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Abstract1

Several disruptive events occur on road networks on a daily basis and affect traffic flow.2

Resilience analysis aims at assessing the consequences of such disruptions by quantifying the3

ability of a network to absorb and react to adverse events. In this paper, we advance a method-4

ological approach based on resilience stress testing and a dynamic mesoscopic simulator. We5

aim at identifying and ranking the links most critical to the overall performance of the road6

network, taking into account dynamic properties of road traffic and focusing on day-to-day dis-7

ruptions. As a metric to quantify road network performance in presence of such disruptions, we8

use the increase in overall travel cost. Then, we compare our approach with purely topological9

approaches.10

We discuss the advantages and drawbacks of the different analyzed metrics. We prove that11

link ranking varies greatly depending on the metric. Specifically, the proposed stress testing12

methodology can produce very accurate results by taking into account demand and congestion,13

but requires computationally intensive simulations, being therefore prohibitive even on medium-14

sized networks. Conversely, purely static topological metrics can be inaccurate if they do not15

take into account traffic demand and network dynamics. Our study highlights the need for16

joining traditional traffic-agnostic topological resilience analysis with demand-aware dynamic17

stress-testing techniques.18
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1. INTRODUCTION1

Roads tend to be disrupted by adverse weather conditions, human errors, or technological break-2

downs. Such day-to-day disruptions affect traffic flow and may profoundly impair the ability of3

the transportation network to guarantee basic mobility services as well as emergency situation4

management, thus causing fundamental economic and social strains.5

Resilience analysis aims at evaluating and predicting the consequences of such disruptions, and6

has become a crucial research concern recently [1, 2]. In the field of road network, one possible7

approach consists in identifying the links that most strongly affect the overall performance. Oper-8

ators and planners should be aware of the consequences deriving from reduced capacities on links.9

They should focus their efforts in improving and maintaining such critical links, since they may10

cause the most severe consequences on traffic operations when disrupted. Thus, a methodological11

approach and a set of resilience metrics are fundamental to identify critical links.12

Similar to other complex systems, a city road transportation network can be modeled as a graph13

G = (N,L) where road intersections are represented as nodes (N) and roads as links (L). This14

allows for exploiting graph theory and network connectivity analysis to study resilience. Graph15

theory can make resilience analysis very efficient in terms of computation costs, especially with16

the widespread adoption of big data technologies and cloud-computing. However, the phenomenon17

of congestion – dynamic, spatio-temporal, demand-dependent – is traditionally not addressed in18

topological studies on road traffic resilience [3, 4].19

In this context, our work aims at answering the following research questions:20

• How is it possible to identify the links that are most critical to the operation of the whole21

road network, especially with respect to day-to-day disruptions?22

• Are topological metrics adequate to measure resilience for road networks?23

• Which metrics are the most effective in assessing road network resilience, taking into account24

their dynamic, spatio-temporal and demand-dependent properties?25

The main contributions of this paper are the following: (1) a methodology based on link-26

based stress testing and a dynamic mesoscopic simulator is proposed for identifying critical links27

and quantifying road network robustness; (2) the methodology is compared to multiple topology-28

based metrics to clearly identify their limitations on a simplistic road network; (3) the approach is29

evaluated on a real-world network to identify and rank the most critical links in a realistic scenario;30

(4) guidelines are provided to decide when an approach can be preferred to the other one.31

The paper is outlined as follows: Section 2 deals with related work. In Section 3, we review32

different resilience metrics and describe our methodological approach, by presenting the stress33

testing approach and our dynamic mesoscopic simulator. Section 4 describes our two case studies.34

Section 5 reports on the evaluation of our approach in the considered case studies. A final discussion35

is presented in Section 6, while some directions for further work are proposed in Section 7.36

2. LITERATURE REVIEW37

In this section, we firstly introduce the very general concept of resilience based on previous works,38

by adapting it to the context of road network analysis. Then, we present relevant road network39

resilience approaches for identifying critical links.40



P. Gauthier, A. Furno and N.-E. El Faouzi 4

2.1 Resilience definition1

A wide diversity of definitions have been introduced in literature to characterize resilience. Woods2

identify four major concepts [5]: (1) resilience as rebound from trauma and return to equilibrium;3

(2) resilience as a synonym for robustness; (3) resilience as the opposite of brittleness, i.e., graceful4

extensibility when surprise challenges boundaries; (4) resilience as network architectures that can5

sustain the ability to adapt to future surprises as conditions evolve.6

Bruneau et al. [6] define resilience as the ability to: (i) mitigating hazards (robustness or7

pre-perturbation resilience); (ii) containing the effects of disasters during they occurrence (reactiv-8

ity); (iii) rapidly identifying occurred disruptions and mobilizing resources to quickly recover an9

acceptable traffic flow (recovery or post-perturbation resilience).10

Sullivan et al. define in [7] road network robustness as the degree to which the network can11

function in the presence of capacity disruptions on links. A robust road network can face disruptions12

on links with only slight increases in overall network-wide travel costs. Conversely, a non-robust13

road network is subject to substantial increases in costs.14

In the rest of the paper, we tackle the problem of resilience assessment according to the per-15

spective provided by concept (2) in Woods [5], i.e., robustness, and the definition proposed in [7]16

by Sullivan et al. Our paper proposes an approach based on stress testing for assessing the impact17

of day-to-day disruptions on network links by measuring overall travel costs, aimed at quantifying18

the ability of the whole road network to absorb such an impact. We remark, as an additional con-19

tribution of our paper, that our approach also allows for resilience assessment under the occurrence20

of unexpected and possibly very rare events, which corresponds to concept (3) in Woods [5], i.e.,21

graceful extensibility when surprise challenge boundaries. Our stress testing methodology is also22

applied for evaluating the impact of sudden travel demand variations on the overall travel costs.23

2.2 Resilience approaches24

The majority of the approaches aimed at quantifying resilience is based on topology models and25

static network-connectivity analysis [8, 3, 4].26

Among the plethora of metrics proposed to perform connectivity analysis, Betweenness Cen-27

trality (BC) is traditionally the best choice for traffic network analysis purposes, as it expresses the28

frequency with which a point falls between pairs of other points on the shortest paths connecting29

them [9]. BC has been therefore widely adopted to assess road resilience, by identifying topo-30

logically vulnerable links and intersections [10, 11]. Very recently, approaches based on machine31

learning and big data solutions [12] have been proposed to significantly reduce computation time32

of BC on several kinds of very large complex networks [13].33

Even though a large majority of studies focuses on static topological features of the network34

to identify its vulnerabilities, some authors have tried to join network topology features to more35

dynamic traffic-related information. Augmented definitions of BC take into account time-varying36

Origin-Destination (OD) travel demand [14, 15, 16, 17] as well as travel times [16, 18, 19] for37

shortest paths computation. Such augmented metrics have been adopted for traffic flow analysis38

and prediction [14, 15, 18, 19], traffic assignment [16] as well as network performance monitoring in39

presence of extreme events [17]. To the best of our knowledge, none of the previously approaches40

has been evaluated with respect to day-to-day disruptions (i.e., reduced link capacity), which41

represents one of the core aspects of our paper. Also, their applicability to resilience assessment42

is still neither widespread nor fully understood, being these metrics often inaccurate in highly43

dynamic environments and prohibitive to compute on large scale networks [20, 12].44

Another contribution of our paper is a methodology based on stress testing, i.e., pushing a45
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system beyond its normal operational capacity and observing how it responds to the applied stress.1

Stress tests have been widely used in banking [21, 22], medical [23, 24] and hydro-geology domains2

[25]. Also referred to as network-disruption analysis, this approach has been occasionally leveraged3

in the field of transportation to identify critical links in a road network, but it is still at a very4

early stage [26, 27, 17]. Sullivan et al. [7] set different link-based capacity-disruption values for5

identifying and ranking the most critical links and quantifying road network resilience. Jenelius and6

Mattsson [28] developed the notion of Importance of a link, which is a function of the increase in7

travel time when the link is disrupted. Their method is demand-aware as they weight travel time by8

demand. Stress testing allows performing intra-network comparison: links are ranked based on their9

contribution to the overall network resilience [29, 30]. Other authors have focused on identifying10

only the most critical nodes to be improved [30]. Some studies use probability-based models to11

calculate the likelihood that a network continues functioning after a given stress [31, 32]. To the12

best of our knowledge, the large majority of research works based on stress testing for assessing13

resilience of road network mainly deal with disasters and extreme events [17, 33, 34], instead of14

day-to-day disruptions as targeted in this paper.15

2.3 Assessment of the Literature16

The definition and quantification of resilience greatly vary depending on the context and application17

domain. No universal and totally agreed definition or metric of resilience exist.18

Despite the plethora of work on resilience in various domains, a relatively small number of19

studies has targeted resilience of road networks explicitly, and very few applications on real world20

roads have been proposed. Our paper deals instead with a real network in the Paris agglomeration21

area, France.22

The concept of resilience can be divided into two parts: pre-perturbation resilience (robustness),23

and post-perturbation resilience. In this study, focused on traffic modeling and analysis, we evaluate24

pre-perturbation resilience only. We do not account for post-perturbation socio-technical actions.25

As the aim of this paper is to rank and identify the most critical links in a given network with26

respect to day-to-day disruptions, we focus on intra-network comparisons.27

In the literature, two general approaches are commonly used to quantify resilience [26]. The28

first is purely topological and usually demand-insensitive. The second takes into account traffic29

network performance and includes demand variability via simulation.30

It is worth noting the lack of studies combining the stress-testing approach with the topological31

one. We analyze and compare the two different approaches to assess the resilience of road networks,32

and to determine their advantages and drawbacks in assessing road network resilience. For the first33

approach, i.e. the topological one, we consider and evaluate several metrics from graph-theory.34

As for the second approach, by means of a simulator, we inject perturbations in the network and35

quantify to what degree it can adjust to them.36

3. METHODOLOGY37

In the following, we report on the topological metrics considered in our analysis as well as the stress38

testing technique proposed to perform demand-aware, dynamic disruption analysis.39

3.1 Graph-theory metrics40

The topological metrics used in this study are based on Betweenness-Centrality (BC), originally41

proposed in [8]. BC measures the importance of the generic link l of a graph by considering the42
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number of shortest paths that traverse it, and is defined as follows:1

BC(l) =
∑
i 6=l 6=j

σij(l)

σij
, (1)

where:2

• σij(l) is the number of shortest paths from node i to node j that traverse link l;3

• σij is the total number of shortest paths from node i to node j.4

In shortest path computation, links can be unweighted or weighted (e.g., in terms of the as-5

sociated estimated travel time). In this study, we test and compare both cases. We also consider6

multiple variants of the BC, reported in the following, to model different aspects of a road traffic7

network.8

3.1.1 BC for entry and exit nodes only9

We propose to use an alternative definition of BC consisting in calculating the shortest paths from10

entry to exit nodes only1. This definition introduces two advantages: computation time is reduced;11

the definition seems more realistic from a demand-aware perspective, since individuals tend to start12

and finish their trips over a subset of intersections. This corresponds to the OD representation of13

the traffic demand. The formula is the same as Eq. 1 with some exceptions:14

• i is selected from the entry-nodes subset, i.e., intersections used by vehicles to enter the15

network;16

• j is selected from the exit-nodes subset, i.e., intersections used by vehicles to leave the network.17

In conclusion, we consider four different formulations of the BC:18

• Unweighted BC (BC)19

• Travel-time weighted BC (TTWBC)20

• Unweighted BC on entry/exit nodes only (BC entries-exits)21

• Travel-time weighted BC from entry to exit nodes only (TTWBC entries-exits)22

Spatio-temporal traffic properties and phenomena, like demand, congestion and dynamic re-23

routing, are typically not addressed in graph-based models. Thus, graph-based metrics are usually24

incapable of capturing these aspects in turn.25

3.2 Demand-sensitive metric26

Jenelius et al. introduced in [2] the demand-aware metric of Importance (I) to characterize trans-27

portation vulnerability. This metric allows measuring network performance loss by using travel28

costs weighted by the traffic demand. Such metric is adequate for our methodological approach29

as it includes demand and the dynamic phenomenon of congestion (i.e., travel costs increase when30

1The computation of betweenness centrality on a subset of nodes (entries and exits) is based on the function
edge betweenness centrality subset from the NetworkX Python library.
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traffic is congested). This metric uses a generic notion of travel cost, that can be specified depend-1

ing on the study context and aim. In this paper, we define travel cost as travel time divided by2

travel distance (in seconds/kilometers). The importance of a link l is the following:3

I(l) =

∑
i

∑
j 6=i xij(c

δ
ij(l)− c0ij)∑

i

∑
j 6=i xij

, (2)

where:4

• xij is the demand from origin node i to destination node j (number of vehicles);5

• cδij(l) is the mean travel cost from origin node i to destination node j when link l is disrupted6

at level δ;7

• c0ij is the mean travel cost from nodes i to j in the base case, i.e., without disruption8

3.3 Traffic model and algorithms9

To model traffic dynamics we use a dynamic mesoscopic simulator based on the Lighthill-Whitham-10

Richards model [35, 36] and implemented in Matlab by our research group [37, 38].11

The Lighthill-Whitham-Richards model is formulated in Lagrangian-space coordinates and uses12

both Lagrangian and Eulerian observations. It represents individual vehicles but only records their13

transit times at network nodes. A dynamic traffic assignment procedure distributes vehicles along14

all the possible alternative paths in the network, according to the traffic conditions at the moment15

the vehicle is generated. More precisely, travel times on all paths are calculated based on traffic flow,16

and the vehicle chooses the path that requires the smallest travel time. The following parameters17

have to be specified before running simulations: simulation duration, origin-destination demands18

and link capacities. This simulator is adequate for our stress testing approach: as opposed to static19

topological indicators, it includes traffic dynamic properties such as demand, congestion, traffic-20

based route assignment, dynamic shortest path computation and queues. Moreover, travel costs are21

calculated for each vehicle and can be easily extracted to compute network performance metrics,22

such as Importance from Eq. 2.23

3.4 Stress testing24

The aim of our stress-testing methodology is to identify the most critical links in the road network25

and to assess its resilience by considering the dynamic, spatio-temporal and demand-dependent26

properties of network traffic.27

Stress testing can be leveraged for quantifying the adverse impacts associated to a reduction28

of capacity on specific links. Disruptive road events such as flooding, obstacles on the road, traffic29

accidents are likely to reduce the capacity of a given link and negatively affect network perfor-30

mance. Measuring network performance loss when reducing the capacity of a given link provides31

the criticality of this link to the operation of the whole network.32

Therefore, stress testing is an adequate methodological approach to identify and rank the most33

critical links. It captures the relative importance of the disrupted link to the other links and assess34

the overall resilience of the whole road network from an intra-network comparison.35

Our methodology for road network stress testing is composed of the following steps:36

1. Simulating disruptive road events:37

We propose two strategies to perform this step. In the first one, we simulate day-to-day road38
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disruption as link capacity drops. The capacity-disruption level is defined as the reduction1

in link capacity, expressed as a fraction of the original one. In many studies, the capacity-2

disruption level is total, i.e. 100% of the original value, which means that the capacity of3

the link is reduced to 0 vehicles per hour [10]. The link is then completely removed from4

the road network. However, a 100% capacity-disruption level does not accurately reflect5

the actual link capacity resulting from frequent day-to-day disruptions or minor events (e.g.6

number of lane reduction, adverse weather, etc.) that can affect the network. That is why7

we gradually reduce the capacity to analyze the evolution of the performance depending on8

the capacity-disruption level. We consider 5 possible capacity-disruption levels, denoted as9

δ, on each examined link, i.e., δ ∈ {0%, 20%, 40%, 60%, 80%}. Therefore, we can consider the10

following equation to compute the maximum capacity of the generic link l in presence of a11

capacity-disruption level δ:12

δ = 100 ·
(

1− qδmax(l)

q0max(l)

)
, (3)

where:13

• δ is the capacity-disruption level applied to link l (percentage) with δ ∈ {0, 20, 40, 60, 80};14

• qδmax(l) is the capacity of link l when it is disrupted at level δ, (in vehicles/hours);15

• q0max(l) is the capacity of link l in the base case (in vehicles/hours);16

As a second strategy to simulate disruptive road events, we consider increases in the traffic17

demand on specific entry/exit nodes of the network. By this approach, it is possible to18

simulate exceptional situations like city evacuations following extreme events (e.g., flooding,19

attacks, etc.) that typically put significant strain on the road infrastructure and result in20

total congestion. This strategy consists in changing the OD matrix, i.e., increasing the traffic21

flow from given entries, and comparing the stress testing results with another demand level.22

Based on the selected strategy for disruptive road events, we set the parameters of our meso-23

scopic simulator (e.g., link capacity, traffic demand) and we simulate the network in the24

specific setting. For both strategies, travel costs are collected for all vehicles in order to25

compute the performance metrics described in the following point.26

2. Computing overall performance loss:27

This step is about quantifying the consequences of the simulated disruptive event on the oper-28

ation of the whole network. To this purpose, we use the notion of road network performance,29

measured via the Importance metric of Eq. 2. Specifically, we consider travel time increase30

divided by travel distance as a measure of cost. Below, we provide the formulation of the31

overall performance loss (PL), based on the notion of importance, when a link l is disrupted:32

PL(l, δ) =

n∑
v=1

cδv(l)− c0v
n

(4)

where:33

• PL(l, δ) is the overall performance loss when link l is disrupted at level δ (seconds/kilometers);34

• cδv(l) is the travel cost of vehicle v when link l is disrupted at level δ (seconds/kilometers);35

• c0v is the travel cost of vehicle v in the base case (seconds/kilometers);36
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• n is the number of vehicles in the network.1

3. Analyzing the results:2

For each link we know the performance loss corresponding to the considered capacity-disruption3

level (i.e., 0%, 20%, 40%, 60% and 80% of the original link capacity). As an example,4

PL(2, 40%) represents the overall performance loss on link 2 when it is disrupted at 40%5

of its initial capacity. In the evaluation section, we present and discuss the overall perfor-6

mance loss depending on the capacity-disruption level of the link according to two different7

strategies.8

3.5 Traffic robustness index9

The stress testing methodology reported in the previous section allows us to compute the overall10

performance loss for each link of the network with respect to five different capacity-disruption levels.11

To compare and identify critical links, we need a unique value of criticality associated to each link.12

To this purpose, a global metric is required to aggregate the performance loss values in the five13

different capacity-disruption levels. We propose the Stress Test Criticality metric (STC), defined14

as follows for the generic link l:15

STC(l) =

∫
δ
PL(l, δ), (5)

where:16

• STC(l) is the Stress Test Criticality when link l is stress-tested (seconds/kilometers)17

• δ is the capacity-disruption level of link l (percentage)18

• PL(l, δ) is the overall performance loss (seconds/kilometers)19

We use the trapezoid rule to approximate the integral in Eq. 5 from the (five) overall performance20

values computed on link l.21

4. CASE STUDIES22

The methodology and metrics described in the previous sections have been evaluated on two dif-23

ferent case studies: the first one is related to a simple virtual network, used as a basic testbed for24

our approach; the second one is a real road network in France, which we use to confirm the validity25

of our results in a realistic scenario and to support the discussion on both simulation-based stress26

testing and topological metrics.27

4.1 A simple virtual road network28

This network is composed of 8 nodes (4 road intersections, 2 entries and 2 exits) and 9 links. The29

duration of each simulation is fixed to 10 minutes.30

Figure 1a depicts the network structure with numbered links and flow directions. The network31

has been tested with two different demand levels reported as OD matrices in Figures 1b and 1c.32
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4.2 DIRIF: a real-world road network1

The DIRIF network is situated in South of Paris, France, and includes 868 links and 827 nodes (6572

intersections, 86 entries and 84 exits). Its roads are mostly highways. Each simulation duration is3

fixed to 15 minutes. Since the network is much bigger than the one in Sec. 5.1 and traffic demand is4

extremely low on some links, we specify a higher simulation duration to ensure that enough vehicles5

travel through the whole network and to collect a significant number of travel cost observations.6

Simulation is performed with real demand data from 9:00 AM to 9:15 AM, i.e., the morning peak-7

time, in order to increase the probability of observing some performance loss in our stress tests.8

The network is graphically presented in Figures 3a and 3b.9

5. EVALUATION10

In this section, we present the results of our stress-testing methodology and discuss the link ranking11

derived from the different selected metrics. We show that the ranking of critical links on the12

same network can significantly vary when different indicators are used, thus proving that simple13

modifications of one centrality indicator can have a relevant impact on the capacity of the metric14

to capture different facets of resilience. Moreover, we discuss the advantages and drawbacks of each15

different approach in assessing road network resilience, and provide guidelines that can be helpful16

towards the definition of a new enhanced centrality metric.17

5.1 Application on a simple virtual network18

In the scenario of the simple network described in Section 4, we measured stress test criticality and19

all of the proposed topological metrics on all the links. To perform stress testing, we used both20

strategies described in Sec. 3.4, i.e., link capacity drop (referred as A in the following) and traffic21

demand increase (referred as B). The measures of stress-test criticality that result from the two22

strategies above are distinguished as STC A and STC B, respectively. STC A and B are calculated23

with the same formula, but different parameters are set before stress testing.24

First we discuss the results of strategy A. In our simulations, we applied sequentially five25

capacity-disruption levels (i.e., 0%, 20%, 40%, 60%, 80%) to each link. Then, we measured the26

network-wide performance loss (i.e., Eq. 4) consequent to the disruption applied to the link. The27

overall performance loss from our stress tests is reported on the y-axis of Figure 2a, while the28

corresponding capacity-disruption levels (δ) are reported on the x-axis. Results for different links29

are depicted with different colors and markers in the figure, using a linear interpolation. For30

readability, the figure only reports the five most critical links (i.e., those with the highest overall31

performance loss).32

Intuitively, a link capacity drop translates into an increase of network-wide travel cost.33

According to the definition provided in Eq. 5, the stress test criticality of a given link corresponds34

to the area below its curve. Thus, in strategy A, link 9 is the most critical to the operation of35

the whole road network, followed by links 5, 1, 2 and 8. By using link-ranking from stress test36

criticality as a baseline, we compare in the following the other link rankings as derived from the37

different selected topological metrics. Figure 2c reports on such link rankings for both stress test38

criticality and the whole set of topological metrics.39

As a preliminary consideration, it can be observed that the rankings of critical links on the same40

network may dramatically change depending on the metric, due to the different properties of the41

network captured by each of them. As an example, link 5 is on top of all the topological rankings42

whereas, with stress-test criticality, it is ranked second, below link 9. The top-rank of link 5 by all43
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the topological metrics can be motivated considering the large number of shortest paths traversing1

this link: e.g., paths (4, 5), (7, 5), (7, 5, 8), (7, 5, 9), (6, 4, 5), (7, 5, 8) are all shortest paths.2

The different ranking issued by STC A can be easily explained. If link 5 is disrupted, alternative3

paths through link 2 exist for all individuals heading to exit 1 or exit 2. Conversely, when link 94

is disrupted, no alternative path exists for users willing to travel to exit 2 from both entry 1 and5

entry 2, thus resulting in important congestion and travel time increase for all individuals heading6

to exit 2. Additionally, traffic demand for exit 2 is very high (see OD matrix in Figure 1b). That7

explains why link 5 is more critical than link 9 in terms of topology, but less critical than link8

9 when considering demand data, as made possible by our stress-testing methodology (based on9

dynamic simulations) and captured by the related criticality metric. This simple test clarifies how10

traditional demand-agnostic approaches may fail in properly ranking edge criticality.11

Our simple test also shows that alternative paths may become shortest paths of the network12

as links are disrupted by adverse event, thus attracting traffic flow previously directed through13

the disrupted links. This represents another fundamental aspect that is impossible to capture14

with a static graph-based approach. However, this does not necessarily means that topological15

metrics are not good resilience indicators, but rather that road graph modeling should include a16

dynamic component (e.g., edge weights), and that betweenness centrality metrics should be rapidly17

re-computed after relevant network disruptions.18

Another striking difference worth to analyze regards link 2 : considered as one of the most19

critical ones according to the BC metric from entries to exits, it is the least critical one for the20

TTWBC and the TTWBC from entries to exits. The peculiarity of link 2 is its length: it is the21

longest one, thus demanding more time to be travelled than the other links. Metrics like BC and22

BC from entries to exits are not weighted, i.e., all links are valued equally, and are consequently23

unable to grasp this important aspect. Differently, links with high travel times are not considered24

critical by the analyzed weighted approaches, because they are not often part of shortest paths.25

The same consideration applies to link 7, which is the second-longest link of the network.26

Finally, it is worth noting that BC values are often clustered. In particular, the BC from27

entries to exits has many equal values and only 2 link ranks. Traditional topological metrics28

appear to have very limited capability to discriminate link criticality at a fine level. In this case,29

stress test criticality does not differentiate all links either, but this is due to capacity-disruption30

levels. For links 8, 6, 4, 7 and 3 which are all ranked at the 5th place with the same value, both31

capacity-disruption and demand levels are not high enough to observe a significant performance32

loss compared to the base case. For example link 8 capacity disruption does not affect the overall33

network performance (see Figure 2a). The overall travel cost sticks to its base case value. That is34

why some links have the same criticality value. Then, stress test criticality differentiation between35

links depends on capacity-disruption and demand levels.36

To further investigate this aspect, we use our second stress testing strategy B, i.e., with different37

traffic demand that is reported in Figure 1c. Results are shown in Figures 2b and 2c (i.e., STC B).38

Link ranking changes significantly when different demand levels are used. As an example, Link 839

becomes the most critical link, whereas in the previous case it involved no performance loss. This40

is due to the large increase in demand level associated to exit 1, which is directly connected to link41

8 (see Figure 1a).42

Takeaways: Critical link ranking is highly variable as different approaches are used. Resilience43

analysis via topological metrics is limited in the sense that such metrics do not usually take into44

account traffic demand and network re-configurations following disruptive events. Conversely, the45

simulation-based stress testing approach is able to capture these aspects thus providing more realistic46

rankings via the proposed performance loss metric. Stress testing can also be used to compare47

different road networks and sub-networks, by analyzing their response to similar stresses. Travel-48
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time weighted BC produces better estimations of link criticality with respect to unweighted BC, which1

treats all links equally.2

5.2 Application on a real road network3

To confirm the results of our previous analysis in a realistic scenario, we considered Paris DIRIF4

road network, described in Section 4. Given the large size of this network and the high computation5

time associated to each network simulation2, it was prohibitive to perform an exhaustive stress-test6

analysis as in the simple network case. Therefore, we performed stress tests on a limited set of7

representative links: the three links with the highest demand, the three ones with the highest BC8

and three randomly selected edges with BC in three classes of values (high, medium and low). We9

discuss in the following only our simulations related to strategy A3. Figure 3c reports the actual10

values of the considered metrics for the analyzed links4.11

Consistently with our previous analysis on the simple network, Figure 3c shows that rankings12

of critical links vary significantly. As an example, links 95, 93, 94 have a very high value of STC A,13

whereas the topological metrics rate them much less critical than links 802, 803, 607. As pointed14

out in the previous section, the STC A ranking appears to be more realistic since it captures the15

higher criticality of links 95, 93, 94 due to the associated higher demand (not reported due to16

space limitations).17

On the small link subset considered in our analysis, taking into account travel times (TTWBC18

and TTWBC entries-exits) does not significantly change rankings, since link lengths (and therefore19

the average travel times) happen to be very similar on all considered links. Finally, it is worth20

noting that in the DIRIF network, BC values (especially in the entries/exits variations) tend to21

significantly cluster themselves (i.e., many edges have very similar values of BC), thus exhibiting a22

lower discriminant power than in the case considered in Section 5.1.23

Takeaways: In a real-world scenario, stress testing proved to be a realistic and reliable approach24

to evaluate network resilience. Our evaluation confirms the importance of traffic demand and25

network dynamics for fine-grained ranking of the most vulnerable road-network links. Stress testing26

has however the drawback of requiring high execution times due to computationally intensive network27

simulations.28

6. DISCUSSION AND PERSPECTIVES29

From the previous results, we summarize in the following a few guidelines for properly characterizing30

critical links with respect to day-to-day disruptions, by means of an intra-network approach in31

different application contexts.32

Firstly, if resilience has to be evaluated in a relatively static context (e.g., network maintenance33

or planning), BC and TTWBC appear to be adequate. In particular, if data about demand and34

travel times are not available, we recommend BC, BC from entries and exits and BC on all paths35

from entries and exits. These indicators do not require special knowledge on network performance36

and demand data, but only the basic network topology (links and intersections). If traffic demand37

2Stress testing one link from such a large network with 5 capacity drops takes more than 1 hour on an Intel
Xeon E3 CPU equipped with 8 GB of RAM running a Matlab implementation of the mesoscopic simulator, properly
configured to handle the DIRIF network in Scenarios A and B.

3Simulations for strategy B were in line with the results reported in the previous section and are not discussed
due to space limitation.

4Differently from Figure 2c, we do not report metric rankings but actual values of the metrics for each analyzed
link. This is motivated by the impossibility to get the full ranking for performance loss (i.e., STC).
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is the only missing information, Stress Test Criticality, TTWBC and TTWBC from entries to exits1

should be preferred, since they also take into account travel time information.2

If the goal is instead to achieve a more accurate characterization of network resilience, stress3

testing should be chosen, since it produces reliable results by taking into account traffic demand4

and congestion phenomena. The drawback is that it requires many computationally intensive sim-5

ulation, thus being recommended only in application scenarios that allow for larger computation6

time, or that address small-sized (sub-)networks. Conversely, in domains with very stringent re-7

quirements on response time (e.g., on-line vulnerability monitoring), topological indicators could8

be the only valuable option. However, it is worth to remark that efficient solutions are still required9

to compute these metrics on very large networks within reasonable computation time. For future10

work, we are currently working on the switch from a Matlab implementation of our simulation-11

based tools to a new implementation based on faster programming languages and approaches, i.e.,12

explicitly designed for big data processing and real-time computation (e.g., Python and Scala on13

top of the Spark processing framework). In particular, we believe that implementing real-time14

advanced solutions for data-driven, on-line monitoring of road traffic resilience will constitute a15

fundamental research problem to investigate.16

We advance that, in order to improve road network resilience analysis, future research work is17

needed that should consider joining graph-based approaches with demand-aware dynamic stress-18

testing techniques. In this context, we believe that a further improvement with topological metrics19

could be achieved by modeling the road network as a dynamic graph, whose link weights may20

change over time depending on actual traffic conditions and both structural and performance-21

related network properties (e.g., road capacity, real-time traffic information, etc.).22

Finally, we argue that future work should also consider area-wide disruptions in addition to23

single link-based disruptions, especially in the light of measuring the impact of extreme events.24

7. CONCLUSION25

Identifying critical links to the overall performance is part of road network resilience and intra-26

network analysis. To this purpose, we have analyzed in this paper several topological metrics based27

on Betweenness-Centrality and proposed a stress testing approach exploiting a dynamic simulator.28

Stress testing appears to be a very promising solution for resilience analysis, allowing for measuring29

resilience in terms of the overall performance loss of the whole network consequent to simulated30

link disruptions.31

Our analysis shows that link ranking varies greatly when different metrics are used. As opposed32

to purely topological metrics, the proposed stress-testing approach takes into account demand levels33

and dynamic characteristics of road traffic. However, it requires more computation time and data34

than traditional graph-based metrics. The choice of a relevant metric for assessing road network35

resilience should depend on the context and the specific application requirements.36

Merging static topological metrics and demand-based approaches could be of further research37

interest. It could be relevant to adopt dynamic graphs modeling, using link weights to include38

dynamic information on the network. In such approach, topological metrics should be dynamically39

computed by means of efficient quasi real-time solutions.40
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Andrei M Reinhorn, Masanobu Shinozuka, Kathleen Tierney, William A Wallace, and Detlof20

Von Winterfeldt. A framework to quantitatively assess and enhance the seismic resilience of21

communities. Earthquake spectra, 19(4):733–752, 2003.22

[7] JL Sullivan, DC Novak, L Aultman-Hall, and David M Scott. Identifying critical road segments23

and measuring system-wide robustness in transportation networks with isolating links: A link-24

based capacity-reduction approach. Transportation Research Part A: Policy and Practice,25

44(5):323–336, 2010.26

[8] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry, pages27

35–41, 1977.28

[9] Yuanyuan Zhang, Xuesong Wang, Peng Zeng, and Xiaohong Chen. Centrality characteristics29

of road network patterns of traffic analysis zones. Transportation Research Record: Journal of30

the Transportation Research Board, 2256:16–24, 2011.31

[10] David King, Amer Shalaby, and P Eng. Performance metrics and analysis of transit network32

resilience in toronto. In Transportation Research Board 95th Annual Meeting, number 16-2441,33

2016.34

[11] Bertrand Berche, Christian von Ferber, Taras Holovatch, and Yurij Holovatch. Resilience35

of public transport networks against attacks. THE EUROPEAN PHYSICAL JOURNAL B,36

71(1):125–137, 2009.37



P. Gauthier, A. Furno and N.-E. El Faouzi 15

[12] Angelo Furno, Nour Eddin El Faouzi, Rajesh Sharma, and Eugenio Zimeo. Two-level clustering1

fast betweenness centrality computation for requirement-driven approximation. IEEE Big Data2

2017 Conference, 2017.3

[13] Angelo Furno, Nour-Eddin El Faouzi, Rajesh Sharma, and Eugenio Zimeo. Reducing pivots4

of approximated betweenness computation by hierarchically clustering complex networks. In5

International Conference on Complex Networks and their Applications, pages 65–77. Springer,6

2017.7

[14] Amila Jayasinghe, Kazushi Sano, and Hiroaki Nishiuchi. Explaining traffic flow patterns using8

centrality measures. International Journal for Traffic & Transport Engineering, 05(02):134–9

149, 2015.10

[15] Aisan Kazerani and Stephan Winter. Modified betweenness centrality for predicting traffic11

flow. 2, 2009.12

[16] Rami Puzis, Yaniv Altshuler, Yuval Elovici, Shlomo Bekhor, Yoram Shiftan, and Alex Pent-13

land. Augmented betweenness centrality for environmentally aware traffic monitoring in trans-14

portation networks. Journal of Intelligent Transportation Systems, 17(1):91–105, 2013.15

[17] Wisinee Wisetjindawat, Amirhassan Kermanshah, Sybil Derrible, and Motohiro Fujita.16

Stochastic modeling of road system performance during multihazard events: Flash floods and17

earthquakes. Journal of Infrastructure Systems, 23(4):04017031, 2017.18

[18] Yaniv Altshuler, Rami Puzis, Yuval Elovici, Shlomo Bekhor, and Alex BaglioniPentland. Aug-19

mented betweenness centrality for mobility prediction in transportation networks. Finding20

Patterns of Human Behaviors in Network and Mobility Data (NEMO), 2011.21

[19] Yew-Yih Cheng, Roy Ka-Wei Lee, Ee-Peng Lim, and Feida Zhu. Measuring centralities for22

transportation networks beyond structures. In Applications of Social Media and Social Network23

Analysis, pages 23–39. Springer, 2015.24

[20] Yingying Duan and Feng Lu. Robustness of city road networks at different granularities.25

Physica A: Statistical Mechanics and its Applications, 411:21–34, 2014.26

[21] Andrew Haldane. Why banks failed the stress test. BIS Review, 18:2009, 2009.27

[22] Til Schuermann. Stress testing banks. International Journal of Forecasting, 30(3):717–728,28

2014.29

[23] NORA Goldschlager, Artur Selzer, and Keith Cohn. Treadmill stress tests as indicators of30

presence and severity of coronary artery disease. Ann Intern Med, 85(3):277–286, 1976.31

[24] Steven W Baertschi, Karen M Alsante, and Robert A Reed. Pharmaceutical stress testing:32

predicting drug degradation. CRC Press, 2016.33

[25] Limin M Zhang, Liang Gao, Shengyang Y Zhou, Raymond WM Cheung, and Suzanne Lacasse.34

Stress testing framework for managing landslide risks under extreme storms. In Workshop on35

World Landslide Forum, pages 17–32. Springer, 2017.36
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(a) Simple virtual road network

`````````````̀Origin
Destination

Exit 1 Exit 2

Entry 1 375 375

Entry 2 250 1000

(b) OD demand (vehicles/hour) for the simple virtual
network (strategy A)

`````````````̀Origin
Destination

Exit 1 Exit 2

Entry 1 500 500

Entry 2 1200 300

(c) OD demand (vehicles/hour) for the simple virtual
network in (strategy B)

Figure 1: Simple virtual network. Network structure (a) and OD travel demand (b, c) for the two
considered strategies.



(a) Overall Performance Loss, strategy A (STC A) (b) Overall Performance Loss, strategy B (STC B)

Link STC A STC B BC
BC

entries-exits
TTWBC

TTWBC
entries-exits

9 1st 4th 2nd 1st 4th 3rd

5 2nd 2nd 1st 1st 1st 1st

1 3rd 3rd 2nd 1st 4th 3rd

2 4th 5th 2nd 1st 7th 5th

8 5th 1st 2nd 1st 4th 3rd

6 5th 6th 4th 2th 5th 4th

4 5th 7th 2nd 2th 2nd 2nd

7 5th 8th 3th 1st 6th 4th

3 5th 8th 3th 2th 3rd 3rd

(c) Simple network link rankings generated by the different metrics of criticality

Figure 2: Performance evaluation on the simple virtual network



(a) DIRIF, geographic location (b) DIRIF network

Link STC A BC
BC

entries-exits
TTWBC

TTWBC
entries-exits

Highest-
demand
links


95 117 2628 83 2628 83

93 102 660 83 660 83

94 101 1974 83 1974 83

Highest-
BC
links


802 42 192497 3029 192717 3039

803 27 192521 3029 192741 3039

607 27 192509 3029 192729 3039

608 44.6 192449 3029 192669 3039

397 15.8 83164 1139 83164 1139

672 14.5 10 1 10 1

(c) DIRIF network link values generated by the different metrics of criticality

Figure 3: The DIRIF road network in Paris agglomeration (a) and (b). Evaluation results (c).


