 Boolean vfWorking (reset = false);
30 assertion
31 vfWorking := (F1.vfOutput or F2.vfOutput)
32 and Sat.vfOutput
33 and (SatRelay1.vfOutput
34 or SatRelay2.vfOutput);
35 end
36 assertion // the global assertion
37 vfWorking := switch {
38 case (Phases.vsPhase==1): Phase1.vfWorking
39 case (Phases.vsPhase==2): Phase2.vfWorking
40 case (Phases.vsPhase==3): Phase3.vfWorking
41 default: Phase4.vfWorking
42 };
43 end

Fig. 7. Global view of the satellite communication system model.

Fig. 8. Automaton defining the changes of phases.

components used during the 4th phase (lines 24-28). It defines
a Boolean variable vfWorking (a flow variable) which is true
when the system is working and false otherwise (line 29). The
assertion (lines 30-33) defines the value of the flow variable
vfWorking according to the outputs of all the components.

The AltaRica 3.0 code of the block Phase1 is given
Section III-C. The code of the blocks Phase2 and Phase3 is
similar to the other blocks. It implements the reliability block
diagrams given Fig. 1. This part corresponds to the block 3,
“Phases”, Fig. 6.

1 block PhaseController
2 Integer vsPhase (init = 1);
3 parameter Real D1 = 2.0; // D1==D3
4 parameter Real D2 = 1.0;
5 parameter Real D3 = 2.0;
6 parameter Real D4 = 7.0;
7 event evChangePhase1_2(delay = Dirac(D1));
8 event evChangePhase2_3(delay = Dirac(D2));
9 event evChangePhase3_4(delay = Dirac(D3));

10 event evChangePhase4_1(delay = Dirac(D4));
11 transition
12 evChangePhase1_2: vsPhase==1 -> vsPhase := 2;
13 evChangePhase2_3: vsPhase==2 -> vsPhase := 3;
14 evChangePhase3_4: vsPhase==3 -> vsPhase := 4;
15 evChangePhase4_1: vsPhase==4 -> vsPhase := 1;
16 end

Fig. 9. AltaRica 3.0 code for the block PhaseController.

Finally, the global assertion (lines 36-42) defines the value
of the flow variable vfWorking (declared line 5) accord-
ing to the phase (state variable Phases.vsPhase) and
the status of the corresponding phase unit (flow variable
PhaseJ.vfWorking). This part corresponds to the block
4, “Multiplexer”, Fig. 6.

Note that subsystems Sat, F1, F2, SatRelay1 and
SatRelay2 are shared between the blocks Phase1,
Phase2, Phase3 and Phase4, which define the system
configuration used in each phase. It is achieved thanks to
the aggregation relation (embeds clause). The aggregation
relation allows to define phased mission systems in an elegant
way.

It is also possible to define conditional connections be-
tween components depending on the phase. Again consider
our illustrative example. First, we declare a flow variable
vfPhase inside of each phase unit (Fig. 10, line 4). Second,
we connect it to the state variable Phases.vsPhase in the
global assertion (Fig. 10, lines 15-16). Finally, we make the
local assertion depend on the variable vfPhase (Fig. 10, lines
9-13).

1 block SatelliteCommunicationSystem
2 ...
3 block Phase1
4 Integer vfPhase (reset = 1);
5 embeds main.Sat as Sat;
6 embeds main.F1 as F1;
7 Boolean vfWorking (reset = false);
8 assertion
9 if (vfPhase == 1) then {

10 Sat.vfInput := true;
11 F1.vfInput := Sat.vfOutput;
12 vfWorking := F1.vfOutput;
13 }
14 end
15 assertion
16 Phase1.vfPhase := Phases.vsPhase;
17 ...
18 end

Fig. 10. AltaRica 3.0 code implementing conditional connections.



V. FROM SYSTEM ARCHITECTURES TO SAFETY ANALYSES

System architecture is an emerging discipline. It provides a
conceptual framework making it possible to merge in a coher-
ent way all of the point of views on a system, and to reason
about the system in an accurate way relying on approach by
levels of abstraction. System architects apply methodologies
that involve the design of models. These methodologies are
often called architecture frameworks [1].

The CESAMES method for systems architecting [10] con-
siders three different abstraction levels of a system: the oper-
ational level, the functional level and the physical level (see
Fig. 11).

Fig. 11. CESAM systems architecture pyramid.

The operational level is the analysis of the environment
of the system. It considers the system (more or less) as a
black box and models the interactions of the system with the
external systems. The result of the operational analysis is thus
a description of the missions of the system, i.e. of the services
it provides to its users.

The functional level is an abstract analysis of the inside of
the system. It considers the system as a white box and models
abstract functions/capacities of the system.

Finally, the physical level is a concrete analysis of the inside
of the system. It considers also the system as a white box and
models the concrete components of the system, in terms of
hardware, sofware and human elements. The physical level
describes thus the concrete resources the system involves.

Models produced at the three different levels are strongly
connected. The operational level is connected with the two
other levels because missions are naturally implemented by
functions and by components. The functional level is con-
nected with the physical level because each (abstract) function
must be concretely allocated to, or implemented by, some set
of physical components. In the reverse way, physical compo-
nents implement functions which are required by missions.

The CESAMES method for systems architecting proposes
five types of SysML diagrams for each abstraction level. They
are summarized Table II.

Safety analyses need to gather in the same model opera-
tional, functional and physical aspects of the system under
study. Typically, the top event of a fault tree represents the

TABLE II
CESAMES SYSTEMS ARCHITECTURE DIAGRAMS.

loss of a function/capacity, i.e. the incapacity to accomplish a
mission, and the basic events represent the failures of physical
components.

Nevertheless, the architectural pattern in the previous sec-
tion can be seen as an implementation of the CESAMES
method for systems architecting for the specific case of
phased-mission systems, as illustrated Fig. 12.

Fig. 12. The architectural pattern for phased-mission systems view from the
perspective of the CESAMES method for systems architecting.

The block “Phase Controller” (block 2), which describes the
different phases of the system, belongs to the operational level
and corresponds to the lifecycle diagram of the CESAMES
method.

The block “System breakdown structure and behavior”
(block 1) belongs to the physical abstraction level and corre-
sponds to the physical breakdown structure, which represents
the hierarchy of physical components.

The blocks “Phases”(block 3) and “Multiplexer”(block 4)
are parts of the functional abstraction level. They correspond
to functional interaction diagrams and represent functions (or
capacities) provided by the system. Performance indicators
(e.g. system reliability) are calculated from the values of the
capacities.

Links between different abstraction levels (or different dia-
grams) are represented by two different means:

• The links between functional and physical levels are
carried out by the “aggregation” relation. Phases (or
functions) aggregate physical components/resources and
define interactions needed to produce the capacity.



• The links between operational and functional levels are
implemented by “Flow propagation”, also called connec-
tions.

VI. EXPERIMENTS

An integrated modeling environment for AltaRica 3.0 (Al-
taRica Wizard) is currently under development as joint effort
of the OpenAltaRica team at IRT SystemX (Paris, France)
and the Norwegian University of Science and Technology.
Industrial partners (Airbus, Safran and Thales) support this
project. A versatile set of assessment tools has been developed,
which includes:

• A stepwise simulator,
• A Fault Tree compiler [14],
• A Markov chain generator [8],
• A stochastic simulator,
• A sequence generator.
AltaRica Wizard [5] already integrates three calculation

engines: a stepwise simulator, a Fault Tree compiler and a
stochastic simulator. Phased mission systems can be assessed
with the stepwise simulator in order to validate the model and
with the stochastic simulator in order to calculate different
types of indicators, for example its reliability or mean down
time.

First a step by step simulator has been used to play scenarios
and to validate the model. Fig. 13 shows an example of the
stepwise simulation of the satellite communication system. In
the tab “Tree View” the simulator displays the current system
configuration: the value of state and flow variables, the enabled
transitions and the value of observers. It is possible to fire
transitions by double clicking on them in the tab “Tree View”.
The simulation history is shown in the tab “Sequences”. Users
can go back to the initial configuration using the “Restart”
button and backtrack using the button “Backtrack”.

In Fig. 13, in the initial configuration the system is in
the phase 1 and it is working (the value of the observer
oFailed is false). Then the antenna of the station F1 used
in the phase 1 fails (the transition labeled by the event
F1.Antenna.evFailure is fired). The system is failed
(the value of the observer oFailed becomes true). Then
the system goes in the phase 2 (the transition labeled by the
event PhaseController.evChangePhase1_2 is fired).
The system is working (the value of the observer oFailed
becomes false) because in the phase 2 both stations F1 and
F2 are used in parallel. And so on.

Second, to calculate the reliability of the satellite communi-
cation system, the stochastic simulator has been used [3]. It is a
versatile tool to assess performance indicators of discrete event
systems [17]. The principle of stochastic, or Monte-Carlo,
simulation is quite simple. It consists in drawing at random
a sample of executions of the model, to observe a number of
quantities during these executions, and to make statistics on
these observations. Quantities to observe depend indeed on the
performance indicators one wants to obtain. In AltaRica 3.0,
they are defined in two steps. First, one declares observers in
the model. These observers can be either symbolic (Boolean or

symbolic constants) or numerical (integers or real numbers). In
both cases, their values evolve through an execution. Second,
one declares indicators, which are elements separated from the
AltaRica 3.0 model (they are defined into a separate file). An
indicator defines what to measure about the evolution of an
observer, i.e. on which quantity to make statistics. It can be
for instance:

• the first date at which an observer takes a specified value;
• the number of times an observer takes a specified value

during an execution;
• the average value of an observer during an execution; etc.
Each execution runs from time 0 to a given mission time T .

Statistics are indeed made on the values of indicators at time
T . It may be interesting to make statistics on their values, at
least for some of them, at intermediate times 0 ≤ t1 < t2 <
. . . < tk < T . For our purpose the mission time is T = 3600h.
We define the following Boolean observer

observer Boolean oFailed = not vfWorking;

and the associated indicator
first-occurrence-date(oFailed, true)

defining, for a run, the first date at which the observer oFailed
took the value true over the time period [0, 3600].

The stochastic simulator have been parametrized to perform
105 histories and to compute the reliability for different
mission times. The results are given Fig. 14.

We have also performed a sensitivity analysis. In order to
determine the most critical components we have calculated the
system mean down time considering each component being
failed. The results are presented Fig. 15. These results are
not surprising in view of the architecture of the system under
study. The most critical components are the components of
the main satellite SatR as they cannot be repaired and are
used in each phase. The antennas of the stations F1 and F2
are also critical as they are not redundant. There are different
ways to improve the overall system availability:

• Use redundant antennas which is costly and sure.
• Improve the antennas’ reliability and decrease their mean

time to repair.

VII. CONCLUSION

In this article, we proposed an architectural pattern for
phased-mission systems. We showed how to implement this
pattern in AltaRica 3.0. We applied the proposed modeling
pattern to a satellite communication system and calculated its
reliability and mean down time using the stochastic simulator
developed for the language.

The systematic exploration and design of modeling patterns
is at the core of our research projects. It is actually of primary
importance, in order to make the modeling process efficient,
to reuse as much as possible modeling components within
models and between models.

An another important issue is the synchronization of mod-
els developed by the different engineering disciplines. With
that respect, the connection of systems engineering modeling



Fig. 13. Stepwise simulation of the satellite communication system

Fig. 14. Reliability of the satellite communication system

Fig. 15. Sensitivity analysis of the satellite communication system

frameworks with architectural patterns for models used in
risk/safety analyses seems promising.

REFERENCES

[1] Systems and software engineering – architecture description, 2011-11-
24.

[2] Mauricio Abadi and Luca Cardelli. A Theory of Objects. Springer-
Verlag, New-York, USA, 1998.

[3] B. Aupetit, M. Batteux, A. Rauzy, and J.-M. Roussel. Towards a
defintion of an evaluation kit for stochastic simulators. In LambdaMu
20, Saint-Malo, France, 2016. in press.

[4] M. Batteux, T. Prosvirnova, and A.Rauzy. Altarica 3.0 in 10 modeling
patterns. International Journal of Critical Computer-Based Systems
(IJCCBS), 2018.

[5] M. Batteux, T. Prosvirnova, and A.Rauzy. Altarica wizard: an integrated
modeling and simulation environment for altarica 3.0. In LambdaMu 21,
Reims, France, 2018. in press.

[6] M. Batteux, T. Prosvirnova, and A.Rauzy. S2ml for structuring models.
In 4th IEEE International Symposium on Systems Engineering, ISSE
2018, Rome, Italy, 2018. in press.

[7] Michel Batteux, Tatiana Prosvirnova, and Antoine Rauzy. Altarica 3.0
assertions: the why and the wherefore. Journal of Risk and Reliability,
September 2017.

[8] Pierre-Antoine Brameret, Antoine Rauzy, and Jean-Marc Roussel. Au-
tomated generation of partial markov chain from high level descriptions.
Reliability Engineering and System Safety, 139:179–187, July 2015.

[9] Peter Fritzson. Principles of ObjectOriented Modeling and Simulation
with Modelica 3.3: A CyberPhysical Approach. Wiley-IEEE Press,
Hoboken, NJ 07030-5774, USA, 2015.

[10] Daniel Krob. CESAM: CESAMES Systems Architecting Method: A
Pocket Guide. CESAMES, http://www.cesames.net, January 2017.

[11] Ji-Min Lu, Xiao-Yue Wu, Yiliu Liu, and Mary Ann Lundteigen. Reliabil-
ity analysis of large phased-mission systems with repairable components
based on success-state sampling. Reliability Engineering & System
Safety, 142:123–133, 2015.

[12] James Noble, Antero Taivalsaari, and Ivan Moore. Prototype-Based
Programming: Concepts, Languages and Applications. Springer-Verlag,
Berlin and Heidelberg, Germany, 1999.

[13] Tatiana Prosvirnova, Michel Batteux, Pierre-Antoine Brameret, Abraham
Cherfi, Thomas Friedlhuber, Jean-Marc Roussel, and Antoine Rauzy.
The altarica 3.0 project for model-based safety assessment. In Pro-
ceedings of 4th IFAC Workshop on Dependable Control of Discrete
Systems, DCDS’2013, pages 127–132, York, Great Britain, September
2013. International Federation of Automatic Control.

[14] Tatiana Prosvirnova and Antoine Rauzy. Automated generation of
minimal cutsets from altarica 3.0 models. International Journal of
Critical Computer-Based Systems, 6(1):50–79, 2015.

[15] Antoine Rauzy. Guarded transition systems: a new states/events formal-
ism for reliability studies. Journal of Risk and Reliability, 222(4):495–
505, 2008.

[16] L. Xing and S.V. Amari. Reliability of phased-mission systems. In Misra
K.B. (eds) Handbook of Performability Engineering, London, UK, 2008.
Springer.

[17] Enrico Zio. The Monte Carlo Simulation Method for System Reliability
and Risk Analysis. Springer Series in Reliability Engineering. Springer
London, London, England, 2013.


