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Abstract. Understanding and predicting the collective behaviour of crowds
is essential to improve the efficiency of pedestrian flows in urban areas and

minimize the risks of accidents at mass events. We advocate for the develop-

ment of crowd traffic management systems, whereby observations of crowds
can be coupled to fast and reliable models to produce rapid predictions of the

crowd movement and eventually help crowd managers choose between tailored

optimization strategies. Here, we propose a Bi-directional Macroscopic (BM)
model as the core of such a system. Its key input is the fundamental diagram

for bi-directional flows, i.e. the relation between the pedestrian fluxes and

densities. We design and run a laboratory experiments involving a total of
119 participants walking in opposite directions in a circular corridor and show

that the model is able to accurately capture the experimental data in a typical

crowd forecasting situation. Finally, we propose a simple segregation strat-
egy for enhancing the traffic efficiency, and use the BM model to determine

the conditions under which this strategy would be beneficial. The BM model,
therefore, could serve as a building block to develop on the fly prediction of

crowd movements and help deploying real-time crowd optimization strategies.

1. Introduction. Since 2008, more than half of the world population is living in
cities [40], which asks for the development of large-scale multimodal transportation
systems. At the core of such systems, crowds of pedestrians are to be found in
transportation facilities. The massive presence of this population in airports, train
stations, metro stations, etc. is a challenge in terms of safety and transportation
efficiency [48, 56, 49]. This paper deals with the experimental analysis and modeling
of crowd movements so as, at longer term, to develop operational tools to manage
pedestrians in places as various as airports, train or metro stations or streets.

Managing the comfort and safety for pedestrians is difficult first because they
are not operated or regulated as simply as vehicles can be through sets of rules and
traffic signals [44]. Hence, it is difficult to prevent the formation of dense traffic
areas, where compacted crowds are exposed to risks of stampedes [53, 16]. For this
reason, it is important to design pedestrian traffic management systems similar to
those existing for car traffic, and more particularly simulation tools to predict the
short-term evolution of the traffic from conditions measure in-situ and in real time.

Today, on the one hand, pedestrian crowd simulators are developed for the pur-
pose of validating the layout and the structure of buildings aimed at hosting a
large public. This validation is performed beforehand, at the stage of design [52].
Most are not adapted to an on-line usage. Nevertheless, on the other hand, recent
progress in pedestrian tracking technologies, both for detailed trajectories [7, 30, 46]
or global traffic conditions [2, 59, 51], make possible to initialize a pedestrian traffic
simulators with current conditions and to perform short-term traffic predictions.
This would open the possibility to anticipate risks of congestion and to react ac-
cordingly. Such simulators are lacking today, thus, it is important to focus our
attention on simulators which are able to continuously process a flow of input traf-
fic data and which are efficient enough to perform short term predictions on-line.
Our work aims at filling this particular gap, by developing online simulation tools
to assist the management of pedestrian traffic.

We aim at performing short term predictions in places presenting risks of large
attendance and risk of congestion. A specific type of environment retains our at-
tention: corridors. By corridors, we mean elongated areas such as metro corridors,
sidewalks or shopping arcade where pedestrians form bidirectional traffic flows. This
type of place is particularly interesting to study because corridors generally link
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large places with high attendance (e.g., a corridor between two platforms). Because
the traffic intensity is higher in corridors, they are the place where congestion can
more easily initiate. In addition, because corridors are often organized in networks,
they offer an opportunity to apply rerouting strategies to locally limit the risk of
congestion: pedestrian would be suggested or forced to avoid corridors presenting a
risk of future congestion, similarly to car drivers with modern GPS-based assistance
systems.

How to perform accurate and fast predictive simulation for bidirectional pedes-
trian traffic in corridors? Two categories of models are described in the literature:
microscopic and macroscopic approaches. The former approach is an ascending
one: the motion of individual pedestrians is independently simulated based on
multi-agent technique and crowd traffic conditions emerge from combination of
interactions between agents. They are fundamentally based on the local models
of interactions, which were developed in various disciplines such as physics [19],
computer graphics [47] or behavioral and cognitive sciences [43, 41, 5], and which
dictate how agents influence each other’s motion. The latter type of approach are
macroscopic ones. They model a crowd as a whole, a matter moving like a compress-
ible fluid. Relying on the conservation law, a macroscopic simulation computes the
crowd motion by estimating the temporal variations of local density [50]. Algorith-
mic complexity is one fundamental difference between these two types of simulators.
Microscopic simulators consider interactions between all possible pairs of agent and
are quadratic by nature. In contrast, macroscopic algorithms are linearly complex
with the size of the crowd. This difference makes macroscopic approaches a model of
choice. While microscopic models are unadapted to produce real time simulations
as soon as the pedestrian number becomes large, macroscopic models can provide
fast, simple and yet surprisingly accurate results even at large densities.

In this paper, we propose a macroscopic model to predict bi-directional traffic in
corridors. To enhance computational efficiency, we consider only the longitudinal
direction of the walkway, ignoring the lateral dimension. We show hereafter that
despite this simplification a macroscopic model is able to quantitatively reproduce
key features of crowd dynamics. In such category of model, the relevant information
encoding crowd dynamics is the fundamental diagram, which defines pedestrian flux
as a function of pedestrian densities. More precisely, the proposed method relies
on a “Bi-directional Fundamental Diagram” (BFD), which captures situations of a
crowd made of people moving in the same and opposite directions. Fundamental
diagrams are widely used for one-way traffic (since the pioneering work of Lighthill
and Whitham [38]) but two-way pedestrian traffic has been scarcely investigated
under the angle of the BFD [1, 31, 33, 3, 54, 8, 15]. Yet, two-way traffic is the most
common situation in everyday life and counter-flows played a decisive role in several
crowd disasters [17, 18].

To characterize the BFD, several experiments have been conducted from which
we establish the first result of the present paper: an estimation of the BFD from
experimental data. Although Bi-directional flows have already been studied in the
literature, it is the first time, up to our knowledge, that it is measured experimen-
tally. The data are acquired in real time tracking experiment using automatic mo-
tion capture techniques [42]. Our second result is the validation of the Bi-directional
Macroscopic (BM) model which uses the calibrated BFD as its core. We introduce
as quantifier the cluster velocity allowing to compare quantitatively experiments
and simulations. We demonstrate that the BM model captures essential features of
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crowd dynamics. We then test our model in a typical forecasting scenario where the
crowd is recorded at two distant points. We show that the model accurately predicts
the state of the corridor between the recording points and develops traveling waves
similar to those observed in the experiments. Our third result is the determination
of the optimum of a corridor segregation strategy consisting in separating -or not-
antagonist pedestrian fluxes according to the corridor occupancy. The BM model
suggests that the segregation is efficient when the two antagonist fluxes are roughly
balanced, but is counter-productive in strongly unbalanced cases.

2. Methods.

2.1. Experimental setup. In this section, we describe our experiment on pedes-
trian traffic. Our objective was to build a Bi-directional Fundamental Diagram
(BFD), i.e., to observe the relation between the moving speed of participants under
different conditions of density and balance of counter-flows. To this end, we asked
participants to walk in a circular corridor delimited by walls (as displayed in Figure
1a). Some participants were instructed to walk in the clockwise direction, some
others to walk in the anticlockwise direction. They were assigned a walking direc-
tion before each trial. For each trial, participants were initially still in the corridor
and their positions randomly distributed. Each replication lasted 60 seconds after
starting signal was given.

Participants were not allowed to communicate, and were asked to behave as if
they were walking alone in a street to reach a destination. 119 volunteers par-
ticipated the experiments (we performed two experimental sessions, one with 59
participants and one with 60 participants). They were adults recruited through
advertising and with no known pathology which would affect their locomotion. The
experiment conformed to the declaration of Helsinki. Participants were naive with
respect to the purpose of our experiments.

Experiments took place in 2009 in Rennes, France. The circular corridor internal
and external radius was respectively 2 and 4.5 meters. We studied 3 different
proportions of fluxes, i.e., the balance of participants walking in a direction versus
participants walking in the opposite direction. We studied: 100%−0% balance,
75%−25% balance and 50%−50% balance.

We collected kinematics data. To this end, participants wore white T-shirts and
4 reflexive markers (see Fig. 1b), one on the forehead, one on the left shoulder, and
two on the right shoulder. This made the distinction of the left and right shoulders
easier. The motion of the markers has been tracked by 8 infra red cameras placed
all around the experimental setting. Marker trajectories have been reconstructed
using Vicon IQ software (VICON MX-40, Oxford Metrics, UK). The center of mass
of the 4 markers projected onto the horizontal plane is computed and recorded as
the position of the subjects [42, 34].

2.2. Data processing. The collected data give access to the two-dimensional
Cartesian coordinates (xi, yi)(t

n) (relative to the center of the arena and a fixed
reference frame) of each pedestrian, as well as their associated polar coordinates
(θi, ri)(t

n) (with xi = ri cos θi, yi = ri sin θi), sampled at a frequency of 10 Hz (i.e.
tn = n∆t with ∆t= 0.1 s). Since we are interested in a one dimensional analysis,
we focus on the angular coordinate of the pedestrians. We assign a fixed value
for the radial coordinates Rmed = 3.25m corresponding to the median value. To
estimate the density distribution of pedestrians on the arena, we use a classical
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Figure 1. Experiments and data acquisition. (a) A typical
experiment where bi-directional circulation is analyzed. (b) Par-
ticipants equipped with reflexive markers were tracked by means of
an optoelectronic motion capture system (VICON MX-40, Oxford
Metrics, UK). (c) The area-weighting assignment procedure: The
particle i (red dot) is located in the cell Cn(i) = [θk, θk+1] and is
assigned to the two nodes θk and θk+1 in proportion to the area
enclosing the opposite node. For instance, on the picture, the as-
signment to the node θk is in proportion to the ratio of the shaded
area to the area of Cn(i).

area-weighting procedure (a.k.a. Particle-In-Cell method [9, 12]). This procedure
consists in assigning each pedestrian to the two neighboring nodes in proportion to
the length enclosing the opposite node (see Fig. 1c). The density ρ̃nk is obtained by
combining the contributions of all pedestrians i belonging to the two cells sharing
the node k, according to the formula

Sρ̃nk =
∑
i

`nk (i)

∆θ
( ρ̃nk in m−2 ), (1)

where the sum extends over pedestrians i belonging to one of the two cells sharing
node k. The quantity S is the area of the cross section

S = ∆θ ·
∫ r=Rout

r=Rin

r dr = ∆θ · 8.125. (2)
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By linear interpolation, this procedure gives rise to a continuous piecewise linear
reconstructed density ρ̃n(θ) at time tn. We can verify that the total number of
pedestrian N is preserved in this interpolation procedure, i.e.

∑
k S ρ̃nk = N .

To estimate the flux, we compute a finite-difference approximation of the az-
imuthal component of the velocity vni of each pedestrian i at time tn:

vni = rni θ̇
n
i ≈ Rmed

θn+1
i − θni

∆t
. (3)

The densities ρ̃n+,k, ρ̃n−,k and fluxes f̃n+,k, f̃n−,k of the clockwise and anti-clockwise
pedestrians respectively are estimated at time tn on the polar grid θk = k∆θ by
means of the area-weighting assignment procedure described in Fig. 1c. The proce-
dure for estimating the densities ρ̃n+,k, ρ̃n−,k uses Eq. 1 where the sum is restricted
to pedestrians moving in the considered direction. For the estimation of the fluxes,
we use the following formula

S f̃n+,k =
∑
i

`nk (i)

∆θ
vni ( f̃n+,k in (ms)−1 ), (4)

where again the sum extends over pedestrians i belonging to one of the two cells
sharing node k (and moving in the considered direction).

2.3. Model. To investigate the flow of the pedestrians and make prediction, we
consider a bidirectional extension of the traffic model [38, 3]. Let ρ±(x, t) be the
densities at position x (along the median circle) and time t. The Bi-directional
Macroscopic (BM) is written:

∂tρ+ + ∂xf(ρ+, ρ−) = 0, (5)

∂tρ− − ∂xf(ρ−, ρ+) = 0, (6)

where f(ρ+, ρ−) is the “Bi-directional Fundamental Diagram” (BFD) (see Fig. 2a).
Both Eq. 5 and Eq. 6 have the form of a continuity equation for the associated
pedestrian density. It expresses that the only cause of a time variation of any of
these densities in a corridor stretch [x, x + dx] is due to the flux of pedestrians
entering this stretch at x and leaving it at x + dx (or vice versa according to the
direction of motion). Because x corresponds to the angular coordinate θ, ρ± are
assumed periodic with period 2πRmed. Since the model is a system of conservation
laws, we use a finite volume method to estimate numerically its solutions [36, 37].
More specifically, we use a central scheme method [3, 32]. By analogy with the
one-directional traffic model, we introduce characteristic speeds of the models (see
Fig. 2b):

u+ =
f+
ρ+

, u− =
f−
ρ−

, (7)

λ+ =
∂f

∂ρ+

∣∣∣
(ρ+,ρ−)

, λ− = − ∂f

∂ρ+

∣∣∣
(ρ−,ρ+)

. (8)

Strictly speaking, the quantities λ± are the velocities at which level curves of the
densities ρ± are convected. It corresponds to the velocity of waves that arise from
a perturbation of a uniform solution given by ρ±. Since the model is actually
bidirectional, the expression of λ± in Eq. 8 is actually an approximation (see
appendix A).
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Figure 2. Characteristic speeds in the BM model. (a)
Perspective view of the BFD f(ρ+, ρ−) as a function of ρ+ and
ρ−. (b) Sketchy fundamental diagram (in red) of a one-way flow
f(ρ) as a function of the single density ρ. The function f(ρ)
has the same monotony as cuts of the BFD f(ρ+, ρ−) along lines
ρ− = Constant. The average velocity u(ρ) = f(ρ)/ρ and the clus-
ter velocity λ(ρ) = f ′(ρ) are respectively the slopes of the secant
(in red) and tangent (in green) lines to this curve.

3. Results.

3.1. Estimated bi-directional fundamental diagram. From these data, we es-
timate the relation between the local densities ρ+ and ρ− and fluxes of the clockwise
and anti-clockwise pedestrians (respectively denoted by f+ and f−). Using the re-
constructed densities and fluxes, to each couple (k, n), we can associate two triples

(ρ̃n+,k, ρ̃
n
−,k, f̃

n
+,k) and (ρ̃n−,k, ρ̃

n
+,k, f̃

n
−,k). Thus, this provides us a sampling of f+ and

f−. To estimate the relation between densities and fluxes, we partition the (ρ+, ρ−)
space into squared sampling cells of size ∆ρ = 0.1 m−2. For each of these cells, we
compute the average of the samples f̃n±,k conditioned by the fact that (ρ̃n±,k, ρ̃

n
∓,k)

lies in the chosen cell. As a result, we obtain an estimated f(ρ+, ρ−) relationship.
We then seek for a parametric estimation of the fundamental diagram f(ρ+, ρ−).

The procedure consists in finding the best fit of the samples (ρ̃n+,k, ρ̃
n
−,k, f̃

n
k ) to a

prescribed analytic formula. After several trials, it appears that the best fit consists
in taking the velocity u+ = f+/ρ+ equal to an affine function of (ρ+, ρ−) leading to
the formula (9). Different parametric estimations of the fundamental diagram are
then performed according to the experimental conditions. This is needed because
the subjects themselves or their physical or psychological conditions differ from
one experimental trial to another one. We gather replications corresponding to the
same flux balance and realize three different estimations for the 50%−50% balanced
fluxes case, the 75%−25% flux balance case and the mono-directional (100%−0%
flux balance) case. The result of the parametric estimation is given in Table 1 and
the flux for the balanced case is represented in Fig. 2a.

In Fig. 3a, we plot the BFD for the experimental data corresponding to balanced
fluxes (50%−50% balance). The grey area corresponds to the absence of data, since
the observed maximum pedestrian density achieved in our experiments is about 2
m−2. It appears that the BFD is increasing in ρ+ and decreasing in ρ− and reaches
its maximum at the total density of 1.7 m−2. The estimation of the decay of the
BFD as a function of ρ− is one of the key results of this work. As ρ− increases, the
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Figure 3. Bi-directional Fundamental Diagram (BFD). (a)
Estimated BFD expressing the flux f in one direction as a function
of the density of pedestrians moving in the same direction ρ+ and
in the opposite direction ρ−. (b) Parametrized BFD used in the
model. The values of f , in (m.s)−1, are color coded according to
the color bar.

Sample set a b c R2

50%− 50% 1.218 0.273 0.181 0.944
75%− 25% 1.216 0.087 0.203 0.972
100%− 0% 1.269 0.077 0 0.982

Table 1. Parametric estimation of the bi-directional fundamental
diagram. The coefficients a, b and c refer to Eq. 9. To measure the
accuracy of each regression, we estimate the coefficient of determi-
nation R2 in the last column (the closer R2 is to 1, the better the
estimation is).

density of obstacles impeding the motion of the pedestrians intensifies, resulting in
an increased ‘friction’ [28]. We parametrize the flux f using a quadratic function of
the form:

f(ρ+, ρ−) = a ρ+ (1− b ρ+ − cρ−) , (9)

with densities expressed in (pedestrians) m−2 and flux expressed in (ms)−1. This
parametric BFD is the key input in the Bi-directional Macroscopic model (5)(6).
Despite its simplicity, the formula is able to capture several key features of the
pedestrian dynamics as we will see below. Coefficients a, b and c are easily inter-
preted and thus their estimation gives insights into the pedestrian dynamics. For
instance, coefficient a corresponds to the free average velocity of the pedestrians.
Coefficients b and c correspond to ‘friction’ with respectively co- and counter-moving
pedestrians. Using linear regression, we obtain the estimated values given in table
1. As an example, the estimated flux for the experiments with 50%− 50% balance
is plotted in Fig. 3b. Notice that the flux is always non-negative for the density
ranges observed in the experiments.

3.2. Data-model comparison: Cluster dynamics. In order to test the model,
we envision a crowd forecasting system where sensors are placed at two distant
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Figure 4. Model results and comparisons with experimen-
tal data. (a) Setting for the model: the density at the entry of
the corridor (x = 0) is taken from the experiment and the model is
used to predict the occupancy inside the corridor. (b-c) Clockwise
and anti-clockwise (resp. b and c) pedestrian densities as func-
tions of position (horizontal axis) and time (vertical axis running
downwards), for one of the replications with 60 pedestrians corre-
sponding to balanced fluxes (50% of pedestrians walking in each
direction). Left picture of each panel: experiment ; right picture:
BM model, run with initial and boundary data and BFD estimated
from the experimental data. The density is color-coded according
to the lateral scale (in m−2).
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Figure 5. Model results and comparisons with experiment data
with the 75%−25% flux balance: %75 are moving to the left (ρ−)
and %25 are moving to the right (ρ+). See Fig. 4b,c for balanced
flux.

locations A and B > A of a corridor. The sensors record the densities and mean
velocities of the incoming pedestrians. The model is then used to predict the oc-
cupancy of the corridor [A,B] knowing these boundary conditions. To match this
situation with the ring-shaped corridor used in the experiments, we introduce a
branch cut along the half line θ = 0 in polar coordinates and assume that A cor-
responds to θ = 0 and B to θ = 2π. Pedestrians crossing the branch cut in the
clockwise (resp. anti-clockwise) direction are therefore entering the corridor at B
and moving towards the left (resp. at A and moving to the right) as depicted in
Fig. 4a. We use the densities estimated from the experiments as boundary and
initial conditions for the BM model. Fig. 4b,c (left) show the densities ρ±(x, t)
for one of the experimental replications corresponding to 50%−50% flux balance
with 60 pedestrians, as functions of x (horizontal axis) and t (vertical axis, running
downwards) in color code, from blue (low density) to red (high density). Fig. 4b,c
(right) show the results of the BM model run in the crowd forecasting situation as
described above. Both data and simulations exhibit the formation of clusters (which
appear in intense red colors on Fig. 4b,c), separated by almost vacuum regions (in
intense blue color on the figure). Clusters move along with the pedestrians but not
at the same speed. Similar comparisons for the 75%−25% flux balance are presented
in figure 5.

3.3. Comparison of the model’s predictions with experimental data. To
compare quantitatively the model with experimental data, we estimate the average
and cluster velocities (resp. u and λ) defined in Eqs. 7 and 8. We detail in appendix
B the numerical estimations of these curves. On Fig. 6, the difference u−λ between
the average and cluster velocities is roughly linearly increasing. Using the expression
of the flux (Eq. 1) together with the characteristics speeds (Eqs. 7 and 8), the
theoretical prediction gives u+−λ+ ≈ 0.33 ρ+ ms−1 for small ρ−. According to this
prediction, this offset should increase linearly with ρ+ and reach the value 0.4 ms−1

for ρ+ ≈ 1.2 m−2. This theoretical estimate provides the right order of magnitude
of the experimentally observed value of u+−λ+.

3.4. Segregation strategy efficiency. We now exploit the BM model to esti-
mate the efficiency of a flow segregation strategy in which the two pedestrian types
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Figure 6. Pedestrian and cluster velocities. Comparison be-
tween the pedestrian velocity u (red curve) and cluster velocity λ
(green curve) as functions of the local density of co-moving pedes-
trians ρ from the experiments (circles) and from the BM model
(solid line) with balanced flux (50%−50%) on the left figure and
with 75%−25% flux balance on the right figure. Since λ < u,
information is propagating upstream as predicted by the BM
model.

circulate preferably on one side of the corridor, with half the width of the corri-
dor devoted to each type. In practice, this strategy can be achieved by suitable
signaling. On the one hand segregation reduces the influence of counter-moving
pedestrians, but on the other hand the available corridor width is smaller and the
density of co-moving pedestrians increases.

To measure the efficiency of the strategy, we test the model in the two situations.
Let (dN/dt)S and (dN/dt)NS be the number of pedestrians per unit time that
the corridor is able to accommodate in the segregated and non-segregated cases
respectively, and G the gain in using the segregated strategy, i.e. the ratio of these
two quantities minus one (see appendix C). The gain as a function of the densities
of the two pedestrian types is plotted in Fig. 7. It appears that the segregation
strategy improves significantly the efficiency of the system when the densities of the
two types are both large and of the same order. However, the strategy is inefficient
when one type outnumbers the other one. In this case, it is more efficient to use
the un-segregated strategy. This analysis demonstrates the benefits of a strategy
optimization scheme in which the decision of implementing segregation or not could
be taken in real-time. Indeed, segregation offers benefits only in some regions of the
(ρ+, ρ−) plane. Since setting up a segregation strategy implies additional costs, the
gain in traffic efficiency has to overtake the expense. The diagram presented in Fig. 7
helps finding which regimes of densities provide an overall benefit in separating the
two inflows of pedestrians.

4. Discussion. In this work, we have set the objective to build simulation tools
to assist the management of pedestrian traffic. Our attention was focused on the
case of bidirectional flows because, on the one hand, it captures many common
situations to be found in corridors or sidewalks, and on the other hand, it received



1282 SEBASTIEN MOTSCH ET AL.

Figure 7. Efficiency segregation strategy. Estimation of the
relative gain using the segregation strategy (in %) as a function of
the densities ρ+, ρ− (in m−2) of the two types of pedestrians (level
curve representation). The strategy is efficient when both densities
ρ+ and ρ− are roughly balanced and large.

relatively poor attention in the literature. One of our work hypothesis is that two
main factors influence conditions in bidirectional traffic: density, and proportion of
each directional flow.

In the first part of this work, we empirically analyze bidirectional traffic. Our
main result is captured by Figure 3: we show an evidence of the influence of the
density of each directional flow on the flux. To perform this empirical observation,
we chose laboratory conditions. Choosing laboratory conditions allowed us control-
ling the goals and motivations of walkers, and limiting the effect of the other many
factors which influence pedestrian behaviors, such as physiological (e.g., aging) or
social ones (e.g., walking together in groups). We clearly isolate the role of the den-
sity factors we considered on the resulting traffic conditions. This however limited
the amount of observation data due to the required effort to gather them (sub-
jects recruitment, data reconstruction and processing efforts, etc.). Nevertheless,
the presented method applies to any new data. As, for instance, the fundamental
diagram may depend on the nature of the subjects that are using the walkway [22]
(children, adults, aging people, etc.), it would be interesting to update the BFD
from dataset with controlled population.

In the second part of this work, we introduce a first order model to estimate
the bidirectional fundamental diagram. In spite of the relative simplicity of this
model, we demonstrate the ability to adhere to observation data, as illustrated by
our results reported in Table 1. We observe that the estimated average velocity
a consistently takes similar values throughout the 3 sets of experiments. Friction
with the co-moving pedestrians b is surprisingly larger in the experiments with a
50%−50% balance. It exceeds the friction with counter-moving pedestrians (i.e. b >
c). One explanation of this result is the emergence of lanes. In the experiments with
50%−50% balance, lane formation is very strong whereas it is scarcely observed in the
experiments with 75%−25% or 100%−0% balance. On the one hand, lane formation
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reduces the interactions with counter-moving pedestrians and thus decreases the
friction coefficient c. But on the other hand, it enhances clustering with co-moving
pedestrians and thus increases the friction coefficients b. Without lane formation,
pedestrians need to maneuver to avoid counter-moving pedestrians resulting in a
reduction of the fluxes. Thus, counter-moving pedestrians are more disruptive to
the flow in this case which is why c > b in the experiments with 75%−25% balance.

As a result, the friction coefficients b and c are associated with complex pattern
formation in the longitudinal direction such as clustering as well as in the lateral
direction such as lane formation. They provide a simple yet effective characteriza-
tion of various flow regimes. The Bi-directional Macroscopic (BM) model critically
depends on the three parameters a, b and c. By varying them, we can span various
types of pedestrian behavior. As such, the BM model is capable of describing com-
plex pedestrian behavior while having the efficiency of a one-dimensional model.
Of course, one can make the flux expression f more complex to include all possible
scenarios in a single expression. But this is at the cost of introducing new param-
eters which need to be estimated and this decreases the efficiency of the model in
real-time crowd control situation. Therefore we prefer to use a greedy modeling
approach with a simple (but not simplistic) model. The accuracy of the model
can however be discussed with respect to the employed data-set. We have limited
the role of secondary factors, we may expect to have a lower adherence using real,
non-controlled, kinematics data (e.g., outdoor video tracking). This possible loss
of accuracy need to be evaluated, nevertheless, we can expect that our results still
hold in many cases, such as metro corridor traffic at rush, where most of the traffic
is composed of pedestrian moving individually.

In the last part of this work, we have chosen to evaluate our model based on
an analysis of cluster dynamics. The emergence of clusters as a consequence of
density fluctuations is a classical example of spatio-temporal patterns in traffic flow
phenomena [20, 27], also known as Kinematic Waves [38, 35]. Comparing the large-
scale dynamical features of the clusters in the simulation and the data provides a
practical way to assess the validity of the BM model. For a given type of pedestrians
(clockwise or anti-clockwise), clusters are defined as regions of space where the
density of this type of pedestrian exceeds a certain threshold value (see appendix
B). Fig. 6 gives the estimated average pedestrian velocity u (in red) and cluster
velocity λ (in green) as functions of the density of pedestrians for the experiments
(circles) and the simulations (solid lines) in the balanced flux case (50%−50%). We
notice an excellent agreement between experiments and simulations despite some
discrepancies at low density (i.e. ρ+ < .4m−2). Those discrepancies could be
explained by the fluctuations in the experiments at low density which perturb the
estimation of u and λ. Fig. 4 has already provided a qualitative comparison between
traveling waves in the experiments and in the model, Fig. 6 provides a quantitative
estimate of the resemblance. We notice that pedestrian velocity u is always faster
than the cluster velocity λ. This indicates that the information is propagating
upstream. Moreover, when the density increases, we observe a faster decay of the
cluster velocity λ compared to the average velocity u (i.e. u−λ is increasing with ρ).
This implies that perturbations propagate faster at large density as it is predicted
by the BM model (see Fig. 6).

5. Conclusion and future work. We have presented a study on bidirectional
flows of pedestrian. We have first presented an experimental measurement of the
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bidirectional fundamental diagram, with changing conditions of flow proportions.
We have then introduced a bidirectional traffic model, directly based on this dia-
gram (a.k.a. “first order models”) for efficiency reasons. Finally, we demonstrate a
relevant application of our model in the frame of automated traffic management sys-
tems, allowing users to estimate the benefit to flow segregation strategy to improve
traffic.

The power of our approach is to capture complex phenomenon with a simple
framework involving only three parameters. Moreover, one can easily extend the
model to encompass more advanced features. As a first research direction, we
would like to use real-time estimation of crowd parameters as it has been developed
in several studies [39, 60, 58, 26, 21, 57, 13] to update the BFD diagram. The data
assimilation strategy outlined above will be able to adapt the BM model quickly to
changes in the nature and composition of the crowd.

Another possible extension would be to use models involving a differential relation
between the flux and the local densities [4, 45] (a.k.a. “second order models”).
Those models could generate metastable equilibria and phase transitions, which
play an important role in traffic [29, 27]. Still, our first exploration of the data does
not indicate that metastability plays an important role in pedestrian traffic.

To extend our work in two-dimensions (i.e. take into account the radial compo-
nent), one has to consider the direction of the flow of pedestrians. Several macro-
scopic models have been proposed [24, 23, 6] with the introduction of a minimization
principle to select the best route. Since most of bidirectional pedestrian flow have
been studied at the microscopic level with Cellular Automata models [10, 25, 55, 14],
it will be compelling to compare the two approaches.

Finally, it would be interesting to test the framework in a more complex environ-
ment such as a network of corridors. Several strategies could be tested to decongest
traffic such as indicating which corridor to use depending on its occupancy. Hence,
the efficiency of a network could be measured allowing to improve its design for
safer evacuation.

Appendix A. Analytic estimation of the cluster velocity λ. In a one-way
traffic, there is only one type of density ρ and the flux is simply given by f(ρ). The
characteristic velocities are then defined as (see Fig. 6b):

u =
f(ρ)

ρ
, λ = f ′(ρ).

In a bi-directional traffic, there are two values for the cluster velocities, denoted by
λ±(ρ+, ρ−). Indeed, the flux function f(ρ) must be replaced by the BFD f(ρ+, ρ−)
and the quantity f ′(ρ) must be replaced by the matrix

A(ρ+, ρ−) =

(
c++ c+−
−c−+ −c−−

)
,

where

c++ = ∂ρ+

(
f(ρ+, ρ−)

)
, c+− = ∂ρ−

(
f(ρ+, ρ−)

)
,

c−+ = ∂ρ+

(
f(ρ−, ρ+)

)
, c−− = ∂ρ−

(
f(ρ−, ρ+)

)
.

Cluster velocities λ±(ρ+, ρ−) are the eigenvalues of this matrix. They have been
computed in [3] and are equal to
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λ± =
1

2
(c++ − c−− ±

√
∆), with ∆ = (c++ + c−−)2 − 4c+−c−+.

The eigenvalues λ± are real (i.e. the BM model is hyperbolic [37]) if and only if
∆ > 0. This is the case in the situation (met in our experiments) where

ε =
max{|c+−|, |c−+|}
max{|c++|, |c−−|}

� 1. (10)

In general, it is not possible to associate one of these eigenvalues to either one or
the other pedestrian species ρ+ and ρ−. For instance, if we denote ρ1+ and ρ1− the
perturbations of ρ+ and ρ−, there are not convected by λ+ and λ−. Instead, λ+
and λ− are convecting the following linear combinations:

α+ =
Eρ1+ − c+−ρ1−√
E2 − c+−c−+

, α− =
Eρ1− − c−+ρ1+√
E2 − c+−c−+

,

with E =
1

2
[
√

∆− (c++ + c−−)].

This means that the densities ρ± are not purely convected. However, in the regime
characterized by ε� 1 (Eq. 10), we find that

α+ ≈ ρ1+, α− ≈ ρ1−.
In this approximation, the densities ρ± are purely convected with velocities λ±,
which means that we can associate λ+ and λ− to the velocities of clusters of the
clockwise and anti-clockwise moving pedestrians respectively. In this approxima-
tion, to the first order in ε, we find:

λ+ = c++, λ− = −c−−, (11)

which gives a situation similar to car traffic.

Appendix B. Identification and quantification of clusters. Cluster analysis
provides a lens to analyze emergence of macroscopic structures in pedestrians dy-
namics. From a macroscopic viewpoint, a cluster at a given time t is a connected set
of points x where the density ρ(x, t) is larger than a given threshold h (see Fig. 8a).
Obviously, there are different clusters for the clockwise (ρ = ρ+) and anticlockwise
(ρ = ρ−) pedestrians. As clusters move in time, they are bounded by level curves
X(t) of ρ defined by:

ρ(X(t), t) = h. (12)

To determine a cluster, we first need to construct the cluster boundaries, i.e. the
curves X(t) defined by (12), from the pointwise estimation of ρ±.

To construct such curves X(t), we consider ρn(x) the continuous piecewise linear
function of x which interpolates the estimated density ρnk at a given time tn (here,
we indifferently use the notation ρ for ρ+ and ρ− ; the ± indices will be used
below to designate the start and end points of the clusters). For a given threshold
h, we determine two sets of points X±j , j = 1, . . . , J such that ρn(X±j ) = h and

±(dρn/dx)(X±j ) > 0. The number of points in each set is the same, J , due to the

periodicity of ρn. It is finite unless ρn(x) has constant value h on a whole interval,
a non generic situation that we discard.

The j-th cluster is defined as the interval [X+
j , X

−
j ], because, due to the con-

ditions on the derivatives, we have ρn(x) ≥ h for all x belonging to this interval
(see Fig. 8). We now consider two consecutive time intervals tn and tn+1. We con-
nect X−j (tn) to X−j (tn+1) and X+

j (tn) to X+
j (tn+1), if the two consecutive points
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are closer than a threshold value set to λ0∆t, with λ0 = 3.3 ms−1. The tempo-
ral sequences of connected points X±j (tn) define, after time-interpolation between

the discrete time values, some level curves X±j (t). When the matching procedure
defined above finds no solution, the corresponding level curve is ended.

This procedure can be repeated for different levels h, and yields different families
of level curves X(t) (see Fig. 9a). When the time interval of existence of a level curve
(or lifetime) is too short, that level curve is considered as irrelevant and is removed.
Minimal existence time of 1, 2 and 3 seconds have been retained (see Fig. 9b for the
example of a cutoff at 3 seconds). In order to remove further oscillations of the level
curves (which are associated to the spatial discretization of ∆x = 0.6 m), we filter
them by convolution in time with a truncated Gaussian function with a support
larger than ∆x, adapting the normalization of the Gaussian to accommodate for
the beginning and the end of the level curve (see Fig. 9c).

From the level curves X(t), we can then deduce the cluster velocity λ, that is
the velocity at which the level curves are transported (see Fig. 8b). One should
rather speak of ‘cluster edge velocity’ since clusters have two boundaries, each of
them having its own speed, but as they are of the same order, we will use the term
‘cluster velocity’ for short. To estimate the cluster velocity λ on each level curve of
density level h, we compute its average slope. The slopes of the different connected
components of a given level curve are computed independently and later on aver-
aged. A weighted average with weights equal to the lifetime of the corresponding
connected component is applied. This procedure leads to an estimate of λ as a
function of the specific density level h. Thus, if we restore the indication ρ for the
density level h, we obtain λ as a function of ρ.

Appendix C. Estimation efficiency of segregation strategy. To estimate the
efficiency of the segregation strategy, we compare the total flux of pedestrians when
the two species of pedestrians ρ+ and ρ− are mixed or segregated in a corridor.
Without a segregation strategy, we suppose that the densities ρ+ and ρ− are uni-
formly spread on the corridor. We assume here that the estimation of the flux f
is independent as the corridor width. That will be more likely to be true for large
corridor since the boundary effects would be less important. Thus, the number of
pedestrians passing through a cross section per unit time is given by:

dN

dt

∣∣∣∣
NS

=
(
f(ρ+, ρ−) + f(ρ−, ρ+)

)
L

where L is the size of the corridor. The flux f+ is estimated from an interpolation
of the three flux functions obtained in Table 1. More precisely, we use a quadratic
regression to estimate each coefficient a∗, b∗ and c∗ at the ratio ρ+

ρ++ρ−
using the

data of Tab. 1. Then, we use those coefficients to estimate f+(ρ+, ρ−) (see Eq. 9).
If the species ρ+ and ρ− are segregated on each side of the corridor, the size of

the corridor is divided by 2 and the density of co-moving pedestrian is multiplied
by 2. Thus, we obtain:

dN

dt

∣∣∣∣
S

=
(
f(2ρ+, 0) + f(2ρ−, 0)

)
L.

Then, the relative gain of the segregation strategy G is estimated through the
following formula:

G =
(dN/dt)S − (dN/dt)NS

(dN/dt)NS
=

(dN/dt)S
(dN/dt)NS

− 1.
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Figure 8. Cluster and cluster velocity. (a) Illustration of
a cluster defined from a density distribution ρ(x, tn) for a given
threshold h. The edges of the cluster (i.e. X+ and X−) described
the level curves of ρ(x, t). (b) Graphical representation of the clus-
ter velocity using the level curves of ρ. The picture depicts the
edges (in yellow) of the cluster (in red). The cluster edge velocity
i.e. the slope of the cluster edge in the position-time plane is given
by f ′(h) and is illustrated by the green segment.
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Figure 9. Level curves of the density. Level curves X(t) for
various levels h for the replication displayed in Fig. 4 and clockwise
pedestrian density ρ+. Horizontal axis is space and vertical axis is
time, running downwards. The color code corresponds to the level
height h, from blue (lower levels) to red (higher levels). (a): with
no cutoff and no filtering. (b): after cutoff (only level curves with
life-time greater than 3 seconds are kept) but before filtering. (c):
after cutoff and filtering.
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